Downloaded 01/30/17 to 99.253.152.191. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Random Walks and Evolving Sets:
Faster Convergences and Limitations

Siu On Chan*

Abstract

Analyzing the mixing time of random walks is a well-
studied problem with applications in random sampling
and more recently in graph partitioning. In this work,
we present new analysis of random walks and evolv-
ing sets using more combinatorial graph structures, and
show some implications in approximating small-set ex-
pansion. On the other hand, we provide examples show-
ing the limitations of using random walks and evolving
sets in disproving the small-set expansion hypothesis.

1. We define a combinatorial analog of the spectral
gap, and use it to prove the convergence of non-
lazy random walks. A corollary is a tight lower
bound on the small-set expansion of graph powers
for any graph.

2. We prove that random walks converge faster when
the robust vertex expansion of the graph is larger.
This provides an improved analysis of the local
graph partitioning algorithm using the evolving set
process, and also derives an alternative proof of an
improved Cheeger’s inequality.

3. We give an example showing that the evolving set
process fails to disprove the small-set expansion hy-
pothesis. This refutes a conjecture of Oveis Gharan
and shows the limitations of all existing local graph
partitioning algorithms in approximating small-set
expansion.

1 Introduction

Analyzing the mixing time of random walks is a funda-
mental problem with many applications in random sam-
pling [LPWO08]. The evolving set process is an elegant
tool introduced by Morris and Peres [MPO05] to provide
sharp analyses of mixing time (see the survey [MT06]).
Recently, random walks and the evolving set process
have also been used in designing local algorithms for
graph partitioning [ST13, ACL06, AP09, OT12, KL12].
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The evolving set process is the most powerful one among
the local graph partitioning algorithms, and it was con-
jectured [Ovel3, AOPT16] that the process can be used
to disprove the small-set expansion hypothesis [RS10].
The theme of this paper is to study the power and lim-
itations of this technique, from analyzing mixing time
to local graph partitioning and approximating small-set
expansion.

Random Walks and Mixing Time We consider
random walks in a weighted undirected graph G =
(V, E) with a nonnegative weight w(e) on each edge e €
E. Let n = |V] and m = |E|. For simplicity, we assume
that the graph G is regular and the weights are scaled
such that the weighted degree of iis 3. . pw(i,j) =1
for all i € V throughout this paper, but we will mention
how to deal with general graphs in Section 2.5. Let A
be the n x n symmetric random walk matrix of G with
A;; = w(i,j). Let po € R™ be an initial probability
distribution, and let p; := Alpg be the probability
distribution after ¢ steps of random walks. When G
is connected and non-bipartite, it is well-known that p;
will converge to the uniform distribution. The mixing
time is defined as

I 1
Tnix = min{t : ||p: — =1 < 3 for all initial pg}.
n

One approach to analyze the mixing time is to
look at the eigenvalues of the random walk matrix.
Let the eigenvalues of A be 1 = Ay > Xy > ... >
An = —1. By basic spectral graph theory, it can be
shown that 1 > Ao if and only if G is connected,
and A\, > —1 if and only if G is non-bipartite. This
implies that, when G is connected and non-bipartite,
pr will converge to the first eigenvector, and thus the
uniform distribution is the unique limiting distribution
of the random walk. Let A := max{)\y, |\,|}, and let
1 — X be the spectral gap of the random walk matrix.
A standard calculation shows that the mixing time is
upper bounded by O(log(n)/(1 — \)).

For many problems, it is useful to have combinato-
rial characterizations of graphs with fast mixing time.
For two subsets S,T C V, let E(S,T) be the set of
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edges with one vertex in S and another vertex in T,
and let w(S,T) := ¢ p(s) w(e). The expansion of a
set S C V and the expansion of a graph G are defined
as

w(S,V —9) o .
T and ¢(G) := s:\g?g}zﬂ B(5).

¢(5) =

Cheeger’s inequality for graphs [Alo86, AMBS85] states

that 1
S (1= 2) < 9(G) <

and thus 1 — Xy = Q(¢(G)?). Having large conductance
is not enough to guarantee fast mixing time, as A,, may
be very close to —1. There is a simple trick to bypass
this issue: one can guarantee that \,, > 0 by considering
“lazy” random walks (with probability 1/2 stay put),
and this implies that the mixing time of lazy random
walks is upper bounded by O(log(n)/¢(G)?).

Another approach to analyze the mixing time is
to directly use the graph structures. Lovéasz and
Simonovits [LS90] developed a combinatorial method
to prove that the mixing time of lazy random walks
is O(log(n)/¢(G)?). This method is more flexible in
incorporating additional graph structures. Given a
parameter 0 < § < 1/2, the §-small-set expansion is
defined as

2(1 = A2),

¢5(G) = o lpn ¢(5).
Lovédsz and Kannan [LK99] proved that the mixing time
of lazy random walks is

1/2
Tmix < / d7$2

As we will discuss in more details shortly, this combina-
torial approach can also be used to design local graph
partitioning algorithms for approximating small-set ex-
pansion.

Evolving Sets The evolving set process is a Markov
chain on subsets of V' with the following transition rule:
If the current set is S, choose U uniformly from [0, 1]
and the next set is defined as

S:={y:w(y,S)>U}.

Morris and Peres [MP05] used the evolving set process
to strengthen Lovasz and Kannan result to bound the
uniform mixing time of lazy random walks by the
expansion profile. An important definition in their
analysis is the gauge of a set S and the gauge of a graph
G, which are defined as

—E/ISI/IS) and w(G) = min (S).

P(5) =1
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Morris and Peres [MP05] showed that the convergence
rate of random walks is bounded by the gauge, and
the mixing time of random walks is O(log(n)/¥(Q)).
They proved that ¥(G) > Q(¢*(Q)) for lazy graphs,
and this implies that the mixing time of lazy random
walks is upper bounded by O(log(n)/¢(G)?). We
refer the interested reader to [LPWO0S8] for an excellent
introduction of the evolving set process.

Local Graph Partitioning Algorithms Spielman
and Teng [ST13] used random walks to design the first
local graph partitioning algorithm, which outputs a
set S of approximately optimal expansion with run-
ning time depends only on |S| and polylog(n). Their
analysis is based on the approach of Lovasz and Si-
monovits [LS90] on analyzing mixing time. Ander-
sen and Peres [AP09] and Oveis Gharan and Tre-
visan [OT12] used the evolving set process for local
graph partitioning, and provide the current best known
algorithm in terms of both the approximation ratio and
the running time.

THEOREM 1.1. (JAOPTI16]) Given an unweighted d-
reqular graph, for any target set S* and any € > 0, there
is a subset S with |S'| > |5*|/2, such that if we start
the evolving set process with {v} for v € S’, then with
constant probability the algorithm returns a set S with
#(S) = O(/9(5*)/e) and |S| = O(d¢|S*|*F€), and the
running time is O(|dS*|*+2¢¢(S)~2 log? n).

Small Set Expansion The small set expansion hy-
pothesis proposed by Raghavendra and Steurer [RS10]
states that for any e, there exists § such that it is NP-
hard to distinguish the following two cases:

1. There is a set S with ¢(S) < € and |5] <

2. ¢(5) 2

This hypothesis is shown to be closely related to (and
imply) the unique games conjecture [RS10], and they
have been extensively studied in the past decade. The
local graph partitioning algorithms provide bicriteria
approximation algorithms for computing small set ex-
pansion ¢s(G). It is observed in [OT12, KL12] that
if the output size guarantee of the above local graph
partitioning algorithm is improved from O(]|S*|'*€) to
O(]S*|), then the small-set expansion hypothesis is
false. Oveis Gharan [Ovel3, AOPT16] suggested a
plan to prove such an output size guarantee using the
evolving set process. Besides the sum-of-squares ap-
proach [BBHKSZ12, BKS14], this is the only promising
approach to attack the small-set expansion hypothesis.

