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Abstract Graph G is the square of graph H if two vertices x, y have an edge in G if
and only if x, y are of distance at most two in H . Given H it is easy to compute its
square H 2, however Motwani and Sudan proved that it is NP-complete to determine if
a given graph G is the square of some graph H (of girth 3). In this paper we consider
the characterization and recognition problems of graphs that are squares of graphs of
small girth, i.e. to determine if G = H 2 for some graph H of small girth. The main
results are the following.

• There is a graph theoretical characterization for graphs that are squares of some
graph of girth at least 7. A corollary is that if a graph G has a square root H of
girth at least 7 then H is unique up to isomorphism.

• There is a polynomial time algorithm to recognize if G = H 2 for some graph H of
girth at least 6.

• It is NP-complete to recognize if G = H 2 for some graph H of girth 4.
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These results almost provide a dichotomy theorem for the complexity of the recogni-
tion problem in terms of girth of the square roots. The algorithmic and graph theoret-
ical results generalize previous results on tree square roots, and provide polynomial
time algorithms to compute a graph square root of small girth if it exists. Some open
questions and conjectures will also be discussed.

Keywords Graph roots · Graph powers · Recognition algorithms · NP-completeness

1 Introduction

Root and root finding are concepts familiar to most branches of mathematics. In graph
theory, H is a square root of G and G is the square of H if two vertices x, y have
an edge in G if and only if x, y are of distance at most two in H . Graph square is
a basic operation with a number of results about its properties in the literature. In
this paper we are interested in the characterization and recognition problems of graph
squares. Ross and Harary [21] characterized squares of trees and showed that tree
square roots, when they exist, are unique up to isomorphism. Mukhopadhyay [19]
provided a characterization of graphs which have a square root, but this is not a good
characterization in the sense that it does not give a short certificate when a graph does
not have a square root. In fact, such a good characterization may not exist as Motwani
and Sudan proved that it is NP-complete to determine if a given graph has a square
root [18]. On the other hand, there are polynomial time algorithms to compute the
tree square root [3, 4, 13, 14, 16], a bipartite graph square root [14], and a proper
interval graph square root [15].

The algorithms for computing tree square roots and bipartite graph square roots are
based on the fact that the square roots have no cycles and no odd cycles respectively.
Since computing the graph square uses only local information from the first and the
second neighborhood, it is plausible that there are polynomial time algorithms to
compute square roots that have no short cycles (locally tree-like), and more generally
to compute square roots that have no short odd cycles (locally bipartite). The girth of
a graph is the length of a shortest cycle. In this paper we consider the characterization
and recognition problems of graphs that are squares of graphs of small girth, i.e. to
determine if G = H 2 for some graph H of small girth.

The main results of this paper are the following. In Sect. 2 we will provide a good
characterization for graphs that are squares of some graph of girth at least 7. This
characterization not only leads to a simple algorithm to compute a square root of girth
at least 7 but also shows such a square root, if it exists, is unique up to isomorphism.
Then, in Sect. 3, we will present a polynomial time algorithm to compute a square
root of girth at least 6, or report that none exists. In Sect. 4 we will show that it is NP-
complete to determine if a graph G has a square root of girth 4. Finally, we discuss
some open questions and conjectures.

These results almost provide a dichotomy theorem for the complexity of the recog-
nition problem in terms of girth of the square roots. The algorithmic and graph the-
oretical results considerably generalize previous results on tree square roots. We be-
lieve that our algorithms can be extended to compute square roots with no short odd
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cycles (locally bipartite), and in fact one part of the algorithm for computing square
roots of girth at least 6 uses only the assumption that the square roots have no 3-
cycles or 5-cycles. Coloring properties of squares in terms of girth of the roots have
been considered in the literature [2, 6, 10]; our algorithms would allow those results
to apply even though a square root was not known a priori.

Definitions and notation All graphs considered are finite, undirected and simple.
Let G = (VG,EG) be a graph. We often write xy ∈ EG for {x, y} ∈ EG. Follow-
ing [15, 18], we sometimes also write x ↔ y for the adjacency of x and y in the
graph in question; this is particularly the case when we describe reductions in NP-
completeness proofs.

The neighborhood NG(v) in G of a vertex v is the set of all vertices in G being
adjacent to v and the closed neighborhood of v in G is NG[v] = NG(v) ∪ {v}. Set
degG(v) = |NG(v)|, the degree of v in G. We call vertices of degree one in G end-
vertices of G. A center vertex of G is one that is adjacent to all other vertices.

Let dG(x, y) be the length, i.e., number of edges, of a shortest path in G between
x and y. Let Gk = (VG,Ek) with xy ∈ Ek if and only if 1 ≤ dG(x, y) ≤ k denote the
k-th power of G. If G = Hk then G is the k-th power of the graph H and H is a k-th
root of G. Since the power of a graph H is the union of the powers of the connected
components of H , we may assume that all graphs considered are connected.

