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Abstract

We consider a new semidefinite programming relaxation for directed edge expansion, which
is obtained by adding triangle inequalities to the reweighted eigenvalue formulation. Applying
the matrix multiplicative weight update method on this relaxation, we derive almost linear-
time algorithms to achieve O(

√
log n)-approximation and Cheeger-type guarantee for directed

edge expansion, as well as an improved cut-matching game for directed graphs. This provides
a primal-dual flow-based framework to obtain the best known algorithms for directed graph
partitioning. The same approach also works for vertex expansion and for hypergraphs, providing
a simple and unified approach to achieve the best known results for different expansion problems
and different algorithmic techniques.
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1 Introduction

The main combinatorial quantity that we study in this work is the directed edge expansion with
arbitrary vertex weights.

Definition 1.1 (π-Weighted Directed Edge Expansion). Let G = (V,E,w) be a directed graph
with edge weights w : E → R+, equipped with vertex weights π : V → R+. For S ⊆ V , let
δ+(S) := {ij ∈ E : i ∈ S, j /∈ S} be the set of edges going out of S, and let δ−(S) = δ+(S). Let
π(S) :=

∑
i∈S π(i) be the π-weight of S. The π-weighted edge expansion of S ⊆ V and of the graph

G are defined as

ϕ⃗π(S) :=
min{w(δ+(S)), w(δ−(S))}

min{π(S), π(S)}
and ϕ⃗π(G) := min

∅≠S⊂V
ϕ⃗π(S).

This is a general problem that encompasses various expansion problems studied in the literature.
The directed edge expansion problem is when π(i) = 1 for all i ∈ V , and this is equivalent (up to
a factor of Θ(n) where n is the number of vertices) to the directed sparsest cut of G

min
∅≠S⊂V

min{w(δ+(S)), w(δ+(S))}
|S| · |V \S|

studied in [ACMM05, AK07, Kal07]. The directed edge conductance problem studied in [Yos19,
LTW23] is when π(i) = w(δ+(i)) + w(δ−(i)), the weighted total degree of vertex i. Clearly, the
corresponding problems in undirected graphs as studied in [ARV09, KRV06, AK07] can be reduced
to Definition 1.1 by bidirecting the edges in the undirected graph. Also, the undirected vertex
expansion problem studied in [FHL08, LRV13]1 and the directed vertex expansion problem studied
in [LTW23] can be reduced to Definition 1.1 through a standard reduction of splitting each vertex
into two. Furthermore, the corresponding problems in undirected and directed hypergraphs can be
reduced to Definition 1.1 through a reduction of replacing each hyperedge by a vertex as shown
in [CS18]. The main goal of this work is to design fast algorithms for approximating ϕ⃗π.

1.1 Previous Work

Before presenting our results, we first review previous work on approximating various graph expan-
sion problem to provide the context of our work. We let n := |V | and m := |E| unless otherwise
specified.

1.1.1 Undirected Graphs

The edge expansion, sparsest cut, and the edge conductance problems in undirected graphs are
central problems in approximation algorithms. These problems have a rich literature with various
techniques developed.

1To be precise, [FHL08] studies “minimum ratio vertex cuts”, which is equivalent to undirected vertex expansion
which we will define in Section 6. They use “vertex expansion” to refer to a different quantity incomparable to ours.



Spectral Method: Cheeger’s inequality [AM85, Alo86] provides a near-linear time algorithm to
return a set S with conductance λ2 ≲ ϕ(S) ≲

√
λ2 where λ2 is the second smallest eigenvalue of

the normalized Laplacian matrix of the graph.

Linear Programming: Leighton and Rao [LR99] gave an O(log n)-approximation algorithm for
sparsest cut based on linear programming. The dual problem of their linear program is to embed
a complete graph into the original graph using flows.

Semidefinite Programming: Arora, Rao, and Vazirani [ARV09] gave a celebrated semidefinite pro-
gramming O(

√
log n)-approximation algorithm for sparsest cut. They introduced novel geometric

ideas in analyzing the triangle inequalities of the Goemans-Linial SDP relaxation. The dual prob-
lem of their semidefinite program (SDP) is to embed an expander graph into the original graph
using flows.

Cut-Matching Game: Developing the idea of expander flows in [ARV09], Khandekar, Rao, and
Vazirani [KRV06] introduced the cut-matching game as a combinatorial approach to obtain fast
approximation algorithm for sparsest cut. Orecchia, Schulman, Vazirani, Vishnoi [OSVV08] im-
proved the analysis of cut-matching game to give an O(log n)-approximation algorithm for sparsest
cut using O(log3 n) undirected approximate max-flow computations. Since then, the cut-matching
game has become a useful algorithmic tool on its own, with interesting applications in different
problems [And10, Chu12, CE13, CL16, CGLNPS20, BGS20].

Primal-Dual Algorithms: Arora and Kale [AK07] developed a general primal-dual combinatorial
approach to solve SDPs based on the matrix multiplicative weight update (MMWU) method.
Using this, they gave an Õ(n2)-time O(

√
log n)-approximation algorithm for sparsest cut using

O(log2 n) multi-commodity flow computations. Notably, the cut-matching game in [OSVV08] can
be interpreted as an instantiation of the matrix multiplicative weight update method.

Almost Linear-Time Algorithm: Sherman [She09] pushed the approach in [AK07] further to get
the best of the semidefinite programming approach and the combinatorial approach. He gave an

O
(√

1
ϵ log n

)
-approximation algorithm for sparsest cut using nO(ϵ) approximate max-flow compu-

tations, which implies an almost linear-time O(
√
log n)-approximation algorithm for the problem.

1.1.2 Directed Graphs

The corresponding problems for directed graphs are not as well-understood, particularly in relation
to fast algorithms.

Spectral Method: There was no known analog of Cheeger’s inequality for directed graphs until re-
cently. Lau, Tung, Wang [LTW23] defined a “spectral” quantity (using semidefinite programming)
called the reweighted eigenvalue λ∗2, and showed that there is a polynomial-time algorithm to return

a set S ⊆ V with λ∗2 ≲ ϕ⃗(S) ≲
√
λ∗2 log(1/λ

∗
2). They left it as an open question to design a fast

algorithm to return such a set.

Semidefinite Programming: Agarwal, Charikar, Makarychev and Makarychev [ACMM05] formu-
lated an SDP using directed semi-metrics, and extended the analysis in [ARV09] to obtainO(

√
log n)-

approximation algorithms for directed sparsest cut, directed balanced separator and other related
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problems.

Cut-Matching Game: Louis [Lou10] defined an analog of the cut-matching game in [KRV06] for
directed graphs, and used it to obtain an O(log2 n)-approximation algorithm for directed sparsest
cut using O(log3 n) max-flow computations.

Primal-Dual Algorithms: Using the matrix multiplicative weight update method on the SDP formu-
lation in [ACMM05], Arora and Kale [AK07, Kal07] claimed an O(

√
log n)-approximation algorithm

for directed sparsest cut with time complexity O(n2+o(1)) plus O(log3 n) maximum flow computa-
tions. Chan and Sun [CS18] pointed out an issue (which was acknowledged by Kale) in the trace
bound in the analysis in [AK07], and consequently the number of iterations is only bounded by
Õ(n2) instead of Õ(1), and so the time complexity should be O(n4+o(1)) plus Õ(n2) maximum
flow computations. Therefore, even with the recent breakthrough [CKLPPS22] in maximum flow
computations in directed graphs, the time complexity of Arora-Kale’s algorithm remains Ω(n4)
for directed sparsest cut. Moreover, unlike for undirected graphs, the connection between the
cut-matching game in [Lou10] and the matrix multiplicative weight update method is not known.

1.2 Our Results

We consider a new semidefinite program for directed edge expansion based on the reweighted eigen-
value formulation. Using the MMWU method on this new SDP, we improve the algorithmic results
for directed edge expansion, matching the corresponding results for undirected edge expansion.

1.2.1 Primal Formulation

We consider a new SDP relaxation for directed edge expansion in Definition 1.1. For undirected
graphs, the SDP formulation in [ARV09] can be understood as the spectral formulation for second
smallest Laplacian eigenvalue plus the ℓ22 triangle inequalities [Tre16]. For directed graphs, our
SDP formulation is to use the spectral formulation for reweighted eigenvalue in [LTW23] plus the
ℓ22 triangle inequalities.

Definition 1.2 (Reweighted Eigenvalue with Triangle Inequalities). Given an edge-capacitated
directed graph G = (V,E,w), we say that F : E → R≥0 is a circulation2 on G if

∑
j:ij∈E F (i, j) =∑

j:ji∈E F (j, i) for all i ∈ V . We let F(G) be the set of all circulations on G that also satisfy the

capacity constraints F (e) ≤ w(e) for all e ∈ E. Given also vertex weights π : V → R≥0, the λ
△
π (G)

2In [LTW23], F is called an Eulerian reweighting of G. In this paper, network flows is a unifying theme, and so
we find it more suitable to call F a circulation.
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program for directed edge expansion is

λ△π (G) := min
v1,...,vn∈Rn

max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2

subject to
n∑
i=1

π(i) · vi = 0⃗

n∑
i=1

π(i) · ∥vi∥2 = 1

∥vi − vk∥2 + ∥vk − vj∥2 ≥ ∥vi − vj∥2 ∀i, j, k ∈ V.

(1.1)

Here we use the convention that F (i, j) = 0 if ij ̸∈ E.

We note that the formulation in Definition 1.2 without the ℓ22 triangle inequalities in the last line is
exactly the formulation for reweighted eigenvalues in [LTW23, Proposition 3.4]. Just as the addition
of triangle inequalities to the spectral formulation reduces the integrality gap of undirected edge
expansion to O(

√
log n) in [ARV09], we show the exact analog for directed edge expansion by using

the spectral formulation for reweighted eigenvalues.

Theorem 1.3 (O(
√
log n)-Approximation for Directed Vertex Expansion). For any edge-capacitated

directed graph G = (V,E,w) with vertex weights π : V → R+,

λ△π (G) ≲ ϕ⃗π(G) ≲
√
log n · λ△π (G).

The proof is a simple adaptation of that in [ARV09]. We will compare our formulation with that
in [ACMM05] in Section 2.3.1, and we will compare the two dual formulations in Section 2.3.2. We
note that the same approach of adding ℓ22 triangle inequalities to reweighted eigenvalues provides
considerably simpler formulations and proofs for undirected vertex expansion and hypergraph edge
expansion than that in [FHL08] and in [LM14], while having the same integrality gap O(

√
log n);

see Section 6 for more details.

1.2.2 Dual Formulation

As in [ARV09], the dual program of λ△π in Definition 1.2 can be interpreted as embedding a directed
expander flow into the original directed graph. Since our formulation in Definition 1.2 requires the
flow to be a circulation, we obtain a new structural result about the existence of a circulation of
high edge expansion as a dual certificate, which may be of independent interest.

Proposition 1.4 (O(
√
log n) Dual Certificate). Given an edge-capacitated directed graph G =

(V,E,w) with vertex weights π : V → R+, there exists a circulation F ∈ F on G satisfying edge
capacity constraints with

ϕπ(F ) := min
∅≠S⊂V

∑
i∈S,j /∈S F (i, j)

min{π(S), π(S)}
≳
ϕ⃗π(G)√
log n

.
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1.2.3 Primal-Dual Algorithms

Using the MMWU method in [AK07, Kal07] on λ△π , combining with the chaining techniques
in [She09], we extend Sherman’s result to directed graphs.

Theorem 1.5 (Fast O(
√
log n)-Approximation to Directed Edge Expansion). For small enough

ϵ > 0, there is a randomized algorithm that, given any edge-capacitated directed graph G = (V,E,w)
with vertex weights π : V → R+, uses Õ(n3ϵ) directed max-flow computations to compute a cut

S ⊆ V with ϕ⃗π(S) ≲
√

logn
ϵ · λ△π (G) with constant probability.

Using the recent breakthrough [CKLPPS22] on directed maximum flow, Theorem 1.5 implies an
O(m1+O(ϵ))-time O(

√
(log n)/ϵ)-approximation algorithm for directed edge expansion. This is a

significant improvement over the previous O(n4+o(1))-time O(
√
log n)-approximation algorithm for

directed sparsest cut by Arora and Kale [AK07, Kal07].

Since undirected vertex expansion can be reduced to directed edge expansion, this is also a sig-
nificant improvement over the previous results [CK19, CS21] in fast approximation algorithms
for undirected vertex expansion, where the best known result is a O(log2 n)-approximation using
O(log3 n) vertex-capacitated max-flow computations. We remark that our algorithm is simpler than
Sherman’s when restricted to undirected graphs, bypassing the use of multi-commodity flows3. See
Section 2.2.3 and Section 2.3.2 for more discussions.

1.2.4 Cheeger-Type Guarantee

We show that the MMWU method can also be used to obtain a fast algorithm to output a set with
the Cheeger-type guarantee in [LTW23].

Theorem 1.6 (Fast Cheeger-type Approximation). Given an edge-capacitated directed graph G =
(V,E,w), there is an almost linear time algorithm for approximating the directed edge conductance

ϕ⃗(G) that returns a set S with ϕ⃗(S) ≲
√
ϕ⃗(G) · log 1

ϕ⃗(G)
.

This answers an open question in [LTW23] and provides a fast “spectral” algorithm for directed
graph partitioning.

1.2.5 Cut-Matching Game

The cut-matching game is an interesting and useful way to construct an expander graph; see
Section 2.2.4 for an introduction. Using the MMWU method, we also obtain a cut-player strategy
that matches the cut-matching game result in [OSVV08] for undirected graphs.

3In a concurrent work, Kolmogorov [Kol23] also showed that Sherman’s algorithm on undirected graphs can be
simplified by bypassing the multi-commodity flow step. Their work does not generalize the algorithm to directed
graphs and instead focuses on making the algorithm parallelizable. We leave as potential follow-up work whether our
algorithms can also be made parallelizable.
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Theorem 1.7 (Cut-Matching Game for Directed Edge Expansion). In the cut-matching game for
directed graphs (see Section 2.3.3 for definition), there is a cut player strategy so that, in O(log2 n)
iterations, the union of the matchings played by the matching player is an Eulerian graph with edge
expansion Ω(log n).

This is an improvement over the cut-matching game by Louis [Lou10], which only had an expan-
sion lower bound of Ω(1). A corollary of Theorem 1.7 is a simple almost linear-time O(log n)-
approximation algorithm for directed edge expansion.

1.2.6 Unifying Framework

The reweighted eigenvalue formulations in [KLT22, LTW23] provide a unifying framework to obtain
Cheeger-type inequalities for vertex expansion, directed graph expansions, and hypergraph expan-
sions. In this study, we show that in all these cases, adding ℓ22 triangle inequality constraints to the
reweighted eigenvalue formulations gives O(

√
log n)-approximation algorithms for estimating these

quantities, as well as fast algorithms for computing such approximations using expander flows and
the chaining techniques [ARV09, AK07, Kal07, She09]. Our results bring the more general expan-
sion problems closer to the basic undirected edge expansion problem, since both the formulations
and the proofs are close analogs of the corresponding results for undirected edge expansion. More-
over, our proofs show that the MMWU method and the max-flow min-cut theorem can also be used
to recover the Cheeger-type inequality and the cut-matching game, providing a common framework
to analyze these different algorithmic techniques for graph expansion problems. Overall, we believe
that our results simplify and unify the state-of-the-art of various problems and approaches studied
in the literature.

2 Technical Review and Overview

Since our work revisits and extends several previous works [ARV09, KRV06, AK07, Kal07, She09,
ACMM05, Lou10, LTW23], we review these previous techniques and mention some of our ideas for
improvements along the way in the corresponding subsections, and we conclude with the common
themes in Section 2.4.

2.1 Preliminaries

First, we introduce some notation that we will use throughout the paper. We use R+ to denote the
set of positive real numbers and R≥0 to denote the set of non-negative real numbers. Given two
functions f, g : X → R≥0, we use f ≲ g to denote the existence of a positive constant c > 0, such
that f ≤ c · g always holds. We use f ∼ g to denote f ≲ g and g ≲ f .
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2.2 Previous Works on Undirected Sparsest Cut

2.2.1 Semidefinite Program with Triangle Inequalities

The seminal work of Arora, Rao and Vazirani [ARV09] proved that the following Goemans-Linial
SDP relaxation for the undirected sparsest cut problem has an integrality gap of O(

√
log n).

min
v1,...,vn∈Rn

∑
ij∈E

∥vi − vj∥2

subject to
∑
i<j

∥vi − vj∥2 = 1

∥vi − vk∥2 + ∥vk − vj∥2 ≥ ∥vi − vj∥2 ∀i, j, k ∈ V.

(2.1)

Note that this formulation without the triangle inequalities in the last line is equivalent to the second
smallest eigenvalue of the normalized Laplacian matrix when the graph is regular (see e.g. [Tre16]).

A major contribution in [ARV09] is a structure theorem on vectors satisfying the ℓ22 triangle in-
equalities. It asserts that, given a “well-spread” set of vectors satisfying the ℓ22 triangle inequalities,
there are two large subsets L and R, such that all vectors in L are far away from all vectors in R.

Definition 2.1 (Well-Spread Vectors). Let {vi}ni=1 be a set of vectors that satisfy
∑

i<j ∥vi − vj∥2 =
n2. Let B(i, δ) := {j ∈ V : ∥vj − vi∥ ≤ δ} denote the closed δ-ball centered at vi. We say that
{vi}ni=1 is well-spread if |B(i, 1√

10
)| ≤ n

10 for all i ∈ V .

Theorem 2.2 (ℓ22 Structure Theorem [ARV09, Theorem 1]). Let {vi}ni=1 be a set of vectors4 that
satisfy the ℓ22 triangle inequalities and

∑
i,j∈V ∥vi − vj∥2 = n2. If {vi}ni=1 is well-spread, then there

exist two sets L,R ⊆ V such that |L|, |R| ≥ Ω(n) and

d(L,R) := min
i∈L,j∈R

∥vi − vj∥2 ≳ 1/
√

log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high probability.

The proof consists of novel geometric arguments involving measure concentration and chaining. We
will use Theorem 2.2 straightforwardly to prove that the new SDP formulation in Definition 1.2
has integrality gap O(

√
log n). We will also use a refined version of the chaining result by Sher-

man [She09] for our fast algorithm in Theorem 1.5.

2.2.2 Expander Flows

Another important contribution of [ARV09] is the concept of expander flows. The idea of using
multi-commodity flow to certify edge expansion was first introduced by Leighton and Rao [LR99].

4In [ARV09], the vectors vi are assumed to be of unit length. We note that the structure theorem holds without
this assumption as well; see for example [Rot16] for a writeup.
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Definition 2.3 (Multi-Commodity Flow and Demand Graph). Let G = (V,E,w) be an edge-
capacitated undirected graph. Given demands dij for each i, j ∈ V , a multicommodity flow f
assigns a value fp ≥ 0 to each path p in G such that (i)

∑
p∋e fp ≤ we for all e ∈ E and (ii)∑

p∈Pij
fp = dij for all i, j ∈ V , where Pij denotes the set of paths from i to j. The demand graph

D is defined on the same vertex set V , with edge set E′ = V × V and the weight of each edge ij
being dij.

For an edge-capacitated undirected graph G = (V,E,w), let

Φ(G) :=
minS⊆V :|S|≤|V |/2w(δ(S))

|S||S|

be the value of the sparsest cut of G. If there is a multi-commodity flow in G with demand graph
D, then it is not difficult to check that Φ(G) ≥ Φ(D). Leighton and Rao [LR99] used linear
programming with the demand graph D = Kn, the complete graph on n vertices, to approximate
the sparsest cut of G up to an approximation ratio O(log n).

The new idea in [ARV09] was to use semidefinite programming to search for a demand graph D
with a feasible multi-commodity flow on G, and to lower bound the sparsest cut of G using the
second eigenvalue of the Laplacian matrix of D through Cheeger’s inequality. This approach can
be summarized as

max
D,f

λ2(L(D)) (2.2)

subject to f is a multi-commodity flow on G with demand graph D

2.2.3 Expander Flows vs Dual Program

In fact, the above approach of lower bounding Φ(G) can be interpreted as lower bounding the
objective value of the dual of the Goemans-Linial SDP in (2.1). To see this, we first express the
triangle inequalities as

∥vi1 − vi2∥
2 + ∥vi2 − vi3∥

2 + · · ·+
∥∥viℓ−1

− viℓ
∥∥2 ≥ ∥vi1 − viℓ∥

2 ∀p = (i1, . . . , iℓ) ∈ P(Kn),

where P(Kn) denotes the set of paths in the complete graph Kn on the same vertex set V . We
write the primal program in matrix form. Let U be the matrix with the i-th column being vi for
1 ≤ i ≤ n and let X = UTU . Let Li,j be the Laplacian of the edge ij and

Tp :=

ℓ−1∑
k=1

Lik,ik+1
− Li1,il . (2.3)

Then the Goemans-Linial SDP in (2.1) can be written as

min
X≽0

⟨L(G), X⟩

subject to ⟨L(Kn), X⟩ = 1 (2.4)

⟨Tp, X⟩ ≥ 0 ∀p ∈ P(Kn).
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One can check that strong duality holds, and the dual program can be written as

max
fp≥0:p∈P(Kn)

λ

subject to λ · L(Kn) ≼ L(G)−
∑
p

fpTp.

Therefore, the dual program of the Goemans-Linial SDP can be succinctly written as

max
f

λ2

(
L(G)−

∑
p

fpTp

)
. (2.5)

The expander flow formulation in (2.2) is weaker than the dual program.

Claim 2.4. The objective value of (2.2) is a lower bound on the objective value of (2.5).

Proof. Let f be a multi-commodity flow on G with demand graph D, and F be the n× n matrix
with F (i, j) =

∑
p∋ij fp. Then, check that

∑
p fpTp = L(F )− L(D), and hence

L(D) = L(F )−
∑
p

fpTp ≼ L(G)−
∑
p

fpTp =⇒ λ2(L(D)) ≤ λ2

(
L(G)−

∑
p

fpTp

)
,

where the inequality L(F ) ≼ L(G) is because F (i, j) ≤ wij for all (i, j) ∈ V × V .