1 — € for every set S with |S| < én

1.1  Our Results
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Combinatorial Analog of Spectral Gap We define
a combinatorial analog of spectral gap with which we
can directly analyze the mixing time of non-lazy random

walks. Recall that ¢(G) is defined as

w(S,V —95) . w(S, S)
min —_— = min 1-—
SCV,|S|<n/2 |S| SCV,|S|<n/2 |S]
We define the combinatorial gap as
. w(S,T)
1.1 G) = 1-—
(1.1) #(G) SQV,TQ\},IE‘?:|T|<71/2 |S|

Note that ¢(G) is small if there exists a near-bipartite
component. We prove the following combinatorial
analog of the spectral analysis of mixing time.

THEOREM 1.2. For any graph G, ¥(G) = Q(¢*(G)).

By the aforementioned result of Morris and
Peres [MPO05], one immediate corollary is that the mix-
ing time of non-lazy random walks is upper bounded by
O(log(n) /¢(G)).

Our proof of Theorem 1.2 is based on a new analysis
of the approach by Lovédsz and Simonovits [LS90] using
the bar chart in Figure 2.2. We believe that the new
analysis is more intuitive and provides better insights
into what combinatorial properties are needed for fast
mixing.

Using Theorem 1.2 and the results in [KL14], an-
other corollary is the following lower bound on small-set
expansion of graph powers.

COROLLARY 1.1. For any graph G and any integer t >
L,
$5/4(G") = Qmin{V7 - ¢5(G), 1}).

The same result is proved in [KL14] for lazy graphs,
and here we prove it for all graphs. Note that it is
not true that ¢(G?) = Q(min{v/t - ¢(G),1}) when G
is bipartite, but the above corollary shows that it is
true for small-set expansion even when G is bipartite.
As shown in [RS14], this result can be used to amplify
hardness results for the small-set expansion problem.

Vertex Expansion The robust vertex expansion is
defined by Kannan, Lovdsz and Montenegro [KLMO0G]
as follows: For S C V, let Ny/5(S) := min{|T| | T C
V — S and w(S,T) > sw(S,V — S)}. Define

¢V(G) = min ¢"(S)

T S:8)1<n/2

and
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as the robust vertex expansion of a set .S and the graph
G. Also define

U(S) = ¢(S) - 6" (),

and
¥ (G) = in U(S
(@)= g, ¥(S)
as the minimum product of the edge expansion and the
robust vertex expansion. It is proved in [KLL16] that

=X = Q(¥(G)),

and that the spectral partitioning algorithm and the lo-
cal graph partitioning algorithm using personal pager-
ank vectors [ACL06] achieve better approximation when
the robust vertex expansion is large. We analyze ran-
dom walks and evolving sets and prove a similar result.

THEOREM 1.3. For lazy graphs G, ¥(G) = Q(¥(G)).

Morris and Peres [MPO05] prove that the gauge is
a lower bound of the spectral gap ¥(G) < 1 — Az. An
interesting corollary is a random walk based proof of the
improved Cheeger’s inequality using vertex expansion
proved in [KLL16] with better constant.

COROLLARY 1.2. For lazy graphs G, 1—X s = Q(¥(@Q)).

Another corollary is an improved analysis of Theo-
rem 1.1 when the robust vertex expansion of G is large.

COROLLARY 1.3. Given an unweighted d-regular graph,
for any target set S* and any € > 0, there is a subset S’
with |S'| = |S*|/2, such that if we start the evolving
set process with {v} for v € S', then with constant
probability the algorithm returns a set S with ¥(S) =
O(¢(S*)/€) and |S| = O(d¢|S*|*€), and the running
time is O(|dS*|*2¢p(S) 2 log? n).

Note that the conclusion ¥(S) = O(¢(S*)/e)
implies that  ¢(S) =  O.(6(59)/0"(S) =
Oc(¢(S*)/#V(G)). In particular, this implies that
the evolving set algorithm is a constant factor ap-
proximation algorithm for finding small sparse cuts
when ¢V (G) is a constant. Note that the assumption
that the robust vertex expansion is large is satisfied
by typical average case instances (such as the planted
random model). This shows that the evolving set al-
gorithm matches the improved analysis of the spectral
partitioning algorithm in [KLL16], partially explaining
the success of random walk based algorithms on non-
worst-case instances. We refer the reader to [KLL16]
for more discussions and motivations for robust vertex
expansion.
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Limitations The subexponential time algorithm
for small-set expansion by Arora, Barak and
Steurer [ABS10] uses eigenspace enumeration and ran-
dom walks. The short code example in [BGHMRS12]
shows the limitation of the eigenspace enumeration
method. It is a natural question to ask whether random
walks can be used to disprove the small-set expansion
hypothesis. There were very few results showing the
limitations of these random walks based algorithms
(see [ZLM13] for the only such result that we know of).
One main difference between the truncated random
walk algorithm by Spielman and Teng [ST13] and the
evolving set algorithm by Andersen and Peres [AP09]
and Oveis Gharan and Trevisan [OT12] is that the
random walk algorithm is deterministic while the
evolving set algorithm involves much randomness.
It is conjectured in [Ovel3, AOPT16] that there is
a small but nontrivial probability that all the sets
explored by the evolving set process is of size O(|S*]),
and argued that this would disprove the small-set
expansion hypothesis. We present an example for
which the evolving set algorithm fails with probability
one, refuting the conjecture.

THEOREM 1.4. Given any €, there exists 0. such that
for any § > 0, there is a graph G such that ¢5(G) < ¢,
but any subset of volume < d.n returned by the evolving
set algorithm in [AP09, OT12] has expansion at least
1 — e with probability one.

We remark that there are two difference parameters
b and 0 to emphasis the fact that the evolving set
algorithm cannot find a set with small expansion even
it looks at sets with larger volume.

The example is a k-ary e-noisy hypercube, where
the dimension cuts are of size n/k with expansion e.
We show that, however, the evolving set algorithm will
only explore the Hamming balls, and the expansion is
at least 1 — e for all Hamming balls of size O(n/k).
We note that this example also shows that the random
walk algorithm [ST13, KL12] and the pagerank algo-
rithm [ACLO06, ZLM13] fail to disprove the small-set
expansion hypothesis; see Section 3.

In addition to being the first lower bound to the
evolving set algorithm, this example exposes the limita-
tions of all known local graph partitioning algorithms.
We believe that this example can be used as a ba-
sis to prove further lower bounds. An open ques-
tion is whether the analysis of the O(1/¢(S)log(|S]))-
approximation of the evolving set algorithm in Theo-
rem 1.1 is tight when € = 1/1og(]S]).

1.2 Relations with Previous Work
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Combinatorial Analog of Spectral Gap We
note that the original analyses of Lovasz and Si-
monovits [LS90] and Andersen and Peres [AP09] heavily
rely on the laziness assumption and cannot be used to
work with the combinatorial gap. The bar chart in Fig-
ure 2.2 is the new element introduced to analyze the
combinatorial gap as well as the robust vertex expan-
sion.