A set of vertices Q ⊆ VG is called a clique in G if every two distinct vertices
in Q are adjacent; a maximal clique is a clique that is not properly contained in
another clique. A stable set is a set of pairwise non-adjacent vertices. Given a set
of vertices X ⊆ VG, the subgraph induced by X is written G[X] and G − X stands
for G[V \ X]. If X = {a, b, c, . . .}, we write G[a, b, c, . . .] for G[X]. Also, we often
identify a subset of vertices with the subgraph induced by that subset, and vice versa.

The girth of G, girth(G), is the smallest length of a cycle in G; in case G has no
cycles, we set girth(G) = ∞. In other words, G has girth k if and only if G contains a
cycle of length k but does not contain any (induced) cycle of length � = 3, . . . , k − 1.
Note that the girth of a graph can be computed in O(nm) time, where n and m are
the number of vertices, respectively, edges of the input graph [12].

A complete graph is one in which every two distinct vertices are adjacent; a com-
plete graph on k vertices is also denoted by Kk . A star is a graph with at least two
vertices that has a center vertex and the other vertices are pairwise non-adjacent. Note
that a star contains at least one edge and at least one center vertex; the center vertex
is unique whenever the star has more than two vertices.

2 Squares of Graphs with Girth at Least Seven

In this section, we give a good characterization of graphs that are squares of a graph
of girth at least seven. The key idea is that every maximal clique in the square of a
graph G of girth at least seven corresponds to the neighbourhood of a vertex in G.
Our characterization leads to a simple polynomial-time recognition for such graphs.

Proposition 2.1 Let G be a connected, non-complete graph such that G = H 2 for
some graph H .
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(i) If girth(H) ≥ 6 and v is a vertex with degH (v) ≥ 2 then NH [v] is a maximal
clique in G;

(ii) If girth(H) ≥ 7 and Q is a maximal clique in G then Q = NH [v] for some vertex
v where degH (v) ≥ 2.

Proof (i) Let v be a vertex with degH (v) ≥ 2. Clearly, Q = NH [v] is a clique in G.
Consider an arbitrary vertex w outside Q; in particular, w is non-adjacent in H to v.
If w is non-adjacent in H to all vertices in Q, then dH (w,v) > 2. If w is adjacent in
H to a vertex x ∈ Q − v, let y ∈ Q \ {v, x}. Then NH [w] ∩ NH [y] = ∅ (otherwise H

would contain a cycle of length at most five), hence dH (w,y) > 2. Thus, in any case,
w cannot be adjacent, in G, to all vertices in Q, and so Q is a maximal clique in G.

(ii) Let Q be a maximal clique in G and v ∈ Q be a vertex that maximizes
|Q ∩ NH [v]|. We prove that Q = NH [v]. It can be seen that by the maximality
of Q, degH (v) ≥ 2. Now, we show that if w ∈ Q \ NH [v] and x ∈ Q ∩ NH [v],
then wx �∈ EH : As w �∈ NH [v], this is clear in case x = v. So, let x �= v and as-
sume to the contrary that wx ∈ EH . Then, by the choice of v, there exists a vertex
w′ ∈ Q \ NH [x], w′ ∈ NH [v]. Note that w′x,w′w �∈ EH because H has no C3,C4.
As ww′ ∈ EG \ EH , there exists a vertex u �∈ {w,w′, x, v} with uw,uw′ ∈ EH . But
then H [w,w′, x, v,u] contains a C4 or C5. Contradiction.

Finally, we show that Q ⊆ NH [v], and so, by the maximality of Q, Q = NH [v]:
Assume otherwise and let w ∈ Q \ NH [v]. As wv ∈ EG \ EH , there exists a vertex
x such that xw,xv ∈ EH , and so, x ∈ NH [v] \ Q. By the maximality of Q, x must
be non-adjacent (in G) to a vertex w′ ∈ Q. In fact, w′ ∈ Q \ NH [v] as x is adjacent
in G to every vertex in NH [v]. Since w′v ∈ EG \ EH , there exists a vertex a such
that aw′, av ∈ EH ; note that a �∈ {x,w}. Now, if ww′ ∈ EH then H [w,w′, a, v, x]
contains a cycle of length at most five. If ww′ �∈ EH , let b be a vertex such that
bw,bw′ ∈ EH ; possibly b = a. Then H [w,w′, a, b, v, x] contains a cycle of length
at most six. In any case we have a contradiction, hence Q \ NH [v] = ∅. �

The 5-cycle C5 and the 6-cycle C6 show that (i), respectively, (ii) in Proposi-
tion 2.1 is best possible with respect to the girth condition of the root. More generally,
the maximal cliques in the square of the subdivision of any complete graph on n ≥ 3
vertices do not satisfy Condition (ii).

Let G be an arbitrary graph. An edge of G is called forced if it is contained in
(at least) two distinct maximal cliques in G.

Proposition 2.2 Let G be a connected, non-complete graph such that G = H 2 for
some graph H with girth at least seven, and let F be the subgraph of G consisting of
all forced edges of G. Then

(i) F is obtained from H by deleting all end-vertices in H ;
(ii) for every maximal clique Q in G, F [Q ∩ VF ] is a star; and

(iii) every vertex in VG − VF belongs to exactly one maximal clique in G.