We remark that all previous works on undirected graphs [ARV09, KRV06, AK07, Kal07, She09]
use the expander flow formulation in (2.2) to approximate sparsest cut. This can be understood as
the dual program in (2.5) with the additional constraint that

∑
p∋ij fp ≤ wij for all i, j ∈ V × V ,

which in particular implies that only the path variables fp when p is a path in G are used. Since
we will discuss several variations of the program (2.1) and take their duals, we will refer to dual
programs with additional capacity constraints on the fp variables such as (2.2) as the “constrained
dual programs” and the original dual programs such as (2.5) as the “unmodified dual programs.”

In proving Theorem 1.5, we will use the unmodified dual program of λ∆π . As we will explain later,
this will allow us to design a simpler primal-dual algorithm using the MMWU method, bypassing
the use of multi-commodity flow as in [AK07, Kal07, She09].

2.2.4 Cut-Matching Game

The cut-matching game was first introduced by Khandekar, Rao and Vazirani [KRV06] as a fast
combinatorial method for approximating sparsest cut in undirected graphs using flows. In this
game, there is a cut player and a matching player who try to build an expander from the empty
graph as follows. In each round, the cut player chooses a bisection (S, S) of the vertices, and the
matching player chooses a perfect matching between (S, S). The goal of the cut player is to minimize
the number of rounds so that the union of the matchings is guaranteed to be a good expander.
Khandekar, Rao and Vazirani [KRV06] gave a cut player strategy that always builds a graph with
Ω(1) edge expansion in O(log2 n) rounds. Orecchia, Schulman, Vazirani, and Vishnoi [OSVV08]
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gave an improved cut player strategy that always builds a graph with Ω(log n) edge expansion in
O(log2 n) rounds. The proofs of these results are based on ad-hoc potential functions, although in
hindsight the algorithm in [OSVV08] is very similar to the one using MMWU method in [AK07].

The original motivation of the cut-matching game is to build an expander flow to approximate
sparsest cut. In each round, we aim to send a flow between the cut (S, S) provided by the cut
player. On the one hand, if such a flow cannot be sent, then we obtain a sparse cut by the max-flow
min-cut theorem and the algorithm stops. On the other hand, if such a flow can be sent, then
the demand pairs routed by this flow form a perfect matching between S and S. Therefore, if we
successfully send such a flow in each round, then the average of the flows is a multicommodity flow
in the original graph, with the demand graph being the average of the perfect matchings, which
is guaranteed to be an expander by the cut-matching game. In this case, we can prove a lower
bound on the sparsest cut by the expander flow formulation in (2.2), with the approximation ratio
depending on the parameters in the cut-matching game. The cut player strategy in [KRV06] gave an
O(log2 n)-approximation for undirected sparsest cut using O(log3 n) max-flow computations, while
the one in [OSVV08] gave an O(log n)-approximation using O(log3 n) max-flow computations.

We remark that the cut-matching game has become a useful algorithmic tool on its own, with
interesting applications in other important problems such as edge-disjoint paths [And10, Chu12,
CL16] and dynamic graph problems [CGLNPS20, BGS20].

2.2.5 Matrix Multiplicative Weight Update Method

Arora and Kale [AK07, Kal07] developed a general primal-dual framework to solve SDPs using the
matrix multiplicative weight update method. For our purpose, it would be better to understand
this method from the viewpoint of regret minimization, which is the setting in online optimiza-
tion. In each iteration t, the player chooses a density matrix Xt, which represents a probability
distribution over the set of unit vectors. The player then observes a feedback matrix Mt with
bounded spectral norm and incurs a loss of ⟨Xt,Mt⟩. The objective of the player is to minimize
the total loss. In hindsight, if the player had knowledge of all the feedback matrices Mt from the
start, then the best strategy would be to choose the density matrix vvT where v is a unit-length
minimum eigenvector of

∑
tMt, with total loss λmin(

∑
tMt). The regret of the player is defined

as
∑

t⟨Mt, Xt⟩ − λmin(
∑

tMt), the difference of the player’s loss to this offline loss. Arora and
Kale [AK07, Kal07] analyzed the following algorithm that sets Xt to be the matrix exponential of
the feedback matrices.

Algorithm 1 Matrix Multiplicative Weight Update Algorithm

Initialization: X0 =
1
nIn, η ∈ (0, 1) as a step size

For t = 0, . . . , T − 1

1. Observe feedback matrix Mt such that ∥Mt∥ ≤ ρ. Incur a loss of ⟨Mt, Xt⟩.

2. Compute X ′
t+1 := exp(−η

∑t
i=0

1
ρMi) and update Xt+1 := X ′

t+1/ tr(X
′
t+1).

The requirement that Mt has bounded spectral norm, or ∥Mt∥ ≤ ρ, is to control the regret bound.
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The ρ parameter is called the “width” and is the key parameter in analyzing the matrix multiplica-
tive weight update method in many applications.

Theorem 2.5 (Regret Bound [Kal07, Theorem 10]). After T iterations of Algorithm 1, let M :=
1
T

∑T−1
t=0 Mt, then

λmin(M) ≳
1

T

T−1∑
t=0

⟨Mt, Xt⟩ − ηρ− ρ log n

ηT
. (2.6)

If, in addition, each Mt satisfies Mt ≽ 0, then we have the stronger bound that

λmin(M) ≳
1

T

T−1∑
t=0

⟨Mt, Xt⟩(1− η)− ρ log n

ηT
. (2.7)

Theorem 2.5 is a key result that we will use to design fast algorithms.

2.2.6 Primal-Dual Algorithms for Sparsest Cut

Arora and Kale [AK07] uses the regret bound in Theorem 2.5 to design a primal-dual algorithm
for approximating the sparsest cut problem. The setup is to either certify that the optimal value
is at least Ω(α) by building an expander flow solution to (2.2), or to find a cut of sparsity at
most

√
log n · α. In each iteration, the algorithm uses the density matrix Xt given by the matrix

multiplicative weight update algorithm as a candidate primal solution to (2.4). To build a dual
solution to (2.2), the idea is to use the regret minimization framework to reduce to the simpler
task of finding a multi-commodity flow ft whose demand graph Dt satisfies ⟨L(Dt), Xt⟩ ≥ α. If
such a multi-commodity flow with demand graph Dt can be found in each iteration t for O(log n)
iterations, then the regret bound in Theorem 2.5 would imply that λ2(L(

1
T

∑
tDt)) ≳ α, and thus

the average of the flows ft is an expander flow solution to (2.2) with objective value at least Ω(α).

The remaining task is that, given a density matrix Xt, either to find a multi-commodity flow ft
whose demand graph Dt satisfies ⟨L(Dt), Xt⟩ ≥ α and ∥L(Dt)∥ ≤ ρ, or to find a cut with sparsity
at most O(

√
log n · α). This task is usually called implementing the “oracle” for the MMWU

method. To do so, consider the Gram decomposition v1, . . . , vn of X and note that ⟨L(Dt), Xt⟩ =∑
i,j Dt(i, j) ∥vi − vj∥2. To ensure that the width ρ is small, the algorithm only searches for demand

graphs with bounded maximum degree. To ensure that the inner product ⟨L(Dt), Xt⟩ is large, the
algorithm only routes flow between pairs of vertices (i, j) with ∥vi − vj∥ = Ω(1). If such a multi-
commodity flow can be sent, then the oracle succeeds and the primal-dual algorithm proceeds to the
next iteration. If not, using the dual solution to the multi-commodity flow problem, along with the
geometric chaining arguments used in [ARV09], they showed how to find a cut with sparsity at most
O(

√
log n · α) (see [AK07, Lemma 6.6 and Theorem 6.7]). The time complexity of their algorithm

is Õ(n2), where the bottleneck is in the multi-commodity flow computation in the implementation
of the oracle.

To achieve O(log n)-approximation, there is a much easier way to implement the oracle using only
max-flow computations. The algorithm is to project the vectors v1, . . . , vn along a random direction,

11



and set up a single-commodity flow between the Ω(n) vertices with the lowest projection values
and the Ω(n) vertices with the highest projection values. This algorithm is very similar to the
cut-matching game in [OSVV08] that uses matrix exponentials to define a cut-player strategy.

2.2.7 Almost Linear-Time Primal-Dual Algorithm

Sherman [She09] pushed the approach in [AK07] further to almost get the best of the semidefi-
nite programming approach (O(

√
log n)-approximation) and the combinatorial cut-matching game

approach (near linear-time algorithms).

The approach in [She09] is to use an inner multiplicative weight update algorithm to compute the
multicommodity flow in the oracle implementation, rather than doing it in a black-box manner as
in [AK07]. Specifically, each iteration of this inner multiplicative weight update algorithm consists
of chaining together matchings corresponding to flow paths of single-commodity flows. The single-
commodity flows are set up using the random projection method as in the O(log n)-approximation
in [AK07], but the random directions for these flows are correlated and the distribution of the
random directions is explicit and can be sampled efficiently. The main contribution of [She09] was
to show that, after chaining together Θ(

√
log n) of these correlated random matchings, one can

find not just one (as in [ARV09]), but many flow paths between pairs (i, j) such that ∥vi − vj∥
is Ω(1). Using this chaining method as a subroutine, one can either find a good multicommodity
flow whose demand graph satisfies

∑
i,j D(i, j) ∥vi − vj∥2 ≥ α in O(n1+ϵ) time by running the inner

multiplicative weight update algorithm, or find some direction along which the single commodity

flow cannot be sent and an associated min-cut S with ϕ(S) ≲ α ·
√

logn
ϵ .

Sherman’s algorithm and its analysis are rather technical and we will provide more details in
Section 4.3.2. We will use his main chaining result as a black-box in our algorithm for Theorem 1.5.

2.3 Previous Works on Directed Sparsest Cut

2.3.1 Directed Semi-Metric for Directed Sparsest Cut

Agarwal, Charikar, Macharychev and Macharychev [ACMM05] introduced an SDP for approximat-
ing directed sparsest cut using a directed semi-metric. The idea was to introduce an extra vector v0
to the embedding, and to define the semi-metric as d(i, j) := ∥vi − vj∥2−∥vi − v0∥2+∥vj − v0∥2 ≥ 0.
The program is formulated as follows:

min
v:V ∪{0}→Rn

∑
ij∈E

w(i, j)
(
∥vi − vj∥2 − ∥vi − v0∥2 + ∥vj − v0∥2

)
subject to ∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V ∪ {0}∑

i∈V
π(i) · vi = 0⃗∑

i∈V
π(i) · ∥vi∥2 = 1.

(2.8)
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The λ△π program that we introduce in Definition 1.2 is less constrained than this program. We can
see this by taking the linear programming dual of the inner maximization problem with respect to
the F (i, j) variables (see [LTW23, Lemma 3.21 and Lemma 3.22]):

max
F∈F(G)

∑
i<j

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2 = min

r:V→R

∑
ij∈E

w(i, j) ·max
{
0, ∥vi − vj∥2 − r(i) + r(j)

}
.

Thus, we see that every feasible solution to (2.8) corresponds to a feasible solution to the λ△π (G)

program with the same objective value by taking r(i) = ∥vi − v0∥2. The reason we present λ△π
throughout the paper in the min-max form is that all our analyses make use of this min-max
formulation of the problem, as it can be naturally captured by flows.

2.3.2 Primal-Dual Algorithm for Directed Sparsest Cut

Arora and Kale [AK07, Kal07] used the matrix multiplicative update method on the SDP (2.8)
in [ACMM05] to obtain a primal-dual O(

√
log n)-approximation algorithm for directed sparsest cut.

One important difference with the algorithm for undirected sparsest cut is that they used the
unmodified dual program of (2.8), which can be expressed as maxf λ2

(
L⃗(D) −

∑
p fpTp

)
, where

D is the demand graph of a flow on G (see Section 2.2.3 for a discussion about these two dual
programs). Recall from our previous discussion that simply using L⃗(D) instead of L⃗(D)−

∑
p fpTp

as in the undirected case (i.e. using the constrained instead of unmodified dual program) would
correspond to only enforcing ℓ22 triangle inequalities along paths in the directed graph. Since paths
in the directed graph are restricted by the orientation of the edges, it seems arbitrarily restrictive
to only enforce triangle inequalities along directed paths.

Using the dual program maxf λ2
(
L⃗(D)−

∑
p fpTp

)
, there remains an important difference between

the primal-dual algorithm here with that for the undirected sparsest cut. Unlike in the algorithm
for undirected sparsest cut, the algorithm for directed sparsest cut does not involve the use of
multicommodity flows. Instead, it tries to find a single-commodity flow f with demand graph D
that pushes a lot of flow between pairs of vertices (i, j) such that ∥vi − vj∥ is large, and to then

use L⃗(D) as the feedback matrix. If it fails to do so, then it finds many paths that violate the
ℓ22 triangle inequality, and it then uses −y

∑
p Tp as the feedback matrix, where the sum is over

the violating paths p and y is an appropriate scaling factor. The procedure for finding violating
paths is implemented in time O(n2+o(1)) using a special data structure about dynamic decremental
spanners. This is the bottleneck and thus the runtime per matrix multiplicative weight update
iteration is O(n2+o(1)).

The original claim in [Kal07] was that O(log n) iterations suffice, but Chan and Sun [CS18] found
that their analysis should only yield the weaker bound of Õ(n2) iterations and thus a total runtime
of O(n4+o(1)). This is because of a technical issue in bounding the trace of feasible solutions in
the primal program (see footnotes 1 and 2 in [CS18], with Kale’s acknowledgement). Chan and
Sun simplified their approach and obtained an O(n4)-algorithm with the same approximation ratio
O(

√
log n), that also works for directed hypergraphs.

As mentioned in Section 2.2.2, we will use the unmodified dual program of λ∆π similar to how Arora-
Kale’s uses the unmodified dual program of (2.8). We also use their “flows or violating paths” oracle

13



for this dual program, thus bypassing the multicommodity flow computation in [AK07, She09]. We
observe that Sherman’s chaining result can be used to find many violating paths efficiently, without
using any special data structures. This gives us an almost linear-time O(

√
log n)-approximation

algorithm for directed sparsest cut, which also simplifies the corresponding algorithm for undirected
sparsest cut.

We end this subsection with the following technical remark about the primal-dual algorithm for
directed sparsest cut using the SDP in [ACMM05].

Remark 2.6. Because of the directed semi-metric with the special vector v0, Arora and Kale needed
to work with a non-PSD Laplacian L⃗(G) with vertex set V ∪{0} and with both positive and negative
edge weights (specifically, edges (i, j) and (j, 0) have weight 1 while edge (i, 0) has weight -1). the
Laplacian of the demand graph of a flow is used as a feedback matrix in each iteration. However,
the newly introduced vertex 0 has large degree in any demand graph, thus making it difficult to
bound the spectral norm of the feedback matrix, i.e. the width of the oracle. To address this, Arora
and Kale duplicated the vertex 0 into n copies, and considered a graph on 2n vertices in order to
have a better bound on the width.

One advantage of our formulation λ△π in Definition 1.2 is that it is defined on the original graph,
and this simplifies the primal-dual algorithm and the analysis for Theorem 1.5 considerably.

2.3.3 Cut-Matching Game for Directed Graphs

Louis [Lou10] developed a cut-matching game for directed graphs, where the matching player plays
a directed matching, which is defined as an Eulerian graph where each vertex has indegree and
outdegree exactly one. He analyzed a cut-player strategy that is similar to the one in [KRV06] and
proved that, in O(log2 n) iterations, the union of the directed matchings is an Eulerian graph with
edge expansion Ω(1).

For undirected graphs, the matrix multiplicative update method can be used to give an improved
cut-player strategy [AK07, OSVV08]. For directed graphs, however, the primal-dual algorithm
is more complicated because of the directed semi-metric formulation as discussed in Remark 2.6,
and it does not directly translate to a cut-matching game. Using the simpler λ△π formulation
in Definition 1.2, which also has a natural correspondence with Eulerian subgraphs, we obtain
an improved cut-player strategy as stated in Theorem 1.7 using the matrix multiplicative weight
update method on λ△π .

2.3.4 Reweighted Eigenvalues for Directed Graphs

Lau, Tung, and Wang [LTW23] defined the reweighted eigenvalue for directed edge expansion and
use it to prove a Cheeger-type inequality for directed graphs. Given a directed graph G = (V,E,w)
with edge weights w : E → R+, the maximum reweighted second eigenvalue problem seeks to find a
circulation F satisfying edge capacity constraints (see Definition 1.2) such that the second smallest
eigenvalue of the symmetric Laplacian of F is maximized.
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Definition 2.7 (Maximum Reweighted Second Eigenvalue for π-Weighted Edge Expansion). Given
an edge-capacitated directed graph G = (V,E,w) and vertex weights π : V → R+, define the
maximum reweighted second eigenvalue as

λ∗2(G) := max
F∈F(G)

λ2

(
Π−1/2

(
DF − F + F⊤

2

)
Π−1/2

)
where Π = diag(π), F is the n × n adjacency matrix of the circulation, and DF is the diagonal
degree matrix of (F + F T )/2 with DF (i, i) =

∑
j∈V

1
2(F (i, j) + F (j, i)) for 1 ≤ i ≤ n.

Using the semidefinite programming formulation for the second eigenvalue and von-Neumann min-
max theorem, λ∗2(G) can be rewritten as the form in Definition 1.2 without the triangle inequalities.

The directed edge conductance ϕ⃗ studied in [LTW23] is a special case of the directed edge expansion
ϕ⃗π in Definition 1.1 when π(i) = w(δ+(i))+w(δ−(i)) for all i ∈ V . The directed Cheeger inequality
in [LTW23] states that

λ∗2(G) ≲ ϕ⃗(G) ≲

√
λ∗2(G) · log

1

ϕ⃗(G)
. ≲

√
λ∗2(G) · log

1

λ∗2(G)
. (2.9)

In Theorem 1.6, we provide an almost linear-time algorithm to return a set S with ϕ⃗(S) ≤√
λ∗2(G) · log 1

λ∗2(G) . The idea is to use the regret minimization framework to construct an opti-

mal circulation iteratively, and the observation is that this converges quickly when λ∗2(G) is large.
This combines with our almost linear-time O(

√
log n)-approximation algorithm in Theorem 1.5

gives Theorem 1.6.

2.4 Our Techniques

We have already discussed the ideas of our main results in Section 1.2 in the corresponding sub-
sections above when we reviewed the previous techniques. Here we highlight two common themes
in our techniques.

One common theme is called the “metric rounding lemma” that we prove in Section 3.1, which is
to use the max-flow min-cut theorem to find a sparse cut in a geometric embedding of the graph.
All the algorithms in this paper use this lemma to find sparse cuts, including the almost linear-time
O(

√
log n)-approximation in Theorem 1.5, the improved cut-matching game in Theorem 1.7, and

interestingly even the Cheeger-type result whose original proof in [LTW23] is based on a threshold
rounding algorithm.

Another common theme is the matrix multiplicative weight update method developed in [AK07].
All the algorithms in this paper use this method to construct the dual objects, including the
expander flows in the O(

√
log n)-approximation in Theorem 1.5 and the cut-matching game in

Theorem 1.7, as well as the circulation in reweighted eigenvalues in Theorem 1.6 and in the dual
certificate in Proposition 1.4. The cut-matching game was considered original when it was intro-
duced, but now we see that it can be derived systematically from the matrix multiplicative weight
update method.
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An important element in all our results is the reweighted eigenvalue formulation from [LTW23].
We believe that it is the right formulation, as it allows us to extend all known results for undirected
graphs to directed graphs, in a way that is consistent with the formulations and the proofs for
undirected graphs. As we discuss in Section 6, our technique of adding ℓ22 triangle inequalities to
reweighted eigenvalue formulations can be extended to directed vertex expansion and hypergraph
edge expansion as well, providing a unifying method to extend the results for undirected graphs to
more general settings.

2.5 Organization

In Section 3, we present the metric rounding lemma, and use it to prove Theorem 1.3 and to provide
an alternative proof of the directed Cheeger inequality. In Section 4, we extend Sherman’s result
to directed graphs and prove Theorem 1.5. In Section 5, we also use the matrix multiplicative
weight update method to compute reweighted eigenvalues, proving Theorem 1.6 and to design cut-
matching game, proving Theorem 1.7. Finally, in Section 6, we outline how these results can be
extended easily to vertex expansion and to hypergraphs.

3 Rounding Algorithms

In this section, we first present the metric rounding lemma in Section 3.1. Then, we will use it to
prove that λ△π in Definition 1.2 has integrality gap O(

√
log n) in Section 3.2, and also to provide

an alternative proof of the Cheeger-type inequality in [LTW23] in Section 3.3.

3.1 Metric Rounding Lemma

The following metric rounding lemma will be used to find sparse cuts in all algorithms in this paper.

Lemma 3.1 (Metric Rounding Lemma). Let G = (V,E,w) be an edge-capacitated directed graph.
Let d(·, ·) be a metric on V , and let π : V → R+ be an arbitrary weight function over V . Suppose
we are given disjoint vertex subsets L,R ⊆ V as input to the algorithm. Let r := π(R)/π(L) and
r′ := max{1, r}. Then there is an algorithm using O(log n) maximum flow computations to output
a set S with

ϕ⃗π(S) ≲
r′ ·maxF∈F(G)

∑
i,j∈V F (i, j) · d(i, j)∑

i∈R π(i) · d(i, L)
.

Our proof of the lemma is constructive. Algorithm 2, Bidirectional Max-Flow, finds a maximum
flow f⃗ from L to R and also a flow ⃗f from R to L with a prescribed target amount of flow. If either
of the flow is not “saturating”, then we find a sparse cut S using the max-flow min-cut theorem.
Otherwise, we combine f⃗ and ⃗f to form a circulation F , which helps upper bound the expansion
of the graph through the flow parameter β.