Trevisan [Trel2] defined the bipartiteness ratio
B(G) of a graph and proved that A, + 1 is related to
B(G) as if 1 — Ay is related to ¢(G) stated by Cheeger’s
inequality. After formulated and proved Theorem 1.2,
we observe that Trevisan’s result combined with the
spectral argument can also be used to derive the corol-
lary that the mixing time of non-lazy random walks is
bounded by O(log(n)/¢(G)?). However, we remark that
Theorem 1.2 and Corollary 1.1 cannot be derived from
Trevisan’s result and the spectral approach, and also
that the formulation of Theorem 1.2 is new.

Mixing Time and Local Graph Partitioning The
results in Lovdsz and Kannan [LK99] and Kannan,
Lovéasz and Montenegro [KLMO06] show that the mixing
time of lazy random walks is O(log(n)/¥(G)), among
other conditions that imply faster mixing. However,
their results cannot be applied to analyze local graph
partitioning algorithms as in Corollary 1.3.

Besides the random walk algorithm [ST13, KL12]
and the evolving set algorithm [AP09, OT12], there is
also a local graph partitioning algorithm using pagerank
vectors [ACL06, ZLM13]. In terms of the approximation
guarantee, the output size, and the running time, the
pagerank algorithm is subsumed by the evolving set
algorithm in [AP09, OT12].

In [KLL16], it was shown that the pagerank algo-
rithm performs better when the robust vertex expan-
sion is large. Similar results were not known for ran-
dom walks and evolving sets, as the spectral techniques
in [KLL16] are not applicable. These results are proved
in this paper by a new analysis of the combinatorial ap-
proach of Lovész and Simonovits [LS90]. We remark
that both the results and the techniques of this paper
are different from [KLL16], especially the combinato-
rial analog of spectral gap, the counterexample for the
evolving set algorithm, and the new analysis of Lovasz
and Simonovits approach using the barchart.

2 Faster Convergence

In this section, we prove the positive results about faster
convergence rates of random walks and evolving sets.
Our proofs are based on the combinatorial method of
Lovész and Simonovits [LS90], and we will begin with
an introduction of their techniques in Section 2.1, and
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then we will discuss the proof outline and highlight
the new idea in Section 2.2. Then, we will prove
Theorem 1.2 about combinatorial analog of spectral gap
in Section 2.3 and then prove Corollary 1.1 about small-
set expansion of graph powers. Then, we will extend
the technique to prove Theorem 1.3 about robust vertex
expansion in Section 2.4 and then show its application in
local graph partitioning. Finally, we will discuss how to
extend the results to non-regular graphs in Section 2.5.

2.1 Lovasz-Simonovits Curve For any vector p €
R™, Lovész and Simonovits [LS90] study the curve
C(p) : [0,n] — R that plots the cumulative sum of p
defined as

(2.1) C(p,x) = max Zc(z) - p(i).

c€[0,1]™:37, c(i)=x v

In words, C(p,x) is just the sum of the first = largest
elements in p when z is a positive integer, and the
curve C(p,z) is defined for all x € [0,n] by piecewise
linear extension. It is clear from the definition that
C(p,x) is a concave function of x. We are interested
in studying the curve C(A!p,x) where A is a random
walk matrix and p is a probability distribution. Notice
that as A’p converges to the uniform distribution as ¢
becomes larger, C(A'p) converges to the line z/n and
vice versa. In [LS90], their method to bound the mixing
time is to bound the difference between C(A!p) and the
line z/n. When A is the lazy random walk matrix, they
proved that

G 2
2.2) C(A'pa) < L+ Vol - L(s) ),
n

and they show that this implies the mixing time of lazy
random walks is O(logn/¢(G)?). The key lemma in
their proof is the following inequality: For any lazy
random walk matrix A, any p € R™ and any integral
x

(2.3)

C(Ap,z) < 5(Clp,2(1 - ¢(G))) + C(p,x(1 + ¢(G))))-

N —

The bound in (2.2) follows from an inductive argument
using (2.3); see [LS90, ST13, KL12] and also a slightly
more general version in Lemma 2.7 in Section 2.4. We
remark that their proof of (2.3) crucially relies on the
assumption that there is a self-loop of weight 1/2 on
each vertex and is a bit magical.

2.2 Proof Outline Our main algorithmic result is
Theorem 1.3, but its proof develops on the technique
for Theorem 1.2. So, we begin with the outline of the
proof of Theorem 1.2 in this subsection, and mention
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1 1 e
Ubper Area = Y max{ds(i) = 5.0} < (1= 9(G))|3]

Wﬂj

Figure 2.1: An illustration of the proof ideas.

the modifications needed to prove Theorem 1.3 at the
end.

We will prove the following inequality similar to
(2.3) using the combinatorial gap (without the laziness
assumption that A; > 1/2 for all i € V).

LEMMA 2.1. For any random walk matriz A, any p €
R™ and any integral x < n/2,

C(4p,2) < 5 (Clp, 21~ $(G)) + Clp, (1 + 9()))).

With Lemma 2.1 in place of (2.3), the same induc-
tive argument that we mentioned before implies the con-
vergence result in (2.2) with ¢(G) replaced by ¢(G). Tt
turns out that the analysis of the Lovéasz-Simonovits
curve can be used to analyze the evolving set pro-
cess as well, and the arguments in Lemma 2.1 can be
adapted to prove Theorem 1.2. To prove Lemma 2.1,
we consider an arbitrary S C V and try to bound the
total probability in S after one step of random walk
(Ap)(S) := > ,c5(Ap)i. To bound (Ap)(S), we look at
where the probability in S is coming from. For each
1€V, let

ds(i) = w(i, S)

be the total weight coming from i to S. Recall that we
assume the weighted degree of each vertex is one. So,
we have dg(i) € [0, 1] for any ¢ and

(2.4) > ds(i) = |S].

%

The reason for this definition is that (Ap)(S) =
Yoi i ds(i) - p(i). We sort the vertices so that dg(1) >
ds(2) = ...z ds(n) Let T := {1,2, ceey |S|} be the |S|
vertices with largest dg values; note that T is in general
not equal to S. See Figure 2.2 for an illustration of the
proof setup.
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The obstruction for mixing is when dg(1) = dg(2) =
... = ds(|S]) = 1 and p(1),...,p(]S|) are the high-
est probability in p, in which case we would have
C(Ap.IS]) > (Ap)(S) = Y5 p(i) = C(p,|S]) and thus
the curve is not dropping after one step of random walk.
This could happen when S = T in which case S is a dis-
connected component of G (corresponding to Ay = 1), or
when S and T form a bipartite component (correspond-
ing to A, = —1), and in these cases the random walk
may not mix (depending on the initial distribution).

The combinatorial gap in (1.1) is defined precisely
to exclude the obstruction. It states that any sub-
set T with |T| = |S] can only contribute w(S,T) <
(1 — o(G)|S] to w(S,V) = |S|, so as to guaran-
tee that the curve would drop, ie. C(Ap,|S]) =
maxg.|s/|=|s| Ap(S’) < C(p,|S|). To prove Lemma 2.1,
we look at the bar chart in Figure 2.2 horizontally and
consider the telescoping sum

(Ap)(S) = Z ds(i) - p(i)

- Z(dg(i) —ds(i+1)) Zp(j)

< , (ds(i) —ds(i+1))) - C(p,1).

Suppose we put a threshold 1/2 and consider the upper
area x = Y.  max{ds(i) — 3,0} and the lower area
y = > i, min{dg(i), 3 }; see Figure 2.2. By concavity
of the curve C, we will prove in Lemma 2.2 that

(Ap)(S) < 5 (C(p,2z) + C(p,2y))

(C(p,22) + C(p, 2|S| — 21)).