Proof We first make the following two observations:
(1) Consider a forced edge xy in G. Let Q1 �= Q2 be two maximal cliques in G

containing xy. By Proposition 2.1, there exist vertices vi , i = 1,2, with degH (vi) ≥ 2
and Qi = NH [vi]. As Q1 �= Q2, v1 �= v2. As x, y ∈ NH [v1] ∩ NH [v2] and H has no
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C3,C4, {x, y} = {v1, v2} and xy = v1v2 ∈ EH . Thus, every forced edge xy in G is an
edge in H with degH (x) ≥ 2 and degH (y) ≥ 2.

(2) Let xy be an edge in H . If x or y is an end-vertex in H , then clearly xy

belongs to exactly one maximal clique in G, hence xy is not a forced edge in G. If
degH (x) ≥ 2 and degH (y) ≥ 2, then by Proposition 2.1, NH [x] and NH [y] are two
(distinct) maximal cliques in G containing xy, hence xy is a forced edge in G.

Now, (i) follows directly from the above observations. For (ii) and (iii), consider
a maximal clique Q in G. By Proposition 2.1, Q = NH [v] for some vertex v with
degH (v) ≥ 2. Let X be the set of all neighbors of v in H that are end-vertices in H

and Y = NH (v) \ X. Since G is not complete, Y �= ∅. By (i), X ∩ VF = ∅, hence
F [Q ∩ VF ] = F [{v} ∪ Y ] which implies (ii). For (iii), consider a vertex u ∈ VG − VF

and a maximal clique Q containing u. Then, u cannot belong to Y and therefore Q

is the only maximal clique containing u. �

We now are able to characterize squares of graphs with girth at least seven as
follows.

Theorem 2.3 Let G be a connected, non-complete graph. Let F be the subgraph of
G consisting of all forced edges in G. Then G is the square of a graph with girth at
least seven if and only if the following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G.
(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star.
(v) F is connected and has girth at least seven.

Proof For the only if-part, (ii) and (iii) follow easily from Proposition 2.1, and (i),
(iv) and (v) follow directly from Proposition 2.2.

For the if-part, let G be a connected graph satisfying (i)–(v). We will construct a
spanning subgraph H of G with girth at least seven such that G = H 2 as follows.
For each edge xy in F let, by (ii) and (iv), Q �= Q′ be the two maximal cliques
in G with Q ∩ Q′ = {x, y}. Let, without loss of generality, |Q ∩ VF | ≥ |Q′ ∩ VF |.
Assuming x is a center vertex of the star F [Q ∩ VF ], then y is a center vertex of the
star F [Q′ ∩ VF ]: Otherwise, by (iv), x is the center vertex of the star F [Q′ ∩ VF ]
and there exists some y′ ∈ Q′ ∩ VF such that yy′ �∈ F ; note that xy′ ∈ F (by (iv)). As
|Q ∩ VF | ≥ |Q′ ∩ VF |, there is an edge xz ∈ F − xy in Q − Q′. By (iii), zy′ ∈ EG.
Now, as Q′ is maximal, the maximal clique Q′′ containing x, y, z, y′ is different
from Q′. But then {y, y′} ⊆ Q′ ∩ Q′′, i.e., yy′ ∈ F , hence F contains a triangle xyy′,
contradicting (v).

Thus, assuming x is a center vertex of the star F [Q ∩ VF ], y is a center vertex of
the star F [Q′ ∩VF ]. Then put the edges xq , q ∈ Q−x, and yq ′, q ′ ∈ Q′ −y, into H .

By construction, F ⊆ H ⊆ G and by (i),

for all vertices u ∈ VH \ VF , degH (u) = 1, (1)

∀v ∈ VF , ∀a, b ∈ VH with va, vb ∈ EH : a and b belong to the same clique in G.

(2)
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Furthermore, as every maximal clique in G contains a forced edge (by (iv)), H is
a spanning subgraph of G. Moreover, F is an induced subgraph of H : Consider an
edge xy ∈ EH with x, y ∈ VF . By construction of H , x or y is a center vertex of the
star F [Q ∩ VF ] for some maximal clique Q in G. Since x, y ∈ VF , xy must be an
edge of this star, i.e., xy ∈ EF . Thus, F is an induced subgraph of H . In particular,
by (1) and (v), H is connected and girth(H) = girth(F ) ≥ 7.

Now, we complete the proof of Theorem 2.3 by showing that G = H 2. Let uv ∈
EG \ EH and let Q be a maximal clique in G containing uv. By (iv), Q contains a
forced edge xy and x or y is a center vertex of the star F [Q∩VF ]. By construction of
H , xu and xv, or else yu and yv are edges of H , hence uv ∈ EH 2 . This proves EG ⊆
EH 2 . Now, let ab ∈ EH 2 \ EH . Then there exists a vertex x such that xa, xb ∈ EH .
By (1), x ∈ VF , and by (2), ab ∈ EG. This proves EH 2 ⊆ EG. �

Corollary 2.4 Given a graph G = (VG,EG), it can be recognized in O(|VG|2 · |EG|)
time if G is the square of a graph H with girth at least seven. Moreover, such a square
root, if any, can be computed in the same time.

