
Fast Algorithms for Directed Graph Partitioning Using
Flows and Reweighted Eigenvalues ∗

Lap Chi Lau†, Kam Chuen Tung‡, Robert Wang§

Abstract

We consider a new semidefinite programming relaxation for directed edge expansion, which is obtained
by adding triangle inequalities to the reweighted eigenvalue formulation. Applying the matrix multiplicative
weight update method on this relaxation, we derive almost linear-time algorithms to achieve O(

√
logn)-

approximation and Cheeger-type guarantee for directed edge expansion, as well as an improved cut-matching
game for directed graphs. This provides a primal-dual flow-based framework to obtain the best known
algorithms for directed graph partitioning. The same approach also works for vertex expansion and for
hypergraphs, providing a simple and unified approach to achieve the best known results for different expansion
problems and different algorithmic techniques.

1 Introduction

The main combinatorial quantity that we study in this work is the directed edge expansion with arbitrary vertex
weights.

Definition 1.1. (π-Weighted Directed Edge Expansion) Let G = (V,E,w) be a directed graph with edge
weights w : E → R+, equipped with vertex weights π : V → R+. For S ⊆ V , let δ+(S) := {ij ∈ E : i ∈ S, j /∈ S}
be the set of edges going out of S, and let δ−(S) = δ+(S). Let π(S) :=

∑
i∈S π(i) be the π-weight of S. The

π-weighted edge expansion of S ⊆ V and of the graph G are defined as

ϕ⃗π(S) :=
min{w(δ+(S)), w(δ−(S))}

min{π(S), π(S)}
and ϕ⃗π(G) := min

∅≠S⊂V
ϕ⃗π(S).

This is a general problem that encompasses various expansion problems studied in the literature. The directed
edge expansion problem is when π(i) = 1 for all i ∈ V , and this is equivalent (up to a factor of Θ(n) where n is
the number of vertices) to the directed sparsest cut of G

min
∅≠S⊂V

min{w(δ+(S)), w(δ+(S))}
|S| · |V \S|

studied in [1, 5, 19]. The directed edge conductance problem studied in [37, 23] is when π(i) = w(δ+(i))+w(δ−(i)),
the weighted total degree of vertex i. Clearly, the corresponding problems in undirected graphs as studied
in [6, 20, 5] can be reduced to Definition 1.1 by bidirecting the edges in the undirected graph. Also, the undirected
vertex expansion problem studied in [18, 29]1 and the directed vertex expansion problem studied in [23] can be
reduced to Definition 1.1 through a standard reduction of splitting each vertex into two. Furthermore, the
corresponding problems in undirected and directed hypergraphs can be reduced to Definition 1.1 through a
reduction of replacing each hyperedge by a vertex as shown in [10]. The main goal of this work is to design fast

algorithms for approximating ϕ⃗π.

∗The full version of the paper along with all omitted proofs can be accessed at https://doi.org/10.48550/arXiv.2306.09128
†Cheriton School of Computer Science, University of Waterloo. Supported by NSERC Discovery Grant.
‡Cheriton School of Computer Science, University of Waterloo. Supported by NSERC Discovery Grant.
§Cheriton School of Computer Science, University of Waterloo. Supported by NSERC Discovery Grant and Canada Graduate

Scholarship.
1To be precise, [18] studies “minimum ratio vertex cuts”, which is equivalent to undirected vertex expansion which we will define

in Section 6. They use “vertex expansion” to refer to a different quantity incomparable to ours.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited591

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

 https://doi.org/10.48550/arXiv.2306.09128

1.1 Previous Work Before presenting our results, we first review previous work on approximating various
graph expansion problem to provide the context of our work. We let n := |V | and m := |E| unless otherwise
specified.

1.1.1 Undirected Graphs The edge expansion, sparsest cut, and the edge conductance problems in undirected
graphs are central problems in approximation algorithms. These problems have a rich literature with various
techniques developed.

Spectral Method: Cheeger’s inequality [3, 2] provides a near-linear time algorithm to return a set S with
conductance λ2 ≲ ϕ(S) ≲

√
λ2 where λ2 is the second smallest eigenvalue of the normalized Laplacian matrix of

the graph.
Linear Programming: Leighton and Rao [24] gave an O(log n)-approximation algorithm for sparsest cut based

on linear programming. The dual problem of their linear program is to embed a complete graph into the original
graph using flows.

Semidefinite Programming: Arora, Rao, and Vazirani [6] gave a celebrated semidefinite programming
O(

√
log n)-approximation algorithm for sparsest cut. They introduced novel geometric ideas in analyzing the

triangle inequalities of the Goemans-Linial SDP relaxation. The dual problem of their semidefinite program
(SDP) is to embed an expander graph into the original graph using flows.

Cut-Matching Game: Developing the idea of expander flows in [6], Khandekar, Rao, and Vazirani [20]
introduced the cut-matching game as a combinatorial approach to obtain fast approximation algorithm for sparsest
cut. Orecchia, Schulman, Vazirani, Vishnoi [31] improved the analysis of cut-matching game to give an O(log n)-
approximation algorithm for sparsest cut using O(log3 n) undirected approximate max-flow computations. Since
then, the cut-matching game has become a useful algorithmic tool on its own, with interesting applications in
different problems [4, 12, 8, 15, 14, 7].

Primal-Dual Algorithms: Arora and Kale [5] developed a general primal-dual combinatorial approach to solve

SDPs based on the matrix multiplicative weight update (MMWU) method. Using this, they gave an Õ(n2)-
time O(

√
log n)-approximation algorithm for sparsest cut using O(log2 n) multi-commodity flow computations.

Notably, the cut-matching game in [31] can be interpreted as an instantiation of the matrix multiplicative weight
update method.

Almost Linear-Time Algorithm: Sherman [33] pushed the approach in [5] further to get the best of the

semidefinite programming approach and the combinatorial approach. He gave an O
(√

1
ϵ log n

)
-approximation

algorithm for sparsest cut using nO(ϵ) approximate max-flow computations, which implies an almost linear-time
O(

√
log n)-approximation algorithm for the problem.

1.1.2 Directed Graphs The corresponding problems for directed graphs are not as well-understood, particu-
larly in relation to fast algorithms.

Spectral Method: There was no known analog of Cheeger’s inequality for directed graphs until recently. Lau,
Tung, Wang [23] defined a “spectral” quantity (using semidefinite programming) called the reweighted eigenvalue

λ∗2, and showed that there is a polynomial-time algorithm to return a set S ⊆ V with λ∗2 ≲ ϕ⃗(S) ≲
√
λ∗2 log(1/λ

∗
2).

They left it as an open question to design a fast algorithm to return such a set.
Semidefinite Programming: Agarwal, Charikar, Makarychev and Makarychev [1] formulated an SDP using

directed semi-metrics, and extended the analysis in [6] to obtain O(
√
log n)-approximation algorithms for directed

sparsest cut, directed balanced separator and other related problems.
Cut-Matching Game: Louis [25] defined an analog of the cut-matching game in [20] for directed graphs,

and used it to obtain an O(log2 n)-approximation algorithm for directed sparsest cut using O(log3 n) max-flow
computations.

Primal-Dual Algorithms: Using the matrix multiplicative weight update method on the SDP formulation
in [1], Arora and Kale [5, 19] claimed an O(

√
log n)-approximation algorithm for directed sparsest cut with time

complexity O(n2+o(1)) plus O(log3 n) maximum flow computations. Chan and Sun [10] pointed out an issue (which
was acknowledged by Kale) in the trace bound in the analysis in [5], and consequently the number of iterations is

only bounded by Õ(n2) instead of Õ(1), and so the time complexity should be O(n4+o(1)) plus Õ(n2) maximum
flow computations. Therefore, even with the recent breakthrough [11] in maximum flow computations in directed
graphs, the time complexity of Arora-Kale’s algorithm remains Ω(n4) for directed sparsest cut. Moreover, unlike

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited592

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

for undirected graphs, the connection between the cut-matching game in [25] and the matrix multiplicative weight
update method is not known.

1.2 Our Results We consider a new semidefinite program for directed edge expansion based on the reweighted
eigenvalue formulation. Using the MMWU method on this new SDP, we improve the algorithmic results for
directed edge expansion, matching the corresponding results for undirected edge expansion.

1.2.1 Primal Formulation We consider a new SDP relaxation for directed edge expansion in Definition 1.1.
For undirected graphs, the SDP formulation in [6] can be understood as the spectral formulation for second
smallest Laplacian eigenvalue plus the ℓ22 triangle inequalities [35]. For directed graphs, our SDP formulation is
to use the spectral formulation for reweighted eigenvalue in [23] plus the ℓ22 triangle inequalities.

Definition 1.2. (Reweighted Eigenvalue with Triangle Inequalities) Given an edge-capacitated di-
rected graph G = (V,E,w), we say that F : E → R≥0 is a circulation2 on G if

∑
j:ij∈E F (i, j) =

∑
j:ji∈E F (j, i)

for all i ∈ V . We let F(G) be the set of all circulations on G that also satisfy the capacity constraints F (e) ≤ w(e)
for all e ∈ E. Given also vertex weights π : V → R≥0, the λ

△
π (G) program for directed edge expansion is

λ△π (G) := min
v1,...,vn∈Rn

max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2

subject to

n∑
i=1

π(i) · vi = 0⃗

n∑
i=1

π(i) · ∥vi∥2 = 1

∥vi − vk∥2 + ∥vk − vj∥2 ≥ ∥vi − vj∥2 ∀i, j, k ∈ V.

(1.1)

Here we use the convention that F (i, j) = 0 if ij ̸∈ E.

We note that the formulation in Definition 1.2 without the ℓ22 triangle inequalities in the last line is exactly
the formulation for reweighted eigenvalues in [23, Proposition 3.4]. Just as the addition of triangle inequalities to
the spectral formulation reduces the integrality gap of undirected edge expansion to O(

√
log n) in [6], we show

the exact analog for directed edge expansion by using the spectral formulation for reweighted eigenvalues.

Theorem 1.1. (O(
√
log n)-Approximation for Directed Vertex Expansion) For any edge-capacitated

directed graph G = (V,E,w) with vertex weights π : V → R+,

λ△π (G) ≲ ϕ⃗π(G) ≲
√
log n · λ△π (G).

