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Abstract

The hypergraph matching problem is to find a largest
collection of disjoint hyperedges in a hypergraph. This
is a well-studied problem in combinatorial optimization
and graph theory with various applications. The best
known approximation algorithms for this problem are all
local search algorithms. In this paper we analyze different
linear and semidefinite programming relaxations for the
hypergraph matching problem, and study their connections
to the local search method. Our main results are the
following:

• We consider the standard linear programming relax-
ation of the problem. We provide an algorithmic proof
of a result of Füredi, Kahn and Seymour, showing that
the integrality gap is exactly k − 1 + 1/k for k-uniform
hypergraphs, and is exactly k − 1 for k-partite hyper-
graphs. This yields an improved approximation algo-
rithm for the weighted 3-dimensional matching prob-
lem. Our algorithm combines the use of the iterative
rounding method and the fractional local ratio method,
showing a new way to round linear programming solu-
tions for packing problems.

• We study the strengthening of the standard LP relax-
ation by local constraints. We show that, even after
linear number of rounds of the Sherali-Adams lift-and-
project procedure on the standard LP relaxation, there
are k-uniform hypergraphs with integrality gap at least
k − 2. On the other hand, we prove that for every con-
stant k, there is a strengthening of the standard LP
relaxation by only a polynomial number of constraints,
with integrality gap at most (k+1)/2 for k-uniform hy-
pergraphs. The construction uses a result in extremal
combinatorics.

• We consider the standard semidefinite programming
relaxation of the problem. We prove that the Lovász
ϑ-function provides an SDP relaxation with integrality
gap at most (k + 1)/2. The proof gives an indirect
way (not by a rounding algorithm) to bound the ratio
between any local optimal solution and any optimal
SDP solution. This shows a new connection between
local search and linear and semidefinite programming
relaxations.

1 Introduction

The hypergraph matching problem, also known as the
set packing problem, is a fundamental problem in com-
binatorial optimization with various applications. In
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general this problem is equivalent to the maximum in-
dependent set problem, and is thus hard to approx-
imate [Has99]. In this paper we study the hyper-
graph matching problem in k-uniform hypergraphs, in
which every hyperedge has exactly k vertices; this is
also known as the k-set packing problem. This is a
generalization of some classical combinatorial optimiza-
tion problems, e.g. the k-dimensional matching prob-
lem [Kann91, HSS06], the maximum independent set
problem in bounded degree graphs [BF94, HR97, Tre01],
and some graph packing problems [HR06, CMWY08].
This is also an important problem in graph the-
ory [AH00, Aha01], and has interesting connections to
the Santa Claus problem [BS06, AFS08] and the partial
Latin square problem [GRS03, HJKS07]. All the best
known approximation algorithms for the hypergraph
matching problem in k-uniform hypergraphs are based
on local search methods [HS89, Hal95, CH99, Ber00,
BK03b].

Mathematical programming relaxations and local
search methods are two important techniques in ap-
proximation algorithms, but they appear to be sep-
arate techniques with no known direct connections.
A topic of recent research is to study the strength-
ening of linear and semidefinite programming relax-
ations by local constraints, e.g. Lovász-Schrijver hi-
erarchy, Sherali-Adams hierarchy, Lasserre hierarchy
(see [ABL02, Sch08, CMM09, MS09, Tul09] and the
references therein). These lift-and-project hierarchies
are considered to be a strong computational model
which captures many known algorithms. For exam-
ple, some algorithms obtained by dynamic program-
ming can be captured by the Sherali-Adams hierar-
chy [BO04, MM09]. Given that the linear programs gen-
erated by the Sherali-Adams procedure include all the
valid local constraints (see [CMM07] for related work),
a natural question is whether they also capture the local
search algorithms obtained by changing a few variables
(as in [HS89, Hal95, CH99, Ber00, BK03b]). We study
this question in the hypergraph matching problem.



In this paper we analyze the integrality gaps of dif-
ferent linear and semidefinite programming relaxations
for the hypergraph matching problem, and study their
connections to the local search method. For the stan-
dard LP relaxation, we provide an algorithmic proof
to obtain a tight analysis for the hypergraph match-
ing problem in k-uniform hypergraphs, giving an im-
proved approximation algorithm for the 3-dimensional
matching problem. We then analyze stronger linear and
semidefinite programming relaxations, and find some in-
teresting connections to the local search method. On
one hand, we show that the local search algorithm is
not captured by the Sherali-Adams hierarchy, even after
linear number of rounds. On the other hand, extend-
ing the analysis of a local search algorithm, we con-
struct a polynomial size linear program with integrality
gap a constant factor smaller than the linear program-
ming relaxations generated by the Sherali-Adams hier-
archy. Furthermore, the results developed can be used
to bound the integrality gap of a semidefinite program-
ming relaxation (the Lovász ϑ-function) for the hyper-
graph matching problem. This provides a way to bound
the ϑ-function indirectly (although we do not know how
to round the solutions), by using a connection between
the local search method and linear and semidefinite pro-
gramming relaxations.

We remark that our results (except for 3-
dimensional matching) do not improve the approxima-
tion guarantees obtained by the local search algorithms,
but we believe that they give new insights into the
strengths of linear and semidefinite programming relax-
ations, and also provide new tools and ideas for analysis.