In the case where the flows f⃗ and ⃗f are saturated, we upper bound the flow value parameter β.
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Algorithm 2 Bidirectional Max-Flow

Input: Graph G, semi-metric d(·, ·), vertex weights π : V → R+ as given in Lemma 3.1; L,R ⊆ V
such that L ∩R = ∅, flow value parameter β ∈ R+, and congestion parameter κ ∈ R+

1. Let r := π(R)/π(L). Construct flow network G⃗ from G as follows: add vertices s and t to G.
Connect s to each vertex i ∈ L with an arc (s, i) of capacity r · β · π(i). Connect each vertex
j ∈ R to t with an arc (j, t) of capacity β · π(j). Multiply the capacities of the edges in G by
κ.

2. Construct ⃗G in the same way as G⃗, but with arcs directed from L to s and from t to R
instead.

3. Compute s-t maximum flow f⃗ on G⃗ and t-s maximum flow ⃗f on ⃗G. If one of f⃗ or ⃗f does
not saturate all source and sink edges (i.e. if maximum flow value is less than β · π(R)),
output the minimum cut S associated with the non-saturating flow. Otherwise, output the
circulation F = 1

2(f⃗ + ⃗f).

Lemma 3.2 (Saturated Case). Suppose d(·, ·) is a metric and Algorithm 2 outputs a circulation
F . Then,

β ≤
∑

ij∈E F (i, j) · d(i, j)∑
i∈R π(i) · d(i, L)

,

where F (i, j) = 1
2

∑
p∋(i,j)

(
f⃗(p)+ ⃗f(p)

)
defines the flow graph of the circulation returned in step 3.

Proof. Each flow can be decomposed into a set of (weighted) flow paths from source to sink. For
each j ∈ R, let P⃗(j) be the set of s-t flow paths in f⃗ entering t through j, and let ⃗P(j) be the
set of t-s flow paths in ⃗f leaving t through j. For a particular flow path p = (s, i1, i2, . . . , ik, t) or
p = (t, ik, ik−1, . . . , i1, s), let d(p) =

∑k−1
ℓ=1 d(iℓ, iℓ+1) be its length. Note that for any path p ∈ P⃗(j)

or p ∈ ⃗P(j), by triangle inequality,

d(p) =

k−1∑
ℓ=1

d(iℓ, iℓ+1) ≥ d(i1, ik) ≥ d(j, L),

where the last inequality is because ik = j and i1 ∈ L. Then,

∑
p∈f⃗

f⃗(p) · d(p) +
∑
p∈ ⃗f

⃗f(p) · d(p) =
∑
j∈R

 ∑
p∈P⃗(j)

f⃗(p) · d(p) +
∑

p′∈ ⃗P(j)

⃗f(p′) · d(p′)


≥
∑
j∈R

d(j, L)

 ∑
p∈P⃗(j)

f⃗(p) +
∑

p′∈ ⃗P(j)

⃗f(p′)


= 2β

∑
j∈R

π(j) · d(j, L),
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where the last equality is due to both f⃗ and ⃗f being saturating. Thus, we have

2
∑
ij∈E

F (i, j) · d(i, j) =
∑
p∈f⃗

f⃗(p) · d(p) +
∑
p∈ ⃗f

⃗f(p) · d(p) ≥ 2β
∑
i∈R

π(i) · d(i, L).

Rearranging gives the desired result.

On the other hand, if either of the flows f⃗ or ⃗f is unsaturated, we extract from it a cut with
bounded expansion. This is a slight extension of [KRV06, Lemma 3.7] to the π-weighted and
vertex-capacitated settings, and so we include a proof here.

Lemma 3.3 (Unsaturated Case). Suppose Algorithm 2 outputs a cut S. Then ϕ⃗π(S) ≤ βr′/κ,
where r′ := max{1, r}.

Proof. Suppose f⃗ is the non-saturating flow; the other case is similar (we would look at δ−(S) for
S defined below). We obtain from it a cut, which is a set of edges whose removal would make it
impossible to go from s to t. Let S ⊆ V be the set of vertices reachable from s after removing the
cut edges. Let Vs ⊆ L be the set of vertices connected by a cut edge from s, and let Vt ⊆ R be the
set of vertices connected by a cut edge to t. We claim that

w(δ+G(S)) ≤
β

κ

(
π(R)− r · π(Vs)− π(Vt)

)
, π(S) ≥ π(L)− π(Vs), and π(V − S) ≥ π(R)− π(Vt).

The first inequality comes from the fact that {si | i ∈ Vs} ∪ δ+G(S) ∪ {jt | j ∈ Vt} is the minimum
cut obtained, with total weight equal to r ·β ·π(Vs)+β ·π(Vt)+κ ·w(δ+G(S)) by our construction of

G⃗, which is at most β ·π(R). The second and third inequalities follow from the facts that L\Vs ⊆ S
and R \ Vt ⊆ V − S. Since π(R) = r · π(L), it follows that

ϕ⃗π(S) =
w(δ+(S))

min{π(S), π(V − S)}
≤ β

κ
max

{
π(R)− π(Vt)

π(R)− π(Vt)
,
r(π(L)− π(Vs))

π(L)− π(Vs)

}
=
β · r′

κ
.

Now we are ready to prove the metric rounding lemma.

Proof of Lemma 3.1. In Algorithm 2, choose κ = 2r′. Let α be such that the algorithm outputs a
circular flow f when β = α and outputs a cut S when β = 2α. When a cut S is output at β = 2α,
by Lemma 3.3 (unsaturated case), the vertex or edge expansion of S is at most β · r′/κ = α. When
a circulation F is output at β = α, then by construction F ′ = F/κ is a circulation satisfying the
edge or vertex capacity constraints of G, i.e. F ′ ∈ F(G). Therefore, by Lemma 3.2 (saturated
case),

ϕ⃗π(S) ≤ α ≤ κ ·
∑

ij∈E F
′(i, j) · d(i, j)∑

i∈R π(i) · d(i, L)
≤ 2r′ · max

F∈F(G)

∑
ij∈E F (i, j) · d(i, j)∑
i∈R π(i) · d(i, L)

Finally, note that we can find α using binary search on the range [Ω(1/poly(n)), O(poly(n))].
Therefore, we only need to invoke Algorithm 2 O(log n) times, leading to a total of O(log n)
maximum flow computations.
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3.2 Rounding Algorithm for Semidefinite Programming Solution

In this subsection, we prove Theorem 1.3 that the integrality gap of λ△π (G) is O(
√
log n). The proof

is by applying the metric rounding lemma on the two sets provided by the structure theorem of
Arora, Rao, and Vazirani (see Theorem 2.2).

We note that by adding triangle inequalities in the reweighted eigenvalues in [KLT22, LTW23],
essentially the same proof implies O(

√
log n)-approximation algorithms for undirected and directed

vertex expansions, and undirected and directed hypergraph expansions (See Section 6 for more
details). These approximation guarantees are all known previously, but with different formulations
and proof techniques. In particular, the SDP relaxation for vertex expansion obtained through our
approach is considerably simpler than that obtained by Feige, Hajiaghayi, and Lee [FHL08]. This
demonstrates that our approach of using reweighted eigenvalues and triangle inequalities provides
a simple and unifying way to recover all these results.

The proof that λ△π (G) is indeed an SDP relaxation of directed edge expansion can be found in
Appendix A.

Proposition 3.4 (Easy Direction). For any edge-capacitated directed graph G = (V,E,w) with

vertex weights π : V → R+, it holds that λ△π (G) ≤ 2ϕ⃗π(G).

We will use the structure theorem in [ARV09] for the proof of ϕ⃗π(G) ≲
√
log n · λ△π (G). Since we

consider π-weighted directed edge expansion, we need the following weighted version of the structure
theorem. The proof of the weighted version is a straightforward reduction to the unweighted version
in Theorem 2.2 and is deferred to Appendix A (see [ACMM05, Algorithm 1] for a similar weighted
structure theorem and reduction).

Lemma 3.5 (π-Weighted Structure Theorem). Let G = (V,E,w) be an edge-capacitated directed
graph with vertex weights π : V → R+ and π(V ) = 1. Let {vi}ni=1 be a set of embedding vectors
satisfying ℓ22 triangle inequalities and

∑
i,j∈V π(i) · π(j) · ∥vi − vj∥2 = 1. The embedding {vi}ni=1 is

said to be well-spread if π(B(i, 1/
√
10)) ≤ 1/10 for all i ∈ V . If {vi}ni=1 is well-spread, then there

exist two subsets L,R ⊆ V with π(L), π(R) ≥ Ω(1) and

d(L,R) := min
i∈L,j∈R

∥vi − vj∥2 ≳ 1/
√
log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high probability.

With the ℓ22 triangle inequalities, the function d(i, j) := ∥vi − vj∥2 is a metric. We will apply
the metric rounding lemma to find a sparse cut, with the observations that the numerator term
maxF∈F(G)

∑
(i,j)∈E F (i, j) · d(i, j) in Lemma 3.1 is exactly the inner maximization problem of

λ△π (G), and the denominator term in Lemma 3.1 is large using the two subsets L,R provided by
the structure theorem.

Theorem 3.6 (Hard Direction). Let G = (V,E,w) be an edge-capacitated directed graph with
vertex weights π : V → R+. There is a polynomial-time algorithm which, with high probability,
finds a set S ⊆ V with ϕ⃗π(S) ≲ λ△π (G) ·

√
log n.
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Proof. Let {vi}ni=1 be an optimal solution to the λ△π (G) program. Let d(i, j) = ∥vi − vj∥2, which
is a metric by the ℓ22 triangle inequalities in λ△π (G). By Lemma 3.1, given two subsets L and R,
there is a subset S ⊆ V with

ϕ⃗π(S) ≲
r′ ·maxF∈F(G)

∑
(i,j)∈E F (i, j) · ∥vi − vj∥2∑

i∈R π(i) · d(i, L)
=

2r′ · λ△π (G)∑
i∈R π(i) · d(i, L)

. (3.1)

There are two cases to consider: the “well-spread” case and the “large core” case. The difference
in these two cases lies in the different choices of L and R to apply the metric rounding bound
in (3.1). In either case, we assume without loss of generality that π(V ) = 1. Also, by a straightfor-

ward calculation that we will show in Appendix A, the two normalization constraints in λ△π (G) in
Definition 1.2 imply the following condition.

Fact 3.7. If
∑

i∈V π(i) · vi = 0⃗ and
∑

i∈V π(i) · ∥vi∥
2 = 1, then

∑
i,j∈V π(i) · π(j) · ∥vi − vj∥2 = 2.

Suppose the vectors {vi}ni=1 are well-spread. Since
∑

i,j∈V π(i) · π(j) ·
∥∥∥ 1√

2
vi − 1√

2
vj

∥∥∥2 = 1, we can

apply Lemma 3.5 to obtain two subsets L,R ⊆ V with π(L), π(R) ≥ Ω(1) and d(L,R) ≳ 1/
√
log n

in randomized polynomial time. This implies that the denominator in (3.1) is∑
i∈R

π(i) · d(i, L) ≳ π(R) · 1√
log n

≳
1√
log n

,

and thus we get from the metric rounding bound a set S with ϕ⃗π(S) ≲
√
log n · λ△π (G) as r′ =

max{1, π(R)/π(L)} = O(1).

Otherwise, we are in the large core case, where there is a vertex i∗ ∈ V with π(B(i∗, 1/
√
10)) > 1/10.

In this case, we set L := B(i∗, 1/
√
10) and R := V \ L with r′ = max{1, π(R)/π(L)} = O(1), and

use the following lemma to lower bound the denominator in (3.1).

Lemma 3.8 (Total Distance to Core). Let d : V × V → R≥0 be a semi-metric (i.e. satisfying
all axioms of metric except possibly the triangle inequality). Let s ≥ 1 so that d(·, ·) satisfies an
s-relaxed triangle inequality: d(i, j) ≤ s · (d(i, k) + d(k, j)) for all i, j, k ∈ V . Let π : V → R+ be a
weight function with π(V ) = 1 and suppose d(·, ·) satisfies

∑
i,j∈V π(i) ·π(j) ·d(i, j) = 2. Let L ⊆ V

be a subset with diameter diam(L) := maxi,j∈L d(i, j). Then∑
i/∈L

π(i) · d(i, L) ≥ 1

s2
− 1

2
diam(L)

Applying Lemma 3.8 with s = 1 and diam(L) ≤ 2 · 1/10 = 1/5, it follows that∑
i∈R

π(i) · d(i, L) =
∑
i ̸∈L

π(i) · d(i, L) ≥ 1− 1

10
=

9

10
,

and thus we get from the metric rounding bound in (3.1) a set S with ϕ⃗π(S) ≲ λ△π (G).

The proof of Lemma 3.8 is in Appendix A, which was already done in previous works ([ARV09],
[AK07]) for the uniform case.

Theorem 1.3 follows immediately from Theorem 3.6 and Proposition 3.4.

20



3.3 Rounding Algorithm for Spectral Solution

In this subsection, we provide an alternative proof of the Cheeger-type inequality for directed
graphs in (2.9) using the metric rounding lemma, where the original proof in [LTW23] is by a
refined “threshold rounding” algorithm. This proof will be used in the proof of Theorem 1.6
in Section 5.1.1, as the threshold rounding algorithm in [LTW23] requires a linear programming
duality step which is not clear how to be implemented in almost linear time.

We note that essentially the same proof works for the ordinary Cheeger’s inequality [AM85, Alo86],
as well as the Cheeger-type inequalities for directed vertex expansion and hypergraph edge con-
ductance in [LTW23] (see Section 6). This illustrates the max-flow min-cut theorem in the proof
of the metric rounding lemma as a unifying method to find sparse cuts in different settings.

Recall from Section 2.3.4 that ϕ⃗(G) denotes the directed edge conductance, which is the special
case of directed edge expansion in Definition 1.1 when π(i) = dw(i) := w(δ+(i)) + w(δ−(i)) is the
total degree of i. We will focus on the proof of the “hard direction” of (2.9) that

ϕ⃗(G) ≲
√
λ∗2(G) · log

(
1/ϕ⃗(G)

)
.

Also recall from Section 2.3.4 that λ∗2(G) can be written as the SDP in Definition 1.2 without the
triangle inequalities. In [LTW23], the first step of the proof of the hard direction is to relate the
λ∗2(G) program to the following “one-dimensional ℓ1 program”, which was done by using Gaussian
projection and applying Cauchy-Schwarz inequality.

Lemma 3.9 (One-Dimensional ℓ1 Program [LTW23, Definition 3.19]). Given an edge-capacitated
directed graph G = (V,E,w) with vertex weights dw : i 7→

∑
e:e∋iw(e), let

ηe(G) := min
v:V→R

max
F∈F(G)

1

2

∑
ij∈E

F (i, j) · |v(i)− v(j)|

subject to
∑
i∈V

dw(i) · v(i) = 0∑
i∈V

dw(i) · |v(i)| = 1.

Then, it holds that

ηe(G) ≲
√
λ∗2(G) · log

(
1/ϕ⃗(G)

)
.

The second step in [LTW23] is to use a refined threshold rounding algorithm to prove that ϕ⃗(G) ≲
ηe(G), thus proving the hard direction. Here we will use the metric rounding lemma to prove that
ϕ⃗(G) ≲ ηe(G). The reasons that we can apply the metric rounding lemma to the one-dimensional
ℓ1 program, but not to the n-dimensional ℓ22 program, are as follows: (i) d1(i, j) := |v(i)− v(j)| is a
metric while d2(i, j) := ∥v(i)− v(j)∥2 needs not be; (ii) It is natural and straightforward to define
sets L and R for a solution to the one-dimensional ℓ1 program, but not for the n-dimensional ℓ22
program. Therefore, we may view the Gaussian projection and Cauchy-Schwarz steps as reducing
to 1-dimension and “metrifying” the objective, so that we can apply metric rounding.
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3.3.1 Proof of the Second Step

We aim to prove that ϕ⃗(G) ≲ ηe(G) using the metric rounding lemma. Let v(1), v(2), . . . , v(n) ∈ R
be an optimal solution to the ηe(G) program. Set d(i, j) := |v(i) − v(j)| which is a metric. Let
L := {i ∈ V : v(i) ≤ 0} and R := {j ∈ V : v(j) > 0}. We assume without loss of generality
that r := µ(R)/µ(L) ≤ 1 so that r′ := max{1, r} = 1. From the definitions of L and R and the
constraints on v(i), one can verify that

d(i, L) ≥ |v(i)| ∀i ∈ R and
∑
i∈R

dw(i) · |v(i)| =
1

2

∑
i∈V

dw(i) · |v(i)| =
1

2
.

Therefore, applying Lemma 3.1, it follows that

ϕ⃗(G) = ϕ⃗dw(G) ≲
r′ ·maxF∈F(G)

∑
ij∈E F (i, j) · d(i, j)∑

i∈R dw(i) · d(i, L)

≤
maxF∈F(G)

∑
ij∈E F (i, j) · |v(i)− v(j)|∑

i∈R dw(i) · |v(i)|

= 2 max
F∈F(G)

∑
ij∈E

F (i, j) · |v(i)− v(j)|

= 4 · ηe(G).

This completes the proof of the hard direction of (2.9).

4 Almost Linear-Time Primal-Dual O(
√
log n)-Approximation

The main goal of this section is to prove Theorem 1.5. First, we will derive the dual program of
λ△π (G) in Section 4.1. Then, in Section 4.2, we describe the primal-dual algorithm using the matrix
multiplicative weight update method assuming a black-box algorithm for the oracle exists. In
Section 4.3, we present the geometric results in [ARV09, AK07, She09] for the design of the oracle,
and implement the oracle in the easy “large core” case. Then, in Section 4.3.2, we implement the
oracle in the more difficult “well spread” case, in which we use Sherman’s chaining theorem to find
many paths that violate the triangle inequality. We conclude with the proofs of Theorem 1.5 and
Proposition 1.4 in Section 4.5.

4.1 Dual Program of λ△
π

We construct the dual program of λ△π (G) in a similar way as in Section 2.2.3 for the dual program
of the Goemans-Linial relaxation in (2.1).

We first write the primal program λ△π (G) in Definition 1.2 in matrix form. Let V be the matrix with
the i-th column being vi for 1 ≤ i ≤ n and let X = V TV . Let Li,j be the Laplacian of an undirected
edge ij. For a matrix A that is not necessarily symmetric, define the symmetric Laplacian of A as
Lsym(A) =

1
2

∑
i,j(A(i, j) + A(j, i)) · Li,j . As in Section 2.2.3, we express the triangle inequalities
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redundantly as inequalities along paths in Kn, and let Tp :=
∑ℓ−1

k=1 Lik,ik+1
− Li1,il for a path

p = (i1, . . . , iℓ). Let Π be the diagonal matrix with Π(i, i) = π(i) for 1 ≤ i ≤ n. Then, check that

λ△π (G) in Definition 1.2 can be written as

λ△π (G) = min
X≽0

max
F∈F(G)

⟨Lsym(F ), X⟩

subject to ⟨Π11⊤Π, X⟩ = 0

⟨Π, X⟩ = 1

⟨Tp, X⟩ ≥ 0 ∀p ∈ P(Kn).

To derive the dual of λ△π (G), we apply von Neumann’s minimax theorem to switch the order of the
min and the max, and then take the SDP dual of the inner minimization program to obtain

max
F∈F(G)

max
λ,x∈R

yp≥0:p∈P(Kn)

λ

subject to
∑
p

ypTp + λΠ+ xΠ11⊤Π ≼ Lsym(F ).

The dual constraint can be rewritten as

λI + xΠ
1
211

⊤Π
1
2 ≼ Π− 1

2

(
Lsym(F )−

∑
p

ypTp

)
Π− 1

2 .

Note that the vector Π
1
21 is in the null space of the right hand side, as 1 is in the nullspace of any

Laplacian matrix. Therefore, for the dual constraint to hold, an optimal dual solution must set
x = −λ/π(V ), so as to make the component Π

1
21 to be zero on the left hand side. Therefore, the

dual program of λ△π (G) can be written succinctly as

max
F∈F(G)

max
yp≥0:p∈P(Kn)

λ2

(
Π− 1

2

(
Lsym(F )−

∑
p

ypTp

)
Π− 1

2

)
. (4.1)

4.1.1 Dual Program as Expander Flow

For our primal-dual algorithm, we further rewrite the dual program in (4.1) to a form that is
consistent with the expander flow formulation in (2.2), by considering the demand graph of the
circulation F .

We say f = {fp}p∈P(G) is a flow path decomposition of F if F (e) =
∑

p∋e fp for all e ∈ E. The
demand graph D of f is defined such that D(i, j) =

∑
p∈PG(i,j) fp for all i, j ∈ V , where PG(i, j)

denotes the set of directed paths from i to j in G. Note that the demand graph D of a flow path
decomposition of a circulation F is Eulerian. We will use the following formulation of the dual
program of λ△π .
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Lemma 4.1 (Dual Program of λ△π ). The dual program of λ△π (G) can be written as

max
F∈F(G)

max
yp≥0:p∈P(Kn)

λ2

(
Π−1/2

(
Lsym(D)−

∑
p

ypTp

)
Π−1/2

)
subject to D is the demand graph of a flow-path decomposition of F .

Note that a circulation F ∈ F(G) can have many different flow path decompositions. The trivial
flow path decomposition is simply to have a path p = (i, j) of length two for each edge ij, with the
demand graph D = F . Alternatively, we can decompose F into weighted directed cycles and each
cycle is expressed as the union of two paths, where each path is assigned a flow value equal to the
weight of the cycle. In our primal-dual algorithm, we will build a circulation F using a demand
graph D of low maximum degree so as to bound the width of the oracle, and this is the reason for
the formulation Lemma 4.1.

Proof of Lemma 4.1. We show that the dual program in the statement is equivalent to that
in (4.1). One direction is easy. Given a solution to (4.1), we can use the trivial flow decomposition
of F to obtain a solution to the dual program in the statement.