N = N =

The definition of combinatorial gap in (1.1) forces dg
to spread out, and we will prove in Lemma 2.3 that it
implies that
1
v < (1= 9GS

Combining these two steps gives Lemma 2.1. Once we
prove Lemma 2.1, similar calculations can be used to
prove Theorem 1.2 about the gauge in the evolving set
process.

Vertex Expansion The proof of Theorem 1.3 is also
based on the idea of using the bar chart in Figure 2.2.
Intuitively, larger vertex expansion will lead to faster
mixing, as the probability coming into a set S is from
many different vertices, and so it cannot be the case
that all probability in .S come from a small number of
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vertices with high probability. In fact, the definition of
Ny/2(S) can be rewritten as

Ny/2(S) = min{z | C(ds, |S| +x) — C(ds, |S])
> %w(S, V_ )

This allows us to use robust vertex expansion to put
an upper bound of the area of the largest vertices; see
Lemma 2.5:

Clas. (1+ 6" (s)Ish < (1 - Zyjs),

Because of the asymmetry of the area upper bound, we
have to choose a different threshold (instead of 1/2) to
prove in Lemma 2.6 that if C(dg, a|S|) < b|S| for any S
with |S] < n/2 then

CAp. 1) < (=) O blS) + (

b=t o als]
b

—52)C, =),

which is the most technical proof in the algorithmic
results. Then we will modify the inductive argument
accordingly to establish a similar bound as in (2.2).
The proof can be adapted to analyze the gauge in the
evolving set process to prove Theorem 1.3.

2.3 Combinatorial Analog of Spectral Gap As
described in the outline, we will prove the following two
lemmas.

LEMMA 2.2. For any subset S C V with |S| < n/2, let
r=3,c max{ds(i) — 1,0}, then

(Ap)(5) < 5(Clp,2x) + C(p, 2(|S] — x))),

N | =

for any random walk matriz A and any vector p € R™.
LEMMA 2.3. For any subset S C V with |S| < n/2, let
=3 ,cy max{ds(i) — 1,0}, then

v < 50- oIS,

First, we assume the lemmas are correct and derive
Lemma 2.1.

Proof. Let S be a subset of V. By Lemma 2.2
Lemma 2.3 and the concavity of C, we have

(Ap)(S) < 5(C(p, 2x) + C(p, 2(|S| — x)))

(Clp, (1 = #(@))]S])
+C(p, (1+¢(G))I5)),

VAN
DN = N =
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where the last inequality holds since for any concave and
function f and any values a < b < ¢ < d with

a+d="b+c wehave f(a) + f(d) < f(b) + f(c). (1 —ds(k+1)+ Y (ds(i) —ds(i+1))
Since the argument applies to all subset S C V with 2 Parait
|S| < n/2, we have 1 1
:5 7d5(n+ 1) =5
C(Ap,|S]) = (Ap)(S") : . L
sV, \S'\ S| by applying Jensen’s inequality with f = C(p), we have
1
< 5 (€. (- p(@)]3) Lk
Ap SSC(p,Z ds(i) —ds(i+1)) -4
+ Ol (14 P(CNISD). (4p)(S) < 3 (i;( 5(0) — ds(i +1))
1
Next we prove Lemma 2.2, which follows from the + (ds(k) — 5) : k‘))

concavity of the curve C.

Proof. Recall that (Ap)(S) =3, p(i)-ds(i). For conve-
nience, we define the boundary values to be dg(0) =1 (ds(i) — ds(i +1 )
and dg(n + 1) = 0, and also define p(0) = 0. Then, * Z (i si+1))-
there is an index k such that dg(k) > 1/2 > dg(k + 1).
By looking at the bar chart in Figure 2.2 horizontally Finally, note that the first sum
as in the outline and considering the telescoping sum,

i=k+1

k—1

e have | > (ds(9) ~ds(i+ 1) i+ (05(8) ~ )b
(Ap)(S) = ) _(ds(i) —ds(i+1))(}_p()) - 1
; ; =Y (ds(i) - 3)
n i=1
< ds(i) —ds(i+1)) - C(p, ~
> (ds(0) -~ ds(i-+ 1) Clp) S (i) L0y
k—1 =1
= < (ds(i) —ds(i+1))-C(p,i) Since Y27 (ds(i) —ds(i+1))-i =", ds(i) = |S| by
=0 (2.4), the second sum is |S| — z, and so we have
1
+ (@5l - 5)-Clp)) 1
(Ap)(S) < 5C(p,20) + Clp,2(1S] ~ ).
1
+ ((2 —ds(k+1)) - Clp, k) Now we prove Lemma 2.3, which uses the definition
n of the combinatorial gap in (1.1).
+ ds(i) —ds(i+1)) - C(p,i )
l:;rl( s() s )-Cp9) Proof. Recall that we sort the vertices such that 1 >

ds(1) > ... > dg(n) > 0. Let k be the index such that

Recall that C(p) is concave, and for any concave func- ds(k) > 1/2 > ds(k +1). Let T = {1,...,[S[} be the
tion f, we have by Jensen’s inequality subset of the first |S| vertices. We consider two cases.

The first case is when k < |S], in which
Saif ) < (ef (X5 d 1
: ) Zlmax{dg — 5.0 = Z(ds(i) -

Since k . S|
ds dS Z 1
. <3 BV S ED o pais)
1 =1 =1
> (ds(i) = ds(i + 1)) + (ds(k) — 3)
i=0 where the first inequality holds as dg(4) € [0, 1], and the
_ds(0) - } last inequality holds by using (1.1) to obtain ¢(G) <
N — wlo, =1 i1 ag 7 .
T2 (8.7)/15] =1~ 32, ds()/1S]
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The second case is when k > |S|. Note that which is the lower area under the threshold 1/2 (see
ds(|S]) € 1—p(G), as otherwise T would violate (1.1). Figure 2.2). And
Then, for any i > |S|, we have dg(i) < dg(]S]) <

1 — ¢(G). Therefore, for any i > |5, 1E[|S| U > 1] —E[3] - EEHS’\ U< 1]
2 2 2 T2
L1 L3 2G)y _ds(i) - (1 - 9(G)) 1
ds(i) — = <d . < : — N — nd = deli
S(l) 9 5(7’)(1 —(,D(G)) 2 = Z;/ds(l> iezvmln{QadS(Z)}
and we have ) 1
i ) = iezvmax{ds(z) ~ 3 0},
v =Y (ds() — )
i‘zll which is the upper area above the threshold 1/2, and
5 k o 1
1 1 this is at most 5(1 — ¢(G))|S| by Lemma 2.3. We are
< Z(ds(l) - 5) + Z (ds (1) — 5) ready to prove Theorem 1.2.
i=1 i=|S|+1
|5 k . Proof. By definition,

=t i=|S|+1 L .
S| 1 - o(G) P(S) =1 —E[/[S]/]S]]