1.1 Our Results. We begin with the standard linear
programming formulation for the hypergraph matching
problem. In the following we use the notation x(F ) to
denote

∑

e∈F xe for a subset of hyperedges F ⊆ E, and
δ(v) to denote the set of hyperedges incident on a vertex
v.

maximize x(E)(LP)

subject to x(δ(v)) ≤ 1 ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

We provide an algorithmic proof of a result of
Füredi, Kahn and Seymour [FKS93], showing that the
integrality gap is exactly k − 1 + 1/k for k-uniform hy-
pergraphs, and is exactly k − 1 for k-partite hyper-
graphs (see Section 2 for definition). The results also
hold for weighted problems as in [FKS93]. This yields
an improved approximation algorithm for the weighted
k-dimensional matching problem (see Section 2 for def-
inition) for k = 3. The previous best known approx-

imation for the 3-dimensional matching problem is a
(2 + ǫ)-approximation algorithm for any ǫ > 0 by Arkin
and Hassin [AH97] and Berman [Ber00].

Theorem 1.1. There is a polynomial time (k − 1)-
approximation algorithm for the weighted k-dimensional

matching problem.

We then study whether adding local constraints
would yield stronger linear programming relaxations.
For 3-uniform hypergraphs, the Fano plane as shown in
Figure 3(a) in Section 3 is an example with integrality
gap 7/3. We show that by adding the local constraint
x(P ) ≤ 1 to (LP) for every Fano plane P , the resulting
Fano LP has an improved integrality gap for the hyper-
graph matching problem in 3-uniform hypergraphs.

Theorem 1.2. The Fano LP for unweighted 3-uniform

hypergraphs has integrality gap exactly 2.

Motivated by Theorem 1.2 and the question stated
earlier, we study Sherali-Adams relaxations for the hy-
pergraph matching problem, which can generate all
valid local constraints on r hyperedges after r rounds
of the lift-and-project procedure [Lau03, CMM09]. In
the hypergraph matching problem, after r rounds of
the Sherali-Adams lift-and-project procedure, given any
subset S of r hyperedges, we will have the constraint
x(S) ≤ OptS , where OptS is the maximum number
of disjoint hyperedges in S. For example, in the hyper-
graph matching problem in 3-uniform hypergraphs, all
the Fano plane constraints will be generated in at most 7
rounds. For the case k = 2, Mathieu and Sinclair [MS09]
have shown that the Sherali-Adams hierarchy provides
a linear programming relaxation with integrality gap at
most 1+ 1

r
after r rounds, and their result coincides with

the approximation guarantee obtained by an r-local op-
timal solution for the graph matching problem [AH97].
For the hypergraph matching problem in k-uniform hy-
pergraphs, Hurkens and Schrijver [HS89] gave a local
search (k

2 + ǫ)-approximation algorithm for any ǫ > 0.
In contrast to the result of Mathieu and Sinclair [MS09],
we show that the local search algorithm is not captured
by the linear programming relaxations generated by the
Sherali-Adams hierarchy, even after a linear number of
rounds.

Theorem 1.3. There are k-uniform hypergraphs in

which the integrality gap for the Sherali-Adams hierar-

chy on (LP) is at least k−2, even after Ω(n/k3) rounds

where n denotes the number of vertices.

On the other hand, for every constant k, we can
construct a polynomial size linear program for the hy-
pergraph matching problem in k-uniform hypergraphs,



with integrality gap smaller than those generated by
the Sherali-Adams hierarchy (up to a linear number of
rounds) by a constant factor1. The proof extends the
analysis of the local search algorithm in [HS89], and uses
a result in extremal combinatorics.

Theorem 1.4. For every constant k, there is a polyno-

mial size linear program for k-uniform hypergraphs with

integrality gap at most k+1
2 in the unweighted problem.

Using the results developed, we can show that
there is a simple semidefinite program (the Lovász
ϑ-function [Lov79, Knu94]) that achieves the same
integrality gap for all k, not just for constant k as in
Theorem 1.4.

Theorem 1.5. There is a polynomial size semidefinite

program for the hypergraph matching problem, with

integrality gap at most k+1
2 for k-uniform hypergraphs

in the unweighted problem.

We are not aware of any examples with integral-
ity gap larger than Ω(k/ log k) implied by the hardness
result in [HSS06], for both the LP relaxation in Theo-
rem 1.4 and the SDP relaxation in Theorem 1.5.

1.2 Techniques. The proof of Theorem 1.1 is based
on a combination of the iterative rounding method and
the fractional local ratio method, showing a new way to
round linear programming solutions for packing prob-
lems. The standard iterative rounding method [Jain01]
is designed for covering problems: if there is a variable
with large fractional value, then we can round up the
value of this variable to one. By doing so, the cover-
ing constraints are still satisfied and thus the process
can be iterated. However, for packing problems, even if
there is a variable with large fractional value, we could
not simply round up the value of this variable to one,
because many packing constraints may be violated. In-
stead of using the fractional values to decide which hy-
peredges to round up, the idea is to iteratively use the
fractional values to define a “good ordering” of the hy-
peredges (a similar idea is also used in [FKS93]). By
using the properties of extreme point solutions, we can
define an ordering {e1, e2, . . . , em} of the hyperedges,
so that the total fractional value of the hyperedges in

1It was known that the Sherali-Adams relaxations may not
provide the best linear programming relaxations. In the graph
matching problem, the linear programs generated by the Sherali-
Adams hierarchy are weaker than the Edmonds’ linear program.
But the Edmonds’ linear program is of exponential size (while
Theorem 1.4 gives a polynomial size linear program) and also
the Sherali-Adams relaxations provide an approximation scheme
(while there is a constant factor separation for hypergraph match-
ing).

N [ei] ∩ {ei, ei+1, . . . , em} is at most k − 1, where N [ei]
denotes the set of hyperedges that intersect ei. Then we
can use the fractional local ratio method as in [BHN+06]
to obtain an efficient approximation algorithm.