Proof Note that by Proposition 2.1, any square of an n-vertex graph with girth at least
seven has at most n maximal cliques. Now, to avoid triviality, assume G is connected
and non-complete. We first use the algorithm in [22] to list the maximal cliques in G

in time O(n2m), where m = |EG|. If there are more than n maximal cliques, G is not
the square of any graph with girth at least seven. Otherwise, compute the forced edges
of G to form the subgraph F of G. This can be done in time O(n2) in an obvious way.
Conditions (i)–(v) in Theorem 2.3 then can be tested within the same time bound, and
the square root can be constructed, in case all conditions are satisfied, according to
the proof of Theorem 2.3. �

Corollary 2.5 The square roots with girth at least seven of squares of graphs with
girth at least seven are unique, up to isomorphism.

Proof Let G be the square of some graph H with girth ≥ 7. If G is complete, clearly,
every square root with girth ≥ 6 of G must be isomorphic to the star K1,n−1 where n

is the number of vertices of G.
Thus, let G be non-complete, and let F be the subgraph of G formed by the forced

edges. If F has only one edge, G clearly consists of exactly two maximal cliques, Q1,
Q2, say, and Q1 ∩ Q2 is the only forced edge of G. Then, it is easily seen that every
square root with girth ≥ 6 of G must be isomorphic to the double star T having center
edge v1v2 and degT (vi) = |Qi |.

So, assume F has at least two edges. Then for each two maximal cliques Q,Q′ in
G with Q ∩ Q′ = {x, y}, x or y is the unique center vertex of the star F [VF ∩ Q] or
F [VF ∩ Q′]. Hence, for any end-vertex u of H , i.e., u ∈ VG − VF , the neighbor of u

in F is unique. Since F is the graph resulting from H by deleting all end-vertices, H

is therefore unique. �

2.1 Further Considerations

Squares of bipartite graphs can be recognized in O(� · M(n)) time in [14], where
� = �(G) is the maximum degree of the n-vertex input graph G and M(n) is the
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time needed to perform the multiplication of two n × n-matrices. However, no good
characterization is known so far. As bipartite graphs with girth at least seven are
exactly the (C4,C6)-free bipartite graphs, we immediately have:

Corollary 2.6 Let G be a connected, non-complete graph. Let F be the subgraph
of G consisting of all forced edges in G. Then G is the square of a (C4,C6)-free
bipartite graph if and only if the following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G.
(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star.
(v) F is a connected (C4,C6)-free bipartite graph.

Moreover, squares of (C4,C6)-free bipartite graphs can be recognized in O(n2m)

time, and the (C4,C6)-free square bipartite roots of such squares are unique, up to
isomorphism.

Using the results in this section, we obtain a new characterization for tree squares
that allows us to derive the known results on tree square roots easily.

It was shown in [16] that the problems CLIQUE and STABLE SET, i.e., finding
a maximum stable set and finding a maximum stable set, respectively, remain NP-
complete on squares of graphs (of girth three). Another consequence of our results is.

Corollary 2.7 The weighted version of CLIQUE can be solved in O(n2m) time on
squares of graphs with girth at least 7, where n and m are the number of vertices,
respectively, edges of the input graph.

Proof Let G = (VG,EG) be the square of some graph with girth at least seven. By
Proposition 2.1, G has O(|VG|) maximal cliques. By [22], all maximal cliques in G

then can be listed in time O(|VG| · |EG| · |VG|). �

In [11], it was shown that STABLE SET is NP-complete on squares of the sub-
division of some graph (i.e. the squares of the total graph of some graph). As the
subdivision of a graph has girth at least six, STABLE SET therefore is NP-complete
on squares of graphs with girth at least six.

3 Squares of Graphs with Girth at Least Six

In this section we will show that squares of graphs with girth at least six can be
recognized efficiently. Formally, we will show that the following problem

SQUARE OF GRAPH WITH GIRTH AT LEAST SIX

Instance: A graph G.
Question: Does there exist a graph H with girth at least 6 such that G = H 2?

is polynomially solvable (Theorem 3.5).



Algorithmica (2012) 62:38–53 45

Similar to the algorithm in [14], our recognition algorithm consists of two steps.
The first step (Sect. 3.1) is to show that if we fix a vertex v ∈ VG and a subset U ⊆
NG(v), then there is at most one {C3,C5}-free (locally bipartite) square root graph
H of G with NH (v) = U . Then, in the second step (Sect. 3.2), we show that if we
fix an edge e = uv ∈ EG, then there are at most two possibilities of NH (v) for a
square root H with girth at least 6. Furthermore, both steps can be implemented
efficiently, and thus it will imply that SQUARE OF GRAPH WITH GIRTH AT LEAST

SIX is polynomially solvable.

3.1 Square Root with a Specified Neighborhood

This subsection deals with the first auxiliary problem.