= (w(s, 1) — 2y + A=A 15— wis. 7)) - T |
S =1 LEWI81/151 1 U < 5] - SE/I31/1s1 | U > 3]
P — ¥
= (s, 1) - Ly (222 1
Let z = Y, max{ds(i) — 5,0} be the upper arca. We
1 G S 1—-¢(G ¢ 2
< (D0 pianis - B A2 s know that s < 31— ¢(G))IS] by Lemma 2.3 By
1 @) concavity,
— P
S (=5 )Isl,
1 . 1. 1 [1_ - 1
where the second last inequality is by (1.1). Hence, in iE[ ISI/ISI U > 5] S 2\/5|IE[|S| U > 5]
any case, we have z < (1 — ¢(G))|S|.
1 2
Evolving Sets Finally, we prove Theorem 1.2 about D) E
the gauge of the evolving set process, which involves
very similar calculations as in the proof of Lemma 2.1. Similarly
Recall that the gauge is defined as ¥(S) = 1 — ’
E[1/]5|/|S]]. The following claim follows from Morris 1 - 1 1 /1 - 1
and Peres [MPO5]. §E[ 1S|/1S1| U < 5} S3 EE[|S| | U< 5]
Cram 1. ([MPO05], EQUATION 27) For any t € [0,1], 1 [2(18] - )
we have =t 7a
2 |5
t-E[S| | U<t]=> min{t,ds(i)}.
iev Plugging these two inequalities back into the first one,

- we have
Proof. Note that P[i € S | U < t] = min{1,dg(¢)/t}. It

follows that 1 2 2
. N S)21—2()2— o+ 4/ o
E[S||U<t]=> PlieS|U<1 V) 5 5] \/ZI)

= gmin{l,ds(i)/t}. =1~ %(\/1 +¢(G) + V1 - (@) = p(G)?/8,

eV

When ¢ = 1/2, Claim 1 implies that

where the second inequality is because /2 — 22/|S| +
V23 /18] < v/2=2y/IS] + /2y/IS] for & <y < |5]/2

R 1 . 1 . and we put iny = 1(1—¢(G))|S|, and the last inequality
- < 2= - 3 ,
2E[|S| U< 2] Z min{ 2’ ds (i)}, is by Taylor expansion of the function /1 + ¢.

eV
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Small-Set Expansion of Graph Powers In this
subsection, we prove Corollary 1.1 about small-set
expansion of graph powers. Recall that the d-small-set
expansion is defined as

w(s,9)

min
SCV,|S|<on |S]

¢s(G) =

We define the d-small-set combinatorial gap as

. w(S,T)
G pr—
#s(G) SQV,TQ\I/T'.,1|1§1|=\T\<67L |S|

The following is a simple relation between these two
quantities.

LEMMA 2.4. For any 0 < 1/2, we have ¢5/5(G) >
?5(G)/2.
Proof. Suppose S, T are two subsets of size at most dn /2

that achieve w(S,T) = (1 — ¢5/2(G))|S| and |S| = |T.
We argue that S U T has small expansion, since

w(SUT,SUT) 2 2w(S,T) —w(SNT,SNT)
> 2(1 = p5/2(G))|S| = SN T
=2[S| = |SNT| - 2[S|ps/2(G)
=[SUT|—2[S]ps/2(G)
> |SUT|(1 —2¢5/2(G)).

Since |SUT| < 2|S| < dn, this implies that ¢5(G) <
1-—w(SUT,SUT)/|SUT| < 2p5/2(G).

In [KL14], using the inequality (2.3), it is proved
that for any lazy graph,

¢5/2(Gt) > Q(min(VE - ¢5(G), 1)).

The assumption of laziness is only used for the inequal-
ity (2.3) to hold. Now, with Lemma 2.1, we can replace
¢s(G) by ps(G) and prove that for any graph G,

$5/2(G') = Q(min(v - ¢5(G),1)).

Combining with Lemma 2.4, it follows that for any
graph G,

¢5/4(G") > Qmin(Vt - ¢5(G), 1)).

2.4 Vertex Expansion We will prove Theorem 1.3
in this subsection. As in Section 2.3, we will first
prove faster convergence for random walks and then for
evolving sets. Intuitively, larger vertex expansion will
lead to faster mixing, as the probability coming into a
set S is from many different vertices, and so it cannot
be the case that all probability in S come from a small
number of vertices with high probability. Our proof
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idea is also to look at the bar chart in Figure 2.2, and
translate the definition of robust vertex expansion into
an upper bound of the area of the largest vertices.

For S C V, we consider the vector dg € R™ with
the i-th entry being dg(i), and as before we assume
that dg(1) > dg(2) = ... > dg(n). We use the notation
C(dg, ) in (2.1) on dg so that we can talk about the
largest x values in the vector dg (note that x could be
non-integral).

In Theorem 1.3, unlike in Theorem 1.2, we need the
additional assumption that the random walk matrix is
lazy, such that w(i,7) > 1/2 for any ¢ € V. The main
reason of this assumption is to have dg(i) > 1/2 for
i€ S and ds(j) < 1/2for j ¢ S, so that we can assume
that

S={1,2,...,|5}

i.e. the vertices in S are the vertices with the largest
values in dg. Recall that we defined

Ny jo(S) i= min{|T| | T C V - S, w(S,T)
> %w(S, V— )

Since S = {1,...,|S[}, we have for any integral x,

max w(S,T) = max Z dgs (i)
T:TCV-S,|T|=x T:TCV-S,|T|=x Py

|S|+z

> ds(i)

i=|S|+1

In words, the set of vertices T' C V — S that maximize
w(S,T) are the vertices {|S| + 1,...,]S|+ |T|} in the
ordering defined by dg. So, we can rewrite the definition
of Ny,2(S) as

Ny/2(S) :=min{x | C(ds, |S| + x) — C(ds, |S])

> %w(S, V -9}

Note that we allow x to be non-integral. This dif-
fers by at most one compared with the original def-
inition in [KLMO06], and will make our proofs much
cleaner. The robust vertex expansion is defined
as ¢V(S) = min{Ny,»(S)/|S],1} and ¢V(G) :=
ming.|s|<|v|/2 @ (S) as before. Similarly, ¥(S) is de-
fined as before using the new definition of Ny /5(S). The
following lemma translates the definition of ¢" (S) to a
bound on the cumulative sum of the largest vertices in
the bar chart.

LEMMA 2.5. For any S CV with |S| < |V|/2, we have

¢(S)

Clds, (1+ 6" (S)ISD < (1= T8,
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Proof. Since C(dg, |S|+x) is continuous with respect to
x, the minimum in the definition of Ny /5(S) is attained
when C(ds, |S| + z) — C(ds,|S]) = 3w(S,V — S). As
7= Ny 2(8) < 6" (9)|5], we have

w(S,V —9).

N =

Clds, (1+¢"(9))IS]) — C(ds, |S]) <

|S|}, we have C(dg,|S|) =
#(9))|S| and w(S,V — 8) = ¢(S) - |9/,

Finally, since S = {1,...,
w(S,S8) = (1-
we have

clas, 0+ ($)ish < (1 - Ays)

Using Lemma 2.5, we will prove a bound similar
to that of Lemma 2.1. The two steps (Lemma 2.2 and
Lemma 2.3) of proving Lemma 2.1 are integrated and
streamlined in the proof of the following lemma.