The proof is a simple adaptation of that in [6]. We will compare our formulation with that in [1] in
Section 2.3.1, and we will compare the two dual formulations in Section 2.3.2. We note that the same approach
of adding ℓ22 triangle inequalities to reweighted eigenvalues provides considerably simpler formulations and proofs
for undirected vertex expansion and hypergraph edge expansion than that in [18] and in [27], while having the
same integrality gap O(

√
log n); see Section 6 for more details.

1.2.2 Dual Formulation As in [6], the dual program of λ△π in Definition 1.2 can be interpreted as embedding
a directed expander flow into the original directed graph. Since our formulation in Definition 1.2 requires the flow
to be a circulation, we obtain a new structural result about the existence of a circulation of high edge expansion
as a dual certificate, which may be of independent interest.

Proposition 1.1. (O(
√
log n) Dual Certificate) Given an edge-capacitated directed graph G = (V,E,w) with

vertex weights π : V → R+, there exists a circulation F ∈ F on G satisfying edge capacity constraints with

ϕπ(F) := min
∅≠S⊂V

∑
i∈S,j /∈S F (i, j)

min{π(S), π(S)}
≳
ϕ⃗π(G)√
log n

.

2In [23], F is called an Eulerian reweighting of G. In this paper, network flows is a unifying theme, and so we find it more suitable
to call F a circulation.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited593

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1.2.3 Primal-Dual Algorithms Using the MMWU method in [5, 19] on λ△π , combining with the chaining
techniques in [33], we extend Sherman’s result to directed graphs.

Theorem 1.2. (Fast O(
√
log n)-Approximation to Directed Edge Expansion) For small enough ϵ > 0,

there is a randomized algorithm that, given any edge-capacitated directed graph G = (V,E,w) with vertex weights

π : V → R+, uses Õ(n3ϵ) directed max-flow computations to compute a cut S ⊆ V with ϕ⃗π(S) ≲
√

logn
ϵ · λ△π (G)

with constant probability.

Using the recent breakthrough [11] on directed maximum flow, Theorem 1.2 implies an O(m1+O(ϵ))-time
O(

√
(log n)/ϵ)-approximation algorithm for directed edge expansion. This is a significant improvement over the

previous O(n4+o(1))-time O(
√
log n)-approximation algorithm for directed sparsest cut by Arora and Kale [5, 19].

Since undirected vertex expansion can be reduced to directed edge expansion, this is also a significant im-
provement over the previous results [13, 16] in fast approximation algorithms for undirected vertex expansion,
where the best known result is a O(log2 n)-approximation using O(log3 n) vertex-capacitated max-flow computa-
tions. We remark that our algorithm is simpler than Sherman’s when restricted to undirected graphs, bypassing
the use of multi-commodity flows3. See Section 2.2.3 and Section 2.3.2 for more discussions.

1.2.4 Cheeger-Type Guarantee We show that the MMWU method can also be used to obtain a fast
algorithm to output a set with the Cheeger-type guarantee in [23].

Theorem 1.3. (Fast Cheeger-type Approximation) Given an edge-capacitated directed graph G =

(V,E,w), there is an almost linear time algorithm for approximating the directed edge conductance ϕ⃗(G) that

returns a set S with ϕ⃗(S) ≲
√
ϕ⃗(G) · log 1

ϕ⃗(G)
.

This answers an open question in [23] and provides a fast “spectral” algorithm for directed graph partitioning.

1.2.5 Cut-Matching Game The cut-matching game is an interesting and useful way to construct an expander
graph; see Section 2.2.4 for an introduction. Using the MMWU method, we also obtain a cut-player strategy that
matches the cut-matching game result in [31] for undirected graphs.

Theorem 1.4. (Cut-Matching Game for Directed Edge Expansion) In the cut-matching game for di-
rected graphs (see Section 2.3.3 for definition), there is a cut player strategy so that, in O(log2 n) iterations, the
union of the matchings played by the matching player is an Eulerian graph with edge expansion Ω(log n).

This is an improvement over the cut-matching game by Louis [25], which only had an expansion lower bound
of Ω(1). A corollary of Theorem 1.4 is a simple almost linear-time O(log n)-approximation algorithm for directed
edge expansion.

1.2.6 Unifying Framework The reweighted eigenvalue formulations in [21, 23] provide a unifying framework
to obtain Cheeger-type inequalities for vertex expansion, directed graph expansions, and hypergraph expansions.
In this study, we show that in all these cases, adding ℓ22 triangle inequality constraints to the reweighted eigenvalue
formulations gives O(

√
log n)-approximation algorithms for estimating these quantities, as well as fast algorithms

for computing such approximations using expander flows and the chaining techniques [6, 5, 19, 33]. Our results
bring the more general expansion problems closer to the basic undirected edge expansion problem, since both
the formulations and the proofs are close analogs of the corresponding results for undirected edge expansion.
Moreover, our proofs show that the MMWU method and the max-flow min-cut theorem can also be used to
recover the Cheeger-type inequality and the cut-matching game, providing a common framework to analyze these
different algorithmic techniques for graph expansion problems. Overall, we believe that our results simplify and
unify the state-of-the-art of various problems and approaches studied in the literature.

3In a concurrent work, Kolmogorov [22] also showed that Sherman’s algorithm on undirected graphs can be simplified by bypassing

the multi-commodity flow step. Their work does not generalize the algorithm to directed graphs and instead focuses on making the
algorithm parallelizable. We leave as potential follow-up work whether our algorithms can also be made parallelizable.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited594

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

2 Technical Review and Overview

Since our work revisits and extends several previous works [6, 20, 5, 19, 33, 1, 25, 23], we review these previous
techniques and mention some of our ideas for improvements along the way in the corresponding subsections, and
we conclude with the common themes in Section 2.4.

2.1 Preliminaries First, we introduce some notation that we will use throughout the paper. We use R+ to
denote the set of positive real numbers and R≥0 to denote the set of non-negative real numbers. Given two
functions f, g : X → R≥0, we use f ≲ g to denote the existence of a positive constant c > 0, such that f ≤ c · g
always holds. We use f ∼ g to denote f ≲ g and g ≲ f .

2.2 Previous Works on Undirected Sparsest Cut

2.2.1 Semidefinite Program with Triangle Inequalities The seminal work of Arora, Rao and Vazirani [6]
proved that the following Goemans-Linial SDP relaxation for the undirected sparsest cut problem has an
integrality gap of O(

√
log n).

min
v1,...,vn∈Rn

∑
ij∈E

∥vi − vj∥2

subject to
∑
i<j

∥vi − vj∥2 = 1

∥vi − vk∥2 + ∥vk − vj∥2 ≥ ∥vi − vj∥2 ∀i, j, k ∈ V.

(2.2)

Note that this formulation without the triangle inequalities in the last line is equivalent to the second smallest
eigenvalue of the normalized Laplacian matrix when the graph is regular (see e.g. [35]).

A major contribution in [6] is a structure theorem on vectors satisfying the ℓ22 triangle inequalities. It asserts
that, given a “well-spread” set of vectors satisfying the ℓ22 triangle inequalities, there are two large subsets L and
R, such that all vectors in L are far away from all vectors in R.

Definition 2.1. (Well-Spread Vectors) Let {vi}ni=1 be a set of vectors that satisfy
∑
i<j ∥vi − vj∥2 = n2.

Let B(i, δ) := {j ∈ V : ∥vj − vi∥ ≤ δ} denote the closed δ-ball centered at vi. We say that {vi}ni=1 is well-spread
if |B(i, 1√

10
)| ≤ n

10 for all i ∈ V .

Theorem 2.1. (ℓ22 Structure Theorem [6, Theorem 1]) Let {vi}ni=1 be a set of vectors4 that satisfy the ℓ22
triangle inequalities and

∑
i,j∈V ∥vi − vj∥2 = n2. If {vi}ni=1 is well-spread, then there exist two sets L,R ⊆ V

such that |L|, |R| ≥ Ω(n) and

d(L,R) := min
i∈L,j∈R

∥vi − vj∥2 ≳ 1/
√
log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high probability.

The proof consists of novel geometric arguments involving measure concentration and chaining. We will
use Theorem 2.1 straightforwardly to prove that the new SDP formulation in Definition 1.2 has integrality gap
O(

√
log n). We will also use a refined version of the chaining result by Sherman [33] for our fast algorithm in

Theorem 1.2.

2.2.2 Expander Flows Another important contribution of [6] is the concept of expander flows. The idea of
using multi-commodity flow to certify edge expansion was first introduced by Leighton and Rao [24].

Definition 2.2. (Multi-Commodity Flow and Demand Graph) Let G = (V,E,w) be an edge-capacitated
undirected graph. Given demands dij for each i, j ∈ V , a multicommodity flow f assigns a value fp ≥ 0 to each
path p in G such that (i)

∑
p∋e fp ≤ we for all e ∈ E and (ii)

∑
p∈Pij

fp = dij for all i, j ∈ V , where Pij denotes

the set of paths from i to j. The demand graph D is defined on the same vertex set V , with edge set E′ = V × V
and the weight of each edge ij being dij.

4In [6], the vectors vi are assumed to be of unit length. We note that the structure theorem holds without this assumption as
well; see for example [32] for a writeup.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited595

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

For an edge-capacitated undirected graph G = (V,E,w), let

Φ(G) :=
minS⊆V :|S|≤|V |/2 w(δ(S))

|S||S|

be the value of the sparsest cut of G. If there is a multi-commodity flow in G with demand graph D, then
it is not difficult to check that Φ(G) ≥ Φ(D). Leighton and Rao [24] used linear programming with the demand
graph D = Kn, the complete graph on n vertices, to approximate the sparsest cut of G up to an approximation
ratio O(log n).

The new idea in [6] was to use semidefinite programming to search for a demand graph D with a feasible
multi-commodity flow on G, and to lower bound the sparsest cut of G using the second eigenvalue of the Laplacian
matrix of D through Cheeger’s inequality. This approach can be summarized as

max
D,f

λ2(L(D))(2.3)

subject to f is a multi-commodity flow on G with demand graph D

2.2.3 Expander Flows vs Dual Program In fact, the above approach of lower bounding Φ(G) can be
interpreted as lower bounding the objective value of the dual of the Goemans-Linial SDP in (2.2). To see this,
we first express the triangle inequalities as

∥vi1 − vi2∥
2
+ ∥vi2 − vi3∥

2
+ · · ·+

∥∥viℓ−1
− viℓ

∥∥2 ≥ ∥vi1 − viℓ∥
2 ∀p = (i1, . . . , iℓ) ∈ P(Kn),

where P(Kn) denotes the set of paths in the complete graph Kn on the same vertex set V . We write the
primal program in matrix form. Let U be the matrix with the i-th column being vi for 1 ≤ i ≤ n and let
X = UTU . Let Li,j be the Laplacian of the edge ij and

(2.4) Tp :=

ℓ−1∑
k=1

Lik,ik+1
− Li1,il .