The proofs of Theorem 1.4 and Theorem 1.5 are
based on a new connection between the analysis of the
local search method, linear programming relaxations,
and semidefinite programming relaxations. First we ex-
tend the analysis of the local search algorithm in [HS89]
to construct an exponential size linear program with in-
tegrality gap at most (k+1)/2. The proof shows a direct
connection between the local search algorithm in [HS89]
and the LP relaxation - the ratio between any 2-local
optimal solution (see Section 4 for definition) and any
optimal solution to the exponential size linear program
is at most (k + 1)/2. To prove Theorem 1.4, we use
a result in extremal combinatorics to rewrite the expo-
nential size linear program as a polynomial size linear
program, as long as k is a constant. To prove The-
orem 1.5, we use known results on Lovász ϑ-function
to show that a polynomial size semidefinite program is
stronger than the exponential size linear program, and
thus has integrality gap at most k+1

2 . This gives an indi-
rect way to bound the integrality gap of the ϑ-function,
without providing a rounding algorithm. Previously ei-
ther the Sandwich theorem or a rounding algorithm is
used to bound the ϑ-function (see below), our results
show another way to bound the integrality gap of the
ϑ-function.

1.3 Related Work. The hypergraph matching prob-
lem in k-uniform hypergraphs is a well-studied prob-
lem in combinatorial optimization. For the un-
weighted problem, Hurkens and Schrijver [HS89]
gave a (k

2 + ǫ)-approximation algorithm. For the
weighted problem, Arkin and Hassin [AH97] gave a
(k − 1 + ǫ)-approximation algorithm, Chandra and

Halldórsson [CH99] gave a (2(k+1)
3 + ǫ)-approximation

algorithm, and Berman [Ber00] gave a (k+1
2 + ǫ)-

approximation algorithm. All the above algorithms are
based on local search, and run in polynomial time for
any ǫ > 0. On the other hand, Hazan, Safra and
Schwartz [HSS06] proved that the problem is hard to
approximate within a factor of O( k

log k
). For small

value of k, Berman and Karpinski [BK03a] obtained a
98/97 − ǫ hardness for 3-dimensional matching (which
implies the same hardness for 3-set packing), while
Hazan, Safra and Schwartz [HSS03] obtained 54/53− ǫ,
30/29− ǫ and 23/22− ǫ hardness for 4, 5 and 6-dimen-
sional matching respectively.

The hypergraph matching problem in k-uniform hy-
pergraphs is also a well-studied problem in graph the-
ory. Ryser conjectured that in a k-partite hypergraph,



the ratio between the minimum vertex cover and the
maximum matching is at most k − 1. It has been
proved by Aharoni [Aha01] for k = 3 using a topolog-
ical method [AH00]. A fractional version is proved by
Füredi [Fur81]: he shows that the integrality gap of
(LP) is at most k − 1 whenever the hypergraph does
not contain a projective plane of order k − 1 (see Sec-
tion 3 for definition) as a subhypergraph, and is at most
k−1+ 1

k
for k-uniform hypergraphs. Füredi, Kahn and

Seymour [FKS93] extended these results to the weighted
case. We remark that the proofs in [Fur81, FKS93] are
non-algorithmic, and do not imply Theorem 1.1.

Using lift-and-project methods in approximation
algorithms was first studied in the work of Arora,
Bollobás and Lovász [ABL02], and since then it has been
studied extensively in recent years. The Sherali-Adams
hierarchy is known to be stronger than the Lovász-
Schrijver linear programming hierarchy, and Lasserre
semidefinite programming hierarchy is known to be
stronger than the Sherali-Adams hierarchy [Lau03].
Recently strong lower bounds have been obtained for
the Sherali-Adams and Lasserre hierarchies for different
problems [CMM07, Sch08, CMM09, Tul09]. For the
graph matching problem, Mathieu and Sinclair have
shown that the integrality gap is at most 1 + 1

r
after r

rounds of Sherali-Adams relaxations [MS09]. Charikar,
Makarychev and Makarychev have shown a connection
between integrality gaps for Sherali-Adams relaxations
for cut problems to local-global properties in metric
spaces [CMM07].

The Lovász ϑ-function is an important technique in
estimating the independence number of a graph. It was
first introduced by Lovász to bound the Shannon ca-
pacity of a graph [Lov79]. In general the integrality gap
of the ϑ-function could be very large [Fei95]. It is an
interesting open problem whether the ϑ-function pro-
vides a better bound for special classes of graphs, and
it has been studied for graphs with large independent
sets [AK98] and random graphs [FK03, Coja05]. The
Sandwich theorem [GLS81, GLS88] shows that the ϑ-
function is sandwiched between the independence num-
ber and the clique cover number; it can be used to
bound the integrality gap of ϑ-function if this ratio is
bounded for a certain class of graphs. It is remark-
able that this is the only known efficient method to
compute the maximum independent set size for perfect
graphs [GLS84, GLS88].

2 Integrality Gaps of the Standard Linear

Programming Relaxation

In the weighted hypergraph matching problem, we are
also given a weight we on each hyperedge, and the
objective is to find a maximum weighted matching. A

hypergraph is called k-partite if the set of vertices can be
partitioned into k disjoint sets V1, V2, . . . , Vk, and each
hyperedge intersects every set of the partition in exactly
one vertex. The weighted k-dimensional matching
problem is to find a maximum weighted matching in a
k-partite hypergraph. When k = 2 this is the bipartite
matching problem. For the analysis of the iterative
algorithm, we consider the following more general linear
program, denoted by LP (G,B), where B denotes the
vector of all degree bounds 0 ≤ Bv ≤ 1 for each vertex
v ∈ V . Initially Bv = 1 for each v ∈ V .

maximize
∑

e∈E

we xe

subject to x(δ(v)) ≤ Bv ∀ v ∈ V

xe ≥ 0 ∀ e ∈ E

Our rounding algorithm is based on the following
properties of the extreme point solutions to LP (G,B).
Each constraint x(δ(v)) ≤ Bv defines a vector in R

|E|:
the vector has a 1 corresponding to each hyperedge
e ∈ δ(v) and 0 otherwise. We call this vector the
characteristic vector of δ(v), and denote it by χδ(v).