For the other direction, given a solution to the dual program in the statement, we consider a flow-
path decomposition f = {fp}p∈P(G) of

1
2F with demand graph 1

2D. For any flow path p ∈ P(G), we
write Tp = Lp−Le(p) where Lp is the Laplacian of the undirected path p and Le(p) is the Laplacian
of the edge connecting two endpoints of the path. As e(p) is simply an edge in the demand graph,
it follows that∑
p

fpTp =
∑
p

fp(Lp − Le(p)) =
∑
ij

1

2

(
F (i, j) + F (j, i)

)
−
∑
ij

1

2

(
D(i, j) +D(j, i)

)
= Lsym(F )− Lsym(D),

where the second last equality follows from the definition of the flow-path decomposition and the
definition of the demand graph. Therefore,

Lsym(D)−
∑
p

ypTp = Lsym(F )−
∑
p

fpTp −
∑
p

ypTp,

which is a solution to (4.1) with the same objective value, where the value of the dual variable for
each path p is fp + yp.

4.1.2 Intuition of the Dual Program

Since the dual program in Lemma 4.1 is slightly different from the expander flow formulation in
(2.2) used in all previous works for undirected sparsest cut, we would like to provide some intuition
about the term −

∑
p ypTp in the objective function and how it will be used to simplify Sherman’s

algorithm for undirected sparsest cut.

We may interpret each −Tp as a “shortcut cycle” Cp, where the edges in p have weight −1 and
the edge connecting the two endpoints have weight 1. Since a shortcut cycle has only one positive
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edge, any cut across the cycle has non-positive weight. Thus, adding a shortcut cycle to a graph
does not increase the value of directed edge expansion. A nice way to understand that the dual
program is a lower bound on the directed edge expansion is as follows:

ϕ⃗π(G) ≳ ϕπ(D) ≥ ϕπ

(
D +

∑
p

ypCp

)
≳ λ2

(
Π− 1

2

(
Lsym(D)−

∑
p

ypTp

)
Π− 1

2

)
, (4.2)

where the first inequality is by the flow argument becauseD is the demand graph of a circulation F ∈
F(G) (which is Eulerian and so can be considered as an undirected graph), the second inequality
is by the discussion above that adding shortcut cycles doesn’t increase the value of directed edge
expansion, and the third inequality is by the easy direction of λ△π in Proposition 3.4.

Why would adding shortcut cycles help in obtaining a stronger lower bound? There are graphs
where the easy direction of Cheeger’s inequality is not tight, such that ϕ ≈ λ22 rather than ϕ ≈ λ2.
The prototypical example is a long path p, where every edge in the path is short in its spectral
embedding, which heavily violates the ℓ22 triangle inequality. So, intuitively, given an embedding of
the vertices, we would like to add shortcut cycles along the paths that heavily violate ℓ22 triangle
inequalities, so as to increase the objective of this embedding in the hope to improve the lower
bound provided by the second eigenvalue, while not decreasing the objective value of sparsest cut
of D by much. Thus, the dual program of λ△π (G) can be intuitively understood as finding the best
way to add these shortcut cycles to prove the strongest spectral lower bound. This interpretation is
also consistent with the primal program λ△π (G) in which we add triangle inequalities to the spectral
program. In our primal-dual algorithm for Theorem 1.5 that we will present in the next subsection,
we will indeed add shortcut cycles for paths that heavily violate the ℓ22 triangle inequalities in the
embedding.

4.2 Regret Minimization for Approximating Directed Edge Expansion

As in the work by Arora and Kale [AK07] described in Section 2.2.6 and Section 2.3.2, we use
the regret bound in Theorem 2.5 to design a primal-dual algorithm for approximating directed
edge expansion. The setup is to either certify that the optimal value to λ△π (G) is at least Ω(1/κ)
by constructing a solution to the dual program in Lemma 4.1, or to find a cut of expansion at
most O(

√
log n/κ) for some parameter κ. Doing binary search on κ will give us a O(

√
log n)-

approximation algorithm.

In each iteration, the algorithm uses the density matrix Xt given by the matrix multiplicative
weight update algorithm as a candidate primal solution to λ△π (G). To build a dual solution to
Lemma 4.1, in each iteration t, the oracle tries to either

1. find a circulation f with demand graph D such that
〈
Π− 1

2Lsym(D)Π− 1
2 , Xt

〉
is large (i.e.

send a lot of flow between vertices that are far apart in the geometric embedding defined by
Xt) and ∥Lsym(D)∥ is small (i.e. the demand graph has small maximum degree), and set the

feedback matrix Mt := Π− 1
2Lsym(D)Π− 1

2 , or

25



2. find paths p1, . . . , pk and weights y1, . . . , yk such that −
〈
Π− 1

2

(∑
i yiTpi

)
Π− 1

2 , Xt

〉
is large

(i.e. paths along which the triangle inequality is violated heavily) and
∥∥∥Π− 1

2

(∑
i yiTpi

)
Π− 1

2

∥∥∥
is small (i.e. the union of these paths found have small total degree) and set the feedback

matrix Mt := Π− 1
2

(∑
i yiTpi

)
Π− 1

2 .

If the oracle succeeds for T = O(ρ2 log n) iterations, where ρ ≥ maxt≤T ∥Mt∥ , then the regret
bound in Theorem 2.5 would imply that λ2(

1
T

∑T
i=1Mt) is large, and thus we found a solution to

the dual program in Lemma 4.1 with large objective value. Otherwise, if the oracle fails to find
the above objects in some iteration, then the oracle must return a sparse cut S. Above is the high
level description of the algorithm, while below is the precise description of the algorithm.

Algorithm 3 Regret Minimization for Directed Sparsest Cut

Input: An edge-capacitated directed graph G = (V,E,w) with vertex weights π such that π(V ) =
1; step size η ∈ (0, 1), width bound ρ ∈ R+, congestion parameter κ ∈ R+, and approximation
factor α ∈ R+.

Output: Either a sparse cut S, or a solution M to the dual program in Lemma 4.1.

Initialization: X0 =
1

n−1(I −Π
1
211

⊤Π
1
2 ).

For t = 0 to T − 1:

1. Given Xt ≽ 0 such that tr(Xt) = 1 and Xt ⊥ Π
1
21, let Yt := Π− 1

2XtΠ
− 1

2 and v1, . . . , vn be
the Gram decomposition of Yt.

2. (Oracle) Do one of the following:

(a) Find a circulation f on G with congestion κ and demand graph D such that

⟨Lsym(D), Yt⟩ ≥ 1 and Lsym(D) ≼ ρ ·Π. If this succeeds, set Mt := Π− 1
2Lsym(D)Π− 1

2 .

(b) Find paths p1, . . . , pk in Kn and weights y1, . . . , yk ≥ 0 such that ⟨
∑

i yiTpi , Yt⟩ ≤ −1

and that −ρ ·Π ≼
∑

i yiTpi ≼ ρ ·Π. If this succeeds, set Mt := −Π− 1
2 (
∑

i yiTpi)Π
− 1

2 .

(c) If both cases (a) and (b) fail, then we say that Oracle fails. In this case, find a cut S ⊆ V
such that ϕ⃗π(S) = O(α/κ). Return S and terminate the algorithm.

3. If Oracle succeeds, update X ′
t+1 := exp

(
− η

ρ

∑t
i=0Mi

)
. Let Xt+1 be obtained from X ′

t+1 by

projecting it onto the space orthogonal to Π
1
21 and scaling it to have trace 1.

Return the average feedback matrix M := 1
T

∑T−1
t=0 Mt.

We analyze Algorithm 3 assuming that there is a black-box algorithm for Oracle.

Lemma 4.2 (Regret Minimization Algorithm). Suppose there is a black-box algorithm for Oracle.
Set η = Θ(1/ρ). After T = Θ(ρ2 log n) iterations, Algorithm 3 either certifies that ϕ⃗π(G) ≥ Ω(1/κ)
or finds a cut S ⊆ V with ϕ⃗π(S) ≤ O(α/κ).

Proof. First, suppose Oracle succeeds for T = Θ(ρ2 log n) iterations. By applying the general regret
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bound (2.6) in Theorem 2.5 restricting to the subspace orthogonal to Π
1
2 1, it follows that

λ2(M) ≥ 1

T

T−1∑
t=0

⟨Mt, Xt⟩ − ηρ− ρ log n

ηT
=

1

T

T−1∑
t=0

⟨Π
1
2MtΠ

1
2 , Yt⟩ − ηρ− ρ log n

ηT
≥ 1− ηρ− ρ log n

ηT
,

where the last inequality follows from the fact that cases (a) and (b) in Oracle both imply that

⟨Π
1
2MtΠ

1
2 , Yt⟩ ≥ 1. By choosing suitable implicit constants in the Θ(·) for T and η,

λ2(M) ≥ 1− ηρ− ρ log n

ηT
≥ 1− 1

4
− 1

4
≥ 1

2
.

Note that the average feedback matrixM is a Laplacian of the form Π− 1
2 (Lsym(D)−

∑
p ypTp)Π

− 1
2 ,

where D is the demand graph of a circulation f with congestion κ (as f is the average of circulations
each with congestion κ). Therefore, by scaling down f,D, and all yp by a factor of κ, we obtain a

solution to the dual program of λ△π (G) in Lemma 4.1 with objective value Ω(1/κ), and this certifies
that ϕ⃗π(G) ≳ 1/κ.

On the other hand, if Oracle fails at some iteration, then it outputs a cut S with ϕ⃗π(S) ≤ O(α/κ).

In Lemma 4.2, we have set the values of T and η in relation to the width bound ρ, to obtain the
desired approximation guarantee O(α). The undetermined parameters in the algorithm are ρ and
α. We would like to set them to be as small as possible, so as to minimize both the runtime (as
the number of iterations T will be minimized) and the approximation ratio of the algorithm, while
the Oracle can still be implemented efficiently. This is the goal in Section 4.3 and Section 4.4.

4.3 Geometric Results for Implementation of Oracle

To implement the Oracle in Algorithm 3, we need the results proved in [ARV09, AK07, Kal07, She09]
about geometric embeddings.

Let v1, . . . , vn be the Gram decomposition of Yt in step (1) of Algorithm 3. Note that the trace
condition in step (1) implies that

∑
i π(i)·∥vi∥

2 = 1, and the null-space condition in step (1) implies
that

∑
i π(i) · vi = 0. It follows from Fact 3.7 that

∑
i<j π(i) · π(j) · ∥vi − vj∥2 = 1. As in the SDP

rounding result in Section 3.2, we consider the following two cases of the geometric embedding.

Proposition 4.3 (Dichotomy of Embeddings). Let v1, . . . , vn be vectors in Rn satisfying the con-
dition that

∑
i<j π(i) · π(j) · ∥vi − vj∥2 = 1. One of the following two cases must hold:

(i) Large Core: There exists a vector v such that π(B(v, 1
2
√
10
)) ≥ 1/4.

(ii) Well Spread: There is a vector w such that if we apply the transformation ui := c(vi−w) for
1 ≤ i ≤ n for some constant c > 0, then there exists a subset U of vectors with (i) π(U) ≳ 1,
(ii) ∥ui∥ ≤ 1 for all i ∈ U , and (iii)

∑
i,j∈U π(i) · π(j) · ∥ui − uj∥2 ≳ 1.

Note that a version of Proposition 4.3 for uniform vertex weights was already proved in [Kal07].
The weighted case follows by a simple reduction which we will defer to the appendix.
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4.3.1 Large Core Case

This is the easy case where we can implement the oracle to either return a circulation in step 2(a)
or a sparse cut in step 2(c) of Algorithm 3, using a result in Section 3.1 for metric rounding proved
by the max-flow min-cut theorem.

Lemma 4.4 (Oracle in Large Core Case). In the large core case in Proposition 4.3, there is an
algorithm that, using two max-flow computations, implements Oracle in Algorithm 3 so that it
either computes a cut S ⊆ V with ϕ⃗π(S) ≤ O(1/κ) or obtains a circulation f whose demand graph
D satisfies ⟨Lsym(D), Yt⟩ ≥ 1 and Lsym(D) ≼ O(1) ·Π.

Proof. Let vj be a vector with π
(
B
(
vj ,

1
2
√
10

))
≥ 1

4 . By triangle inequality, for any vi ∈ B
(
vj ,

1
2
√
10

)
,

it holds that π
(
B
(
vi,

1√
10

))
≥ 1

4 . So, by random sampling, we can find in O(n log n) time a vector

vi∗ such that π
(
B
(
vi∗ ,

1√
10

))
≥ 1

4 with high probability.

After finding such a vector vi∗ , we run Algorithm 2 (Bidirectional Max-Flow) with L := B
(
vi∗ ,

1√
10

)
,

R := L, and κ the same as given in Algorithm 3. In order to choose the flow value parameter β
appropriately, we would first lower bound the total distance to L. Applying Lemma 3.8 with the
set L as chosen and the semi-metric d(i, j) := ∥vi − vj∥2, which satisfies the s-relaxed triangle
inequality for s = 2, it follows that∑

j∈R
π(j) · d(j, L) =

∑
j ̸∈L

π(j) · d(j, L) ≥ 1

4
− 1

10
=

3

20
.

Apply Algorithm 2 with β = 20/3. On the one hand, if the algorithm returns a circulation f , then
its demand graph D satisfies

⟨Lsym(D), Yt⟩ =
∑

i∈L,j∈R

1

2

(
D(i, j) +D(j, i)

)
∥vi − vj∥2 ≥

∑
j∈R

β · π(j) · d(j, L) ≥ 1, (4.3)

where the first inequality follows from the fact that each vertex j ∈ R has capacity β ·π(j) and the
flow saturates all such capacities. The capacities also imply that the normalized Laplacian of the
demand graph satisfies Π−1/2Lsym(D)Π−1/2 ≼ 2β · I, or equivalently Lsym(D) ≼ 2β ·Π.
On the other hand, if the algorithm returns a cut S ⊆ V , then by Lemma 3.3 (unsaturated case)
we have ϕ⃗π(S) ≤ rβ/κ = 20/κ, since r := π(R)/π(L) ≤ 3.

To summarize, in the large core case, there is an efficient oracle that achieves approximation factor
α = O(1) and width bound ρ = O(1).

4.3.2 Well Spread Case

The well spread case is much more involved, for which we need the correlated chaining theorem of
Sherman [She09]. In this subsection, we present the background for the correlated chaining theorem,
and we defer the implementation of the oracle in the well spread case to the next subsection.
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The idea of chaining matchings was the main ingredient that led to the O(
√
log n) approximation

result of [ARV09], and was also used in [AK07, Kal07] to compute expander flows to solve the
dual program. The main idea was to show that if for many directions, there is a large matching
between embedding vertices that are well-separated along that direction but close to each other
in the overall embedding, then O(

√
log n) such matchings can be chained together to form a path

that violates the ℓ22 triangle inequality. In [She09], this was improved so that instead of finding
one such violating path, we can find many such paths efficiently with good probability through a
simple sampling process.

To handle the arbitrary vertex weights π : V → R+, we slightly modify Sherman’s definitions and
results and make use of a version of his main theorem for fractional matchings instead of integral
matchings.

Definition 4.5 (π-Fractional Matching). Let V be a vertex set with weights π : V → R+. We say
that M is a π-fractional matching if M is a weighted directed subgraph of Kn with edge weights
M(i, j) ∈ R≥0 for i, j ∈ V , satisfying the property that each vertex i ∈ V has either only incoming
edges or only outgoing edges and has degree at most π(i). The total weight of M is denoted by
w(M) :=

∑
i,jM(i, j).

Definition 4.6 (Fractional Matching Cover). A (σ, δ)-matching cover is a function assigning a
π-fractional matchings Mu to each vector u ∈ Rn satisfying the following properties:

(i) ∀(i, j) ∈ supp(Mu), ⟨vj − vi, u⟩ ≥ σ;

(ii) Mu(i, j) = M−u(j, i) for all u ∈ Rn;

(iii) Eu[w(Mu)] ≥ δ · π(V ) where u ∼ N (0, I).

We define formally what it means to “chain together” fractional matchings.

Definition 4.7 (Chained Matchings). Let M be a fractional matching cover. Given vectors
u1, . . . , uℓ ∈ Rn, we define M(u1, . . . , uℓ) to keep track of the paths that result from chaining to-
gether matchings Mu1 , . . . ,Muℓ. Define M(u1, . . . , uℓ) := (Mu1,...,uℓ , Pu1,...,uℓ = {fp, p}p∈P(Kn)),
where each p ∈ Pu1,...,uℓ is a weighted path of length ℓ+1 with weight fp and Mu1,...,uℓ is the graph
with Mu1,...,uℓ(i, j) =

∑
p∈Pu1,...,uℓ

∩PKn (i,j)
fp being the total weight on paths in Pu1,...uℓ−1

going from

vertices i to j. The paths and weights in Pu1,...,ul are defined recursively in the following algorithm.

Construction of Pu1,...,uℓ

• If ℓ = 1, then Pu1 = {Mu1(i, j), (i, j) | Mu1(i, j) > 0}. That is, the paths are simply the
edges in Mu1 with the corresponding weights.

• If ℓ > 1, then for each q ∈ Pu1,...,uℓ−1
where q ∈ P(i, j), run the following loop.

1. While fq > 0 and there exists j′ ∈ V with Muℓ(j, j
′) > 0, let p be the path obtained

by extending q by j′ and add p to Pu1,...,uℓ with weight fp = min{Muℓ(j, j
′), fq}.

2. Decrement both fq and Muℓ(j, j
′) by min{Muℓ(j, j

′), fq}.
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The following simple claim will be used in the runtime analysis of the oracle.

Claim 4.8. Suppose that each matching Mu has at most m edges. Then Pu1,...,uℓ has at most mℓ
paths and can be constructed in O(mℓ2) time given oracle access to Mu1 , . . . ,Muℓ.

Proof. Clearly, the claim holds true for ℓ = 1. Now assume by induction that the claim holds for
ℓ− 1. It suffices to bound the number of times we run the while loop in which we add a new path
p to Pu1,...,uℓ . Since in each iteration of the while loop, we either remove a path from Pu1,...,uℓ−1

or
an edge from Muℓ , it can run for at most m(ℓ− 1)+m = mℓ iterations. Thus Pu1,...,uℓ has at most
mℓ paths.

Note that when π is uniform, then the definition of π-fractional matching cover is the same as the
matching cover from [She09, Definition 5.2.1], in which all edges have weight 0 or 1. Now we present
the main theorem that we will use to implement the oracle in Algorithm 3 in the well spread case.

Theorem 4.9 (Sherman’s Chaining Theorem). For any small enough constant l, there is a k =
O(

√
l log n) and an efficiently sample-able distribution D over vectors (u1, . . . , uk) ⊆ Rd with the

following property: if M is a (Ω(1),Ω(1))-fractional matching cover for the set of embedded vertices
V , then the expected total weight of paths in M(u1, . . . , uk) between vertices i, j with ∥vi − vj∥2 ≥ l

is at least e−O(k2) · π(V ) when (u1, . . . , uk) is sampled from D.

The uniform π version of this theorem was proved in [She09, Theorem 5.2.3]. The π-weighted
version follows from a simple reduction to the uniform case, which we will defer to Appendix B.

4.4 Fast Implementation of Oracle for Well-Spread Case

With Sherman’s chaining theorem, we are ready to implement the oracle in Algorithm 3 in the well

spread case in this subsection, with approximation ratio O
(√

logn
ϵ

)
and width bound Õ

(
nϵ

ϵ3/2

)
.

Proposition 4.10 (Oracle in Well Spread Case). Let ϵ > 0 be a small enough constant. In the
well-spread case in Proposition 4.3, there is a randomized implementation of Oracle in Algorithm 3
that, with high probability, using Õ(nϵ) max-flow computations, either outputs a feedback matrix

Mt with ⟨Mt, Xt⟩ ≥ 1 and ∥Mt∥ ≤ Õ
(
nϵ

ϵ3/2

)
, or returns a cut S ⊆ V with ϕ⃗π(S) ≤ O

(
1
κ

√
logn
ϵ

)
.

4.4.1 Overview

The basic subroutine, as in [AK07, Kal07, She09], is the Project Max-Flow algorithm (Algorithm 4),
where we project the vectors along a random direction and set up a bi-directional flow problem
between two subsets L and R that are far apart in the projection. If such a bi-directional flow cannot
be sent, then we will show that any min-cut is a sparse cut by Lemma 3.3, and so Algorithm 3 can
terminate in step 2(c). If such a bi-directional can be sent, with the additional property that many
flow paths are between vertices that are far apart in the embedding such that

⟨Lsym(D), Yt⟩ =
1

2

∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· ∥vi − vj∥2 ≥ 1,
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then we will show that the oracle succeeds in finding a circulation in step 2(a) of Algorithm 3, and
so the algorithm can proceed to the next iteration.

The new observation is that if for many random directions, such a bi-directional flow can be sent but
its demand graph does not satisfy ⟨Lsym(D), Yt⟩ ≥ 1, then we can construct a fractional matching
cover and use Sherman’s chaining theorem to find many paths that violate the triangle inequality
heavily. Thus, the oracle succeeds in finding many violating paths in step 2(b) of Algorithm 3,
and so the algorithm can proceed to the next iteration. So, as long as such a bi-directional flow
can be sent, then either step 2(a) or 2(b) succeeds in giving a good feedback matrix for the regret
minimization algorithm.

This is the main difference with previous algorithms in [AK07, She09], where a multi-commodity
flow computation is needed to guarantee a condition similar to ⟨Lsym(D), Yt⟩ ≥ 1 for the oracle
to succeed. We remark that using violating paths as feedback is only possible because of the
stronger unmodified dual program in Lemma 4.1, but not in the usual expander flow formulation
corresponding to the constrained dual program as in in (2.2).