{C3,C5}-FREE SQUARE ROOT WITH A SPECIFIED NEIGHBORHOOD

Instance: A graph G, v ∈ VG and U ⊆ NG(v).
Question: Does there exist a {C3,C5}-free graph H such that H 2 = G and
NH (v) = U?

An efficient recognition algorithm for {C3,C5}-FREE SQUARE ROOT WITH A

SPECIFIED NEIGHBORHOOD relies on the following fact.

Lemma 3.1 Let G = H 2 for some {C3,C5}-free graph H . Then, for all vertices
x ∈ VG and all vertices y ∈ NH (x), NH (y) = NG(y) ∩ (NG[x] \ NH (x)).

Proof First, consider an arbitrary vertex w ∈ NH (y) − x. Clearly, w ∈ NG(y),
as well w ∈ NG(x). Also, since H is C3-free, wx �∈ EH . Thus w ∈ NG(y) ∩
(NG(x) \ NH (x)).

Conversely, let w be an arbitrary vertex in NG(y) ∩ (NG[x] \ NH (x)). Assum-
ing wy �∈ EH , then w �= x and there exist vertices z and z′ such that zx, zw ∈ EH

and z′y, z′w ∈ EH . As H is C3-free, zy �∈ EH , z′x �∈ EH , and zz′ �∈ EH . But then
x, y,w, z and z′ induce a C5 in H , a contradiction. Thus w ∈ NH (y). �

Recall that M(n) stands for the time needed to perform a matrix multiplication of
two n × n matrices; currently, M(n) = O(n2.376) [5].

Theorem 3.2 {C3,C5}-FREE SQUARE ROOT WITH A SPECIFIED NEIGHBORHOOD

has at most one solution. The unique solution, if any, can be constructed in time
O(M(n)).

Proof Given G, v ∈ VG and U ⊆ NG(v), assume H is a {C3,C5}-free square root of
G such that NH (v) = U . Then, by Lemma 3.1, the neighborhood in H of each vertex
u ∈ U is uniquely determined by NH (u) = NG(u) ∩ (NG[v] \ U). By repeatedly
applying Lemma 3.1 for each v′ ∈ U and U ′ = NH (v′) and noting that all considered
graphs are connected, we can conclude that H is unique.
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ALGORITHM 1

Input: A graph G, a vertex v ∈ VG and a subset U ⊆ NG(v).
Output: A {C3,C5}-free graph H with H 2 = G and NH (v) = U ,

or else ‘NO’ if such a square root H of G does not exist.

1. Add all edges vu, u ∈ U , to EH

2. Q ← ∅
3. for each u ∈ U do
4. enqueue(Q,u)

5. parent(u) ← v

6. while Q �= ∅ do
7. u ← dequeue(Q)

8. set W := NG(u) ∩ (NG(parent(u)) \ NH (parent(u)))

9. for each w ∈ W do
10. add uw to EH

11. if parent(w) = ∅
12. then parent(w) ← u

13. enqueue(Q,w)

14. if G = H 2 then return H

15. else return ‘NO’

Lemma 3.1 also suggests the following BFS-like procedure, Algorithm 1 below,
for constructing the {C3,C5}-free square root H of G with U = NH (v), if any.

It can be seen, by construction, that H is {C3,C5}-free, and thus the correctness
of Algorithm 1 follows from Lemma 3.1. Moreover, since every vertex is enqueued
at most once, lines 1–13 take O(m) steps, m = |EG|. Checking if G = H 2 (line 14)
takes O(M(n)) steps, n = |VG|. �

3.2 Square Root with a Specified Edge

This subsection discusses the second auxiliary problem.

GIRTH ≥ 6 ROOT GRAPH WITH ONE SPECIFIED EDGE

Instance: A graph G and an edge xy ∈ EG.
Question: Does there exist a graph H with girth at least six such that H 2 = G and
xy ∈ EH ?

The question is easy if |G| ≤ 2. So, for the rest of this section, assume that
|G| > 2. Then, we will reduce this problem to {C3,C5}-FREE SQUARE ROOT WITH

A SPECIFIED NEIGHBORHOOD. Given a graph G and an edge xy of G, write
Cxy = NG(x) ∩ NG(y), i.e., Cxy is the set of common neighbors of x and y in G.

Lemma 3.3 Suppose H is of girth at least 6, xy ∈ EH and H 2 = G. Then G[Cxy]
has at most two connected components. Moreover, if A and B are the connected
components of G[Cxy] (one of them may be empty) then (i) A = NH (x) − y and
B = NH (y) − x, or (ii) B = NH (x) − y and A = NH (y) − x.

Proof Set X = NH (x) − y and Y = NH (y) − x. Notice that X or Y (but not both)
may be empty. First we show that X∪Y = Cxy . Consider an arbitrary vertex v ∈ Cxy ;
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we claim that v is either in X or Y . Otherwise, there is a length 2 path from v to x and
a length 2 path from v to y, which implies that there is either a 3-cycle or a 5-cycle,
a contradiction. So we have Cxy ⊆ X ∪ Y .