Lemma 2.1. Given any extreme point solution x to

linear program LP (G,B) such that xe > 0 for each

e ∈ E there exists W ⊆ V such that

1. x(δ(v)) = Bv > 0 for each v ∈ W .

2. The characteristic vectors {χδ(v) : v ∈ W} are

linearly independent.

3. |W | = |E|.

Proof. In an extreme point solution x of an LP, it is
known that the number of non-zero variables is at most
the number of linearly independent tight constraints
(constraints that achieve equality); this holds for any
LP. Since we assume that xe > 0 for every hyperedge
e, there will be no tight constraints of the form xe ≥ 0.
And so the only tight constraints come from the degree
constraints x(δ(v)) = Bv. Let W be the set of vertices
where the degree constraints are tight and linearly
independent, i.e. x(δ(v)) = Bv for every v ∈ W and no
constraint in W can be written as a linear combination
of other constraints in W . Then conclusion 1 holds
by the definition of W , and the condition that every
hyperedge has fractional value xe > 0. Conclusion 2
follows from the definition of W . Conclusion 3 follows
from the above property of an extreme point solution,
and the condition that every hyperedge has a non-zero
fractional value. �

Our algorithm consists of two phases. In the first
phase we use an iterative algorithm to provide a “good”



Iterative k-Dimensional Matching Algorithm

1. Find an optimal extreme point solution x to
LP (G,B) where Bv = 1 for all v. Remove every
hyperedge e with xe = 0. Initialize F ← ∅.

2. For i from 1 to |E(G)| do

(a) Find a hyperedge e with x(N [e]) ≤ k − 1.

(b) Set ei ← e and F ← F ∪ {ei}.

(c) Remove e from G.

(d) Decrease Bv by xe for all v ∈ e.

3. M ← Local-Ratio(F,w), where w is the
weight vector of the hyperedges.

4. Return M .

Figure 1: k-Dimensional Matching Algorithm

ordering of the hyperedges. In the second phase we
apply the local ratio method to this good ordering to
obtain a matching with weight at least 1

k−1 the optimal.
In the following let N [e] be the set of hyperedges that
intersect the hyperedge e; note that e ∈ N [e].

To prove the correctness of the algorithm, we show
that the iterative algorithm always succeed in finding an
ordering with a good property. Then, using the property
of the ordering, we prove that the local ratio method will
return a matching with cost at least 1

k−1 the optimum.
First we prove that the iterative algorithm will always
succeed in finding a good ordering.

Theorem 2.2. In the k-dimensional matching prob-

lem, the iterative algorithm in Figure 1 will always

succeed in finding an ordering of the hyperedges with

x(N [ei] ∩ {ei, ei+1, . . . , em}) ≤ k − 1 for all 1 ≤ i ≤ m,

where m is the number of hyperedges in x with positive

fractional value.

The proof of Theorem 2.2 consists of two steps.
First, in Lemma 2.3, we prove that there is a hyper-
edge e with x(N [e]) ≤ k − 1 in an extreme point so-
lution to LP (G,B). Since the initial solution x is an
extreme point solution, this implies that the first it-
eration of Step 2 of the iterative algorithm will suc-
ceed. Then we prove in Lemma 2.4 that the remain-
ing solution (after removing e and updating Bv) is
still an extreme point solution to LP (G,B). Therefore,
by applying Lemma 2.3 inductively, the iterative algo-
rithm will succeed in finding an ordering of hyperedges
{e1, . . . , em} with x(N [ei] ∩ {ei, ei+1, . . . , em}) ≤ k − 1
for all 1 ≤ i ≤ m. Now we prove Lemma 2.3.

Local-Ratio(F,w)

1. Remove from F all hyperedges with non-
positive weights.

2. If F = ∅, then return ∅.

3. Choose from F the hyperedge e with the small-
est index. Decompose the weight vector w =
w1 + w2 where

w1(e
′) =

{

w(e) if e′ ∈ N [e],

0 otherwise.

4. M ′ ← Local-Ratio(F,w2).

5. If M ′ ∪ {e} is a matching, return M ′ ∪ {e};
else return M ′.

Figure 2: The local ratio routine

Lemma 2.3. Let x be an extreme point solution to

LP (G,B) for the k-dimensional matching problem. If

xe > 0 for all e ∈ E, then there is a hyperedge e with

x(N [e]) ≤ k − 1.

Proof. Let W be the set of vertices with tight degree
constraints as described in Lemma 2.1. To show that
there is a hyperedge with the required property, we first
prove that in any extreme point solution of LP (G,B)
there is a vertex in W of degree at most k−1. Suppose,
by way of contradiction, that every vertex in W is of
degree at least k. This implies that

|W | = |E| =

∑

v∈V |δ(v)|

k
≥

∑

v∈W |δ(v)|

k
≥ |W |,

where the first equality follows from Lemma 2.1, the
second equality follows because every hyperedge con-
tains exactly k vertices, and the last inequality follows
because every vertex in W is of degree at least k. Hence
equality must hold everywhere. Thus the first inequal-
ity implies that every hyperedge is contained in W . Let
V1, V2, . . . , Vk be the k-partition of V , and Wi = W ∩Vi

for 1 ≤ i ≤ k. Since each hyperedge intersects Wi ex-
actly once, we have

∑

v∈W1

χδ(v) =
∑

v∈W2

χδ(v).