Then the Goemans-Linial SDP in (2.2) can be written as

min
X≽0

⟨L(G), X⟩

subject to ⟨L(Kn), X⟩ = 1(2.5)

⟨Tp, X⟩ ≥ 0 ∀p ∈ P(Kn).

One can check that strong duality holds, and the dual program can be written as

max
fp≥0:p∈P(Kn)

λ

subject to λ · L(Kn) ≼ L(G)−
∑
p

fpTp.

Therefore, the dual program of the Goemans-Linial SDP can be succinctly written as

(2.6) max
f

λ2

(
L(G)−

∑
p

fpTp

)
.

The expander flow formulation in (2.3) is weaker than the dual program.

Claim 2.1. The objective value of (2.3) is a lower bound on the objective value of (2.6).

Proof. Let f be a multi-commodity flow on G with demand graph D, and F be the n × n matrix with
F (i, j) =

∑
p∋ij fp. Then, check that

∑
p fpTp = L(F)− L(D), and hence

L(D) = L(F)−
∑
p

fpTp ≼ L(G)−
∑
p

fpTp =⇒ λ2(L(D)) ≤ λ2

(
L(G)−

∑
p

fpTp

)
,

where the inequality L(F) ≼ L(G) is because F (i, j) ≤ wij for all (i, j) ∈ V × V .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited596

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We remark that all previous works on undirected graphs [6, 20, 5, 19, 33] use the expander flow formulation
in (2.3) to approximate sparsest cut. This can be understood as the dual program in (2.6) with the additional
constraint that

∑
p∋ij fp ≤ wij for all i, j ∈ V × V , which in particular implies that only the path variables fp

when p is a path in G are used. Since we will discuss several variations of the program (2.2) and take their
duals, we will refer to dual programs with additional capacity constraints on the fp variables such as (2.3) as the
“constrained dual programs” and the original dual programs such as (2.6) as the “unmodified dual programs.”

In proving Theorem 1.2, we will use the unmodified dual program of λ∆π . As we will explain later, this will allow
us to design a simpler primal-dual algorithm using the MMWU method, bypassing the use of multi-commodity
flow as in [5, 19, 33].

2.2.4 Cut-Matching Game The cut-matching game was first introduced by Khandekar, Rao and Vazirani [20]
as a fast combinatorial method for approximating sparsest cut in undirected graphs using flows. In this game,
there is a cut player and a matching player who try to build an expander from the empty graph as follows. In
each round, the cut player chooses a bisection (S, S) of the vertices, and the matching player chooses a perfect
matching between (S, S). The goal of the cut player is to minimize the number of rounds so that the union of
the matchings is guaranteed to be a good expander. Khandekar, Rao and Vazirani [20] gave a cut player strategy
that always builds a graph with Ω(1) edge expansion in O(log2 n) rounds. Orecchia, Schulman, Vazirani, and
Vishnoi [31] gave an improved cut player strategy that always builds a graph with Ω(log n) edge expansion in
O(log2 n) rounds. The proofs of these results are based on ad-hoc potential functions, although in hindsight the
algorithm in [31] is very similar to the one using MMWU method in [5].

The original motivation of the cut-matching game is to build an expander flow to approximate sparsest cut.
In each round, we aim to send a flow between the cut (S, S) provided by the cut player. On the one hand, if such
a flow cannot be sent, then we obtain a sparse cut by the max-flow min-cut theorem and the algorithm stops. On
the other hand, if such a flow can be sent, then the demand pairs routed by this flow form a perfect matching
between S and S. Therefore, if we successfully send such a flow in each round, then the average of the flows is a
multicommodity flow in the original graph, with the demand graph being the average of the perfect matchings,
which is guaranteed to be an expander by the cut-matching game. In this case, we can prove a lower bound on the
sparsest cut by the expander flow formulation in (2.3), with the approximation ratio depending on the parameters
in the cut-matching game. The cut player strategy in [20] gave an O(log2 n)-approximation for undirected sparsest
cut using O(log3 n) max-flow computations, while the one in [31] gave an O(log n)-approximation using O(log3 n)
max-flow computations.

We remark that the cut-matching game has become a useful algorithmic tool on its own, with interesting
applications in other important problems such as edge-disjoint paths [4, 12, 15] and dynamic graph problems [14, 7].

2.2.5 Matrix Multiplicative Weight Update Method Arora and Kale [5, 19] developed a general primal-
dual framework to solve SDPs using the matrix multiplicative weight update method. For our purpose, it
would be better to understand this method from the viewpoint of regret minimization, which is the setting
in online optimization. In each iteration t, the player chooses a density matrix Xt, which represents a probability
distribution over the set of unit vectors. The player then observes a feedback matrix Mt with bounded spectral
norm and incurs a loss of ⟨Xt,Mt⟩. The objective of the player is to minimize the total loss. In hindsight, if the
player had knowledge of all the feedback matrices Mt from the start, then the best strategy would be to choose
the density matrix vvT where v is a unit-length minimum eigenvector of

∑
tMt, with total loss λmin(

∑
tMt).

The regret of the player is defined as
∑
t⟨Mt, Xt⟩ − λmin(

∑
tMt), the difference of the player’s loss to this offline

loss. Arora and Kale [5, 19] analyzed the following algorithm that sets Xt to be the matrix exponential of the
feedback matrices.

The requirement that Mt has bounded spectral norm, or ∥Mt∥ ≤ ρ, is to control the regret bound. The ρ
parameter is called the “width” and is the key parameter in analyzing the matrix multiplicative weight update
method in many applications.

Theorem 2.2. (Regret Bound [19, Theorem 10]) After T iterations of Algorithm 1, let M := 1
T

∑T−1
t=0 Mt,

then

λmin(M) ≳
1

T

T−1∑
t=0

⟨Mt, Xt⟩ − ηρ− ρ log n

ηT
.(2.7)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited597

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1 Matrix Multiplicative Weight Update Algorithm

Initialization: X0 = 1
nIn, η ∈ (0, 1) as a step size

For t = 0, . . . , T − 1

1. Observe feedback matrix Mt such that ∥Mt∥ ≤ ρ. Incur a loss of ⟨Mt, Xt⟩.

2. Compute X ′
t+1 := exp(−η

∑t
i=0

1
ρMi) and update Xt+1 := X ′

t+1/ tr(X
′
t+1).

If, in addition, each Mt satisfies Mt ≽ 0, then we have the stronger bound that

λmin(M) ≳
1

T

T−1∑
t=0

⟨Mt, Xt⟩(1− η)− ρ log n

ηT
.(2.8)

Theorem 2.2 is a key result that we will use to design fast algorithms.

2.2.6 Primal-Dual Algorithms for Sparsest Cut Arora and Kale [5] uses the regret bound in Theorem 2.2
to design a primal-dual algorithm for approximating the sparsest cut problem. The setup is to either certify that
the optimal value is at least Ω(α) by building an expander flow solution to (2.3), or to find a cut of sparsity at most√
log n · α. In each iteration, the algorithm uses the density matrix Xt given by the matrix multiplicative weight

update algorithm as a candidate primal solution to (2.5). To build a dual solution to (2.3), the idea is to use the
regret minimization framework to reduce to the simpler task of finding a multi-commodity flow ft whose demand
graph Dt satisfies ⟨L(Dt), Xt⟩ ≥ α. If such a multi-commodity flow with demand graph Dt can be found in each
iteration t for O(log n) iterations, then the regret bound in Theorem 2.2 would imply that λ2(L(

1
T

∑
tDt)) ≳ α,

and thus the average of the flows ft is an expander flow solution to (2.3) with objective value at least Ω(α).
The remaining task is that, given a density matrix Xt, either to find a multi-commodity flow ft whose demand

graph Dt satisfies ⟨L(Dt), Xt⟩ ≥ α and ∥L(Dt)∥ ≤ ρ, or to find a cut with sparsity at most O(
√
log n·α). This task

is usually called implementing the “oracle” for the MMWU method. To do so, consider the Gram decomposition
v1, . . . , vn of X and note that ⟨L(Dt), Xt⟩ =

∑
i,j Dt(i, j) ∥vi − vj∥2. To ensure that the width ρ is small, the

algorithm only searches for demand graphs with bounded maximum degree. To ensure that the inner product
⟨L(Dt), Xt⟩ is large, the algorithm only routes flow between pairs of vertices (i, j) with ∥vi − vj∥ = Ω(1). If such
a multi-commodity flow can be sent, then the oracle succeeds and the primal-dual algorithm proceeds to the next
iteration. If not, using the dual solution to the multi-commodity flow problem, along with the geometric chaining
arguments used in [6], they showed how to find a cut with sparsity at most O(

√
log n ·α) (see [5, Lemma 6.6 and

Theorem 6.7]). The time complexity of their algorithm is Õ(n2), where the bottleneck is in the multi-commodity
flow computation in the implementation of the oracle.

To achieve O(log n)-approximation, there is a much easier way to implement the oracle using only max-flow
computations. The algorithm is to project the vectors v1, . . . , vn along a random direction, and set up a single-
commodity flow between the Ω(n) vertices with the lowest projection values and the Ω(n) vertices with the highest
projection values. This algorithm is very similar to the cut-matching game in [31] that uses matrix exponentials
to define a cut-player strategy.