4.4.2 Project Max-Flow Algorithm

In the well spread case in Proposition 4.3, we will only focus on the vectors in the subset U , with
π(U) ≳ π(V ) and ∥vi∥ ≤ 1 for i ∈ U and

∑
i,j∈U π(i) · π(j) · ∥vi − vj∥2 ≳ 1.

Algorithm 4 Project Max-Flow (G, u, c, β, κ)

Input: An edge-capacitated directed graph G = (V,E,w) with vertex weights π : V → R+, an
embedding v1, . . . , v|U | ∈ Rn of the vertices in U , vector u ∈ Rn, small constant c, congestion
parameter κ, and flow value parameter β.

1. Order the vertices i ∈ U by the values of ⟨u, vi⟩. Let L be the l smallest vertices in this
ordering, where l is the smallest integer such that π(L) ≥ c · π(V ). Let R be the r largest
vertices in this ordering, where r is the smallest integer such that π(R) ≥ c · π(V ).

2. Compute a bidirectional max-flow using Algorithm 2 on (L,R, β, κ) to obtain either a cut
S ⊆ V or a circulation f in G with congestion κ.

The following lemma shows that with constant probability over the random direction u, the sets L
and R will be well-separated along the direction u.

Lemma 4.11 (Good Direction). Let v1, . . . , v|U | be a set of vectors that satisfies (i) π(U) ≳ 1, (ii)

∥vi∥ ≤ 1 for all i ∈ U and (iii)
∑

i,j∈U π(i) ·π(j) ·∥vi − vj∥2 ≳ 1. Then there exist positive constants
γ and σ and c such that if we sample random u ∼ N(0, I), then with probability at least γ the sets
L,R in step (1) of Algorithm 4 satisfy the condition that ⟨u, vi − vj⟩ ≥ σ for all i ∈ L, j ∈ R. We
say that such vectors u are good vectors.

The proof is a simple reduction to the uniform π case proven in [Kal07, Lemma14] and [She09,
Lemma 5.3.3], and so we defer to the Appendix. We remark that Lemma 4.11 is the only place in
the proof of Proposition 4.10 that we use the assumption that the vectors are well spread.
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For each good vector u ∈ Rn, the sets L,R in step (1) of Algorithm 4 are disjoint, and so the
bi-directional max-flow in Algorithm 2 is well-defined. Therefore, exactly one the following three
cases must happen.

• A: Algorithm 4 returns a circulation f with demand graph D such that ⟨Lsym(D), Yt⟩ ≥ 1.

• B: Algorithm 4 returns a circulation f with demand graph D such that ⟨Lsym(D), Yt⟩ < 1.

• C: Algorithm 4 returns a cut S ⊆ V .

If we are in case C for some good vector u, then we show that the primal-dual Algorithm 3 can
terminate with approximation ratio O(β). (In the proof of Proposition 4.10 that we will present
later, we will set β = O(

√
log n/ϵ).)

Claim 4.12 (Case C). If Algorithm 4 returns a cut S for some good vector u, then ϕ⃗π(S) = O(β/κ).

Proof. Since u is good, the sets L,R are disjoint and π(L), π(R) ≥ c·π(V ) for some (small) constant
c. Then, by Lemma 3.3 (unsaturated case), Algorithm 2 will return a set S with ϕ⃗π(S) ≤ βr′/κ ≲
β/κ as r′ = max{1, π(R)/π(L)} ≤ 1/c.

If we are in case A for some good vector u, then we show that the oracle succeeds in step 2(a) of
Algorithm 3 with width ρ = O(β).

Claim 4.13 (Case A). If Algorithm 4 returns a circulation f with demand graph D for some good

vector u such that ⟨Lsym(D), Yt⟩ ≥ 1, then the feedback matrix Mt := Π− 1
2Lsym(D)Π− 1

2 in step 2(a)
of Algorithm 3 satisfies ∥Mt∥ ≲ β.

Proof. Since u is good, the sets L,R are disjoint and π(L), π(R) ≥ c·π(V ) for some (small) constant
c. In the bi-directional max-flow problem in Algorithm 2, each vertex i in L ∪ R has degree at
most r′ · β · π(i) ≲ β · π(i) as r′ = max{1, π(R)/π(L)} ≤ 1/c. This implies that the demand graph

satisfies Lsym(D) ≼ O(β ·Π), and thus Mt = Π− 1
2Lsym(D)Π− 1

2 ≼ O(βI).

4.4.3 Finding Many Violating Paths

If we are in case B for some good vector u, then we show how to construct a large matching of flow
paths between pairs of vertices with small embedding distance using the following algorithm.

The reason that we ignored the original direction of the paths in Algorithm 5 is that we are trying
to find paths in Kn, rather than in G, that violate the triangle inequality. Thus, it is fine if the
resulting violating paths from chaining together the matchings do not correspond to paths in G.

Lemma 4.14 (Case B). If Algorithm 4 returns a circulation f with demand graph D for some
good vector u such that ⟨Lsym(D), Yt⟩ < 1, then Algorithm 5 returns a fractional matching Mu with
w(Mu) ≳ c2, where each edge ij in Mu satisfies ⟨vj − vi, u⟩ ≥ σ and ∥vj − vi∥2 ≲ 1

βc . Moreover,
there is a randomized algorithm to compute Mu in expected time O(m log n).

32



Algorithm 5 Matching(u)

Input: s-t flow f⃗ and t-s flow ⃗f obtained from Step 2 of Algorithm 4, with parameters (G, u, c, β, κ).

1. Decompose the two flows into at most m flow paths between sets L and R. Ignore the original
direction of the paths and reorient every path from L to R. In particular, the paths we get
are (pr, ir, jr, fpr)

k
r=1 where k ≤ 2m. For each r ∈ [k], pr is a path from ir ∈ L to jr ∈ R,

with weight fpr .

2. Discard any path pr with ⟨vjr − vir , u⟩ < σ or ∥vjr − vir∥
2 > 4

βc .

3. Define M′
u so that M′

u(i, j) is the sum of the weights of all remaining paths from i to j.
Return

Mu :=
1

β ·max
{
1, π(R)/π(L)

}M′
u.

Proof. Since Algorithm 4 returns a circulation f , both flows f⃗ and ⃗f from Algorithm 2 are saturat-
ing. This implies that the flow value for f⃗ and ⃗f is at least

∑
j∈R β·π(j) = β·π(R) ≥ β·c·π(V ) = β·c,

and thus ∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
≥ β · c

where D is the demand graph of the circulation f = 1
2(f⃗ + ⃗f).

Next, we bound the total weight of the flow paths that we discard in step (2) of Algorithm 5. Since
u is good (see Lemma 4.11), all flow paths are between vectors i, j such that ⟨vj − vi, u⟩ ≥ σ, so no
paths will be discarded this way. Our assumption implies that

1 > ⟨Lsym(D), Yt⟩ =
1

2

∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· ∥vi − vj∥2 ,

and thus an average flow path is between pairs i, j with ∥vi − vj∥2 < 2
βc . By Markov’s inequality,

at least half of the flow of f is on flow paths between i, j with ∥vi − vj∥2 ≤ 4
βc . Therefore, we

discard at most half of the flow of f in Step (2) of Algorithm 5, and hence the weight of M′
u is at

least βc/2.

By the construction of the bidirectional flow in Algorithm 2, each source and sink vertex has degree
at most β · π(i) · max{1, π(R)/π(L)} ≤ β · π(i)/c. So, scaling M′

u down by this factor gives a
fractional matching Mu as defined in Definition 4.5, with w(Mu) at least c

2/2.

Finally, we bound the runtime of the algorithm. The only non-trivial step is step 1, in which we
must decompose a fractional single-commodity flow into integral flow paths. The following theorem
due to Lau and Kwok show that this can be done in almost linear time on expectation

Theorem 4.15. ([LRS13, Theorem 5]) Given a fractional s − t flow f⃗ , there is a randomized
algorithm that, in O(m log n) expected time, returns a flow path decomposition (pr, f⃗pr)

k
r=1 where

k ≤ m and each pr is a path from s to t with flow value f⃗pr along the path.
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It follows that if case B happens often enough, then we can construct a fractional matching cover
as defined in Definition 4.6.

Lemma 4.16. Suppose that conditioned on u being a good vector, the probability that we are in
case B is at least 1/2. Then M = {Mu}u∈Rn is a (σ, δ)-matching cover with σ, δ = Ω(1).

Proof. Clearly, conditions (i) and (ii) in Definition 4.6 are met. As long as u is a good vector,
w(Mu) ≳ c2 by Lemma 4.14. As a random vector is a good vector with probability at least γ
by Lemma 4.11, we conclude that M = {Mu}u∈Rn is a (σ, δ)-matching cover with σ = Ω(1) and
δ = γ · c2 = Ω(1).

We apply Sherman’s chaining theorem on the matching cover to construct many violating paths
for step 2(b) in Algorithm 3.

Lemma 4.17 (Violating Paths). Given the (Ω(1),Ω(1))-matching cover M in Lemma 4.16, by

setting β = O
(√

logn
ϵ

)
, there is a randomized algorithm using O(

√
ϵ log n) max-flow computations

to find paths p1, . . . , ps with weight fp1 , . . . , fps, so that the feedback matrix Mt := −Π− 1
2

(∑s
r=1 fpr ·

Tpr
)
Π− 1

2 satisfies ⟨Mt, Xt⟩ ≥ 1 and ∥Mt∥ = Õ(nϵ/ϵ3/2), with success probability Ω(n−ϵ).

Proof. We apply Sherman’s Theorem 4.9 on M with l = Θ(ϵ) and k = Θ(
√
ϵ log n) to obtain an

efficiently sample-able distribution D over (u1, . . . , uk) so that the expected total weight of paths
in M(u1, . . . , uk) between i, j with ∥vi − vj∥2 ≥ l = Θ(ϵ) is at least e−O(k2) · π(V ) = O(n−ϵ). Since
the total weight is at most 1, by a reverse application of Markov’s inequality, we will find vectors
u1, . . . , uk where the weight of such good paths in M(u1, . . . , uk) is at least

1
2n

−ϵ, with probability
at least n−ϵ. With such u1, . . . , uk, by Claim 4.8, we can find paths p1, . . . , ps with

∑s
r=1 fpr ≥ 1

2n
−ϵ

in O(mk2) = Õ(m) time, such that for 1 ≤ r ≤ s the path pr = (vi1 , . . . , vik+1
) satisfies

k∑
j=1

∥∥vij − vij+1

∥∥2 ≲ k

β · c
≲

√
ϵ log n

β · c
but

∥∥vi1 − vik+1

∥∥2 ≥ l ≳ ϵ,

where the first inequality is by the property that each edge ij in each fractional matching has

∥vi − vj∥2 ≤ 4
βc in Lemma 4.14. Thus, by choosing β = Θ

(√
ϵ logn
c·l

)
= Θ

(√
logn
ϵ

)
with the

appropriate constant, the paths violate triangle inequality so that

⟨Tpr , Yt⟩ =
k∑
j=1

∥∥vij − vij+1

∥∥2 − ∥∥vi1 − vik+1

∥∥2 ≲ −ϵ =⇒
〈 s∑
r=1

fprTpr , Yt

〉
≲ −ϵ · n−ϵ

Setting y = Θ(nϵ/ϵ) with the appropriate implicit constant and the feedback matrix Mt :=

−Π− 1
2 (y
∑s

r=1 fprTpr)Π
− 1

2 , we ensure that ⟨Mt, Xt⟩ = ⟨−y
∑s

r=1 fprTpr , Yt⟩ ≥ 1.

Finally, we bound ∥Mt∥ to bound the width of the oracle. Note that the edges in these violating
paths form a subgraph of the graph Mu1 ∪ · · · ∪Muk . In each of these graphs, the total degree of
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vertex i is at most 2β · π(i) ≤ 2β, and so the total degree of each vertex i in the union is at most
2β · k. Thus, ∥Mt∥ ≤ 2y · β · k = Õ(nϵ/ϵ3/2).

4.4.4 Proof of Proposition 4.10

We are ready to put together the results in this subsection to finish the proof of Proposition 4.10. Set

β = O
(√

logn
ϵ

)
. Recall that, by Lemma 4.11, there is a positive constant γ such that u ∼ N(0, I)

is a good vector with probability at least γ.

Suppose that when conditioned on u being a good vector, we are in case C of Algorithm 4 with
probability at least 1

4 . This means that, with probability at least γ
4 = Ω(1), a set S with ϕ⃗π(S) =

O
(
β
κ

)
= O

(
1
κ

√
logn
ϵ

)
will be returned by Claim 4.12. Therefore, after O(log n) independent

samples of u, such a sparse cut will be returned with high probability, and so Algorithm 3 can be
terminated.

Similarly, suppose that when conditioned on u being a good vector, we are in case A of Algorithm 4
with probability at least 1/4. This means that, with probability Ω(1), a feedback matrix Mt :=

Π− 1
2Lsym(D)Π− 1

2 from a circulation f with demand graph D can be returned with ⟨Mt, Xt⟩ ≥ 1

and ∥Mt∥ ≲ β ≲
√

logn
ϵ by Claim 4.13. Therefore, after O(log n) independent samples of u, such

a circulation will be returned with high probability, and so Algorithm 3 can proceed to the next
iteration.

Otherwise, suppose that when conditioned on u being a good vector, we are in case B of Algo-
rithm 4 with probability at least 1/2. By Lemma 4.17, we can use Sherman’s result to chain
together O(

√
ϵ log n) such flows to find violating paths p1, . . . , ps so that the feedback matrix

Mt := Π− 1
2 (
∑2

r fpr · Tpr)Π− 1
2 satisfies ⟨Mt, Xt⟩ ≥ 1 and ∥Mt∥ = Õ(nϵ/ϵ3/2), with probability

at least Ω(n−ϵ). Therefore, after Õ(nϵ) chaining attempts using a total of Õ(nϵ) max-flow compu-
tations, such violating paths will be returned with high probability, and Algorithm 3 can proceed
to the next iteration.

These covers all the cases. The width and the runtime of the oracle are dominated by the step of
finding violating paths.

4.5 Main Result and Corollary

In this subsection, we prove Theorem 1.5 and Proposition 1.4.

Proof of Theorem 1.5. By Lemma 4.2, if there is an oracle with width ρ and approximation factor
α, then the regret minimization Algorithm 3 either certifies that ϕ⃗π(G) ≥ Ω(1/κ) or finds a cut
S ⊆ V with ϕ⃗π(S) ≤ O(α/κ) for a given κ in O(ρ2 log n) iterations. Combining the oracle in the
large core case in Lemma 4.4 and the oracle in the well spread case in Proposition 4.10, we obtain
an oracle with width ρ = O(nϵ/ϵ3/2) and approximation ratio α = O(

√
log n/ϵ). Therefore, by

doing binary search on κ, we can obtain a O(
√

log n/ϵ)-approximation algorithm by running a total

of Õ(n2ϵ) iterations of MMWU in Algorithm 3.
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Now, we will bound the runtime of each iteration. By Proposition 4.10, each iteration requires
Õ(nϵ) max-flow computations. After each max-flow computation, we need to perform a flow-path
decomposition either in Algorithm 5 or by computing the edges of the demand graph Dt, which can
be implemented in expected O(m log n) time by Theorem 4.15. In addition, each iteration requires
the use of a matrix exponential, whose computation is too long. Thus, instead of computing Yt, we
will approximately compute its Gram decomposition using the following lemma, whose proof we
will defer to Appendix B:

Lemma 4.18 (Matrix Exponential Computation). Let v1, . . . vn be the Gram decomposition of the
matrix Yt in step 1 of Algorithm 3. There is a randomized algorithm that, in Õ(ρm/δ2) time,
computes vectors v̂1, . . . v̂n ∈ Rd for d = O(log n/δ2) such that with probability at least 1− n−1,

∥v̂i = v̂j∥2 ∈ (1± δ) ∥vi − vj∥2 ± n−Ω(1) ∀i, j ∈ V

In particular, Lemma 4.18 implies that if L is any Laplacian matrix (possibly with negative edge-
weights) satisfying ⟨L,

∑
i v̂iv̂

⊤
i ⟩ ≥ 1, then ⟨L, Yt⟩ ≥ 1 − 2δ. Since all our feedback matrices are

always of the form Π−1/2LΠ−1/2 for some Laplacian L, it suffices to use v̂1 . . . v̂n as the embedding
vectors at step 1 of the algorithm in order to ensure that ⟨Mt, Xt⟩ ≥ 1 − 2δ for every iteration t
even though we never have to explicitly compute Xt. Since ρ = Õ(nϵ), the overall runtime of each
iteration is dominated by the runtime of Õ(nϵ) maxflow computations.

An interesting corollary is about a dual certificate using circulations in Proposition 1.4.

Proof of Proposition 1.4. Apply Lemma 4.2 with κ ≳
√

logn
ϵ /ϕ⃗π(G) for a suitable implicit constant,

Algorithm 3 will always outputs a dual solution with value Ω(1/κ) rather than a cut as there is no

cut S with ϕ⃗π(S) ≤ O
(

1
κ

√
logn
ϵ

)
≤ 1

2 ϕ⃗π(G). Therefore, we can find a circulation F with demand

graph D, and weights yp over shortcut cycles, such that

ϕπ(F ) ≥ λ2

(
Π− 1

2

(
Lsym(D)−

∑
p

ypTp

)
Π− 1

2

)
≳
ϕ⃗π(G)√
log n

,

where the first inequality is by (4.2).

5 Primal-Dual Algorithms for Reweighted Eigenvalues and
Cut-Matching Game

In this section, we show that the regret minimization framework can also be used to compute
reweighted eigenvalues in Section 5.1 and to derive cut-matching game in Section 5.2.

5.1 Reweighted Eigenvalues

In this subsection, we use the regret minimization framework to compute the reweighted eigenvalue
defined in [LTW23]. The main result is that there is a primal-dual algorithm to compute λ∗2(G)
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in O(log n/λ∗2(G)) iterations, with each iteration taking almost linear time. This combined with
Theorem 1.5 will prove Theorem 1.6.

The reweighted eigenvalue was used in [LTW23] to approximate the directed edge conductance
ϕ⃗(G), which is a special case of the π-weighted directed edge expansion ϕ⃗π(G) when π(i) =
w(δ+(i)) + w(δ−(i)), the total degree of vertex i. The result in this subsection only applies to
this special case. To avoid confusion, we use the notation dw(i) := w(δ+(i)) + w(δ−(i)) to denote
the total degree of vertex i instead of using π(i), and Dw := diag(dw) to denote the diagonal
total-degree matrix instead of using Π.

From Definition 2.7, the reweighted eigenvalue is formulated as

λ∗2(G) := max
F∈F(G)

λ2

(
D

− 1
2

w

(
Lsym(F )

)
D

− 1
2

w

)
. (5.1)

To construct a circulation F that maximizes the objective value, we can use the regret minimization
framework as in Section 2.3.2 and Section 4.2. This framework reduces the above maximization
problem to the simpler task of finding a circulation Ft ∈ F(G) that maximizes ⟨Ft, Xt⟩ where Xt

is the density matrix in the matrix multiplicative update method in the t-th iteration, which can
be found using a min-cost flow computation. Then, the regret bound in Theorem 2.5 can be used
to prove that the average circulation 1

T

∑T
t=1 Ft will be an approximate maximizer to λ∗2(G).

Alternatively, using the min-max formulation from [LTW23][Proposition 3.4] where

λ∗2(G) = min
v1,...,vn∈Rn

max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2

subject to
n∑
i=1

dw(i) · vi = 0⃗

n∑
i=1

dw(i) · ∥vi∥2 = 1,

(5.2)

we can also interpret the following algorithm as a natural way to play a minimax game between a
primal “embedding” player and a dual “circulation” player.

We bound the number of iterations to obtain a good approximate solution.

Theorem 5.1 (Regret Minimization for Reweighted Eigenvalue). Let 0 < η < 1/2. The solution
F returned by Algorithm 6 satisfies

λ2

(
D

− 1
2

w Lsym(F )D
− 1

2
w

)
≥ (1− 2η) · λ∗2(G) after T =

log n

η2λ∗2(G)
iterations.

Moreover, each iteration can be implemented using one min-cost flow computation.

Proof. The main step is to lower bound the inner product ⟨Mt, Xt⟩ in each iteration. The obser-
vation is that v1, . . . , vn form a feasible solution to the λ∗2(G) program as stated in (5.2). To see
this, we just need to check that v1, . . . , vn satisfies the constraints in (5.2). Since YtDw1 = 0⃗ and

37



Algorithm 6 Regret Minimization Algorithm for Reweighted Eigenvalue

Input: A directed graph G = (V,E,w) and step size η ∈ (0, 1).

Initialization: X0 =
1

n−1(I −D
1
2
w11

⊤D
1
2
w).

For t = 0 to T − 1:

1. Given Xt ≽ 0 such that tr(Xt) = 1 and Xt ⊥ D
1
2
w1, let Yt := D

− 1
2

w XtD
− 1

2
w and v1, . . . , vn be

the Gram decomposition of Yt.

2. (Dual Player) Compute circulation Ft := argmaxF∈F(G)

∑
i<j

1
2(F (i, j) + F (j, i)) · ∥vi − vj∥2

and set the feedback matrix Mt := D
− 1

2
w Lsym(Ft)D

− 1
2

w .

3. (Primal Player) Update X ′
t+1 := exp

(
− η

ρ

∑t
i=0Mi

)
. Let Xt+1 be obtained from X ′

t+1 by

projecting it onto the space orthogonal to D
1
2
w1 and scaling it to have trace 1.

Output F = 1
T

∑T−1
t=0 Ft.