This implies that the characteristic vectors in W are
not linearly independent, contradicting to Lemma 2.1.
Therefore there is a vertex v1 ∈ W of degree at most
k−1. Let e = {v1, v2, . . . , vk} be the hyperedge in δ(v1)



with the largest fractional value. Since v1 is of degree
at most k − 1, this implies that (k − 1)xe ≥ x(δ(v1)).
Therefore,

x(N [e]) ≤
k

∑

i=1

x(δ(vi))− (k − 1)xe

≤
k

∑

i=2

x(δ(vi))

≤
k

∑

i=2

Bi

≤ k − 1. �

The following lemma allows Lemma 2.3 to be ap-
plied inductively to complete the proof of Theorem 2.2.

Lemma 2.4. In any iteration of Step 2 of the algorithm

in Figure 1, the fractional solution is an extreme point

solution to LP (G,B).

Proof. Suppose the graph in the current iteration is G =
(V, E). Let xE be the restriction of the initial extreme
point solution x to E. We prove by induction on the
number of iterations that xE is an extreme point feasible
solution to LP (G,B). This holds in the first iteration
by Step 1 of the algorithm. Let e = {v1, v2, . . . , vk}
be the hyperedge found in Step 2(a) of the algorithm.
Let E′ = E − e and G′ = (V, E′). Let B′ be the
updated degree bound vector. We prove that xE′ is an
extreme point feasible solution to LP (G′,B′). Since the
degree bounds of v1, v2, v3 are decreased by exactly xe,
it follows that xE′ is still a feasible solution. Suppose, to
the contrary, that xE′ is not an extreme point solution
to LP (G′,B′). This means that xE′ can be written as a
convex combination of two different feasible solutions y1

and y2 to LP (G′,B′). Extending y1 and y2 by setting
the fractional value on e to be xe, this implies that xE

can be written as a convex combination of two different
feasible solutions to LP (G,B), contradicting that xE

is an extreme point solution. Hence xE′ is an extreme
point solution to LP (G′,B′). �

To provide an efficient rounding algorithm, we use
the fractional local ratio method as in [BHN+06]. The
following is the basic result of the local ratio method.

Theorem 2.5. ([BBFR04]) Let C be a set of vectors in

R
n. Let w,w1,w2 ∈ R

n be such that w = w1 + w2.

Suppose x ∈ C is r-approximate with respect to w1

and r-approximate with respect to w2. Then x is r-
approximate with respect to w.

Using the ordering in Theorem 2.2, we prove the
performance guarantee of the approximation algorithm

in Figure 2. Note that by construction the local ratio
routine returns a matching. It remains to prove that
the cost of the returned matching is at least 1

k−1 of the
optimum. The following result implies Theorem 1.1.

Theorem 2.6. Let x be an optimal solution to

LP (G,B) for the k-dimensional matching problem. The

matching M returned by the algorithm in Figure 2 sat-

isfies w(M) ≥ 1
k−1 ·w · x.

Proof. The proof is by induction on the number of
hyperedges having positive weights. The theorem holds
in the base case when there are no hyperedges with
positive weights. Let e be the hyperedge e chosen in
Step 3 of the algorithm. Since e has the smallest index in
the ordering, by Theorem 2.2, we have x(N [e]) ≤ k− 1.
Let w,w1,w2 be the weight vectors computed in Step 3
of the algorithm. Let y′ and y be the characteristic
vectors for M ′ and M obtained in Step 4 and Step 5
respectively. Since w(e) > 0 and w2(e) = 0, w2 has
fewer hyperedges with positive weights than w. By
induction, w2 · y′ ≥ 1

k−1 · w2 · x. Since w2(e) = 0,

this implies that w2 · y ≥
1

k−1 · w2 · x. By Step 5
of the algorithm, at least one hyperedge in N [e] is in
M . Since x(N [e]) ≤ k − 1 and w1(e

′) = w(e) for all
e′ ∈ N [e], it follows that w1 ·y ≥

1
k−1 ·w1 ·x. Therefore,

by Theorem 2.5, we have w · y ≥ 1
k−1 · w · x. This

shows that M is a (k − 1)-approximate solution to the
k-dimensional matching problem. �

This completes the proof of Theorem 1.1. The same
techniques can be used to prove that the integrality gap
of (LP) is exactly k− 1 + 1

k
for k-uniform hypergraphs.

The analysis is tight, as there are examples of k-uniform
hypergraphs having this integrality gap; see Section 3.
Here we sketch the proof for k-uniform hypergraphs and
omit the details. Using the proof of Lemma 2.3, we can
show that there is a vertex v with degree at most k, and
this implies that there is a hyperedge incident on v with
x(N [e]) ≤ k− 1 + 1

k
. Then the same local ratio method

implies that the integrality gap is at most k − 1 + 1
k
.

3 Linear Programming Relaxations with Local

Constraints

In this section we study the strengthenings of (LP) by
local constraints. Before that we first see the integrality
gap example for (LP) [Fur81]. Consider a projective
plane of order k − 1, which is a hypergraph H with
the following properties: (1) it is k-uniform (every
hyperedge is of size k), (2) it is k-regular (every vertex
is of degree k), (3) it is intersecting (every pair of
hyperedges intersect), (4) it has k2 − k + 1 hyperedges.
It is known that a projective plane of order q exists if q
is a prime power (see e.g. [MN08]); see Figure 3(a) for



the projective plane of order 2. Since H is intersecting,
the maximum matching size is one. On the other
hand, since H is k-regular, by setting xe = 1

k
for each

hyperedge e, this is a feasible solution to (LP). Since it
has k2 − k + 1 hyperedges, the integrality gap for (LP)
is thus k − 1 + 1

k
.