LEMMA 2.6. Assume C(dg,al|S]) < b|S| for any |S| <
n/2 for some a > 1 and b < 1, then for any p € R™, we
have for any S with |S| < n/2,

a—b b— b2 alS
CpIs) < (“0)ewns) + (o) om 4

Proof. Using the same concavity argument as in
Lemma 2.2, for any threshold ¢ € (0,1) and k such
that dg(k) > ¢t > dg(k + 1), we have for any S with
S| < n/2,

(Ap)(9)

ES
—

<=0 ¢(p o (st~ dsi+ 1)

s
Il
o

+ (st -0 k)

+t-c<p,1((t—ds(k+1))-k
+ Z (ds(i) — ds(i + 1)) - ))
i=k+1

Let x = Y-" 0 (ds(i) — ds(i +1)) - i + (ds(k) — t) - k be
the upper area above the threshold ¢. Then, it follows
that

C(p, |S]) = max(Ap)(S)

The first case is when k < alS|, in which

k
st ) —1)

1

M;r

(1—1)-ds(i)

t)- (ds7a|5)

(1- (1—1) bS],
where the last inequality uses the assumption that
C(ds,alS]) < b|S|. The second case is when k > a|S].
Note that for any i > alS|, ds(i) < dg(alS|) < b/a, as
otherwise the assumption C(dg,alS|) < b|S| would be
violated. Hence, for any i > alS]|,

at

YOy dsti) = (1 - ) - dsi),

ds(i) —t < ( b

and we get
k
T = Z(ds(i) —t)
i=1
k

< C(ds,alS)) —alSt+ Y (1f;> ds (i)

i=alS|+1
at
= O(ds, a|S|) — a|S|t + (S| — C(ds,alS])) (1 - 2
at
<Isia- %),

where the last inequality uses the assumption that
C(ds,alS|) < b]S| and some simple calculations. We
balance the two upper bounds b|S|(1 — t) and |S|(1 —
at/b) by choosing t = (b — b?)/(a — b?), so that in both
cases we have

bla —b)
(2.5) < =218l.

Putting the choice of ¢t and the bound on z back (and
using concavity), we obtain the conclusion of the lemma.

Lemma 2.6 is a generalization of (2.3), and we can
use it to derive a generalization of (2.2). Note that
any probability distribution p satisfies the condition

C(p,z) < £ 4 y/min{z,n — z} in the following lemma.

LEMMA 2.7. Assuming C(dg,alS|) < b|S| for any
S| < n/2 for some a > 1 and b < 1, then for any

p € R" satisfying C(p,z) < T + cy/min{z,n —x} for

all x € [0,n] for some ¢, we have

S| —= x -
<(A=1)-Clo 7))+t Clo, =), C(A'p,) <~ + ey/minfa,n —x}
It remains to prove an analog of Lemma 2.3 to 1- (Va— \/E)(l — \/B))t
bound the upper area z. We again consider two cases. Va+b
1858 Copyright © by SIAM
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Proof. We only consider the case that x < n/2 in the
following; the case > n/2 can be handled in the same
manner. When 2 < n/2, we have C(p,z) < £ + c\/x.
By Lemma 2.6,

—b b — b2
a—2>b T
< (o)  +evba)
b— b? T axr

) Gy D)
- Lo Vie ()
_r, o (((a—b)+ (1~ b)va) V)

a — b2
/T
a — b2

(1 ++a)vb

= ﬁ —l—cﬁ(w).

+

(Va—=b)(1+Va)V)

8 318 3

Now note that,

LA+ vavh _ Vatb—vb—ab
Va+b Va+b
(Va—vb)(1 -~ vb)
Va+b '
The above argument shows that C(Ap, z) < £4-c\/z(1—
(va—vb)(1—-vb)/(v/a+b)). Apply the same argument

inductively (with different ¢ in each iteration) gives the
lemma.

In particular, for any probability distribution p, we
have the following generalization of (2.2):

(vVa—vb)(1—Vb)
Ja+b

Evolving Sets We prove Theorem 1.3 about the gauge
in the evolving set process.

).

C(A'p,a) < = +Vz - (1-

Proof. By Claim 1, for any ¢t € [0,1], the lower area
below threshold ¢ is

t-E[S| | U<t =) min{t,ds(i)}
eV

=S| =) max{ds(i) —t,0},

icV
and the upper area above threshold t is
(1—t)-E[|S| | U > =E[S] —¢-E[S| | U <]
= Z max{dg(i) — t,0}.

eV
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By the same argument in Lemma 2.6, using the assump-
tion C(dg, alS|) < b|S| and setting t = (b—b?)/(a —b?),
the upper area above threshold ¢ is
=3 max{ds(i) - 1,0} < X2V g)
= X — <
S ) a— b2

eV

as stated in (2.5). Therefore,
¥(S) =1-E[/|S]/I5]]
=1—t-E[/IS|/IS] | U <]

— (1) -E[/ISI/IS| | U > 1]

> 1-0/E[SI/18] | U <4

— (1= O\/E[SI/IS| | U > 4

115 —= 1 =z
=1ty S T Y
S|t ( ) [S]1—t¢
1 b(a — b)
21—t/ —
t¢wus @=Ds)

1 b(a — b)
- _t)\/(l —1)|S| a— b2 151

where the first inequality is by the concavity of the
square root function, and the second inequality is by
the following fact: Suppose f is a concave function and
€1 2 Ca = c3 > ¢y satisty tep + (1 —t)eqy = tea+ (1 —t)cs
for some ¢ € [0,1], then ¢f(c1) + (1 —t) f(ca) < tf(ca) +
(1 —1t)f(c3). Note that

1 b(a —b) _a-—b? b(a — b)
m(\slf e )=y (- )
_a—b*—bla—b) a
- b — b2 b
and
1 b(a — b) _a—be(a—b)_b
(1—1)|5] a—b2| = a—b a—b
Hence,
a (va—vb)(1 - vb)
w(S)>1—t\/;—(1—t)\/l;> it :

where the last inequality follows from the calculations
in Lemma 2.7 (starting from the third line in the first
block of calculations). We put a = 1 + ¢ (S) and

b=1- @ Note that since ¢V (S) < 1 by definition,

we have \/a > 1+ ¢¥(S)/3. This is the only place
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we need to assume ¢V (S) < 1. On the other hand
Vb <1 — ¢(S)/2. Therefore we have

(30" (S) + 30(5))50(S5)

¥(S) =

Local Graph Partitioning We obtain Corollary 1.3
about the performance of the evolving set algorithm
in [AP09, OT12]. In Lemma 5.2 of [OT12], Oveis
Gharan and Trevisan actually showed that the (volume
biased) evolving set process will return a set S with
¥(S) = O(¢(S*)/e€), and they used the fact that 1(S) =
Q(¢(S)?) to get Theorem 1.1. Now, with Theorem 1.3,
we can replace ¢(S)? by ¥(S) and obtain Corollary 1.3.

2.5 General Graphs Our results generalize to non-
regular undirected graphs, with appropriate changes in
various definitions.

Expansion: For a general undirected graph G, we
use vol(S) := 3, g deg(i) to denote the volume of a
subset S. It is the non-regular analog of the size |S].
The conductance of a set S C V and the conductance
of the graph are defined as

_w(S,V-29)
¢(S) T VOI(S) ’
and
HG) = S:vol(Sr)nglxrftl(V)/2 9(3).

Ideally, the analog of the combinatorial gap would be

) w(S,T)
G) =
<P( ) S,T:VOI(S):{/I;II(I’IT)QVOI(V)/Q VOI(S)

However, this definition may not say much since it can
happen that any two different subsets have different
volume. In order to handle this situation, we revise
the definition and allow S and T to be fractional. Let d
be the degree vector of G. We define the combinatorial

gap as

A
»(G) = min 1-— M
xs €0, xreo,1]” {(xs,d)

(xs.,d)=(xr,d)<vol(V)/2
Lovasz Simonovits curve: In general graphs, the
Lovész Simonovits curve C(p) : vol(V) — R is defined
as
C(p,x) := max (c,p).

ce[0,1]7:(c,d)=x

Suppose the vertices are sorted so that p(1) > p(2) >
- > p(n). The extreme points of the curve C(p) is

>, deg(j) for j =0,...n.