2.2.7 Almost Linear-Time Primal-Dual Algorithm Sherman [33] pushed the approach in [5] further to
almost get the best of the semidefinite programming approach (O(

√
log n)-approximation) and the combinatorial

cut-matching game approach (near linear-time algorithms).
The approach in [33] is to use an inner multiplicative weight update algorithm to compute the multicommodity

flow in the oracle implementation, rather than doing it in a black-box manner as in [5]. Specifically, each iteration
of this inner multiplicative weight update algorithm consists of chaining together matchings corresponding to flow
paths of single-commodity flows. The single-commodity flows are set up using the random projection method as
in the O(log n)-approximation in [5], but the random directions for these flows are correlated and the distribution
of the random directions is explicit and can be sampled efficiently. The main contribution of [33] was to show that,
after chaining together Θ(

√
log n) of these correlated random matchings, one can find not just one (as in [6]), but

many flow paths between pairs (i, j) such that ∥vi − vj∥ is Ω(1). Using this chaining method as a subroutine, one

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited598

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

can either find a good multicommodity flow whose demand graph satisfies
∑
i,j D(i, j) ∥vi − vj∥2 ≥ α in O(n1+ϵ)

time by running the inner multiplicative weight update algorithm, or find some direction along which the single

commodity flow cannot be sent and an associated min-cut S with ϕ(S) ≲ α ·
√

logn
ϵ .

Sherman’s algorithm and its analysis are rather technical and we will provide more details in Section 4.3.2.
We will use his main chaining result as a black-box in our algorithm for Theorem 1.2.

2.3 Previous Works on Directed Sparsest Cut

2.3.1 Directed Semi-Metric for Directed Sparsest Cut Agarwal, Charikar, Macharychev and
Macharychev [1] introduced an SDP for approximating directed sparsest cut using a directed semi-metric.
The idea was to introduce an extra vector v0 to the embedding, and to define the semi-metric as d(i, j) :=

∥vi − vj∥2 − ∥vi − v0∥2 + ∥vj − v0∥2 ≥ 0. The program is formulated as follows:

min
v:V ∪{0}→Rn

∑
ij∈E

w(i, j)
(
∥vi − vj∥2 − ∥vi − v0∥2 + ∥vj − v0∥2

)
subject to ∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V ∪ {0}∑

i∈V
π(i) · vi = 0⃗∑

i∈V
π(i) · ∥vi∥2 = 1.

(2.9)

The λ△π program that we introduce in Definition 1.2 is less constrained than this program. We can see this by
taking the linear programming dual of the inner maximization problem with respect to the F (i, j) variables (see
[23, Lemma 3.21 and Lemma 3.22]):

max
F∈F(G)

∑
i<j

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2 = min

r:V→R

∑
ij∈E

w(i, j) ·max
{
0, ∥vi − vj∥2 − r(i) + r(j)

}
.

Thus, we see that every feasible solution to (2.9) corresponds to a feasible solution to the λ△π (G) program with

the same objective value by taking r(i) = ∥vi − v0∥2. The reason we present λ△π throughout the paper in the
min-max form is that all our analyses make use of this min-max formulation of the problem, as it can be naturally
captured by flows.

2.3.2 Primal-Dual Algorithm for Directed Sparsest Cut Arora and Kale [5, 19] used the matrix
multiplicative update method on the SDP (2.9) in [1] to obtain a primal-dual O(

√
log n)-approximation algorithm

for directed sparsest cut.
One important difference with the algorithm for undirected sparsest cut is that they used the unmodified

dual program of (2.9), which can be expressed as maxf λ2
(
L⃗(D) −

∑
p fpTp

)
, where D is the demand graph

of a flow on G (see Section 2.2.3 for a discussion about these two dual programs). Recall from our previous

discussion that simply using L⃗(D) instead of L⃗(D)−
∑
p fpTp as in the undirected case (i.e. using the constrained

instead of unmodified dual program) would correspond to only enforcing ℓ22 triangle inequalities along paths in
the directed graph. Since paths in the directed graph are restricted by the orientation of the edges, it seems
arbitrarily restrictive to only enforce triangle inequalities along directed paths.

Using the dual program maxf λ2
(
L⃗(D)−

∑
p fpTp

)
, there remains an important difference between the primal-

dual algorithm here with that for the undirected sparsest cut. Unlike in the algorithm for undirected sparsest
cut, the algorithm for directed sparsest cut does not involve the use of multicommodity flows. Instead, it tries
to find a single-commodity flow f with demand graph D that pushes a lot of flow between pairs of vertices (i, j)

such that ∥vi − vj∥ is large, and to then use L⃗(D) as the feedback matrix. If it fails to do so, then it finds many
paths that violate the ℓ22 triangle inequality, and it then uses −y

∑
p Tp as the feedback matrix, where the sum

is over the violating paths p and y is an appropriate scaling factor. The procedure for finding violating paths is
implemented in time O(n2+o(1)) using a special data structure about dynamic decremental spanners. This is the
bottleneck and thus the runtime per matrix multiplicative weight update iteration is O(n2+o(1)).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited599

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The original claim in [19] was that O(log n) iterations suffice, but Chan and Sun [10] found that their analysis

should only yield the weaker bound of Õ(n2) iterations and thus a total runtime of O(n4+o(1)). This is because of
a technical issue in bounding the trace of feasible solutions in the primal program (see footnotes 1 and 2 in [10],
with Kale’s acknowledgement). Chan and Sun simplified their approach and obtained an O(n4)-algorithm with
the same approximation ratio O(

√
log n), that also works for directed hypergraphs.

As mentioned in Section 2.2.2, we will use the unmodified dual program of λ∆π similar to how Arora-Kale’s
uses the unmodified dual program of (2.9). We also use their “flows or violating paths” oracle for this dual
program, thus bypassing the multicommodity flow computation in [5, 33]. We observe that Sherman’s chaining
result can be used to find many violating paths efficiently, without using any special data structures. This gives
us an almost linear-time O(

√
log n)-approximation algorithm for directed sparsest cut, which also simplifies the

corresponding algorithm for undirected sparsest cut.
We end this subsection with the following technical remark about the primal-dual algorithm for directed

sparsest cut using the SDP in [1].

Remark 2.1. Because of the directed semi-metric with the special vector v0, Arora and Kale needed to work with
a non-PSD Laplacian L⃗(G) with vertex set V ∪ {0} and with both positive and negative edge weights (specifically,
edges (i, j) and (j, 0) have weight 1 while edge (i, 0) has weight -1). the Laplacian of the demand graph of a
flow is used as a feedback matrix in each iteration. However, the newly introduced vertex 0 has large degree in
any demand graph, thus making it difficult to bound the spectral norm of the feedback matrix, i.e. the width of
the oracle. To address this, Arora and Kale duplicated the vertex 0 into n copies, and considered a graph on 2n
vertices in order to have a better bound on the width.

One advantage of our formulation λ△π in Definition 1.2 is that it is defined on the original graph, and this
simplifies the primal-dual algorithm and the analysis for Theorem 1.2 considerably.

2.3.3 Cut-Matching Game for Directed Graphs Louis [25] developed a cut-matching game for directed
graphs, where the matching player plays a directed matching, which is defined as an Eulerian graph where each
vertex has indegree and outdegree exactly one. He analyzed a cut-player strategy that is similar to the one in [20]
and proved that, in O(log2 n) iterations, the union of the directed matchings is an Eulerian graph with edge
expansion Ω(1).

For undirected graphs, the matrix multiplicative update method can be used to give an improved cut-player
strategy [5, 31]. For directed graphs, however, the primal-dual algorithm is more complicated because of the
directed semi-metric formulation as discussed in Remark 2.1, and it does not directly translate to a cut-matching
game. Using the simpler λ△π formulation in Definition 1.2, which also has a natural correspondence with Eulerian
subgraphs, we obtain an improved cut-player strategy as stated in Theorem 1.4 using the matrix multiplicative
weight update method on λ△π .

2.3.4 Reweighted Eigenvalues for Directed Graphs Lau, Tung, and Wang [23] defined the reweighted
eigenvalue for directed edge expansion and use it to prove a Cheeger-type inequality for directed graphs. Given a
directed graph G = (V,E,w) with edge weights w : E → R+, the maximum reweighted second eigenvalue problem
seeks to find a circulation F satisfying edge capacity constraints (see Definition 1.2) such that the second smallest
eigenvalue of the symmetric Laplacian of F is maximized.

Definition 2.3. (Maximum Reweighted Second Eigenvalue for π-Weighted Edge Expansion)
Given an edge-capacitated directed graph G = (V,E,w) and vertex weights π : V → R+, define the maximum
reweighted second eigenvalue as

λ∗2(G) := max
F∈F(G)

λ2

(
Π−1/2

(
DF − F + F⊤

2

)
Π−1/2

)
where Π = Diag(π), F is the n× n adjacency matrix of the circulation, and DF is the diagonal degree matrix of
(F + FT)/2 with DF (i, i) =

∑
j∈V

1
2 (F (i, j) + F (j, i)) for 1 ≤ i ≤ n.

Using the semidefinite programming formulation for the second eigenvalue and von-Neumann min-max
theorem, λ∗2(G) can be rewritten as the form in Definition 1.2 without the triangle inequalities.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited600

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The directed edge conductance ϕ⃗ studied in [23] is a special case of the directed edge expansion ϕ⃗π in
Definition 1.1 when π(i) = w(δ+(i)) + w(δ−(i)) for all i ∈ V . The directed Cheeger inequality in [23] states that

(2.10) λ∗2(G) ≲ ϕ⃗(G) ≲

√
λ∗2(G) · log

1

ϕ⃗(G)
. ≲

√
λ∗2(G) · log

1

λ∗2(G)
.

In Theorem 1.3, we provide an almost linear-time algorithm to return a set S with ϕ⃗(S) ≤
√
λ∗2(G) · log 1

λ∗
2(G) .

The idea is to use the regret minimization framework to construct an optimal circulation iteratively, and the
observation is that this converges quickly when λ∗2(G) is large. This combines with our almost linear-time
O(

√
log n)-approximation algorithm in Theorem 1.2 gives Theorem 1.3.

2.4 Our Techniques We have already discussed the ideas of our main results in Section 1.2 in the
corresponding subsections above when we reviewed the previous techniques. Here we highlight two common
themes in our techniques.

One common theme is called the “metric rounding lemma” that we sketch the proof in Section 3.1, which is to
use the max-flow min-cut theorem to find a sparse cut in a geometric embedding of the graph. All the algorithms
in this paper use this lemma to find sparse cuts, including the almost linear-time O(

√
log n)-approximation in

Theorem 1.2, the improved cut-matching game in Theorem 1.4, and interestingly even the Cheeger-type result
whose original proof in [23] is based on a threshold rounding algorithm.