3.1 Fano Plane Constraint for 3-Uniform Hy-

pergraphs. In this section, we show that by adding ad-
ditional constraints for the Fano planes to (LP), we can
improve the integrality gap for the hypergraph match-
ing problem in 3-uniform hypergraphs from 7

3 to 2. For
every seven hyperedges that form a Fano plane P , the
Fano plane constraint states that the sum of fractional
values in this seven hyperedges must not exceed two2:

x(P ) ≤ 2 ∀ Fano plane P.

We call the resulting linear program the Fano linear
program, denoted by Fano-LP.

We consider a counterexample H to Theorem 1.2
with the minimum number of hyperedges. The major
step is to prove that there is no Fano plane (as a sub-
hypergraph) in any extreme point solution to H . Then
the following result of Füredi [Fur81] shows that such
a minimal counterexample does not exist, and thus
Theorem 1.2 follows. We leave the details to the full
version of this paper.

Theorem 3.1. ([Fur81]) If H is a 3-uniform hyper-

graph which does not contain a Fano plane, then the in-

tegrality gap of (LP) for the hypergraph matching prob-

lem is at most two.

3.2 Sherali-Adams Relaxations. We then study
the integrality gap of Sherali-Adams relaxations on
(LP), which can generate all valid local constraints on
r hyperedges after r rounds of lift-and-project proce-
dure [Lau03, CMM09]. To write the l-round Sherali-
Adams relaxation for (LP), for each original constraint
∑

e∈δ(v) xe− 1 ≤ 0, we have the following constraint for

each pair of disjoint subsets I, J of E with |I ∪ J | ≤ l:

(3.1)
(

∑

e∈δ(v)

xe − 1
)

∏

i∈I

xi

∏

j∈J

(1 − xj) ≤ 0.

Also we have the constraint

∏

i∈I

xi

∏

j∈J

(1 − xj) ≥ 0

2Actually we can write the stronger constraint x(P ) ≤ 1 for
each Fano plane, but for our analysis we need to use the weaker
constraints.

for each pair of disjoint subsets I, J of E with |I∪J | ≤ l.
We then expand these polynomial constraints, replace
each square term x2

e by xe, and replace each monomial
∏

i∈S xi by a variable yS for each subset S ⊆ E,
to obtain a linear program in the y variables. The
objective function of this linear program is to maximize
∑

e∈E y{e}.

(a) Fano plane. (b) Gap example.

Figure 3: (a) The Fano plane is an intersecting hyper-
graph with 7 hyperedges of size 3. (b) The integrality
gap example with k = 4 and q = 2.

We construct the integrality gap example for a k-
uniform hypergraph as follows. Take a projective plane
P of order k−2, we construct a hypergraph H as follows:
for each hyperedge e of size k − 1 in P , we have q
hyperedges {e ∪ ve

1, e ∪ ve
2, . . . , e ∪ ve

q} of size k in H ,
where ve

1, v
e
2, . . . , v

e
q are new vertices of degree 1. Since

P is (k − 1)-uniform and has k2 − 3k + 3 vertices and
k2 − 3k + 3 hyperedges of size k− 1, the hypergraph H
is k uniform and has (k2 − 3k + 3)(q + 1) vertices and
(k2− 3k +3)q hyperedges. The degree of each vertex in
P is exactly (k − 1)q. See Figure 3(b) for an example
with k = 4 and q = 2. From the construction, since
P is intersecting, H is also intersecting, and thus the
maximum matching size for H is one. Using the special
structure of H , the following lemma follows from the
results of Mathieu and Sinclair [MS09].

Lemma 3.2. In the l-round Sherali-Adams relaxation

for the hypergraph matching problem in H, any feasible

solution must have yS = 0 for all S with |S| ≥ 2.

Proof. This proof is essentially the same as the proof
of Lemma 3.2 in Mathieu and Sinclair [MS09]. Let
S = {e1, e2, . . . , ej} for some j ≥ 2. First we show
that yS ≥ 0. Take the constraint xe1 ≥ 0 and multiply

it by
∏j

i=2 xei
≥ 0, this will give yS =

∏j

i=1 xei
≥ 0. In

fact it is true that yT ≥ 0 for every non-empty subset
T ⊆ E.

Now we show that yS = 0. Since H is intersecting
and |S| ≥ 2, there are two hyperedges sharing a vertex.
Let e1 = {u, w1} and e2 = {u, w2}. Consider the



following constraint in the Sherali-Adams relaxation:

(

∑

e∈δ(u)

xe − 1
)

j
∏

i=2

xei
≤ 0.

Expanding it and replacing x2
e by xe, the term

−
∏j

i=2 xei
is cancelled by the term xu,w2

∏j

i=2 xei
since

xu,w2xe2 = xe2 . Therefore the constraint becomes a
summation of monomials, all of them having coefficient
+1. Since yT ≥ 0 for all T , all the remaining monomial
yT in this constraint must have yT = 0. In particular,
the term yS =

∏j
i=1 xei

appears in this constraint, and
thus yS = 0. �

Now we show that the l-round Sherali-Adams relax-
ation for H still has a large fractional solution. With the
lemma the constraints for the Sherali-Adams relaxation
become very simple. For each constraint with |I| ≥ 2,
all the terms on the left hand side of (3.1) are equal to
zero, and thus the constraint becomes trivial. For each
constraint with |I| = 1, the constraint reduces to the
constraint that y{e} ≥ 0 for some e ∈ E. If |I| = 0, then
the constraint will become

∑

e∈δ(v)

y{e} +
∑

j∈J

y{j} ≤ 1.