On the other hand, consider an arbitrary vertex u ∈ X. It is obvious that u ∈
NH 2(x). Also, since xy ∈ EH , u ∈ NH 2(y). A similar argument applies if u ∈ Y .
Therefore, u ∈ NH 2(x) ∩ NH 2(y). Since H 2 = G, u ∈ Cxy . Hence X ∪ Y = Cxy .

Next, observe that X and Y induce cliques in H 2 and thus in G. Moreover, X ∩
Y = ∅ (as H has no 3-cycle) and no vertex in X is adjacent in H to a vertex in Y

(as H has no 4-cycle). Now, no vertex u ∈ X is adjacent in G to a vertex w ∈ Y :
Otherwise, there is a vertex v /∈ X ∪ Y adjacent in H to u and to w, implying that
x, y,u,w,v induce a 5-cycle in H , a contradiction.

Thus, the cliques G[X] and G[Y ] are exactly the connected components of G[Cxy]
and the lemma follows. �

By Lemma 3.3, we can solve GIRTH ≥ 6 ROOT GRAPH WITH ONE SPECIFIED

EDGE as follows: Compute Cxy . If G[Cxy] has more than two connected compo-
nents, there is no solution. If G[Cxy] is connected, solve {C3,C5}-FREE SQUARE

ROOT WITH A SPECIFIED NEIGHBORHOOD for inputs I1 = (G,v = x,U = Cxy +y)

and I2 = (G,v = y,U = Cxy + x). If, for I1 or I2, Algorithm 1 outputs H and if
H is C4-free, then H is a solution. In other cases there is no solution. If G[Cxy]
has two connected components, A and B , solve {C3,C5}-FREE SQUARE ROOT

WITH A SPECIFIED NEIGHBORHOOD for inputs I1 = (G,v = x,U = A + y), I2 =
(G,v = x,U = B + y), I3 = (G,v = y,U = A + x), I4 = (G,v = y,U = B + x),
and make a decision similarly. In this way, checking if a graph is C4-free is the most
expensive step, and we obtain

Theorem 3.4 GIRTH ≥ 6 ROOT GRAPH WITH ONE SPECIFIED EDGE can be solved
in time O(n4).

Let δ = δ(G) denote the minimum vertex degree in G. Now we can state the main
result of this section as follows.

Theorem 3.5 SQUARE OF GRAPH WITH GIRTH AT LEAST SIX can be solved in time
O(δ · n4), where n is the number of vertices.

Proof Given graph G, let x ∈ VG be a vertex of minimum degree. For each vertex
y ∈ NG(x) check if the instance (G,xy ∈ EG) for GIRTH ≥ 6 ROOT GRAPH WITH

ONE SPECIFIED EDGE has a solution. �

Notice that O(n4) comes from the time needed for testing C4-freeness.

4 Squares of Graphs with Girth Four

Note that the reductions for proving the NP-completeness results by Motwani and
Sudan [18] show that recognizing squares of graphs with girth three is NP-complete.
In this section we show that the following problem is NP-complete.
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SQUARE OF GRAPH WITH GIRTH FOUR

Instance: A graph G.
Question: Does there exist a graph H with girth 4 such that G = H 2?

Observe that SQUARE OF GRAPH WITH GIRTH FOUR is in NP. We will reduce
the NP-complete problem SET SPLITTING [8, Problem SP4], also known as HYPER-
GRAPH 2-COLORABILITY, to it.

SET SPLITTING

Instance: Collection D of subsets of a finite set S.
Question: Is there a partition of S into two subsets S1 and S2 such that each subset

in D intersects both S1 and S2?

Our reduction is a modification of the reductions for proving the NP-completeness
of SQUARE OF CHORDAL GRAPH [15, Theorem 3.5] and for CUBE OF BIPARTITE

GRAPH [14, Theorem 7.6]. We also apply the tail structure of a vertex v, first de-
scribed in [18], to ensure that v has the same neighbors in any square root H of G.

Lemma 4.1 [18] Let a, b, c be vertices of a graph G such that (i) the only neighbors
of a are b and c, (ii) the only neighbors of b are a, c, and d , and (iii) c and d are
adjacent. Then the neighbors, in VG − {a, b, c}, of d in any square root of G are the
same as the neighbors, in VG − {a, b, d}, of c in G; see Fig. 1.

We now are going to describe the reduction. Let S = {u1, . . . , un}, D =
{d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an instance of SET SPLITTING. We con-
struct an instance G = G(D,S) for SQUARE OF GRAPH WITH GIRTH FOUR as fol-
lows.

The vertex set of graph G consists of:

(I) Ui , 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui in S.
(II) Dj , 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj in D.

(III) D1
j ,D

2
j ,D

3
j , 1 ≤ j ≤ m. Each three ‘tail vertices’ D1

j ,D
2
j ,D

3
j of the subset

vertex Dj correspond to the subset dj in D.
(IV) S1, S

′
1, S2, S

′
2, four ‘partition vertices’.