Another common theme is the matrix multiplicative weight update method developed in [5]. All the algorithms
in this paper use this method to construct the dual objects, including the expander flows in the O(

√
log n)-

approximation in Theorem 1.2 and the cut-matching game in Theorem 1.4, as well as the circulation in reweighted
eigenvalues in Theorem 1.3 and in the dual certificate in Proposition 1.1. The cut-matching game was considered
original when it was introduced, but now we see that it can be derived systematically from the matrix multiplicative
weight update method.

An important element in all our results is the reweighted eigenvalue formulation from [23]. We believe that
it is the right formulation, as it allows us to extend all known results for undirected graphs to directed graphs, in
a way that is consistent with the formulations and the proofs for undirected graphs. As we discuss in Section 6,
our technique of adding ℓ22 triangle inequalities to reweighted eigenvalue formulations can be extended to directed
vertex expansion and hypergraph edge expansion as well, providing a unifying method to extend the results for
undirected graphs to more general settings.

2.5 Organization In Section 3, we present the metric rounding lemma, and use it to prove Theorem 1.1 and
to provide an alternative proof of the directed Cheeger inequality. In Section 4, we extend Sherman’s result to
directed graphs and prove Theorem 1.2. In Section 5, we also use the matrix multiplicative weight update method
to compute reweighted eigenvalues, proving Theorem 1.3 and to design cut-matching game, proving Theorem 1.4.
Finally, in Section 6, we outline how these results can be extended easily to vertex expansion and to hypergraphs.

3 Rounding Algorithms

In this section, we first present the metric rounding lemma in Section 3.1. Then, we will use it to prove that
λ△π in Definition 1.2 has integrality gap O(

√
log n) in Section 3.2, and also to provide an alternative proof of the

Cheeger-type inequality in [23] in Section 3.3.

3.1 Metric Rounding Lemma The following metric rounding lemma will be used to find sparse cuts in all
algorithms in this paper.

Lemma 3.1. (Metric Rounding Lemma) Let G = (V,E,w) be an edge-capacitated directed graph. Let d(·, ·)
be a metric on V , and let π : V → R+ be an arbitrary weight function over V . Suppose we are given disjoint
vertex subsets L,R ⊆ V as input to the algorithm. Let r := π(R)/π(L) and r′ := max{1, r}. Then there is an
algorithm using O(log n) maximum flow computations to output a set S with

ϕ⃗π(S) ≲
r′ ·maxF∈F(G)

∑
i,j∈V F (i, j) · d(i, j)∑

i∈R π(i) · d(i, L)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited601

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Our proof of the lemma is constructive. Algorithm 2, Bidirectional Max-Flow, finds a maximum flow f⃗ from
L to R and also a flow ⃗f from R to L with a prescribed target amount of flow. If either of the flow is not
“saturating”, then we find a sparse cut S using the max-flow min-cut theorem. Otherwise, we combine f⃗ and ⃗f
to form a circulation F , which helps upper bound the expansion of the graph through the flow parameter β.

Algorithm 2 Bidirectional Max-Flow

Input: Graph G, semi-metric d(·, ·), vertex weights π : V → R+ as given in Lemma 3.1; L,R ⊆ V such that
L ∩R = ∅, flow value parameter β ∈ R+, and congestion parameter κ ∈ R+

1. Let r := π(R)/π(L). Construct flow network G⃗ from G as follows: add vertices s and t to G. Connect s to
each vertex i ∈ L with an arc (s, i) of capacity r · β · π(i). Connect each vertex j ∈ R to t with an arc (j, t)
of capacity β · π(j). Multiply the capacities of the edges in G by κ.

2. Construct ⃗G in the same way as G⃗, but with arcs directed from L to s and from t to R instead.

3. Compute s-t maximum flow f⃗ on G⃗ and t-s maximum flow ⃗f on ⃗G. If one of f⃗ or ⃗f does not saturate
all source and sink edges (i.e. if maximum flow value is less than β · π(R)), output the minimum cut S

associated with the non-saturating flow. Otherwise, output the circulation F = 1
2 (f⃗ + ⃗f).

In the case where the flows f⃗ and ⃗f are saturated, we upper bound the flow value parameter β.

Lemma 3.2. (Saturated Case) Suppose d(·, ·) is a metric and Algorithm 2 outputs a circulation F . Then,

β ≤
∑
ij∈E F (i, j) · d(i, j)∑
i∈R π(i) · d(i, L)

,

where F (i, j) = 1
2

∑
p∋(i,j)

(
f⃗(p) + ⃗f(p)

)
defines the flow graph of the circulation returned in step 3.

On the other hand, if either of the flows f⃗ or ⃗f is unsaturated, we extract from it a cut with bounded
expansion. This is a slight extension of [20, Lemma 3.7] to the π-weighted and vertex-capacitated settings, so we
omit the proof in this version of the paper.

Lemma 3.3. (Unsaturated Case) Suppose Algorithm 2 outputs a cut S. Then ϕ⃗π(S) ≤ βr′/κ, where
r′ := max{1, r}.

Now we are ready to prove the metric rounding lemma.

Proof of Lemma 3.1. In Algorithm 2, choose κ = 2r′. Let α be such that the algorithm outputs a circular flow f
when β = α and outputs a cut S when β = 2α. When a cut S is output at β = 2α, by Lemma 3.3 (unsaturated
case), the vertex or edge expansion of S is at most β · r′/κ = α. When a circulation F is output at β = α, then
by construction F ′ = F/κ is a circulation satisfying the edge or vertex capacity constraints of G, i.e. F ′ ∈ F(G).
Therefore, by Lemma 3.2 (saturated case),

ϕ⃗π(S) ≤ α ≤ κ ·
∑
ij∈E F

′(i, j) · d(i, j)∑
i∈R π(i) · d(i, L)

≤ 2r′ · max
F∈F(G)

∑
ij∈E F (i, j) · d(i, j)∑
i∈R π(i) · d(i, L)

Finally, note that we can find α using binary search on the range [Ω(1/poly(n)), O(poly(n))]. Therefore, we only
need to invoke Algorithm 2 O(log n) times, leading to a total of O(log n) maximum flow computations.

3.2 Rounding Algorithm for Semidefinite Programming Solution In this subsection, we prove sketch
the proof of Theorem 1.1 that the integrality gap of λ△π (G) is O(

√
log n). The proof is by applying the metric

rounding lemma on the two sets provided by the structure theorem of Arora, Rao, and Vazirani (see Theorem 2.1).
We note that by adding triangle inequalities in the reweighted eigenvalues in [21, 23], essentially the same proof

implies O(
√
log n)-approximation algorithms for undirected and directed vertex expansions, and undirected and

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited602

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

directed hypergraph expansions (See Section 6 for more details). These approximation guarantees are all known
previously, but with different formulations and proof techniques. In particular, the SDP relaxation for vertex
expansion obtained through our approach is considerably simpler than that obtained by Feige, Hajiaghayi, and
Lee [18]. This demonstrates that our approach of using reweighted eigenvalues and triangle inequalities provides
a simple and unifying way to recover all these results. Here, we give an overview of the proof of Theorem 1.1.
The first step is to show that λ△π (G) is indeed an SDP relaxation of directed edge expansion.

Proposition 3.1. (Easy Direction) For any edge-capacitated directed graph G = (V,E,w) with vertex weights

π : V → R+, it holds that λ△π (G) ≤ 2ϕ⃗π(G).

Then, to prove ϕ⃗π(G) ≲
√
log n · λ△π (G), it suffices to use a modified π-weighted version of the structure

theorem in [6]((see [1, Algorithm 1] for a similar weighted structure theorem and reduction), and a vector
spreading fact that follows from straightforward calculations.

Lemma 3.4. (π-Weighted Structure Theorem) Let G = (V,E,w) be an edge-capacitated directed graph
with vertex weights π : V → R+ and π(V) = 1. Let {vi}ni=1 be a set of embedding vectors satisfying ℓ22
triangle inequalities and

∑
i,j∈V π(i) · π(j) · ∥vi − vj∥2 = 1. The embedding {vi}ni=1 is said to be well-spread

if π(B(i, 1/
√
10)) ≤ 1/10 for all i ∈ V . If {vi}ni=1 is well-spread, then there exist two subsets L,R ⊆ V with

π(L), π(R) ≥ Ω(1) and

d(L,R) := min
i∈L,j∈R

∥vi − vj∥2 ≳ 1/
√

log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high probability.

Fact 3.1. If
∑
i∈V π(i) · vi = 0⃗ and

∑
i∈V π(i) · ∥vi∥

2
= 1, then

∑
i,j∈V π(i) · π(j) · ∥vi − vj∥2 = 2.

With the ℓ22 triangle inequalities, the function d(i, j) := ∥vi − vj∥2 is a metric. By Lemma 3.1, given two
subsets L and R, we can find a subset S ⊆ V with

(3.11) ϕ⃗π(S) ≲
r′ ·maxF∈F(G)

∑
(i,j)∈E F (i, j) · ∥vi − vj∥2∑

i∈R π(i) · d(i, L)
=

2r′ · λ△π (G)∑
i∈R π(i) · d(i, L)

.

since the numerator term maxF∈F(G)

∑
(i,j)∈E F (i, j) ·d(i, j) is exactly the inner maximization problem of λ△π (G).

Thus, we just need to find sets L,R such that the denominator term
∑
i∈R π(i) · d(i, L) is large. WLOG, we can

assume that π(V) = 1. Using the same argument as in [6], there are two cases to consider: the “well-spread”
case and the “large core” case. In the “large core” case, there exists a vertex i, such that π(B(i, 1/

√
10)) > 1/10.

In this case, we can take L = π(B(i, 1/
√
10)) and R = L, so that π(L) = Ω(1) and one can show that∑

i∈R π(i) · d(i, L) ≥ Ω(1) as well. If such a vertex does not exists, then we can apply Lemma 3.4 and find
well-spread sets L,R with π(L) = Ω(1) and

∑
i∈R π(i) · d(i, L) = Ω(1/

√
log n). Thus, we can always find a set S

such that ϕ⃗π(S) ≤ O(
√
log n · λ△π (G)).