Similarly constraints of the form
∏

i∈I xi

∏

j∈J (1−xj) ≥
0 will become

∑

j∈J y{j} ≤ 1. Since |J | ≤ l, by setting

the fractional value of each hyperedge to be 1
(k−1)q+l

, all

the constraints in the Sherali-Adams relaxation will be
satisfied. The objective value of this fractional solution
is equal to

(k2 − 3k + 3)q

(k − 1)q + l
.

For the l-round Sherali-Adams relaxation, the integral-
ity gap is smaller than k − 2 only when l > q

k−2 . Con-
sider the case when k is a constant and q is much larger
than k. Then the Sherali-Adams hierarchy will require
Ω(|V (H)|) number of rounds to generate a linear pro-
gramming relaxation with integrality gap smaller than
k − 2 for H . This proves Theorem 1.3. Finally, we re-
mark that Theorem 1.3 also holds for k-partite hyper-
graphs (without projective plane as a subhypergraph),
by replacing the projective plane by a truncated projec-
tive plane (see e.g. [MN08]); we skip the details.

4 Stronger Linear and Semidefinite

Programming Relaxations

In this section we first show that an exponential size
linear program has integrality gap at most k+1

2 . Then
we show how to construct a polynomial size linear pro-
gram with the same integrality gap, and a semidefinite

program with probably smaller integrality gap. We re-
mark that the linear program is of polynomial size only
when k is a constant, but the semidefinite program is of
polynomial size for all k.

We note that the integrality gap example for the
Sherali-Adams relaxations in Section 3 actually have
matching size only one. Call a set K of hyperedges an
intersecting family if every two hyperedges in K have a
non-empty intersection. We consider a strengthening
of (LP) by adding the following constraint for each
intersecting family K:

x(K) ≤ 1.

Call the resulting linear program the intersecting family
linear program. In general this linear program has ex-
ponentially many constraints, and is NP-hard to check
whether a fractional solution is a feasible solution to
this linear program (i.e. no polynomial time separation
oracle). Nevertheless, extending the analysis of a local
search algorithm in [HS89], we can show that the inte-
grality gap of the intersecting family linear program is
at most k+1

2 . In particular, the proof directly compares
an optimal fractional solution to a 2-local optimal in-
tegral solution, where a 2-local optimal solution is an
integral solution where we cannot increase the size of
the matching by removing at most one hyperedge and
adding at most two hyperedges (an optimal integral so-
lution is clearly a 2-local optimal solution). However
the proof does not provide a rounding algorithm.

Theorem 4.1. The ratio between any LP solution to

the intersecting family LP and any 2-local optimal

solution is at most k+1
2 . Thus the integrality gap of

the intersecting family LP is at most k+1
2 .

Proof. Let M be a 2-local optimal matching. Let x be
a feasible solution to the intersecting family LP, and let
F be the set of hyperedges with xe > 0. To prove the
lemma we prove that x(F ) ≤ (k + 1)|M |/2. We let F1

to be the subset of F in which every hyperedge in F1

intersect at most one hyperedge in M , and let F2 to be
the subset of F in which every hyperedge in F2 intersect
at least two hyperedges in M . Note that each hyperedge
e in F must intersect at least one hyperedge in M ;
otherwise M is not a 2-local optimal matching because
M + e is a larger matching. Consider a hyperedge e in
M . We claim that F1(e) := {f | f ∈ F1 and f ∩ e 6=
∅} is an intersecting family. Suppose otherwise, then
there are two disjoint hyperedges f1, f2 in F1. Since
f1, f2 ∈ F1, they do not intersect other hyperedges in
M . Hence M − e + f1 + f2 is a larger matching than
M , contradicting that M is a 2-local optimal matching.
Therefore F1(e) is an intersecting family. So, by the
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Figure 4: Relations between various solutions to the k-set packing problem.

intersecting family constraint, x(F1(e)) ≤ 1, and hence
x(F1) ≤ |M |. There are k|M | vertices in M since each
hyperedge is of size k. By the degree constraints (a
special case of intersecting family constraints), we have
x(F2) ≤ k|M | − x(F1). In fact, since each hyperedge
in F2 intersects at least two hyperedges in M , we have
x(F2) ≤ (k|M |−x(F1))/2. Therefore the lemma follows:

x(F ) = x(F1) + x(F2)

≤ x(F1) +
k|M | − x(F1)

2

=
k|M |+ x(F1)

2

≤
(k + 1)|M |

2
. �

4.1 Linear Programming Relaxation. In the fol-
lowing we show how to rewrite the intersecting family
linear program by using only a polynomial number of
constraints, as long as k is a constant (the polynomial
grows exponentially in k). Observe that in the exam-
ple in Section 3, although the number of vertices and
hyperedges in the intersecting family is large, all the
intersections take place in a small number of vertices
(in the projective plane). We will define the concept of
kernel as follows. Let S ⊆ V be a subset of vertices.
For each hyperedge e, we define eS := e ∩ S, and for a
subset K of hyperedges, we define KS = {eS | e ∈ K}.
Given an intersecting family K, we say S is a kernel
of K, if KS is an intersecting family. In the exam-
ple in Section 3, the projective plane of order k − 2
is a kernel with a small number of vertices. The fol-
lowing result from extremal combinatorics states that
every intersecting family has a small kernel [Cal64].
The point is that the size of the kernel is a function
of k independent on the number of vertices; the cur-
rent best bounds [EL73, Tuza85, Tuza87] show that
f(k) = Θ

((

2k
k

))

.

