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Abstract

Elementary proofs are presented for two graph theoretic results, orig-

inally proved by H. Shirazi and J. Verstraëte using the combinatorial

Nullstellensatz.

In an undirected graph G = (V, E) we denote by dG(v) the degree of v ∈ V .
If F (v) ⊆ N is a set of forbidden degrees for every v ∈ V , then a subgraph
G′ = (V, E′) of G is called F -avoiding if dG′(v) /∈ F (v) for all v ∈ V .

Theorem 1 (Shirazi, Verstraëte [5]). If G = (V, E) is an undirected graph and

|F (v)| ≤ dG(v)/2 for every node v, (1)

then G has an F -avoiding subgraph.

Theorem 1 appeared first under the name Louigi’s conjecture in [1]. A
version with dG(v)/2 replaced by dG(v)/12 was given in [1], while dG(v)/8 was
proved in [2]. Louigi’s conjecture was first settled in the affirmative by H. Shirazi
and J. Verstraëte [5]. Their proof is based on the combinatorial Nullstellensatz
of N. Alon [3]. We give an elementary proof, which uses Theorem 2 below. In

a directed graph D = (V,
−→
E ) we denote by %D(v) the in-degree of v ∈ V .

Theorem 2. If G = (V, E) is an undirected graph and it has an orientation D
for which %D(v) ≥ |F (v)| for every node v, then G has an F -avoiding subgraph.

Proof. For an undirected edge e, let −→e denote the corresponding directed edge
of D. We use induction on the number of edges. If 0 is not a forbidden degree at
any node, then the empty subgraph (V, ∅) is F -avoiding. Suppose that 0 ∈ F (t)
for a node t. Then %D(t) ≥ |F (t)| ≥ 1 and hence there is an edge e = st of G
for which −→e is directed toward t. Let G− = G − e and D− = D − −→e . Define

∗MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös
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F− as follows. Let F−(t) = {i − 1 : i ∈ F (t) \ {0}}, F−(s) = {i − 1 : i ∈
F (s)\{0}}, and for z ∈ V −{s, t} let F−(z) = F (z). Since |F−(t)| = |F (t)|−1,
%D−(v) ≥ |F−(v)| holds for every node v. By induction, there is an F−-avoiding
subgraph G′′ of G−. By the construction of F−, the subgraph G′ := G′′ + e of
G is F -avoiding.

Proof. (of Theorem 1.) It is well-known that every undirected graph G has an
orientation D in which

%D(v) ≥ bdG(v)/2c for every node v. (2)

Indeed, by adding a new node z to G and joining z to every node of G with
odd degree, we obtain a graph G+ in which every degree is even. Hence G+

decomposes into edge-disjoint circuits and therefore it has an orientation in
which the in-degree of every node equals its out-degree. The restriction of this
orientation to G satisfies (2). (An orientation with property (2) is also used in
[5].) Therefore Theorem 2 implies Theorem 1.

S. L. Hakimi [4] proved that, given a function f : V → Z+, an undirected
graph G has an orientation for which %(v) ≥ f(v) for every node v if and only if
eG(X) ≥

∑
[f(v) : v ∈ X ] holds for every subset X ⊆ V , where eG(X) denotes

the number of edges with at least one end-node in X . By combining this with
Theorem 2, one obtains the following.

Corollary 3. If G = (V, E) is an undirected graph and eG(X) ≥
∑

[|F (v)| :
v ∈ X ] holds for every subset X ⊆ V , then G has an F -avoiding subgraph.

Along with Theorem 1, the following result was also proved in [5] via the
Combinatorial Nullstellensatz. A graph is called empty if it has no edges.

Theorem 4 (Shirazi, Verstraëte [5]). If G = (V, E) is an undirected graph,

0 /∈ F (v) for all v ∈ V and
∑

v∈V
|F (v)| < |E|, then G has a nonempty F -

avoiding subgraph G′.

Proof. Again, we use induction on the number of edges. If dG(v) /∈ F (v) for
all v ∈ V , then the nonempty G′ = G will do. Otherwise there exists a node
t ∈ V where dG(t) ∈ F (t). As 0 /∈ F (v), there is an edge e of G incident
to t. Let G− = G − e, let F−(t) = F (t) \ {dG(t)} and for z ∈ V − {t} let
F−(z) = F (z). By induction, there is a nonempty F−-avoiding subgraph G′ of
G−. As dG′(t) < dG(t), this G′ is also F -avoiding.

We remark that Theorems 2 and 4 clearly hold for hypergraphs, as well,
with the same proofs. Combining this with the hypergraph variant of Hakimi’s
theorem, one concludes that also Corollary 3 applies to hypergraphs. However,
in Theorem 1 one should replace the denominator 2 by the rank of the hyper-
graph (that is, the maximum size of a hyperedge). This is already observed by
Shirazi and Verstraëte [5]. Note also that both proofs give rise to polynomial
algorithms: such algorithms were not known before.
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Note added in proof. After submitting the paper, the authors learned
that Adrian Bondy also formulated and proved Theorem 2. His proof goes along
the same line as ours.
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