3.3 Rounding Algorithm for Spectral Solution In this subsection, we provide an alternative proof of the
Cheeger-type inequality for directed graphs in (2.10) using the metric rounding lemma, where the original proof
in [23] is by a refined “threshold rounding” algorithm. This proof will be used in the proof of Theorem 1.3 in
Section 5.1.1, as the threshold rounding algorithm in [23] requires a linear programming duality step which is not
clear how to be implemented in almost linear time.

We note that essentially the same proof works for the ordinary Cheeger’s inequality [3, 2], as well as the
Cheeger-type inequalities for directed vertex expansion and hypergraph edge conductance in [23] (see Section 6).
This illustrates the max-flow min-cut theorem in the proof of the metric rounding lemma as a unifying method
to find sparse cuts in different settings.

Recall from Section 2.3.4 that ϕ⃗(G) denotes the directed edge conductance, which is the special case of
directed edge expansion in Definition 1.1 when π(i) = dw(i) := w(δ+(i)) + w(δ−(i)) is the total degree of i. We
will focus on the proof of the “hard direction” of (2.10) that

ϕ⃗(G) ≲
√
λ∗2(G) · log

(
1/ϕ⃗(G)

)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited603

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Also recall from Section 2.3.4 that λ∗2(G) can be written as the SDP in Definition 1.2 without the triangle
inequalities. In [23], the first step of the proof of the hard direction is to relate the λ∗2(G) program to the following
“one-dimensional ℓ1 program”, which was done by using Gaussian projection and applying Cauchy-Schwarz
inequality.

Lemma 3.5. (One-Dimensional ℓ1 Program [23, Definition 3.19]) Given an edge-capacitated directed
graph G = (V,E,w) with vertex weights dw : i 7→

∑
e:e∋i w(e), let

ηe(G) := min
v:V→R

max
F∈F(G)

1

2

∑
ij∈E

F (i, j) · |v(i)− v(j)|

subject to
∑
i∈V

dw(i) · v(i) = 0∑
i∈V

dw(i) · |v(i)| = 1.

Then, it holds that

ηe(G) ≲
√
λ∗2(G) · log

(
1/ϕ⃗(G)

)
.

The second step in [23] is to use a refined threshold rounding algorithm to prove that ϕ⃗(G) ≲ ηe(G), thus

proving the hard direction. Instead, we can use Lemma 3.1 to prove that ϕ⃗(G) ≲ ηe(G) by using the metric
d(i, j) := |v(i)− v(j)| and taking L := {i ∈ V : v(i) ≤ 0} and R := {j ∈ V : v(j) > 0}. Then using the same

ideas as in proving Theorem 1.1, we can find a set S such that ϕ⃗dw(S) ≲ O(ηe). Thus, we may view the Gaussian
projection and Cauchy-Schwarz steps as reducing to 1-dimension and “metrifying” the objective, so that we can
apply metric rounding.

4 Almost Linear-Time Primal-Dual O(
√
log n)-Approximation

The main goal of this section is to prove Theorem 1.2. First, we will derive the dual program of λ△π (G) in
Section 4.1. Then, in Section 4.2, we describe the primal-dual algorithm using the matrix multiplicative weight
update method assuming a black-box algorithm for the oracle exists. In Section 4.3, we present the geometric
results in [6, 5, 33] for the design of the oracle, and implement the oracle in the easy “large core” case. Then,
in Section 4.3.2, we implement the oracle in the more difficult “well spread” case, in which we use Sherman’s
matching chaining theorem to find many paths that violate the triangle inequality. We conclude with the proofs
of Theorem 1.2 and Proposition 1.1 in Section 4.5.

4.1 Dual Program of λ△π We construct the dual program of λ△π (G) in a similar way as in Section 2.2.3 for
the dual program of the Goemans-Linial relaxation in (2.2).

We first write the primal program λ△π (G) in Definition 1.2 in matrix form. Let V be the matrix with the i-th
column being vi for 1 ≤ i ≤ n and letX = V TV . Let Li,j be the Laplacian of an undirected edge ij. For a matrix A
that is not necessarily symmetric, define the symmetric Laplacian of A as Lsym(A) =

1
2

∑
i,j(A(i, j)+A(j, i)) ·Li,j .

As in Section 2.2.3, we express the triangle inequalities redundantly as inequalities along paths in Kn, and let
Tp :=

∑ℓ−1
k=1 Lik,ik+1

− Li1,il for a path p = (i1, . . . , iℓ). Let Π be the diagonal matrix with Π(i, i) = π(i) for
1 ≤ i ≤ n. Then, check that λ△π (G) in Definition 1.2 can be written as

λ△π (G) = min
X≽0

max
F∈F(G)

⟨Lsym(F), X⟩

subject to ⟨Π11⊤Π, X⟩ = 0

⟨Π, X⟩ = 1

⟨Tp, X⟩ ≥ 0 ∀p ∈ P(Kn).

To derive the dual of λ△π (G), we apply von Neumann’s minimax theorem to switch the order of the min and the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited604

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

max, and then take the SDP dual of the inner minimization program to obtain

max
F∈F(G)

max
λ,x∈R

yp≥0:p∈P(Kn)

λ

subject to
∑
p

ypTp + λΠ+ xΠ11⊤Π ≼ Lsym(F).

The dual constraint can be rewritten as

λI + xΠ
1
211⊤Π

1
2 ≼ Π− 1

2

(
Lsym(F)−

∑
p

ypTp

)
Π− 1

2 .

Note that the vector Π
1
21 is in the null space of the right hand side, as 1 is in the nullspace of any Laplacian

matrix. Therefore, for the dual constraint to hold, an optimal dual solution must set x = −λ/π(V), so as to

make the component Π
1
21 to be zero on the left hand side. Therefore, the dual program of λ△π (G) can be written

succinctly as

(4.12) max
F∈F(G)

max
yp≥0:p∈P(Kn)

λ2

(
Π− 1

2

(
Lsym(F)−

∑
p

ypTp

)
Π− 1

2

)
.

4.1.1 Dual Program as Expander Flow For our primal-dual algorithm, we further rewrite the dual program
in (4.12) to a form that is consistent with the expander flow formulation in (2.3), by considering the demand
graph of the circulation F .

We say f = {fp}p∈P(G) is a flow path decomposition of F if F (e) =
∑
p∋e fp for all e ∈ E. The demand graph

D of f is defined such that D(i, j) =
∑
p∈PG(i,j) fp for all i, j ∈ V , where PG(i, j) denotes the set of directed paths

from i to j in G. Note that the demand graph D of a flow path decomposition of a circulation F is Eulerian. We
will use the following formulation of the dual program of λ△π .

Lemma 4.1. (Dual Program of λ△π) The dual program of λ△π (G) can be written as

max
F∈F(G)

max
yp≥0:p∈P(Kn)

λ2

(
Π−1/2

(
Lsym(D)−

∑
p

ypTp

)
Π−1/2

)
subject to D is the demand graph of a flow-path decomposition of F .

Note that a circulation F ∈ F(G) can have many different flow path decompositions. The trivial flow path
decomposition is simply to have a path p = (i, j) of length two for each edge ij, with the demand graph D = F .
Alternatively, we can decompose F into weighted directed cycles and each cycle is expressed as the union of two
paths, where each path is assigned a flow value equal to the weight of the cycle. In our primal-dual algorithm,
we will build a circulation F using a demand graph D of low maximum degree so as to bound the width of the
oracle, and this is the reason for the formulation Lemma 4.1.

Proof. (Lemma 4.1) We show that the dual program in the statement is equivalent to that in (4.12). One direction
is easy. Given a solution to (4.12), we can use the trivial flow decomposition of F to obtain a solution to the dual
program in the statement.

For the other direction, given a solution to the dual program in the statement, we consider a flow-path
decomposition f = {fp}p∈P(G) of 1

2F with demand graph 1
2D. For any flow path p ∈ P(G), we write

Tp = Lp − Le(p) where Lp is the Laplacian of the undirected path p and Le(p) is the Laplacian of the edge
connecting two endpoints of the path. As e(p) is simply an edge in the demand graph, it follows that∑

p

fpTp =
∑
p

fp(Lp − Le(p)) =
∑
ij

1

2

(
F (i, j) + F (j, i)

)
−

∑
ij

1

2

(
D(i, j) +D(j, i)

)
= Lsym(F)− Lsym(D),

where the second last equality follows from the definition of the flow-path decomposition and the definition of the
demand graph. Therefore,

Lsym(D)−
∑
p

ypTp = Lsym(F)−
∑
p

fpTp −
∑
p

ypTp,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited605

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

which is a solution to (4.12) with the same objective value, where the value of the dual variable for each path p
is fp + yp.

4.1.2 Intuition of the Dual Program Since the dual program in Lemma 4.1 is slightly different from the
expander flow formulation in (2.3) used in all previous works for undirected sparsest cut, we would like to provide
some intuition about the term −

∑
p ypTp in the objective function and how it will be used to simplify Sherman’s

algorithm for undirected sparsest cut.
We may interpret each −Tp as a “shortcut cycle” Cp, where the edges in p have weight −1 and the edge

connecting the two endpoints have weight 1. Since a shortcut cycle has only one positive edge, any cut across the
cycle has non-positive weight. Thus, adding a shortcut cycle to a graph does not increase the value of directed
edge expansion. A nice way to understand that the dual program is a lower bound on the directed edge expansion
is as follows:

(4.13) ϕ⃗π(G) ≳ ϕπ(D) ≥ ϕπ

(
D +

∑
p

ypCp

)
≳ λ2

(
Π− 1

2

(
Lsym(D)−

∑
p

ypTp

)
Π− 1

2

)
,

where the first inequality is by the flow argument because D is the demand graph of a circulation F ∈ F(G)
(which is Eulerian and so can be considered as an undirected graph), the second inequality is by the discussion
above that adding shortcut cycles doesn’t increase the value of directed edge expansion, and the third inequality
is by the easy direction of λ△π in Proposition 3.1.