Yt =
∑

i viv
T
i , we have

∑
i dw(i) · vi = 0⃗. Also, we have tr(Xt) =

∑
i dw(i) · ∥vi∥

2 = 1. Therefore,
by the definition of Ft in step (2) of Algorithm 6 and λ∗2(G) in (5.2),

⟨Mt, Xt⟩ = ⟨Lsym(Ft), Yt⟩ = max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2 ≥ λ∗2(G). (5.3)

Note that the width5 is ∥Mt∥ ≤ 1 because each vertex i has degree at most dw(i) in Ft ∈ F(G).
As each Mt ≽ 0, by applying the regret bound (2.7) in Theorem 2.5 restricting to the subspace

orthogonal to D
1
2
w1, it follows that

λ2

(
D

− 1
2

w Lsym(F )D
− 1

2
w

)
≥ 1

T

T−1∑
t=0

⟨Mt, Xt⟩ · (1− η)− log n

ηT
≥ (1− η) · λ∗2(G)−

log n

ηT
≥ (1− 2η) · λ∗2(G),

(5.4)

where the last inequality is by our choice of T . Finally, note that the maximization problem
in step (2) of Algorithm 6 can be solved using one min-cost flow computation, which can be
implemented in m1+o(1) time by [CKLPPS22] (see Section B.3).

5.1.1 Fast Algorithm for Cheeger-Type Guarantee

Note that Algorithm 6 is fast when λ∗2(G) is large. On the other hand, when λ∗2(G) is small, then

ϕ⃗(G) is also small by the directed Cheeger inequality in (2.9), and thus theO(
√
log n)-approximation

in Theorem 1.5 is better than the directed Cheeger guarantee. So, we can combine Theorem 5.1
and Theorem 1.5 to prove Theorem 1.6.

5This is the reason that this theorem does not hold for general π.
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Proof of Theorem 1.6. First, we apply Algorithm 3 and Lemma 4.2 with 1/κ := 1/ log1.5 n to
either certify ϕ⃗(G) ≳ 1/ log1.5 n or to find a set S with ϕ⃗(S) ≲ 1/ log n. In the latter case, we know
that the set S1 with ϕ⃗(S1) ≲

√
log n · ϕ⃗(G) returned by Theorem 1.5 has smaller directed edge

conductance than the guarantee by the directed Cheeger inequality in (2.9), and so we are done.

In the former case, we compute a set S2 of directed edge conductance ϕ⃗(S2) ≲
√
ϕ(G) log 1/ϕ⃗(G)

and return S2. Since ϕ⃗(G) ≥ 1/ log1.5 n in this case, the directed Cheeger inequality in (2.9) implies
that λ∗2(G) ≥ ϕ⃗2(G)/ log(1/ϕ⃗(G)) ≥ 1/ log4 n. By setting η = 1/4, we can get a 1/2-approximation
of λ∗2(G) in O(log5 n) iterations using Algorithm 6.

We show how to compute S2 from the computations done in Algorithm 6 and the flow-based round-
ing algorithm for the directed Cheeger inequality in Section 3.3. Let λ := min1≤t≤T ⟨Lsym(Ft), Yt⟩
and u1, . . . , un be the Gram decomposition of a Yt that achieves this minimum. Since u1, . . . , un is
a solution to (5.2) with objective value λ, using the Gaussian projection and the metric rounding

step in Section 3.3, we can obtain a set S2 with ϕ⃗(S2) ≲
√
λ log(1/ϕ⃗(G)).

It remains to argue that λ ≲ ϕ⃗(G) to prove the approximation guarantee. By (5.4) in the proof of
Theorem 5.1, we have

λ2

(
D

− 1
2

w Lsym(F )D
− 1

2
w

)
≥ λ(1− η)− λ∗2(G) · η ≥ λ(1− 2η) =

1

2
λ,

where the second inequality is because λ ≥ λ∗2(G) by (5.3) and the last equality is because η = 1/4.
This implies that

λ ≤ 2λ2

(
D

− 1
2

w Lsym(F )D
− 1

2
w

)
≤ 2λ∗2(G) ≤ 4ϕ⃗(G),

where the second inequality is due to F ∈ F(G) and (5.1), and the last inequality is by the easy

direction in (2.9). This proves that ϕ⃗(S2) ≲
√
ϕ(G) log 1/ϕ⃗(G).

Finally, we bound the time complexity of the algorithm. Computing S1 takes Õ(m1+ϵ) for an
arbitrarily small constant ϵ using the fast max-flow algorithm in [CKLPPS22]. In the case that
we also need to compute S2, it takes O(m1+o(1)) time to compute a 1/2-approximation of λ∗2(G),
where the bottleneck is the min-cost flow computations in step (2) of Algorithm 6. Note that
once again, the matrix exponential can be computed in Õ(m) time each iteration by Lemma 4.18.
Finally, the metric rounding step also takes O(m1+o(1)) time, as it also requires O(log n) max-flow
computations in Lemma 3.1.

5.2 Cut-Matching Game

Louis [Lou10] considered the following cut-matching game for directed graphs. In each round, the
cut player chooses a bisection (S, S) of the vertices, and the matching player chooses a directed
perfect matching between (S, S), which is defined as an Eulerian graph where each vertex has
indegree and outdegree exactly one. Louis proved that there is a cut-player strategy such that the
union of the directed perfect matchings has edge expansion Ω(1) in O(log2 n) iterations. Note that
the edge expansion in [Lou10] is the special case of Definition 1.1 when π(i) = 1 for all i ∈ V .
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In this subsection, we use the matrix multiplicative weight update method in Algorithm 3 to derive
an improved cut-player strategy and prove Theorem 1.7. We also extend the cut-matching game
to the more general setting of π-weighted directed edge expansion in Definition 1.1, for which the
bipartition returned by the cut player may not be balanced.

Algorithm 7 Cut Player Strategy

1. Let D1, . . . , Dt−1 be the directed perfect matchings played so far. Let Mi =

Π− 1
2Lsym(Di)Π

− 1
2 . Compute Xt from M1, . . . ,Mi−1 using step (3) of Algorithm 3.

2. Let v1, . . . , vn be the Gram decomposition of Yt := Π− 1
2XtΠ

− 1
2 as in step (1) of Algorithm 3.

3. If there is a vertex i with π(i) ≥ 1
4π(V ), then output the bipartition L = {i} and R = V \{i}.

4. Otherwise, let u ∼ N (0, I) be a random vector. Let y = median
(
{⟨u, vi⟩ : i ∈ V }

)
where the

median is with respect to π. Output the bipartition L = {i : ⟨u, vi⟩ ≤ y} and R = L.

For general π-weighted directed edge expansion, the requirement of the matching player is to output
a directed fractional perfect matching defined as follows.

Algorithm 8 Matching Player Requirement

Given a bipartition L,R from the cut player, the matching player must play a directed fractional
perfect matchingD, which is defined as a weighted Eulerian subgraph where each i ∈ L has indegree
and outdegree exactly π(R)π(i)/π(L) and each j ∈ R has indegree and outdegree exactly π(j).

Note that when π is uniform, then the cut player will always return a bisection, and the matching
player will always return a directed (fractional) perfect matching where each vertex has indegree
and outdegree one, and so this is a proper generalization of Louis’ cut-matching game.

The plan is to analyze the cut-player strategy using the regret bound in Theorem 2.5 as follows.

ϕ⃗π(D) ≥ λ2

(
Π− 1

2Lsym(D)Π− 1
2

)
≥ 1

T

T∑
t=0

⟨Lsym(Dt), Yt⟩ · (1− η)− ρ log n

ηT
≳

1

log n
,

where D := 1
T

∑T
t=1Dt. The first inequality is by the easy direction of λ△π in Proposition 3.4, the

second inequality is by the regret bound in Theorem 2.5, and the third inequality is what we would
like to achieve in the following.

The key quantity that we would like to lower bound is Wt := ⟨Lsym(Dt), Yt⟩, which is a random
variable with respect to the filtration Ft that is what happened up to round t of the algorithm. At
each round t, we would like to lower bound Et[Wt] where Et[·] = E[·|Ft−1]. To lower bound Et[Wt],
we will use the following basic property of Gaussians (see e.g. [Van16, Example 3.4]):

Fact 5.2 (Gaussian Concentration). Let X be a Gaussian random variable with mean µ and vari-
ance σ2. Then,

Pr[|X − µ| > tσ] ≤ 2 exp(−t2/2).
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Claim 5.3 (Expectation). Et[Wt] ≳ 1
logn for any t in step (4) of Algorithm 7.

Proof. The proof is based on the fact that, with high probability, a random Gaussian projection
vi 7→ ⟨u, vi⟩ will preserve the squared distances between all the vectors within a factor of log n. Let
x ∈ Rn be a random vector defined by x(i) = ⟨vi, u⟩ where u ∼ N (0, I). Then, Et[|x(i)− x(j)|2] =
Et|⟨vi − vj , u⟩|2 = ∥vi − vj∥2, and by Fact 5.2,

Pr
[∣∣x(i)− x(j)

∣∣2 ≳ log n · ∥vi − vj∥2
]
≤ n−3.

Let E be the event that |x(i) − x(j)|2 ≲ log n · ∥vi − vj∥2 for all pairs i, j ∈ V . By union bound,
Pr[E ] ≥ 1− n−1. Therefore,

Et[Wt] ≥ Et
[
⟨Lsym(Dt), Yt⟩

∣∣ E] · Pr[E ]
≥ Et

[ ∑
i∈L,j∈R

1

2

(
D(i, j) +D(j, i)

)
· ∥vi − vj∥2

∣∣∣∣ E
]
· (1− n−1)

≳
1

log n
· Et

[ ∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· |x(j)− x(j)|2

]
.

Let y be the median in step (4) such that x(i) ≤ y ≤ x(j) for all i ∈ L and j ∈ R. Let
r = π(R)/π(L). Since maxi π(i) ≤ 1

4π(V ) in step (4), it follows that 1
2π(V ) ≤ π(L) ≤ 3

4π(V )
and thus 1

3 ≤ r ≤ 1. Continuing,

Et

[ ∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· |x(j)− x(j)|2

]

≥ Et

[ ∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
·
((
x(i)− y

)2
+
(
x(j)− y

)2)]

= 2 · Et

[∑
i∈L

r · π(i) ·
(
x(i)− y

)2
+
∑
j∈R

π(j) ·
(
x(j)− y

)2]

≥ 2

3
· Et

[∑
i

π(i) ·
(
x(i)2 − 2y · x(i)

)]

=
2

3

∑
i

π(i) · ∥vi∥2 =
2

3
,

where the first equality is because
∑

j∈RD(i, j) = r · π(i) for i ∈ L and
∑

i∈LD(i, j) = π(j) by the

matching player requirement, the last inequality is because r ≥ 1
3 in step (4) of Algorithm 7, the

second last equality is because
∑

i π(i) · x(i) = ⟨u,
∑

i π(i) · vi⟩ = 0 and Et[x(i)2] = Et[⟨u, vi⟩2] =
Et[vTi (uuT )vi] = ∥vi∥2 as u ∼ N (0, I), and the last equality is because 1 = tr(Xt) = tr(Π

1
2YtΠ

1
2 ) =∑

i π(i) · ∥vi∥
2.
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To show that with good probability,
∑

tWt does not deviate much from its conditional expectation,
we will apply Azuma’s inequality, which we state as follows:

Theorem 5.4 (Azuma’s Inequality [Sin22, Theorem 18.3]). Let X0, . . . , XT be a Martingale such
that |Xt −Xt−1| ≤ ct ∀t ∈ [T ]. Then we have

Pr[|XT −X0| ≥ δ] ≤ exp

(
− δ2

2
∑T

t=1 c
2
t

)
.

Claim 5.5 (Concentration). In step (4) of Algorithm 7, for any constant δ > 0,

Pr

[
T∑
t=0

Wt ≥
T∑
t=0

Et[Wt]−
δ · T
log n

]
≥ 1− exp

(
− Ω

(
δ2 · T
log2 n

))
.

Proof. Let Zt =
∑t

i=1(Wi−Ei[Wi]). Then Zt is a martingale with respect to the filtration Ft with
Z0 = 0. Moreover,

|Zt − Zt−1| =
∣∣Wt − Et[Wt]

∣∣ ≤ 2|⟨Lsym(Dt), Yt⟩| ≤ 2⟨Π, Yt⟩ = 2,

where the last inequality is because Lsym(Dt) is a Laplacian where the degree of vertex i is at
most π(i) in step (4) of Algorithm 7 and thus Lsym(Dt) ≼ Π, and the last equality is because
1 = tr(Xt) = ⟨Π, Yt⟩. Using Theorem 5.4, we can bound our Martingale Zt as follows:

Pr

[
|ZT | > δ · T

log n

]
≤ exp

(
− Ω

(
δ2T

log2 n

))
.

Note that |ZT | ≤ δT/ log n implies that
∑

tWt ≥
∑

t Et[Wt]− δ·T
logn .

We are ready to prove Theorem 1.7 with these claims.

5.2.1 Proof of Theorem 1.7

Apply the regret bound in Theorem 2.5 with feedback matrices Mi = Π− 1
2LsymΠ

− 1
2 and let D :=

1
T

∑T
t=1Dt, it follows that

ϕ⃗π(D) ≥ λ2

(
Π− 1

2Lsym(D)Π− 1
2

)
≥ 1

T

T∑
t=0

⟨Lsym(Dt), Yt⟩ · (1− η)− ρ log n

ηT
, (5.5)

where the first inequality is by the easy direction of the SDP rounding in Proposition 3.4. The
main step is to lower bound

∑
tWt =

∑
t⟨Lsym(Dt), Yt⟩.

First, we consider the special case in step (3) of Algorithm 7, when there is a vertex i with π(i) ≥
1
4π(V ). If this holds then we are in the large core case of Proposition 4.3. We can apply the same
argument as (4.3) in Lemma 4.4 to show that ⟨Lsym(Dt), Yt⟩ ≥ Ω(1) deterministically. Also, as

π(R)/π(L) ≤ 4, each vertex i has degree at most 4π(i), and thus Mt = Π− 1
2Lsym(Di)Π

− 1
2 ≼ 4I.
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Otherwise, by Claim 5.3 and Claim 5.5,

T∑
t=1

⟨Lsym(Dt), Yt⟩ ≥ Ω

(
T

log n

)
− δ · T

log n
, with probability at least 1− exp

(
− Ω

(
δ2T

log2 n

))
.

Therefore, by setting T = O
(
log2 n
η2δ2

)
where η and δ are small enough constants, we have that∑T

t=1⟨Lsym(Dt), Yt⟩ ≳ T/ log(n) with constant probability. Also, in this case, ∥Mt∥ ≤ 1 as each
vertex i has degree at most π(i).

Therefore, plugging in η = 1
4 and width bound ρ = 4 to (5.5), we conclude that ϕ⃗π(D) ≳ 1/ log n,

which implies Theorem 1.7 by multiplying T on both sides.

5.2.2 Approximating Directed Edge Expansion

As in [KRV06, OSVV08, Lou10], a corollary of the cut-matching game is an approximation algo-
rithm for approximating directed edge expansion.

Algorithm 9 Cut-Matching-Game Approximation Algorithm (G, κ)

Initiate a cut-matching game where the cut player follows Algorithm 7. Each iteration, do the
following:

1. Given the cut L,R returned by the cut player and a congestion value κ, compute a bidirec-
tional max flow on (L,R, κ, β = 1) using Algorithm 2.

2. If we obtain a cut S, output S and terminate. If we obtain saturating flows in both directions,
f⃗ and ⃗f , construct the demand graph of the circulation f = 1

2(f⃗ + ⃗f) as follows:

(a) Let D⃗ be the demand graph for f⃗ . That is, for each i ∈ L and j ∈ R, if there is a flow
path p ∈ f⃗ , then we add an edge (i, j) with weight f⃗p.

(b) Construct ⃗D from ⃗f the same way.

(c) The matching player plays Dt =
1
2(D⃗ + ⃗D).

Note that this algorithm is essentially a special case of Algorithm 3, where we implement the Oracle
in a similar manner as in the project max flow algorithm (Algorithm 4). That is, we project our
embedding vectors in a random direction and call bi-directional maxflow with β = 1. Then we
either output a cut and terminate or update the embedding with the symmetric Laplacian of a
circulation.

Corollary 5.6. Given an edge capacitated directed graph G = (V,E,w) and a parameter κ > 0,
there is an algorithm using the cut-matching game in Theorem 1.7 such that, in O(log2 n) iterations,
either builds a directed Eulerian subgraph to certify that ϕ⃗π(G) ≳ 1

κ · 1
logn or outputs a cut S with

ϕ⃗π(S) ≲ 1
κ . Furthermore, each iteration can be computed using O(1) single-commodity flows.
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Proof. If at any point, the algorithm outputs a cut during step 2, then by Lemma 3.3, we find a cut
of directed edge expansion at most O(1/κ) as β = 1. On the other hand, if for some T = Θ(log2 n)
iterations, we always find a saturating flow in step 2, then the cut-matching game would have
proceeded for T iterations. Then, by Theorem 1.7, the average demand graph 1

T

∑T
t=1Dt (which

is the average matching played by the matching player) has second eigenvalue at least Ω(1/ log n)
with constant probability. Thus, we have constructed a circulation with congestion at most κ
whose demand graph D has π-weighted edge expansion at least Ω(1/ log n), and this implies that
ϕ⃗π(G) ≳ 1

κ · 1
logn .

6 Other Generalizations

As mentioned in the introduction, the reweighted eigenvalue framework captures also vertex ex-
pansion and hypergraph edge expansion. In each case, the framework produces an SDP for which
a rounding algorithm with Cheeger-like guarantee exists; see [LTW23]. In this section, we show
that, analogous to the case of directed edge expansion, by adding ℓ22 triangle inequality constraints
to the SDPs for vertex expansion and hypergraph edge expansion, we obtain tighter relaxations
which have an integrality gap of O(

√
log n) to the respective expansion quantities. Moreover, there

is an almost linear-time rounding algorithm for each of the SDPs.

6.1 Directed Vertex Expansion

A vertex-capacitated directed graphG = (V,E, π) is a graph equipped with a vertex weight/capacity
function π : V → R+. Given such a graph, let S ⊂ V be a nonempty subset of vertices. The set of
out-neighbors of S is defined as ∂+(S) := {v /∈ S | ∃u ∈ S with uv ∈ E}, and the directed vertex
expansion ψ⃗π(S) and ψ⃗π(G) are defined as

ψ⃗π(S) :=
min

{
π
(
∂+(S)

)
, π
(
∂+(S)

)}
min

{
π(S), π(S)

} and ψ⃗π(G) := min
∅≠S⊂V

ψ⃗π(S).

Note that these definitions capture undirected vertex expansion as a special case. Also, let

Fv(G) :=

F : E → R≥0

∣∣∣∣ ∑
j:ij∈E

F (i, j) =
∑
j:ji∈E

F (j, i) ≤ π(i) ∀i ∈ V


denote the set of feasible vertex-capacitated circulations on G.

By adding ℓ22 triangle inequality constraints to the embedding in [LTW23, Proposition 3.3], we
arrive at the following program:

Definition 6.1 (Vertex Reweighted Eigenvalue with Triangle Inequalities). Given a vertex-capacitated
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directed graph G = (V,E, π). The λ∆v
π (G) program for directed vertex expansion is

λ∆v
π (G) := min

v1,...,vn∈Rn
max

F∈Fv(G)

1

2

∑
ij∈E

F (i, j) · ∥vi − vj∥2

subject to
∑
i∈V

π(i) · vi = 0⃗∑
i∈V

π(i) · ∥vi∥2 = 1

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V.

Note that this is almost identical to λ∆π for edge expansion in Definition 1.2. The only difference
here is that F is constrained by vertex capacity constraints instead of edge capacity constraints. An
analogous proof to Proposition 3.4 shows that λ∆v

π is indeed a relaxation of ψ⃗π, and by combining
Lemma 3.5 and a vertex version of Lemma 3.1 (see Lemma 6.9 below), we can bound the integrality
gap of this SDP relaxation as follows:

Theorem 6.2 (Vertex Integrality Gap). Let G be a directed graph with vertex weights π : V → R+.
Then we have

λ∆v
π (G) ≲ ψ⃗π(G) ≲

√
log n · λ∆v

π (G).

In Section 2.2.3, we gave fast algorithms for approximating directed edge expansion using MMWU
and explander flows. These techniques can be easily adapted to approximating vertex expansion
by changing edge capacited flows to vertex capacitated flows. Moreover, it can be shown that the
dual of the λ∆v

π (G) SDP can be interpreted as finding the best vertex-capacitated expander flow
to certify that G has large directed vertex expansion. We can thus obtain the following vertex
analogous of Theorem 1.5, Theorem 1.7, and Proposition 1.4.

Theorem 6.3 (Fast O(
√
log n) Approximation to ψ⃗π(G)). For small enough ϵ > 0, there is a

randomized algorithm that, given any vertex-capacitated directed graph G = (V,E, π), uses Õ(n3ϵ)

directed max-flow computations to compute a cut S ⊆ V , such that ψ⃗π(S) ≲
√

logn
ϵ · λ∆v

π (G) with

constant probability.

Theorem 6.4 (Cut Matching Game for Directed Vertex Expansion). In the cut-matching game
for directed graphs, there is a cut player strategy so that, in O(log2 n) iterations, the union of the
matchings played by the matching player is an Eulerian graph with vertex expansion Ω(log n).

Proposition 6.5 (Vertex Dual Certificate). Given a graph G with vertex weights π : V → R+,
there exists a feasible circulation F ∈ Fv(G) such that:

ϕπ(F ) ≳
ψ⃗π(G)√
log n

.

Remark 6.6 (undirected case). We remark that our definition of directed vertex expansion also
captures undirected vertex expansion, and that all the results presented above apply to the undirected
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case. Note that the vector program presented in [FHL08, Section 2.3] can also be rounded to give an
O(

√
log n) approximation of vertex expansion (vertex expansion defined here is within a constant

factor of “minimum ratio vertex cut” in their paper and is different from the “vertex expansion”
in their appendix). Our program has the advantages that it admits a fast primal-dual rounding
algorithm and that it has an arguably simpler form.

While it is possible to prove Theorem 6.3, Theorem 6.4, and Proposition 6.5 directly by analyzing
the λ∆v

π program, a simpler way to obtain these results is by a reduction from vertex expansion to
edge expansion.