Bar chart: We sort the vertices so that
ds(i)/ deg(i) is decreasing. We should view the bar
chart so that each bar has width deg(i) and height
dg(i)/ deg(i). So the total width is vol(V). Same as
before, we put a threshold 1/2 (or choosing another
threshold ¢ € [0,1] in the proof for vertex expansion)
and consider the upper area z and lower area y, and
show that

(C(p,27) + C(p, 2y)).

M| —

(Ap)(5) <

With this figure in mind, the proofs for the extended
results are essentially the same as the original proofs.

Vertex expansion: The robust vertex expansion
is defined as follows. Let ¢(i) = dg(i)/ deg(i), and

Ny/2(S) := min{z | C(q, vol(S) +isc) — C(q,vol(9))

w(S, S)
> T}

Then ¢" (S) := min{Ny5(5)/vol(S), 1}, and ¢V (G) :=

ming.vol(s)<vol(v)/2 @V (S).

Restating the Theorems for General Graphs In
the following, we restate our results on general graphs
without proofs. Lemma 2.1 becomes

LEMMA 2.8. For any extreme point x < vol(V)/2,

C(Ap,7) < 5(Clp,a(1 — 9(G)) + Clp,2(1 + 9(G)))).

Lemma 2.2 becomes

LEMMA 2.9. For any subset S C V with vol(S) <
vol(V) /2, let

= eg(?) - max ds (i) 21
2= 3 dea() - mox( g = 5.0
then
(Ap)(S) < 5(Clp,22),Cp, 2v0l(V) - 2),

for any random walk matriz A and any vector p € R™.
Lemma 2.3 becomes

LEMMA 2.10. For any subset S C V with vol(S) <

vol(V)/2, let x = 3,y deg(i) max{ds(i)/ deg(i)
1/2,0}, then

(1 = ¢(G)) vol(S).

DO =

T <

Lemma 2.6 becomes
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LEMMA 2.11. Let q(i) := dg(i)/deg(i).  Assume
C(g,avol(S)) < bvol(S) for any S with vol(S) <
vol(V')/2 for somea > 1 andb < 1, then for anyp € R",
we have

C(p,vol(9))

a—b b—b?

S0 Ol bol(s) + (=0 - cp, YA

)’ C(p7 b )

With these definitions and lemmas in place, Theo-
rem 1.2 and Theorem 1.3 hold as stated in the intro-
duction.

3 Limitations

We prove Theorem 1.4 that provides a hard small-
set expansion instance for the evolving set process
studied in [AP09, OT12, AOPT16]. As mentioned in
the introduction, it will be a noisy hypercube H over
alphabet size k = 1/§. Formally, H is a graph on
k? vertices, representing all strings of length d over
alphabet [k]. For two vertices z,y, the edge weight
w(z,y) is set to be the probability to go from vertex
x to vertex y in one step of a random walk, where
each symbol of z is independently rerandomized with
probability e: For each i € [d], with probability 1 — e,
set y; = x;, otherwise y; is sampled uniformly at random
from [k]. Note that H is 1-regular. It is easy to see that
H has a small sparse cut.

CLAIM 2. There is a set S with expansion at most € and
|S| = dn where 6 = 1/k.

Proof. Indeed, the coordinate cut S = {z € [k]¢ | 71 =
0} has size on and expansion .

We will show that all the sets explored by the evolv-
ing set process have expansion close to one. First, we
argue that the evolving set process will only explore the
Hamming balls of the noisy hypercube in Lemma 3.1.
Then, we will show that the expansion of all Hamming
balls of size O(dn) is close to one in Lemma 3.2.

The evolving set process starts from a singleton set
on H. By symmetry, we may assume this set is {0%}.
We now show that the evolving set process only explores
sets that are Hamming balls B(r) (around 0¢), where
B(r) denotes all strings of Hamming weight at most 7:

B(r) = {z € [k]* | |z <7}
where
|| == |{i € [d] | z; # O}].

Indeed, the initial set {09} is the Hamming ball
B(0). The following lemma implies that, if the current
set is a Hamming ball B(r), then so is the next set,
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and thus by induction the evolving set process will only
explore Hamming balls. Intuitively the lemma says that
if  has less Hamming weight than y, then z is closer to
B(r).

LEMMA 3.1. Suppose € < 1/2. For any r > 0, any
x,y € k)Y, if |z| < |y|, then

w(z, B(r)) = w(y, B(r)).

(1t follows that if S is a Hamming ball, then y € S
implies that x € S, and thus S is also a Hamming ball.)

Proof. Note that w(z, z) depends only on the Hamming
distance |z — z| (coordinate-wise subtraction modulo k).
We first show via a symmetry argument that

(3.1)  w(x,B(r)) =w(y, B(r)) whenever |z| = |y|.

To this end, we will construct a permutation 7 on [k]?
that (i) preserves Hamming distances: |w(a) — m(b)| =
la — b| for all a,b € [k]¢, (ii) n(z) = v, and (iii)
7(0%) = 0% Assuming this permutation exists, we
get that z € B(r) if and only if 7(z) € B(r), since
|7(z) — 0] = |7(z) — 7(0)] = |z —0]. Also, |x — 2| =
m(2) — ()| = Jy — 7(2)], thus

w(z, z) = w(y, 7(2)).

Summing this equality over all z € B(r), we get (3.1).

We now construct such a permutation 7. Take any
bijection ¢ on [d] that maps I := {i | x; # 0} onto
{i|y: # 0}. For i € I, let 7; be the permutation on [k]
that simply swaps 2; and y,(;). Then we define 7(a) = b
where b; = a; if i ¢ I, and b; = 7;(a,(;)) otherwise. It is
easy to verify that m has all the required properties.

We now deal with the general case |z| < |y|. It
suffices to prove the lemma assuming |y| = |z| + 1.
By (3.1), we may assume that z is the indicator vector
on a subset S = [c] for some ¢, and y is the indicator
vector on [c+1], so that y differs from z only at position
c. Picking a random neighbor Z of x is equivalent to
picking W = x—Z and setting Z = x+ W, so the lemma
is equivalent to Py [z+W € B(r)] = Pwy+W € B(r)].
In fact, we will show this inequality conditioned on all
values of W; except i = ¢. Let w_. € [k]!¥\e} be a
fixing of all those values. We will show

Pw, [z +W € B(r) | W_. = w_]
(3.2) >Pw.ly+ W e B(r) | W_, =w_].

There are two cases. If |x_.4+w_.| # r, then z+W and
y + W are both in B(r) or both outside of B(r), and
therefore (3.2) holds as an equality. In the remaining
case, the left hand side of (3.2) is at least P[W, = 0] >
1—¢, while the right hand side is at most P[W, # 0] < ¢,
so the inequality follows by our assumption that € <
1/2.
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We now show that any small Hamming ball has
large expansion. The same result appears earlier
n [CMN14] in a different context. We give a proof
below, filling in some details missing in [CMN14]. The
main idea is to show via central limit theorem that Ham-
ming balls have similar expansion as in the Gaussian
noise graph, which can be analyzed using hypercontrac-
tive inequality. Similar connection was commonly used
to show integrality gap examples for convex relaxations,
and here it is used for the first time to show limitations
for random walks based algorithms (see the end of this
section for the subtle difference between the two set-
tings).