Why would adding shortcut cycles help in obtaining a stronger lower bound? There are graphs where the
easy direction of Cheeger’s inequality is not tight, such that ϕ ≈ λ22 rather than ϕ ≈ λ2. The prototypical example
is a long path p, where every edge in the path is short in its spectral embedding, which heavily violates the ℓ22
triangle inequality. So, intuitively, given an embedding of the vertices, we would like to add shortcut cycles along
the paths that heavily violate ℓ22 triangle inequalities, so as to increase the objective of this embedding in the
hope to improve the lower bound provided by the second eigenvalue, while not decreasing the objective value
of sparsest cut of D by much. Thus, the dual program of λ△π (G) can be intuitively understood as finding the
best way to add these shortcut cycles to prove the strongest spectral lower bound. This interpretation is also
consistent with the primal program λ△π (G) in which we add triangle inequalities to the spectral program. In our
primal-dual algorithm for Theorem 1.2 that we will present in the next subsection, we will indeed add shortcut
cycles for paths that heavily violate the ℓ22 triangle inequalities in the embedding.

4.2 Regret Minimization for Approximating Directed Edge Expansion As in the work by Arora and
Kale [5] described in Section 2.2.6 and Section 2.3.2, we use the regret bound in Theorem 2.2 to design a primal-
dual algorithm for approximating directed edge expansion. The setup is to either certify that the optimal value to
λ△π (G) is at least Ω(1/κ) by constructing a solution to the dual program in Lemma 4.1, or to find a cut of expansion
at most O(

√
log n/κ) for some parameter κ. Doing binary search on κ will give us a O(

√
log n)-approximation

algorithm.
In each iteration, the algorithm uses the density matrix Xt given by the matrix multiplicative weight update

algorithm as a candidate primal solution to λ△π (G). To build a dual solution to Lemma 4.1, in each iteration t,
the oracle tries to either

1. find a circulation f with demand graph D such that
〈
Π− 1

2Lsym(D)Π− 1
2 , Xt

〉
is large (i.e. send a lot of flow

between vertices that are far apart in the geometric embedding defined by Xt) and ∥Lsym(D)∥ is small (i.e.

the demand graph has small maximum degree), and set the feedback matrix Mt := Π− 1
2Lsym(D)Π− 1

2 , or

2. find paths p1, . . . , pk and weights y1, . . . , yk such that −
〈
Π− 1

2

(∑
i yiTpi

)
Π− 1

2 , Xt

〉
is large (i.e. paths along

which the triangle inequality is violated heavily) and
∥∥∥Π− 1

2

(∑
i yiTpi

)
Π− 1

2

∥∥∥ is small (i.e. the union of these

paths found have small total degree) and set the feedback matrix Mt := Π− 1
2

(∑
i yiTpi

)
Π− 1

2 .

If the oracle succeeds for T = O(ρ2 log n) iterations, where ρ ≥ maxt≤T ∥Mt∥ , then the regret bound in

Theorem 2.2 would imply that λ2(
1
T

∑T
i=1Mt) is large, and thus we found a solution to the dual program in

Lemma 4.1 with large objective value. Otherwise, if the oracle fails to find the above objects in some iteration,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited606

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

then the oracle must return a sparse cut S. Above is the high level description of the algorithm, while below is
the precise description of the algorithm.

Algorithm 3 Regret Minimization for Directed Sparsest Cut

Input: An edge-capacitated directed graph G = (V,E,w) with vertex weights π such that π(V) = 1; step size
η ∈ (0, 1), width bound ρ ∈ R+, congestion parameter κ ∈ R+, and approximation factor α ∈ R+.

Output: Either a sparse cut S, or a solution M to the dual program in Lemma 4.1.

Initialization: X0 = 1
n−1 (I −Π

1
211⊤Π

1
2).

For t = 0 to T − 1:

1. Given Xt ≽ 0 such that tr(Xt) = 1 and Xt ⊥ Π
1
21, let Yt := Π− 1

2XtΠ
− 1

2 and v1, . . . , vn be the Gram
decomposition of Yt.

2. (Oracle) Do one of the following:

(a) Find a circulation f on G with congestion κ and demand graph D such that ⟨Lsym(D), Yt⟩ ≥ 1 and

Lsym(D) ≼ ρ ·Π. If this succeeds, set Mt := Π− 1
2Lsym(D)Π− 1

2 .

(b) Find paths p1, . . . , pk in Kn and weights y1, . . . , yk ≥ 0 such that ⟨
∑
i yiTpi , Yt⟩ ≤ −1 and that

−ρ ·Π ≼
∑
i yiTpi ≼ ρ ·Π. If this succeeds, set Mt := −Π− 1

2 (
∑
i yiTpi)Π

− 1
2 .

(c) If both cases (a) and (b) fail, then we say that Oracle fails. In this case, find a cut S ⊆ V such that

ϕ⃗π(S) = O(α/κ). Return S and terminate the algorithm.

3. If Oracle succeeds, update X ′
t+1 := exp

(
− η

ρ

∑t
i=0Mi

)
. Let Xt+1 be obtained from X ′

t+1 by projecting it

onto the space orthogonal to Π
1
21 and scaling it to have trace 1.

Return the average feedback matrix M := 1
T

∑T−1
t=0 Mt.

We analyze Algorithm 3 assuming that there is a black-box algorithm for Oracle.

Lemma 4.2. (Regret Minimization Algorithm) Suppose there is a black-box algorithm for Oracle. Set

η = Θ(1/ρ). After T = Θ(ρ2 log n) iterations, Algorithm 3 either certifies that ϕ⃗π(G) ≥ Ω(1/κ) or finds a

cut S ⊆ V with ϕ⃗π(S) ≤ O(α/κ).

Proof. First, suppose Oracle succeeds for T = Θ(ρ2 log n) iterations. By applying the general regret bound (2.7)

in Theorem 2.2 restricting to the subspace orthogonal to Π
1
2 1, it follows that

λ2(M) ≥ 1

T

T−1∑
t=0

⟨Mt, Xt⟩ − ηρ− ρ log n

ηT
=

1

T

T−1∑
t=0

⟨Π 1
2MtΠ

1
2 , Yt⟩ − ηρ− ρ log n

ηT
≥ 1− ηρ− ρ log n

ηT
,

where the last inequality follows from the fact that cases (a) and (b) in Oracle both imply that ⟨Π 1
2MtΠ

1
2 , Yt⟩ ≥ 1.

By choosing suitable implicit constants in the Θ(·) for T and η,

λ2(M) ≥ 1− ηρ− ρ log n

ηT
≥ 1− 1

4
− 1

4
≥ 1

2
.

Note that the average feedback matrix M is a Laplacian of the form Π− 1
2 (Lsym(D)−

∑
p ypTp)Π

− 1
2 , where D is

the demand graph of a circulation f with congestion κ (as f is the average of circulations each with congestion
κ). Therefore, by scaling down f,D, and all yp by a factor of κ, we obtain a solution to the dual program of

λ△π (G) in Lemma 4.1 with objective value Ω(1/κ), and this certifies that ϕ⃗π(G) ≳ 1/κ.

On the other hand, if Oracle fails at some iteration, then it outputs a cut S with ϕ⃗π(S) ≤ O(α/κ).

In Lemma 4.2, we have set the values of T and η in relation to the width bound ρ, to obtain the desired
approximation guarantee O(α). The undetermined parameters in the algorithm are ρ and α. We would like to

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited607

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

set them to be as small as possible, so as to minimize both the runtime (as the number of iterations T will be
minimized) and the approximation ratio of the algorithm, while the Oracle can still be implemented efficiently.
This is the goal in Section 4.3 and Section 4.4.

4.3 Geometric Results for Implementation of Oracle To implement the Oracle in Algorithm 3, we need
the results proved in [6, 5, 19, 33] about geometric embeddings.

Let v1, . . . , vn be the Gram decomposition of Yt in step (1) of Algorithm 3. Note that the trace condition in

step (1) implies that
∑
i π(i) · ∥vi∥

2
= 1, and the null-space condition in step (1) implies that

∑
i π(i) · vi = 0.

It follows from Fact 3.1 that
∑
i<j π(i) · π(j) · ∥vi − vj∥2 = 1. As in the SDP rounding result in Section 3.2, we

consider the following two cases of the geometric embedding.

Proposition 4.1. (Dichotomy of Embeddings) Let v1, . . . , vn be vectors in Rn satisfying the condition that∑
i<j π(i) · π(j) · ∥vi − vj∥2 = 1. One of the following two cases must hold:

(i) Large Core: There exists a vector v such that π(B(v, 1
2
√
10
)) ≥ 1/4.

(ii) Well Spread: There is a vector w such that if we apply the transformation ui := c(vi −w) for 1 ≤ i ≤ n for
some constant c > 0, then there exists a subset U of vectors with (i) π(U) ≳ 1, (ii) ∥ui∥ ≤ 1 for all i ∈ U ,

and (iii)
∑
i,j∈U π(i) · π(j) · ∥ui − uj∥2 ≳ 1.

Note that a version of Proposition 4.1 for uniform vertex weights was already proved in [19]. The weighted
case follows by a simple reduction which we will defer to the appendix.

4.3.1 Large Core Case This is the easy case where we can implement the oracle to either return a circulation
in step 2(a) or a sparse cut in step 2(c) of Algorithm 3, using a result in Section 3.1 for metric rounding proved
by the max-flow min-cut theorem.

Lemma 4.3. (Oracle in Large Core Case) In the large core case in Proposition 4.1, there is an algorithm
that, using two max-flow computations, implements Oracle in Algorithm 3 so that it either computes a cut
S ⊆ V with ϕ⃗π(S) ≤ O(1/κ) or obtains a circulation f whose demand graph D satisfies ⟨Lsym(D), Yt⟩ ≥ 1
and Lsym(D) ≼ O(1) ·Π.

Thus, in the large core case, there is an efficient oracle that achieves approximation factor α = O(1) and
width bound ρ = O(1).

4.3.2 Well Spread Case The well spread case is much more involved, for which we need the correlated
chaining theorem of Sherman [33]. In this subsection, we present the background for the correlated chaining
theorem, and we defer the implementation of the oracle in the well spread case to the next subsection.

The idea of chaining matchings was the main ingredient that led to the O(
√
log n) approximation result of

[6], and was also used in [5, 19] to compute expander flows to solve the dual program. The main idea was to show
that if for many directions, there is a large matching between embedding vertices that are well-separated along
that direction but close to each other in the overall embedding, then O(

√
log n) such matchings can be chained

together to form a path that violates the ℓ22 triangle inequality. In [33], this was improved so that instead of
finding one such violating path, we can find many such paths efficiently with good probability through a simple
sampling process.

To handle the arbitrary vertex weights π : V → R+, we slightly modify Sherman’s definitions and results and
make use of a version of his main theorem for fractional matchings instead of integral matchings.