Proposition 6.7 (Reduction from Directed Vertex Expansion to Directed Edge Expansion). Let
G = (V,E, π) be a vertex-capacitated directed graph. Then, there exists an edge-capacitated directed
graph G′ = (V ′, E′, w) over vertex weights π′, such that |V ′| = O(|V |), |E′| = O(|V | + |E|),
and ϕ⃗π(G

′) ∼ ψ⃗π(G). Moreover, such graph G′ can be constructed in linear time, and given any
∅ ≠ S′ ⊂ V we can compute in linear time an ∅ ≠ S ⊂ V such that ψ⃗π(S) ≲ ϕ⃗π(S

′).

For brevity, we describe the (somewhat standard) reduction and leave the verification to the reader.
For each vertex i in G, create two copies iin and iout in G

′, where π′(iin) = π(i) and π′(iout) = δ
for a small positive δ ≪ mini π(i), then draw an edge from iin to iout with edge weight π(i). For
each edge e = ij ∈ E, draw an edge from iout to jin with edge weight M ≫

∑
i π(i). Observe that

this reduction can be computed in O(n +m) time, and after that we simply apply this reduction
to obtain Theorem 6.3, Theorem 6.4, and Proposition 6.5 from their edge expansion counterparts.

6.1.1 Vertex Cheeger Rounding

In this section, we will prove the following generalization of Theorem 1.6 to the vertex case:

Theorem 6.8 (Vertex Fast Cheeger-type Rounding). Given an graph G with vertex capacities
π : V → R+, there is an almost-linear time algorithm to obtain a set S such that ψ⃗π(G) ≲√
ψ⃗π(S) · log dmax

ψ⃗π(G)
, where dmax is the maximum unweighted degree of G.

While the previous theorems and proposition can be proved via reduction to ϕ⃗π, the same is not true
of Theorem 6.8 because Theorem 1.6 only holds for the special case of directed edge conductance
rather than the general ϕ⃗π. Instead, we need a version of Lemma 3.1 for vertex expansion.

Lemma 6.9 (Vertex Metric Rounding Lemma). Given a graph G = (V,E), let d(·, ·) be a metric
on V , and let π : V → R+ be an arbitrary weight function over V . Suppose we are given disjoint
vertex subsets L,R ⊆ V as input to the algorithm. Let r := π(R)/π(L) and r′ := max{1, r}. Then
there is an algorithm using O(log n) maximum flow computations to output a set S with

ψ⃗π(S) ≲
r′ ·maxF∈Fv(G)

∑
i,j∈V F (i, j) · d(i, j)∑

i∈R π(i) · d(i, L)
.

Lemma 6.10 (Unsaturated Case, Vertex Version). Suppose Algorithm 2 with vertex capacities
outputs a cut S. Then ψ⃗π(S) ≤ (κ/βr′ − 1)−1, where r′ := max{1, r}.
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Given these two modifications, the proof of Lemma 6.9 follows by combining Lemma 6.10 and
Lemma 3.2 as in the proof of Lemma 3.1. The rest of the proof of Theorem 6.8 is analogous to that
for Theorem 1.6 in Section 5.1.1. First, we apply Theorem 6.3, and if we determine through this
algorithm that ψ⃗π(G) is small, then the O(

√
log n) approximation dominates the Cheeger bound. If

on the other hand, we determine that ψ⃗π(G) = Ω( 1
log1.5 n

), then we solve the reweighted eigenvalue

program for directed vertex expansion as defined in [LTW23, Definition 1.2] in O(log1.5 n) iterations

of MMWU. Then, we apply Cheeger rounding to find a set S in such that ψ⃗π(S) ≲
√
ψ⃗π(G) log

dmax

ψ⃗π(G)

as guaranteed by [LTW23]. To round the ℓ1 program, we use flow rounding by applying Lemma 6.9
to attain an almost-linear runtime.

6.2 Directed Hypergraph Expansion

An edge-capacitated directed hypergraph H = (V,E,w) consists of a set E of weighted directed
hyperedges over vertex set V . For each edge e ∈ E, e = (He, Te) where He, Te ⊆ V are the head
sets and tail sets in e respectively, and w(e) is its weight. Given such a graph over vertex weights
π : V → R+, let S ⊂ V be a nonempty subset of vertices. The set of out-neighbours of S is defined
as δ+(S) := {e ∈ E : Te ∩ S ̸= ∅ and He ∩ Sc ̸= ∅}, and the directed hypergraph expansion ϕ⃗π(S)
and ϕ⃗π(H) are defined as

ϕ⃗π(S) :=
min(w(δ+(S)), w(δ+(S)))

min(π(S), π(S))
and ϕ⃗π(H) := min

∅≠S⊂V
ϕ⃗π(S).

Note that this captures expansion in undirected hypergraphs by taking He = Te for each e ∈ E,
and also directed expansion in ordinary graphs by constraining |He| = |Te| = 1.

We again derive our SDP by adding ℓ22 triangle inequalities to the reweighted eigenvalue program
for directed hypergraphs. Although the program is not readily available in [LTW23], its derivation
follows the same idea of reducing to the simple case of undirected edge expansion in ordinary
graphs, via edge-constrained circulations on the clique graph. Concretely:

Definition 6.11 (Directed Hypergraph Reweighted Eigenvalue with Triangle Inequalities). Given
an edge-capacitated directed hypergraph H = (V,E,w) over vertex weights π : V → R+. Let

F(H) :=

{
F : V × V → R≥0

∣∣∣∣∃{Fe : He × Te → R≥0}e∈E s.t. F (i, j) =
∑

e:i∈He,j∈Te

Fe(i, j),∑
i∈He,j∈Te

Fe(i, j) ≤ w(e) ∀e ∈ E,

∑
i∈V

F (i, j) =
∑
k∈V

F (j, k) ∀j ∈ V

}
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be the set of feasible circulations on H. The λ∆π (H) program for directed hypergraph expansion is

λ∆π (H) := min
v1,...,vn∈Rn

max
F∈Fh(H)

∑
i<j

1

2
(F (i, j) + F (j, i)) ∥vi − vj∥2

subject to
∑
i∈V

π(i) · vi = 0⃗∑
i∈V

π(i) · ∥vi∥2 = 1

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V.

The intuition for defining feasible circulations on directed hypergraphs this way is that they cor-
respond to Eulerian reweightings of an underlying “clique graph” KH of the directed hypergraph
H, where for each edge (He, Te), we add an arc ij from every i ∈ He to j ∈ Te. The definition

λ△π (H) is a natural one for various reasons. First, it can be shown that λ△π (H) is a relaxation
of ϕ⃗π(H). Second when H is an undirected hypergraph and π is the total weighted degree, i.e.

He = Te, ∀e ∈ E, and π(i) =
∑

e∋iw(e), then λ
△
π (H) is exactly the reweighted eigenvalue program

for undirected hypergraphs as defined in [LTW23, Section 5.1] but with ℓ22 triangle inequalities.
Third, (iii) just as our program for directed graphs is a relaxation of the SDP in [ACMM05], this
program is a relaxation of the SDP in [CS18]. Note also that λ∆π for ordinary graphs may be
considered a special case of Definition 6.11.

Again, our main results for edge expansion extend to hypergraph expansion.

Theorem 6.12 (Hypergraph Integrality Gap). Let H = (V,E,w) be an edge-capacitated directed
hypergraph with vertex weights π : V → R+. Then we have

λ∆π (H) ≲ ϕ⃗π(H) ≲
√

log n · λ∆π (H)

Theorem 6.13 (Fast O(
√
log n) Approximation to ϕ⃗π(H)). For small enough ϵ > 0, there is

a randomized algorithm that, given any edge-capacitated directed hypergraph H = (V,E,w) over
vertex measure π : V → R+, uses Õ(n3ϵ) directed max-flow computations to compute a cut S ⊆ V ,

such that ϕ⃗π(S) ≲
√

logn
ϵ · λ∆π (H) with constant probability.

Proposition 6.14 (Hypergraph Dual Certificate). Given a hypergraph H = (V,E,w) with vertex
weights π : V → R+, there exists a feasible circulation F ∈ Fh(H) such that:

ϕπ(F ) ≳
ϕ⃗π(H)√
log n

.

We can also define a cut-matching game for directed hypergraphs, where the matching player
is required to return an Eulerian subgraph of the clique graph KH satisfying the indegree and
outdegree constraints as in Algorithm 8.

Theorem 6.15 (Cut Matching Game for Directed Hypergraph Expansion). In the cut-matching
game for directed hypergraphs, there is a cut player strategy so that, in O(log2 n) iterations, the
union of the matchings played by the matching player is a feasible circulation on H with hypergraph
expansion Ω(log n).
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The key for obtaining these results is to relate hypergraph expansion of H to the edge expansion
of an ordinary derived graph GH as in [CS18], which we present here for completeness.

Definition 6.16 (Derived Graph of Directed Hypergraphs [CS18, Fact 1.1]). Let H = (V,E,w)
be an edge-capacitated directed hypergraph over vertex weights π : V → R+. The derived graph
GH = (V ′, E′, w′) over vertex weights π′ : V ′ → R+ is defined as follows:

• V ′ := V ∪ {iine : e ∈ E} ∪ {ioute : e ∈ E}

• E′ := {(j, iine ) : j ∈ He, e ∈ E} ∪ {(iine , ioute ) : e ∈ E} ∪ {(ioute , k) : k ∈ Te, e ∈ E}

• w′(j, iine ) = w′(ioute , k) = ∞ and w′(iine , i
out
e ) = w(e) for all e ∈ E, (j, k) ∈ He × Te

• π′(i) = π(i) for all i ∈ V , and π′(iine ) = π′(ioute ) = 0 for all e ∈ E.

From [CS18, Fact 1], there is a correspondence between subsets S ⊆ V and S′ ⊆ V ′ so that
ϕ⃗π(S) ∼ ϕ⃗π′(S′). Therefore, if we perform a black-box reduction from ϕ⃗π(H) to ϕ⃗π′(GH), we
obtain Theorem 6.13, Theorem 6.15, and Proposition 6.14, although the approximation guarantees
using this approach degrade to O(

√
log(n+m)) or O(log(n+m)) (since |V ′| = Θ(n+m)), which

are worse when m = ω(poly(n)).

To obtain these results in full, one needs to derive hypergraph analogues of Lemma 3.1, and of
the algorithms in Section 4 and Section 5.2. To this end, the key modification is to replace the
bidirectional max-flow algorithm in Algorithm 2 by its hypergraph counterpart, and we may leave
the other components essentially unchanged. We will need to define flows on hypergraphs H and
obtain a hypergraph version of min-cut-max-flow theorem, and this is achieved by considering flows
and cuts on the derived graph GH :

1. Given L,R, a partition of V , we add vertices {s, t} to GH with s connected to L and t
connected to R as in Algorithm 2 and maximum s− t and t− s flows.

2. Each flow path is of the form (s, j1, i
in
e1 , i

out
e1 , j2, i

in
e2 , i

out
e2 , . . . , jℓ, t), where (jt, jt+1) ∈ Het × Tet

for all 1 ≤ t ≤ ℓ − 1. It corresponds to the flow path (s, j1, j2, . . . , jℓ, t) in the respective s-t
flow problem in the clique graph KH . One can then check that bidirectional flows on GH
correspond to Eulerian reweightings on KH , i.e. feasible circulations on H.

3. The min-cut-max-flow theorem yields an s-t cut in GH . Since w′(j, iine ) and w′(ioute , k) are
large, the cut edges will only be in one of the following types: (s, j), (j′, t), or (iine , i

out
e ) (where

j, j′ ∈ V ). Thus, we derive a hypergraph version of Lemma 3.3, whose proof follows closely
that of the original version. Consequently, we obtain a hypergraph version of Lemma 3.1.

Thus, the overall idea for generalizing our arguments for directed graphs to directed hypergraphs
is to use the derived graph GH to compute bi-directional flows. Then we can either find a directed
sparse cut or many feasible circulations in F(H), whose average can be used to certify that ϕ⃗π(H)
is large through MMWU.

Finally, we will give the following generalization of Theorem 1.6 to undirected hypergraph conduc-
tance, improving on the runtime of the algorithm in [LTW23, Section 5]. Recall that for undirected
hypergraphs, He = Te for all e ∈ E.
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Theorem 6.17 (Hypergraph Fast Cheeger-type Rounding). Given an edge-capacitated undirected
hypergraph H = (V,E,w) with vertex weights π(i) =

∑
e:i∈He

w(e), there is an almost-linear time

algorithm to obtain a set S ⊆ V such that ϕπ(S) ≲
√
ϕπ(G) · log r, where r := maxe |He| is the

maximum edge size of H.

The proof of Theorem 6.17 is analogous to that for vertex expansion, except that this time, it
suffices to use threshold rounding as in [LTW23], which can be done in linear time.

We remark that by using the directed hypergraph metric rounding lemma outlined before, as well
as a version of Lemma 3.3 for directed hypergraphs, a fast Cheeger-type rounding algorithm exists
for directed hypergraphs, with the guarantee that

ϕ⃗π(S) ≲

√
ϕ⃗π(G) · log

r

ϕ⃗π(G)
.

This would necessitate a Cheeger inequality for directed hypergraphs, which is not available in
[LTW23] but follows readily from their technique.

7 Summary

In this paper, we have given a unifying approach for generalizing all the major approximation algo-
rithms for undirected edge expansion to other settings, including directed edge expansion, directed
vertex expansion and directed hypergraph expansion. These algorithms may be summarized in a
one-sentence formula: use flows to implement an MMWU algorithm for solving a reweighted eigen-
value program or playing a cut-matching game. Such short formula either recovers or improves all
relevant past results.

On the practical side, it is worth noting that the algorithms presented in this paper are almost-
linear time. While we have theoretical guarantee on their runtimes and approximation ratios, we
are curious about whether they may be implemented to find good sparse cuts in large graphs
quickly. Such implementation would bring these algorithms into the practical realm; in particular,
fast spectral algorithms for computing hypergraph sparse cuts would be useful in certain machine
learning applications, and fast algorithms for finding reweightings could be useful in graphical
neural networks for hypergraphs and directed graphs.

We believe our approach leaves much room for further research into graph partitioning problems.
Since multi-way graph partitioning has found many applications in clustering and classification, one
interesting open area of research is to design fast approximation algorithms for multi-way graph
partitioning and generalize it to the vertex, directed graph, and hypergraph settings. In [Yos19],
Yoshida recovered Cheeger-type inequalities for partitioning problems on all submodular functions,
which is more general than directed hypergraphs. Another open problem could be to use flows and
reweighted eigenvalues to obtain fast approximation algorithms for partitioning problems on more
general classes of submodular functions.
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A Missing Proofs of Section 3

Proof of Proposition 3.4. Let ∅ ̸= S ⊂ V . We construct an SDP solution to show that ξ(G) ≤
2ϕ⃗π(S). Consider the vector solution

vi :=

{
(a, 0, . . . , 0), if i ∈ S,

(b, 0, . . . , 0), otherwise .

where a, b ∈ R satisfies aπ(S) + bπ(Sc) = 0 and a2π(S) + b2π(Sc) = 1. Note that such (a, b) must
exist. A routine check reveals that all the constraints on vi are satisfied. It remains to show that

1

2

∑
ij∈E

F (i, j) ∥vi − vj∥2 ≤ 2ϕ⃗π(S) ∀F ∈ F(G).

Solving for a and b, we see that (a− b)2 = π(V )/π(S)π(Sc). Then,

1

2

∑
ij∈E

F (i, j) ∥vi − vj∥2 =
1

2

 ∑
i∈S,j∈Sc

+
∑

i∈Sc,j∈S

F (i, j)(a− b)2

= (F (S, Sc) + F (Sc, S)) · π(V )

2π(S)π(Sc)

≤ F (S, Sc) + F (Sc, S)

min(π(S), π(Sc))

≤ 2min(δ+(S), δ+(Sc))

min(π(S), π(Sc))
= 2ϕ⃗π(S),

where the last inequality uses the fact that F ∈ F(G) is an Eulerian reweighting, so that F (S, Sc) =
F (Sc, S) ≤ min(w(δ+(S)), w(δ+(Sc))). This finishes the proof that λ∆π (G) ≤ 2ϕ⃗π(G).

Proof of Lemma 3.5. The algorithm for the unweighted version in Theorem 2.2 proceeds as follows.
Let σ > 0 be a suitable absolute constant. First, choose a random direction u ∼ Sn−1 ⊆ Rn, and
order the vertices i by ⟨vi, u⟩. Second, if the median value is M , set L to be the set of vertices i
such that ⟨vi, u⟩ ≥ M + σ/

√
n, and set R to be the set of vertices i such that ⟨vi, u⟩ < M . Third,

while there are pairs (i, j) ∈ L×R such that ∥vi − vj∥2 < ∆ = Θ(1/
√
log n), remove i from L and

j from R. If |L| ≥ Ω(n) and |R| ≥ Ω(n), then the procedure successfully finds two large subsets
that are at least ∆ ≥ Ω(1/

√
log n) ℓ22-distance apart. Refer to [ARV09] for complete details.

To prove the π-weighted version in Lemma 3.5, we do a reduction to the unweighted case. Recall
the assumption that π(V ) = 1. Let K ∈ N such that K ·mini∈V π(i) ≥ 1/2, and let π′(i) := ⌈Kπ(i)⌉
for i ∈ V . We may further assume that mini∈V π(i) ≥ Ω(1/poly(n)) (vertices with smaller measure
may be ignored), so that K ≤ O(poly(n)). Create π′(i) copies of vi and feed the embedding to
the unweighted algorithm. Note that the embedding consists of Θ(K) vectors. In the end of the
unweighted algorithm, w.h.p. the output sets L and R will have size Θ(K) each, and they will be
at least Ω(1/

√
log n) ℓ22-distance apart.
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Note that if one copy of vi is in either of the output set, we may include all copies of vi in that
output set, without affecting the distance between L and R. Then, the π-measure of vertices in L
will be at least ∑

i∈L
π(i) ≥

∑
i∈L

π′(i)

2K
= |L|/2K ≥ Ω(1);

same for R. We have proved that w.h.p. π(L), π(R) ≥ Ω(1). The runtime is polynomial in the
number of vectors which is Θ(K), and hence polynomial in n.

To get rid of the K-dependence in the runtime, we may modify the unweighted algorithm as
follows: In the second step, compute the weighted median. In the third step, instead of removing
both vertices i and j, subtract min(π(i), π(j)) from both π(i) and π(j), and remove the vertex
whose π-measure drops to zero.

Proof of Fact 3.7. Direct calculation gives∑
i,j∈V

π(i)π(j) ∥vi − vj∥2 =
∑
i,j∈V

π(i)π(j)
(
∥vi∥2 + ∥vj∥2 − 2⟨vi, vj⟩

)

= 2

(∑
i∈V

π(i)

)∑
j∈V

π(j) ∥vj∥2
− 2

∥∥∥∥∥∑
i∈V

π(i)vi

∥∥∥∥∥
2

= 2 · 1− 2 · 0 = 2.

Proof of Lemma 3.8. Direct calculation gives

2 =
∑
i,j∈V

π(i)π(j)d(i, j)

≤ s2
∑
i,j∈V

π(i)π(j)
[
d(i, L) + diam(L) + d(j, L)

]
= s2(π(V )2diam(L) + 2π(V ) ·

∑
j∈V

π(j)d(j, L))

= s2(diam(L) + 2 ·
∑
j∈R

π(j)d(j, L)),

where the inequality comes from applying the s-relaxed triangle inequality twice and the last
equality uses π(V ) = 1. Rearranging gives the desired result.

B Missing proofs of Section 4

Proof of Proposition 4.3. We will make use of [Kal07, Lemma 5], which we will restate as follows:
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Lemma B.1 ([Kal07, Lemma 5]). Given a set of embedding vectors v1, . . . vn such that
∑

i,j ∥vi − vj∥2 >
4n2/5. Then one of the two cases hold:

• There is a node i such that |B(i, 1
2
√
10
)| > n/4

• There is a set of nodes S ⊆ V and an i0 ∈ S such that ∀i ∈ S, ∥vi − vi0∥
2 = O(1) and∑

i,j∈S ∥vi − vj∥2 = Ω(n2)

Note that this immediately implies Proposition 4.3 in the case where π is uniform. For general π,
suppose we re-scale π so that for each i, π(i) is an integer. Then we have

∑
i,j π(i)π(j) ∥vi − vj∥2 =

π(V )2. We define a new set of vertices V ′ with |V ′| = π(V ) with embedding vectors w : V ′ → Rn.
In particular, we replace each i ∈ V with π(i) vertices in V ′ each embedded at the point vi. Then

we have
∑

i′,j′∈V ′

∥∥wi′ − wj′
∥∥2 =

∑
i,j∈V π(i)π(j) ∥vi − vj∥2 = π(V )2. Now, by applying [Kal07,

Lemma 5], we must have one of the following two cases

• There is a vertex i′ ∈ V ′ such that |{j′ :
∥∥wj′ − wi′

∥∥ ≤ 1
2
√
10
}| > π(V )/4 which means there

is a i ∈ V such that π(B(i, 1
2
√
10
)) > π(V )/4

• There is a set of nodes S′ ⊆ V ′ and an i′0 ∈ S such that ∀i′ ∈ S′,
∥∥∥wi′ − wi′0

∥∥∥2 = O(1) and∑
i′,j′∈S′

∥∥wi′ − wj′
∥∥2 = Ω(π(V )2). This means there is a set of nodes S ⊆ V and an i0 ∈ S

such that ∀i ∈ S, ∥vi − vi0∥
2 = O(1) and

∑
i,j∈S π(i)π(j) ∥vi − vj∥2 = Ω(π(V )2)

proof of Lemma 4.11. We will prove the theorem via a simple reduction to [Kal07, Lemma 14],
which we will state as follows:

Lemma B.2 ([Kal07, Lemma 14]). Suppose there are vectors v1, . . . , vn such that ∥vi∥2 ≤ 1 for
each i and

∑
i,j ∥vi − vj∥2 ≥ an2 for some constant a. Let c ≤ a/256. Then with probability 8c

over u, There exists sets L, R, of size at least 2cn such that for each i ∈ L and j ∈ R, we have
⟨vj − vj , u⟩ ≥ σ.