(V) X, a ‘connection vertex’.

The edge set of graph G consists of:

(I) Edges of tail vertices of subset vertices:
For all 1 ≤ j ≤ m: D3

j ↔ D2
j , D3

j ↔ D1
j , D2

j ↔ D1
j , D2

j ↔ Dj , D1
j ↔ Dj , and

for all i, Dj ↔ Ui whenever ui ∈ dj .

Fig. 1 Tail in H (left) and in
G = H 2 (right)
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Fig. 2 An example of G

(II) Edges of subset vertices:
For all 1 ≤ j ≤ m: Dj ↔ S1, Dj ↔ S′

1, Dj ↔ S2, Dj ↔ S′
2, Dj ↔ X, Dj ↔

Ui for all i, and Dj ↔ Dk for all k with dj ∩ dk �= ∅.
(III) Edges of element vertices:

For all 1 ≤ i ≤ n: Ui ↔ X, Ui ↔ S1, Ui ↔ S2, Ui ↔ S′
1, Ui ↔ S′

2, and Ui ↔
Ui′ for all i′ �= i.

(IV) Edges of partition vertices:
S1 ↔ X, S1 ↔ S′

1, S1 ↔ S′
2, S2 ↔ X, S2 ↔ S′

1, S2 ↔ S′
2, S′

1 ↔ X, S′
2 ↔ X.

Clearly, G can be constructed from D,S in polynomial time. For an illustration,
given S = {u1, u2, u3, u4, u5} and D = {d1, d2, d3, d4} with d1 = {u1, u2, u3}, d2 =
{u2, u5}, d3 = {u3, u4}, and d4 = {u1, u4}, the graph G is depicted in Fig. 2. In the
figure, the two dotted lines from a vertex to the clique {U1,U2,U3,U4,U5,X} mean
that the vertex is adjacent to all vertices in that clique.

Note that, apart from the three vertices X,S′
1, and S′

2 (or, symmetrically, X,S1,
and S2), our construction is the same as those in [15, §3.1.1]. While S1 and S2 will
represent a partition of the ground set S (Lemma 4.3), the vertices X,S′

1, and S′
2 allow

us to make a square root of G being C3-free (Lemma 4.2).

Lemma 4.2 If there exists a partition of S into two disjoint subsets S1 and S2 such
that each subset in D intersects both S1 and S2, then there exists a graph H with
girth four such that G = H 2.
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Fig. 3 An example of root H

with girth 4

Proof Let H have the same vertex set as G. The edges of H are as follows.

• Edges of subset vertices and their tail vertices:
For all 1 ≤ j ≤ m: D3

j ↔ D2
j , D2

j ↔ D1
j , D1

j ↔ Dj , and for all i, Dj ↔ Ui when-
ever ui ∈ dj .

• Edges of partition vertices:
S1 ↔ S′

1, S2 ↔ S′
2, and for all i, S1 ↔ Ui and S′

2 ↔ Ui whenever ui ∈ S1, and
S2 ↔ Ui and S′

1 ↔ Ui whenever ui ∈ S2.
• Edges of the connection vertex:

X ↔ Ui for all 1 ≤ i ≤ n.

It is straightforward to check that G = H 2; see also Fig. 3 for an example.
By construction, the neighborhood in H of any vertex is a stable set, hence H

has no C3. Observe that H has girth four as it contains a C4 consisting of X, Di , an
element vertex that corresponds to an element in di ∩ S1, and another element vertex
that corresponds to an element in di ∩ S2. �

In the above example, S1 = {u1, u3, u5} and S2 = {u2, u4} is a possible legal par-
tition of S. The corresponding graph H constructed in the proof of Lemma 4.2 is
depicted in Fig. 3.

Lemma 4.3 Let H be the graph constructed in the proof of Lemma 4.2. If H is a
square root of G, then there exists a partition of S into two disjoint subsets S1 and S2

such that each subset in D intersects both S1 and S2.

Proof First, observe that for each j , D3
j ,D

2
j ,D

1
j ,Dj satisfy the properties of

Lemma 4.1. Hence, in H , Dj is adjacent to exactly D1
j and Ui for which ui ∈ dj .

This and the fact that, in G, the partition vertices S1, S
′
1, S2, S

′
2 are non-adjacent to

the tail vertices, show that NH (S1) − {S′
1, S

′
2,X} and NH (S2) − {S′

1, S
′
2,X} consist

of element vertices only.
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Now, since S1 and S2 are non-adjacent in G, they have no common neighbor in H .
Therefore, NH (S1) − {S′

1, S
′
2,X} and NH (S2) − {S′

1, S
′
2,X} will define a partition of

the element set. Since the partition vertices are adjacent to all subset vertices in G but
not in H , each of S1 and S2 has, in H , a common neighbor with Dj in the element
set for all j . Thus, NH (S1) − {S′

1, S
′
2,X} and NH (S2) − {S′

1, S
′
2,X} define a desired

partition of S. �

Note that in Lemma 4.3 above we did not require that H has girth four. Thus, any
square root of G-particularly, any square root with girth four-will tell us how to do
set splitting. Together with Lemma 4.2 we conclude:

Theorem 4.4 SQUARE OF GRAPH WITH GIRTH FOUR is NP-complete.