Theorem 4.2. ([Cal64]) For every k there exists an

f(k) such that for every k-uniform intersecting family

K there is a kernel S of cardinality at most f(k).

Now we show how to use this result to add only a
polynomial number of constraints so that each intersect-

ing family has total fractional value at most one. For
each subset S ⊆ V , we create a new variable xS if S
is a subset of a hyperedge e ∈ E(H). We add the con-
straint xS =

∑

e:S⊆e xe so that xS represents the total
fractional value of the number of hyperedges containing
S. To enforce that the intersecting family constraints,
we enumerate all possible subset of vertices S of size up
to f(k), and for each subset S we enumerate all possi-
ble intersecting family K within S formed by the new
variables (not necessarily subsets of size k, but subsets
of size at most k), and write the following kernel con-
straint:

∑

S∈K

xS ≤ 1.

There are
∑f(k)

i=1

(

n
i

)

≤ nf(k)+1 possible kernels. For
each kernel S of size l, there are at most 2l new variables
(the number of all possible subsets of S) containing in

S, and thus there are at most 22l

intersecting families
(the number of all possible hypergraphs in S) induced
in S. There is one constraint for each such intersecting

family, and so there are at most nf(k)+1 · 22f(k)

kernel
constraints. Therefore, for every constant k, there are
at most a polynomial number of kernel constraints.
It follows from Theorem 4.2 that each intersecting
family constraint has a corresponding kernel constraint,
and thus each intersecting family has total fractional
value at most one. Therefore, the intersecting family
linear program can be rewritten as a polynomial size
kernel linear program for any constant k. This proves
Theorem 1.4.

4.2 Semidefinite Programming Relaxation. In
the following we show that the Lovász ϑ-function cap-
tures all the intersecting family constraints, and thus
provides a polynomial size semidefinite program with
integrality gap at most k+1

2 . We remark that the
proof follows directly from known results about the ϑ-
function [GLS88, Knu94], but it seems that it is the
first use of these results to give a nontrivial bound on
the integrality gap of the ϑ-function.

To see the connection it is more convenient to view
the hypergraph matching problem as an independent
set problem. For any hypergraph H , we construct a



graph G where each vertex in G represents a hyperedge
in H and two vertices in G have an edge if and only if
the corresponding hyperedges in H intersect. It follows
that H has a matching size of size l if and only if G
has an independent set of size l. Also, the intersecting
family linear program for hypergraph matchings in H
becomes the clique linear program for independent sets
in G, in which there is a constraint

∑

v∈C xv ≤ 1 for
each clique C in G. The clique linear program is known
as QSTAB(G) in the literature [GLS88, Knu94], and
Padberg has shown that the clique constraints define
facets for the hypergraph matching problem [Pad73].
The Lovász ϑ-function is defined as follows:

θ(G) = max
∑

i∈V

xi(TH)

s.t.
∑

i∈V

(cT ui)
2xi ≤ 1, ∀c, ∀ONR{ui}

xi ≥ 0, ∀i ∈ V

where c ranges over all possible unit vectors, and
{ui} ranges over all possible orthonormal represen-
tations3 (ONR) of G. It is known that TH(G) ⊆
QSTAB(G) [GLS88, Knu94]; that is, the ϑ-function is
a stronger relaxation than the clique linear program.

Lemma 4.3. ([GLS88]) Any feasible solution to the ϑ-

LP (TH) is a feasible solution to the clique linear

program.

Proof. This proof is from [GLS88]. To prove this
lemma, we prove that every constraint of the clique
linear program is a constraint in the ϑ-LP (TH). For
any clique C of G, we define the following orthonormal
representation of G. Let Ij be the j-th row of the n×n
identity matrix I. Then

ui =

{

I1, if i ∈ C,

Ii, otherwise.

Note that this is indeed an orthonormal representation
of G, because if (i, j) /∈ E, then ui · uj = 0, and thus
orthogonal. We set c = I1. Hence if i 6∈ C, then
cT ui = 0, and if i ∈ C, then cT ui = 1. Thus

∑

i∈V

(cT ui)
2xi =

∑

i∈C

xi.

Therefore the clique constraint is present in the ϑ-LP
(TH), and so the lemma follows. �

3An orthonormal representation (ONR) of a graph G is a
system (v1, v2, . . . ,vn) of unit vectors in an Euclidean space such
that if (i, j) 6∈ E(G) then vi and vj are orthogonal.

It is also known that the ϑ-function is equivalent to
the following semidefinite program, which is called the
“third” face of the ϑ-function in [GLS88, LS91, Knu94].

θ3(G) = max
∑

i,j∈V

wi ·wj(TH3)

s.t. wi ·wj = 0, ∀(i, j) ∈ E(G)
n

∑

i=1

w2
i = 1,

wi ∈ R
n, ∀i ∈ V

Therefore, by Theorem 4.1 and the above known results
in ϑ-function, it follows that there is a polynomial
size semidefinite program for hypergraph matching with
integrality gap at most k+1

2 for k-uniform hypergraphs.
This proves Theorem 1.5.

Concluding Remarks

In this paper we analyze different linear and semidefinite
programming relaxations for the hypergraph matching
problem. Our results show a new connection between
the local search method and linear and semidefinite pro-
gramming relaxations. Also they show that the SDP
relaxation is strictly stronger than the LP relaxations.
We believe that further investigations of the SDP relax-
ation is a promising avenue to improve the approxima-
tion guarantees obtained by the local search algorithms.
As mentioned earlier, we are not aware of any example
with integrality gap at least Ω(k/ log k) as implied by
the hardness result in [HSS06]. It would be interesting
to obtain a rounding algorithm for the SDP relaxation.
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