Now suppose we re-scale π so that for each i, π(i) is an integer. Then we have
∑

i,j π(i)π(j) ∥vi − vj∥2 ≥
aπ(V )2 for some constant a. We define a new set of vertices V ′ with |V ′| = π(V ) with embedding
vectors w : V ′ → Rn. In particular, we replace each i ∈ V with π(i) vertices in V ′ each embedded

at the point vi. Then we have
∑

i′,j′∈V ′

∥∥wi′ − wj′
∥∥2 =∑i,j∈V π(i)π(j) ∥vi − vj∥2 ≥ aπ(V )2. Then,

applying [Kal07, Lemma 14], we have that with probability at least 8c over u ∼ N(0, I), two sets
L′, R′ ⊆ V ′, each of size at least 2cπ(V ) such that for all i ∈ L′, j ∈ R′, ⟨vj − vi, u⟩ ≥ σ. This
implies that there exist L,R ⊆ V such that π(L), π(R) ≥ 2cπ(V ).
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B.1 Sherman Main Theorem

First, we will formally define the distribution used in Theorem 4.9. In the statement of the theorem,
the distribution is over K vectors u1, . . . , uK for some K = O(

√
log n). The explicit distribution

is over a shuffling of independent Gaussian vectors and correlated Gaussian vectors as defined in
section 5.4.1 of [She09].

Definition B.3. (correlated sequence of Gaussian vectors) Let N k
ρ be a distrbution over vectors

u1, . . . , uk ∈ Rd such that each ui has distribution N (0, Id), and ui+1 is ρ-correlated with ui. In
particular, if we define the matrix U ∈ Rk×d with Ui,j = ui(j), then each column of the matrix,
(u1(i), ...uk(i)), is a k-dimensional multivariate normal distribution with covariance matrix Σa,b =
ρ|a−b|, and the d columns are mutually independent.

To prove Theorem 4.9, we first note that it is invariant under scaling of π, which means we once
again assume WLOG that π(i) is an integer for each i. Once again, we apply the reduction in
which we have a set of π(V ) vertices, call it V ′, and for each i ∈ V , we embed π(i) vertices in
V ′ at the point vi. Given the π-fractional matching cover M, we can define a matching cover M′

over V ′ as follows. Given a vector u, for each i, j ∈ V × V , we add Mu(i, j) edges between the
corresponding vertices at vi and vj in V ′. Clearly, M′ is a (σ, δ) matching cover V ′. The idea
of Sherman’s original argument was to show that if k matchings chained together does not give
many paths between vertices i, j such that ∥vi − vj∥2 ≥ l, then there is a vertex i such that with
constant probability over random vectors u ∼ N (0, I), we have ⟨vj − vi, u⟩ ≥ Ω(kσ) for some j
such that ∥vi − vj∥2 ≤ l. Then he shows that for large enough k (in particular k ≈

√
l log n), the

probability of the later event happening cannot be Ω(1) by union bounding over all i, j pairs. In
our case, even though we have π(V ) points, there are still only n distinct positions so it still suffices
to union bound over n points instead of π(V ) points. For completeness, we will give the details of
the argument in the rest of the section.

Sherman defines a uniform (σ, δ)-matching cover [She09, Definition 5.4.1] as a (σ, δ)-matching
cover in which each vertex has at least a δ probability of having out-degree 1 in the matching.
By iteratively pruning vertices V ′ whose probability of being matched is less than δ/4, we obtain
X ⊆ V ′ of size at least π(V )/4 such that M′ is a (σ, δ/4)-uniform matching cover over X.

Definition B.4. Given a distribution D over vectors u1, . . . , uk, and a matching-cover over the
vertices X, a vertex i is (σ, δ, γ, l)−covered, by D if with probability at least δ over a random
Gaussian u ∼ N (0, I),

Pr
u2,...,uk

[∃j ∈ B(i, l) : (i, j) ∈ M′(D), ⟨vj − vi, u⟩ ≥ σ|u1 = u] ≥ γ (B.1)

Now, we will use the following lemma from [She09]:

Lemma B.5 ([She09, Lemma 5.4.8]). Let M′ be a (σ, δ)-uniform matching cover of X where
δ ≤ 1/16. Let l ≤ σ/27

√
log(1/δ) and k ≥ 1. Then one of the following must occur:

1. There are distributions D0, . . . ,Dk such that for every b ≤ k, at least δ6b|X| vertices are
(bσ/4, δ8, δ56bk,

√
l)-covered in M′(Db)
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2. There is a efficiently sample-able distribution D∗ such that at least δ6k|X| vertices i have at
least δ59k

2
probability of having an out-going edge to some j ∈ i\B(i, l) in M′(D∗). Further-

more, D∗ is a shuffling of N k′

1−1/k with N k′′
0 for some k′ ≤ k and k′′ ≤ 6k.

To show that case 1 cannot hold for too many rounds, we will use the following lemma

Lemma B.6. Let M′ be any matching cover for X and γ > 0. There are no vertices i ∈ X that
are (

√
2l log (n/δ), δ, γ,

√
l)-covered by M(D)

Proof. Let i ∈ X be arbitrary, and let j ∈ B(i, l). This means ∥vj − vi∥2 ≤ l. Then by Fact 5.2,
we have

Pr
u
[⟨vj − vi, u⟩ ≥

√
2l log (n/δ)] ≤ exp(− log (n/δ))

Since there are at most n distinct embedding positions in X, the probability over u1 that there
is any j ∈ B(i, l) such that ⟨vj − vi, u1⟩ ≥ l

√
2 log (n/δ) is at most (n − 1)δ/n. In this case, the

conditional probability in (B.1) must be 0, which is less than γ, for greater than 1 − δ fraction of
u1.

Proof of Theorem 4.9. For any constant l, if k ≥ C
√
l log n for some constant C, then case 1 of

Lemma B.5 would imply that there is some x ∈ X that contradicts Lemma B.6. Thus, we must be
in case 2 for some k < C

√
l log n. This means that for some distribution D∗, the expected number of

edges inM′(D∗) between vertices i, j ∈ X such that ∥vi − vj∥2 ≥ l is at least e−O(k2)|X|. Finally, we
note that w paths between vertices embedded at vi and vj in M′(u1, . . . , uk) correspond to a path of
weight w between i and j inM. Moreover, the algorithm for constructing Pu1,...,uk inM(u1, . . . , uk)
is equivalent to the natrual algorithm chaining together 0/1-matchings in M′(u1, . . . , uk). Thus,
the expected total weight of paths in Pu1,...,uk between vertices i, j at distance at least l apart is at

least eO(−k2)π(V ).

Finally, we note that while our distribution D∗ is a shuffling of N k′

1−1/k and N k′′
0 , we have not yet

given a way to find the correct ordering. However, since k′ + k′′ = O(
√
l log n), the total number

of sequences is at most O(
√
l log n!) = no(1). Thus, if we pick a random shuffling, the probability

that it will be the correct ordering is n−o(1). Thus, after taking into account the randomness over
shuffling orders, the expected total weight of paths between vertices i, j at distance at least l apart
is at least n−o(1)eO(−k2)π(V ) = e−O(k2)π(V ) since k2 = Θ(l log n).

B.2 Matrix Exponential

In this section, we give details on how to implement the matrix exponential step in algorithms 6, 3
and 7 and prove Lemma 4.18. Given feedback matrices M1, . . . ,Mt, such that ∥Mi∥ ≤ ρ for each
i ∈ [t], we would like to approximately compute the Gram decomposition of the matrix

Yt =
Π−1/2 exp(−η

ρ

∑t
i=1Mi)Π

−1/2 −Π1/2
11

⊤Π1/2

tr(exp(−η
ρ

∑t
i=1Mi))− 1
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Note in particular that if we take A = η
ρ

∑t
i=1Mi, then it suffices to compute the rows of the

matrix exp(−1
2A)Π

−1/2 projected into the space orthogonal to Π1/2
1. Since computing the matrix

exponential exactly is costly, we will instead compute a low-dimensional approximation of its rows
by multiplying the matrix with random vectors and applying the Johnson-Lindenstrauss lemma.
Thus, the problem of computing the embedding vectors reduces to the problem of computing
exp(S)u for some vector u and symmetric matrix S. For our purpose, it suffices to compute the
first terms in the Taylor expansion of the matrix exponential.

Lemma B.7 ([Kal07, Lemma 23]). Given a symmetric matrix S and a unit vector u, let v =∑k
i=0

1
i!S

iu. If k ≥ max(e2 ∥S∥ , ln 1
τ ), then v satisfies

∥exp(S)u− v∥ ≤ ∥exp(S)∥ τ

Moreover, the time it takes to compute v is O(km) where m is the number of non-zero entries in
S.

Given the previous result, we can give the algorithm for computing the matrix exponential based
on [Kal07, Section 4.7]. However, there are two modifications we must make. First, to take into
account the π vertex weights, we let πmin = mini π(i), and we will show that it suffices to take
τ = πmin/poly(n). Second, we must take into account the projection into the subspace orthogonal
to Π1/2

1, which is the exactly the nullspace of A. We will call this subspace U⊥
π , and for a matrix

M , we will define the matrix M |U⊥
π

as the matrix whose columns are those of M projected into

U⊥
π . We can then modify Lemma B.7 as follows:

Lemma B.8. Let u be a unit vector in U⊥
π , and let v be the vector obtained from applying the Taylor

approximation in Lemma B.7 for k = max(e2 ∥A∥ , ln 1
τ ) iterations to the matrix exp(−1

2A)u. In in

Õ(ρm) time, we can ensure that∥∥∥∥exp(−1

2
A)
∣∣∣
U⊥
π

u− v

∥∥∥∥ ≤
∥∥∥∥exp(−1

2
A)
∣∣∣
U⊥
π

∥∥∥∥ τ
Proof. Let P ∈ Rn×n−1 be a semi-unitary matrix mapping U⊥

π to Rn−1. Note that this means
P⊤P = In−1 and for any x ∈ U⊥

π , we have PP⊤x = x. Since u ∈ U⊥
π , we have exp(−1

2A)u =
exp(−1

2A)|U⊥
π
u. Moreover, the Tayler approximation v is also in U⊥

π , which means∥∥∥∥exp(−1

2
A)
∣∣∣
U⊥
π

u− v

∥∥∥∥ =

∥∥∥∥P⊤ exp(−1

2
A)
∣∣∣
U⊥
π

u− P⊤v

∥∥∥∥
=

∥∥∥∥P⊤ exp(−1

2
A)
∣∣∣
U⊥
π

PP⊤u− P⊤v

∥∥∥∥
=

∥∥∥∥P⊤ exp(−1

2
A)PP⊤u− P⊤v

∥∥∥∥
=

∥∥∥∥exp(−1

2
P⊤AP )P⊤u− P⊤v

∥∥∥∥
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where the last equality follows from the fact that Range(A) ∈ U⊥
π , which means (P⊤AP )i = P⊤AiP

for any i. Finally, we check that

P⊤v = P⊤
k∑
i=1

(−1)i

2ii!
AiPP⊤u =

k∑
i=1

(−1)i

2ii!
(P⊤AP )iP⊤u

Thus, we can apply Lemma B.7 with S = −1
2P

⊤AP and the input unit vector being P⊤u to obtain∥∥∥∥exp(−1

2
P⊤AP )P⊤u− P⊤v

∥∥∥∥ ≤
∥∥∥∥exp(−1

2
P⊤AP )

∥∥∥∥ τ =

∥∥∥∥exp(−1

2
A)
∣∣∣
U⊥
π

∥∥∥∥ τ
Finally, to bound the runtime, we see that it suffices to take k = max(e2

∥∥P⊤AP
∥∥ , ln (1/τ)). We

can bound the matrix norm by ∥A∥ since P is unitary. Since each Mt has spectral norm at most ρ,
we have ∥A∥ ≤ ηT . In algorithms 6 and 7, we have η = O(1) and T = O(log3 n) and in algorithm
3, we have, η = 1/ρ and T = O(ρ2 log n). Thus, in the worst case, we have ∥A∥ ≤ Õ(ρ).

Now, we are ready to give our algorithm for approximating the matrix exponential:

Algorithm 10 Matrix Exponential

Input: a symmetric matrix: A = η
ρ

∑t
i=1Mi, embedding dimension d, and accuracy parameter τ

1. Let U be a n × d matrix whose d columns form an orthogonal basis of a random d =
O(log n)−dimensional subspace orthogonal to the vector Π1/2

1 with each column vector hav-
ing length

√
n/d. Let U1 be another random matrix defined similarly but whose columns are

orthogonal to the vector 1 instead.

2. Pick k ≥ Ω(max(ρ, log (1/τ))). Compute Zπ =
∑k

i=0
(−1)i

2ii!
AiΠ−1/2U1 and Z =

∑k
i=0

(−1)i

2ii!
AiU

3. Let v̂1, . . . v̂n be the rows of the matrix Zπ/
√
tr(ZZ⊤). Return these as the approximate

embedding vectors.

For the sake of analysis, we will define the following matrices: let Wπ := exp(−1
2A)Π

−1/2U1 =

exp(−1
2A)|U⊥

π
Π−1/2U1 and let W := exp(−1

2A)|U = exp(−1
2A)|U⊥

π
U . Note the second equalities

follow from the fact that the columns of U and Π−1/2U1 are in U⊥
π . By applying the Johnson

Lindenstrauss lemma, we can show that with good probability, the rows of the matrix Wπ and W
are good approximations to those of the matrix exponential.

Lemma B.9 (Johnson-Lindenstrauss Lemma ([JL84]) ). Let xπ1 , . . . x
π
n and x1, . . . xn be the rows

of the matrices exp(−1
2A)|U⊥

π
Π−1/2 and exp(−1

2A)|
⊥
Uπ

respectively. Let rπ1 , . . . r
π
n and r1, . . . rn be

the rows of the matrices Wπ and W respectively. For some d = O( 1
δ2

log n), we have that with
probability 1− n−1 ∥∥rπi − rπj

∥∥2 ∈ ∥∥xπi − xπj
∥∥2 (1± δ) ∀i, j ∈ V

∥ri∥2 ∈ ∥xi∥2 (1± δ) ∀i ∈ V
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The following lemma shows that our approximations of W and Wπ are also good for some τ =
1/poly( n

πmin
)

Lemma B.10. Let Y ′ := WπW
⊤
π / tr(WW⊤) and Y ′′ = ZπZ

⊤
π / tr(ZZ

⊤). Suppose W satisfies
tr(WW⊤) ∈ tr(exp(−A)|U⊥

π
)(1± δ) for δ ≤ 1/5. Then for small enough τ ∈ 1/ poly( n

πmin
), we have∥∥Y ′′ − Y ′∥∥ ≤ O(π−1

minn
3/2) · τ

proof sketch. The proof of this lemma follows very closely to the proof of [Kal07, Lemma 25] so we
will only sketch out the details. First, we define the error matrices Eπ =Wπ−Zπ and E =W −Z.
Let wπ1 , . . . w

π
d and zπ1 . . . z

π
d be the columns of the matricesWπ and Zπ respectively. By Lemma B.8,

we have

∥Eπ∥2 ≤ ∥Eπ∥2F =

d∑
i=1

∥wπi − zπi ∥
2 ≤ dπ−1

min

∥∥∥∥exp(−1

2
A)|U⊥

π

∥∥∥∥2 τ2 ≤ dπ−1
min

∥∥∥exp(−A)|U⊥
π

∥∥∥ τ
Note that the second inequality follows from the fact that if u is a unit vector orthogonal to 1, then

Π−1/2u is a vector of length at most π
−1/2
min orthogonal to Π1/2

1. Similar calculations show that

||E||2 ≤ d
∥∥∥exp(−A)|U⊥

π

∥∥∥ τ2. Using the E and Eπ, matrices, we can bound the following matrix

distances ∥∥∥WπW
⊤
π − ZπZ

⊤
π

∥∥∥ =
∥∥∥EπE⊤

π + EπV
⊤
π + VπE

⊤
π

∥∥∥ ≤ 3dπ−1
min

∥∥∥exp(−A)|U⊥
π

∥∥∥ τ (B.2)

And similar calculations show that

| tr(WW⊤ − ZZ⊤)| = | tr(EE⊤ + EV ⊤ + V E⊤)| ≤ 3d3/2
∥∥∥exp(−A)|U⊥

π

∥∥∥ τ (B.3)

Thus, we have

∥∥Y ′ − Y ′′∥∥ ≤
∥∥∥∥ WπW

⊤
π

tr(WW⊤)
− WπW

⊤
π

tr(V V ⊤)

∥∥∥∥+ ∥∥∥∥ WπW
⊤
π

tr(V V ⊤)
− VπV

⊤
π

tr(V V ⊤)

∥∥∥∥
≤
∥∥WπW

⊤
π

∥∥
tr(WW⊤)

· | tr(WW⊤ − tr(ZZ⊤))|
tr(ZZ⊤)

+

∥∥WπW
⊤
π − ZπZ

⊤
π

∥∥
tr(ZZ⊤)

≤ π−1
min ·

3d3/2
∥∥∥exp(−A)|U⊥

π

∥∥∥ τ
tr(ZZ⊤)

+
3dπ−1

min

∥∥∥exp(−A)|U⊥
π

∥∥∥ τ
tr(ZZ⊤)

≤
6π−1

mind
3/2
∥∥∥exp(−A)|U⊥

π

∥∥∥ τ
(1− δ − 3d3/2τ)

∥∥∥exp(−A)|U⊥
π

∥∥∥ τ
≤ 8d3/2π−1

minτ

where the third inequality follows from bounds B.2, B.3 and WπW
⊤
π ≼ π−1

minWW⊤, and the fourth

inequality follows from tr(WW⊤) ∈ (1± δ)
∥∥∥exp(−A)|U⊥

π

∥∥∥ and B.3.
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Finally, we are ready to proof Lemma 4.18.

Proof of Lemma 4.18. Suppose we pick τ = πmin/n. By Lemma B.9, with probability at least
1− d/n, we have that for all i, j ∈ V

∥vi − vj∥2 =

∥∥∥xπi − xπj

∥∥∥2∑
i ∥x∥

2 ∈

∥∥∥rπi − rπj

∥∥∥2 (1± δ)∑
i ∥ri∥

2 (1± δ)
= ⟨Li,j , Y ′⟩(1± 2δ)

and in particular, W satisfies tr(WW⊤) =
∑

i ∥r∥
2
i ∈ (1 ± δ)

∑
i ∥xi∥

2 = tr(exp(−A)|U⊥
π
)(1 ± δ).

Thus, Lemma B.10 implies that

|⟨Li,j , Y ′⟩ − ⟨Li,j , Y ′′⟩| ≤ 2
∥∥Y − Y ′′∥∥ ≤ 1/n−c+3/2

Since ⟨Li,j , Y ′′⟩ = ∥v̂i − v̂j∥2, we have that ∥v̂i − v̂j∥2 ∈ ∥vi − vj∥2 (1 ± 2δ) ± n−Ω(1). Finally

Lemma B.8 implies that the runtime of Algorithm 10 is Õ(ρm).

B.3 Fast Computation of Maximum Circulation

Recall that our main program in Definition 1.2 is to minimize the maximum edge-constrained
circulation over all feasible embeddings v1, . . . , vn. We remark that the inner maximization problem

max
F∈F(G)

∑
i<j

1

2
(F (i, j) + F (j, i)) ∥vi − vj∥2

is a special case of the minimum-cost flow in [CKLPPS22], each edge e = ij having lower edge
capacity 0, upper edge capacity w(e), and cost −∥vi − vj∥2 (so that it becomes a maximization
problem), and each vertex i having demand d(i) = 0. Therefore, this problem can be computed in
O(m1+o(1)) time.

C Missing proofs of Section 6

Proof of Lemma 6.10. Suppose f⃗ is the non-saturating flow. We obtain a cut which consists of
edges incident to either s or t and vertices of G, whose removal would make it impossible to go
from s to t. Let S ⊆ V be the set of vertices reachable from s after removing the cut edges and
vertices. Let Vs ⊆ L and Vt ⊆ R be defined similarly to the edge-capacitated case.

Let ν · β · π(R) be the max-flow value of f⃗ with ν < 1. Note that

κ · π(∂+(S)) = β(ν · π(R)− r · π(Vs)− π(Vt)),

because {si | i ∈ Vs} ∪ ∂+G(S) ∪ {jt | j ∈ Vt} is the minimum s-t cut obtained, with total weight

equal to r · β · π(Vs) + β · π(Vt) + κ · π(∂+(S)) = ν · β · π(R) by our construction of G⃗. Also, since
L \ (Vs ∪ ∂+(S)) ⊆ S and R \ (Vt ∪ ∂+(S)) ⊆ V − S, it follows that

π(S) ≥ π(L)− π(Vs)− π(∂+(S)) and π(V − S) ≥ π(R)− π(Vt)− π(∂+(S)).
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Therefore,

1

ψ⃗π(S)
=

min{π(S), π(V − S)}
π(∂+(S))

≥ min{π(R)− π(Vt)− π(∂+(S)), π(L)− π(Vs)− π(∂+(S))}
π(∂+(S))

=
κ

β
· min{π(R)− π(Vt), π(L)− π(Vs)}

ν · π(R)− r · π(Vs)− π(Vt)
− 1

≥ κ

β
·min

{
π(R)− π(Vt)

π(R)− π(Vt)
,

π(L)− π(Vs))

r · π(L)− r · π(Vs)

}
− 1

=
κ

β · r′
− 1,

where the last inequality is because ν < 1 and π(R) = r · π(L). Rearranging gives the desired
conclusion.
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