5 Squares of Trees Revisited

Given the fact that the squares of trees have been widely discussed in the literature,
we will derive from the results in Sect. 2 a new characterization for tree squares from
which known results on tree squares in the literature, such as chordality and linear-
time recognition, follow easily.

Observe that the proof of Theorem 2.3 shows that if F is a tree, then also the
square root H is a tree. This fact and Propositions 2.1 and 2.2 immediately imply the
following good characterization for squares of trees in terms of forced edges. Recall
the definition of forced edges in a graph (Sect. 2).

Theorem 5.1 Let G be a connected, non-complete graph. Let F be the subgraph of
G consisting of all forced edges in G. Then G is the square of a tree if and only if the
following conditions hold.

(i) Every vertex in VG − VF belongs to exactly one maximal clique in G;
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G;

(iii) Every two non-disjoint edges in F belong to a common maximal clique in G;
(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star;
(v) F is a tree.

A graph is chordal if it does not contain an induced cycle C� of any length � ≥ 4.
A chordal graph is strongly chordal if it does not contain any k-sun as an induced
subgraph; here a k-sun, k ≥ 3, consist of a clique {u1, u2, . . . , uk} and a stable set
{v1, v2, . . . , vk} such that for i ∈ {1, . . . , k}, vi is adjacent to exactly ui and ui+1

(index arithmetic modulo k).
In [7, 17, 20] it was shown that the square of a tree is strongly chordal; later,

[1, 16] proved that the square of a tree is chordal. Our characterization of tree squares,
Theorem 5.1, gives a new and short proof for this fact:

Corollary 5.2 [7, 17, 20] Squares of trees are strongly chordal.
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Proof Let G be a non-complete graph that is the square of a tree, and let F be the
forced subgraph of G. Then F satisfies (i)–(v) in Theorem 5.1. In particular, G cannot
contain an induced sun otherwise F would contain a cycle, contradicting (v). Now,
assume v1v2 . . . v�v1 is an induced cycle in G with � ≥ 4. Consider the maximal
cliques Qi in G containing the edge vivi+1, 1 ≤ i ≤ � (modulo �). Note that the
Qis are pairwise distinct, hence by (i), vi ∈ VF . Thus, with (iv), F [Qi ∩ VF ] is a
star containing vi and vi+1, 1 ≤ i ≤ �, implying F contains a cycle; a contradiction
to (v). �

Corollary 5.3 [3, 4, 13, 14, 16] Given a graph G = (VG,EG), it can be recognized
in O(|VG| + |EG|) time if G is the square of a tree. Moreover, a tree root of a square
of a tree can be computed in the same time.

Proof In order to obtain linear time bound, we use Corollary 5.2 saying that squares
of trees are chordal, and that all maximal cliques of a chordal graph can be computed
in linear time (see, for example, [9]).

Thus, given G = (VG,EG), we may assume that G is chordal and all maximal
cliques of G are available. To detect all forced edges in G, create for each edge e

of G a linked list L(e) consisting of all maximal cliques in G that contain e: Scan
each maximal clique Qi and for each edge ej in Qi add Qi to L(ej ); this can be
done in time O(n + m). If |L(e)| ≥ 3 for some edge e, then (i) fails, and G is not the
square of a tree. So, let |L(e)| ≤ 2 for all edges e, and F consists of all edges e with
|L(e)| = 2. Clearly, F can be obtained in O(m) time, and (ii)–(iv) can be tested in
O(n + m) time. �

Corollary 5.4 [3, 14, 21] The tree roots of squares of trees are unique, up to isomor-
phism.

Proof By Corollary 2.5. �

Finally, we note that the characterizations for tree squares given in [3] also easily
follow from our Theorem 5.1.

6 Conclusion and Open Problems

We have shown that squares of graphs with girth at least six can be recognized in
polynomial time. We have found a good characterization for squares of graphs with
girth at least seven that gives a faster recognition algorithm in this case. For squares
of graphs with girth at most four we have shown that recognizing the squares of such
graphs is NP-complete.

The complexity status of computing square root with girth (exactly) five is not
yet determined. However, we believe that this problem should be efficiently solvable.
Also, we believe that the algorithm to compute a square root of girth 6 can be ex-
tended to compute a square root with no C3 or C5. More generally, let k be a positive
integer and consider the following problem.
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k-POWER OF GRAPH WITH GIRTH ≥ 3k − 1

Instance: A graph G.
Question: Does there exist a graph H with girth ≥ 3k − 1 such that G = Hk?

Conjecture 6.1 k-POWER OF GRAPH WITH GIRTH ≥ 3k − 1 is polynomially solv-
able.

The truth of the above conjecture together with the results in this paper would im-
ply a complete dichotomy theorem: SQUARES OF GRAPHS OF GIRTH g is polynomial
if g ≥ 5 and NP-complete otherwise.
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