LEMMA 3.2. For any €,n > 0, there exists 06 = dcy
(independent of k) such that for any sufficiently large
d > de sy, all Homming balls of size < n has expansion

1-0(n).

Proof. We will analyze the expansion of a Hamming ball
B(r) by relating B(r) to halfspaces A, :={z e R |z <
'} in Gaussian probability space.

Consider drawing a random edge (z,y) from H
according to its weight, and we would like to analyze the
probability that both vertices are in B(r). The event
x € B(r) is the same as [z = 3 oy 1z # 0) < 7.
Since |z| is a sum of independent random variables and
each summand has bounded third moment, by Berry—
Esseen central limit theorem, for large d, the sum is
closely approximated by a Gaussian random variable g
with the same mean and variance as |z|. That is, for all
large enough d > dc 5.,

(3.3) Pllz| < 7] ms Plg < 7] for all r € R
for some ¢’ depending on €,d,m to be specified later.
Here we write C ~5 D to mean |C — D| < ¢'.

Moreover, multivariate central limit theorem
(e.g. [Saz68]) implies that the event (|z| < ) A (Jy| < r)
has roughly the same probability as the event (¢ <
r) A (h < r), where the bivariate Gaussian (g, h) has
the same mean and covariance as (|z|, |y|). That is, for
large enough d, it holds that for all r € R,

(34) Pr((lz| <7)A(lyl < )] =5 Pri(g <r)A(h <))
We note that the following calculations do not depend
on the dimension d other than the CLT approximation
errors (as we are not concerned about the graph size
n = k%), so we can choose a very large d at the end to
make the CLT approximation errors ¢’ to be arbitrarily
small for the proof to go through.

Shift g and h to have zero mean and renormalize
them to have unit variance. We get ¢ = (g —
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Elg])/+/Var[g] from g and similarly A’ from h. Then
g’ and h' have covariance

Cov(|],|y|)

Var[[z[] Var[[y]]

_ Cov(l(xy #0), 1(y1 #0))
 /NVarll(zy # 0)] Var[L(y1 # 0)]

We have Cov(1(zy # 0),L(y; # 0)) = (1—e) Var[1(z; #
0)], so Cov(g’,h') =1 — e. Therefore,

Cov(g', 1) =

Pl(g

N
2
>
=
VA
2
Il
]
Q.
VA
ﬁ\
>
=
VA
ﬂ\

where 7/ is chosen so that P[g’ < 7/] = Plg < r].
For standard Gaussians ¢’ and h’ with covariance
1 — €, we claim that

(3.5) Plh <r' | g <r'] <Plg <92

This inequality follows from Gaussian hypercontractive
inequality (e.g. [ODol4, Section 11.1])

E []lér’(gl)lér’(hl)] < H]LST’”g—ev

(1 — €) correlated g’, h’

where 1<,/ (¢') := 1(¢’ < r’) is the indicator function
for the halfspace A, , and the fact that

T llz—e = B[l (g")>]/ 39
= E[lgw (gl)}l/@—e) _ P[g/ < T/]1/(2,€)’

Set 6 := 1*/¢. Note that for ' small enough so that
Plg’ < r'] <, then (3.5) implies that the halfspace A,/
has expansion

P >r|g <r']=1-PK

We use (3.3) and (3.4) to translate this expansion result
from Gaussian space to the noisy hypercube. Let 6” < ¢
be a constant depending on €,d,n to be specified later.
Any Hamming ball of H of size at least ¢"’n corresponds
to a halfspace of roughly the same Gaussian measure via
(3.3), and has roughly the same noise stability via (3.4).
Choosing the CLT approximation error &' := §"n, we
can ensure that all Hamming balls B(r) of size between
0"”n and én have expansion > 1 — 7. Indeed,

Plz and y € B(r)] < Plg’ and &’ € A./] + ¢’

by (3.4) and

§ > Plz € B(r)] >Pl¢g’ € A]/2
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by (3.3) and our assumption that Pz € B(r)] > ¢”, so

Plz and y € B(r)]
Plz € B(r)]
Pl¢’ and b’ € A,/] + &
Plg’ € A,/]

1—¢(B(r)) =

<2

We now analyze the right hand side. We have

Plg’ and b’ € A,/]

<Py’ € A]7?2 <0
P[g/ GATI] [9 € } (77)

by (3.5) and the fact that P[¢g’ € A,/] < 2P[x € B(r)] <
26. Also §'/Plg’ € A.] < 20 /P[x € B(r)] < 26'/6" =
2n. Therefore ¢(B(r)) = 1—0(n), for those B(r) of size
between ¢"’n and dn, as required.

To deal with Hamming balls of size smaller than
0"”n, we simply apply the hypercontractive inequality
on H directly. For any subset B on H (not necessarily
a Hamming ball), we have

Ply € B |z € B] < P[z < B]/108(1/%)

for some ¢ > 0. The exponent ce/log(1/6) is
from [Wol07]. Taking ¢” := n'oe(1/9)/c¢ we see that
¢(B) = 1 — n whenever |B| < 0"n.

The key point of Lemma 3.2 is that everything is
independent of k. Therefore, given any €, we just need
to set k > 1/6 so that H has a set of expansion € and
size < on (by Claim 2), while the evolving set process
only explores Hamming balls (by Lemma 3.1) and all
Hamming balls of size < ,,n have expansion > 1 — ¢
(by Lemma 3.2). This proves Theorem 1.4 that the
evolving set process fails on the k-ary e-noisy hypercube
with probability one.

Random Walks, Personal Pagerank, and Heat
Kernels The random walk local graph partitioning
algorithm [ST13, ABS10, KL12] works by computing
the vector p; := Aly, for every vertex v for 1 < t <
O(logn), sorting the vertices so that p:(1) > pi(2) >
... = pi(n), and trying all the level sets {1,...,5} for
1 < j < n. Using the same k-ary noisy hypercube
example, it is not difficult to see from Lemma 3.1 that all
the level sets that the algorithm explored are Hamming
balls, and thus the random walk algorithm will also fail
to disprove the small-set expansion hypothesis.

The same argument also applies to the personal
pagerank algorithm [ACL06, ZLM13] and the heat ker-
nel algorithm, which work by computing some related
vectors and trying all the level sets. We note that the
vectors used by these algorithms are just convex combi-
nations of the random walk vectors Ay, for different ¢,
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and therefore all the level sets are Hamming balls, and
hence these algorithms also fail for the same reason.
We believe that this example exposes the limita-
tions of all known local graph partitioning algorithms,
and can be used as a basis to prove further lower
bounds. An interesting question is to study whether
the analysis of the O(1/¢(5) log(|S|))-approximation of
the evolving set algorithm in Theorem 1.1 is tight when

e = 1/ log(|S]).

Differences to integrality gap lower bounds Our
lower bound instances are related to SDP integrality
gap instances for small-set expansion and unique games,
with subtle conceptual differences.

The integrality gap instances in [KV15, KS09] are
based on Khot—Vishnoi instances (folded noisy Boolean
hypercubes), and their analysis ultimately relies on the
hypercontractive inequality on the Boolean hypercube.
Directly using a similar hypercontractive inequality on
the large alphabet noisy hypercube will not give us the
bound we want, because our graphs have small sparse
cuts. In other words, Khot—Vishnoi rules out all small
sparse cuts with the help of folding, while we cannot fold
so that we can plant small sparse cuts. This conceptual
difference explains why our instance and analysis have
been overlooked.
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