Definition 4.1. (π-Fractional Matching) Let V be a vertex set with weights π : V → R+. We say that
M is a π-fractional matching if M is a weighted directed subgraph of Kn with edge weights M(i, j) ∈ R≥0 for
i, j ∈ V , satisfying the property that each vertex i ∈ V has either only incoming edges or only outgoing edges and
has degree at most π(i). The total weight of M is denoted by w(M) :=

∑
i,jM(i, j).

Definition 4.2. (Fractional Matching Cover) A (σ, δ)-matching cover is a function assigning a π-
fractional matchings Mu to each vector u ∈ Rn satisfying the following properties:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited608

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(i) ∀(i, j) ∈ supp(Mu), ⟨vj − vi, u⟩ ≥ σ;

(ii) Mu(i, j) = M−u(j, i) for all u ∈ Rn;

(iii) Eu[w(Mu)] ≥ δ · π(V) where u ∼ N (0, I).

We define formally what it means to “chain together” fractional matchings.

Definition 4.3. (Chained Matchings) Let M be a fractional matching cover. Given vectors u1, . . . , uℓ ∈ Rn,
we define M(u1, . . . , uℓ) to keep track of the paths that result from chaining together matchings Mu1

, . . . ,Muℓ
.

Define M(u1, . . . , uℓ) := (Mu1,...,uℓ
, Pu1,...,uℓ

= {fp, p}p∈P(Kn)), where each p ∈ Pu1,...,uℓ
is a weighted path of

length ℓ+1 with weight fp and Mu1,...,uℓ
is the graph with Mu1,...,uℓ

(i, j) =
∑
p∈Pu1,...,uℓ

∩PKn (i,j) fp being the total

weight on paths in Pu1,...uℓ−1
going from vertices i to j. The paths and weights in Pu1,...,ul

are defined recursively
in the following algorithm.

Construction of Pu1,...,uℓ

• If ℓ = 1, then Pu1 = {Mu1(i, j), (i, j) | Mu1(i, j) > 0}. That is, the paths are simply the edges in Mu1

with the corresponding weights.

• If ℓ > 1, then for each q ∈ Pu1,...,uℓ−1
where q ∈ P(i, j), run the following loop.

1. While fq > 0 and there exists j′ ∈ V with Muℓ
(j, j′) > 0, let p be the path obtained by extending

q by j′ and add p to Pu1,...,uℓ
with weight fp = min{Muℓ

(j, j′), fq}.
2. Decrement both fq and Muℓ

(j, j′) by min{Muℓ
(j, j′), fq}.

The following simple claim will be used in the runtime analysis of the oracle.

Claim 4.1. Suppose that each matching Mu has at most m edges. Then Pu1,...,uℓ
has at most mℓ paths and can

be constructed in O(mℓ2) time given oracle access to Mu1 , . . . ,Muℓ
.

Proof. Clearly, the claim holds true for ℓ = 1. Now assume by induction that the claim holds for ℓ− 1. It suffices
to bound the number of times we run the while loop in which we add a new path p to Pu1,...,uℓ

. Since in each
iteration of the while loop, we either remove a path from Pu1,...,uℓ−1

or an edge from Muℓ
, it can run for at most

m(ℓ− 1) +m = mℓ iterations. Thus Pu1,...,uℓ
has at most mℓ paths.

Note that when π is uniform, then the definition of π-fractional matching cover is the same as the matching
cover from [33, Definition 5.2.1], in which all edges have weight 0 or 1. Now we present the main theorem that
we will use to implement the oracle in Algorithm 3 in the well spread case.

Theorem 4.1. (Sherman’s Chaining Theorem) For any small enough constant l, there is a k = O(
√
l log n)

and an efficiently sample-able distribution D over vectors (u1, . . . , uk) ⊆ Rd with the following property: if M is
a (Ω(1),Ω(1))-fractional matching cover for the set of embedded vertices V , then the expected total weight of paths

in M(u1, . . . , uk) between vertices i, j with ∥vi − vj∥2 ≥ l is at least e−O(k2) · π(V) when (u1, . . . , uk) is sampled
from D.

The uniform π version of this theorem was proved in [33, Theorem 5.2.3]. The π-weighted version follows
from a simple reduction to the uniform case.

4.4 Fast Implementation of Oracle for Well-Spread Case With Sherman’s chaining theorem, we are
ready to implement the oracle in Algorithm 3 in the well spread case in this subsection, with approximation ratio

O
(√

logn
ϵ

)
and width bound Õ

(
nϵ

ϵ3/2

)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited609

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proposition 4.2. (Oracle in Well Spread Case) Let ϵ > 0 be a small enough constant. In the well-spread
case in Proposition 4.1, there is a randomized implementation of Oracle in Algorithm 3 that, with high probability,

using Õ(nϵ) max-flow computations, either outputs a feedback matrix Mt with ⟨Mt, Xt⟩ ≥ 1 and ∥Mt∥ ≤ Õ
(
nϵ

ϵ3/2

)
,

or returns a cut S ⊆ V with ϕ⃗π(S) ≤ O
(

1
κ

√
logn
ϵ

)
.

4.4.1 Overview The basic subroutine, as in [5, 19, 33], is the Project Max-Flow algorithm (Algorithm 4),
where we project the vectors along a random direction and set up a bi-directional flow problem between two
subsets L and R that are far apart in the projection. If such a bi-directional flow cannot be sent, then we will
show that any min-cut is a sparse cut by Lemma 3.3, and so Algorithm 3 can terminate in step 2(c). If such a
bi-directional can be sent, with the additional property that many flow paths are between vertices that are far
apart in the embedding such that

⟨Lsym(D), Yt⟩ =
1

2

∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· ∥vi − vj∥2 ≥ 1,

then we will show that the oracle succeeds in finding a circulation in step 2(a) of Algorithm 3, and so the algorithm
can proceed to the next iteration.

The new observation is that if for many random directions, such a bi-directional flow can be sent but its
demand graph does not satisfy ⟨Lsym(D), Yt⟩ ≥ 1, then we can construct a fractional matching cover and use
Sherman’s chaining theorem to find many paths that violate the triangle inequality heavily. Thus, the oracle
succeeds in finding many violating paths in step 2(b) of Algorithm 3, and so the algorithm can proceed to the
next iteration. So, as long as such a bi-directional flow can be sent, then either step 2(a) or 2(b) succeeds in
giving a good feedback matrix for the regret minimization algorithm.

This is the main difference with previous algorithms in [5, 33], where a multi-commodity flow computation
is needed to guarantee a condition similar to ⟨Lsym(D), Yt⟩ ≥ 1 for the oracle to succeed. We remark that using
violating paths as feedback is only possible because of the stronger unmodified dual program in Lemma 4.1, but
not in the usual expander flow formulation corresponding to the constrained dual program as in in (2.3).

4.4.2 Project Max-Flow Algorithm In the well spread case in Proposition 4.1, we will only focus on the
vectors in the subset U , with π(U) ≳ π(V) and ∥vi∥ ≤ 1 for i ∈ U and

∑
i,j∈U π(i) · π(j) · ∥vi − vj∥2 ≳ 1.

Algorithm 4 Project Max-Flow (G, u, c, β, κ)

Input: An edge-capacitated directed graph G = (V,E,w) with vertex weights π : V → R+, an embedding
v1, . . . , v|U | ∈ Rn of the vertices in U , vector u ∈ Rn, small constant c, congestion parameter κ, and flow value
parameter β.

1. Order the vertices i ∈ U by the values of ⟨u, vi⟩. Let L be the l smallest vertices in this ordering, where l is
the smallest integer such that π(L) ≥ c · π(V). Let R be the r largest vertices in this ordering, where r is
the smallest integer such that π(R) ≥ c · π(V).

2. Compute a bidirectional max-flow using Algorithm 2 on (L,R, β, κ) to obtain either a cut S ⊆ V or a
circulation f in G with congestion κ.

The following lemma shows that with constant probability over the random direction u, the sets L and R will
be well-separated along the direction u.

Lemma 4.4. (Good Direction) Let v1, . . . , v|U | be a set of vectors that satisfies (i) π(U) ≳ 1, (ii) ∥vi∥ ≤ 1 for

all i ∈ U and (iii)
∑
i,j∈U π(i) · π(j) · ∥vi − vj∥2 ≳ 1. Then there exist positive constants γ and σ and c such that

if we sample random u ∼ N(0, I), then with probability at least γ the sets L,R in step (1) of Algorithm 4 satisfy
the condition that ⟨u, vi − vj⟩ ≥ σ for all i ∈ L, j ∈ R. We say that such vectors u are good vectors.

The proof is a simple reduction to the uniform π case proven in [19, Lemma14] and [33, Lemma 5.3.3], and
is the the full version of this paper. We remark that Lemma 4.4 is the only place in the proof of Proposition 4.2
that we use the assumption that the vectors are well spread.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited610

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

For each good vector u ∈ Rn, the sets L,R in step (1) of Algorithm 4 are disjoint, and so the bi-directional
max-flow in Algorithm 2 is well-defined. Therefore, exactly one the following three cases must happen.

• A: Algorithm 4 returns a circulation f with demand graph D such that ⟨Lsym(D), Yt⟩ ≥ 1.

• B: Algorithm 4 returns a circulation f with demand graph D such that ⟨Lsym(D), Yt⟩ < 1.

• C: Algorithm 4 returns a cut S ⊆ V .

If we are in case C for some good vector u, then we show that the primal-dual Algorithm 3 can terminate with
approximation ratio O(β). (In the proof of Proposition 4.2 that we will present later, we will set β = O(

√
log n/ϵ).)

Claim 4.2. (Case C) If Algorithm 4 returns a cut S for some good vector u, then ϕ⃗π(S) = O(β/κ).

Proof. Since u is good, the sets L,R are disjoint and π(L), π(R) ≥ c · π(V) for some (small) constant c.

Then, by Lemma 3.3 (unsaturated case), Algorithm 2 will return a set S with ϕ⃗π(S) ≤ βr′/κ ≲ β/κ as
r′ = max{1, π(R)/π(L)} ≤ 1/c.

If we are in case A for some good vector u, then we show that the oracle succeeds in step 2(a) of Algorithm 3
with width ρ = O(β).

Claim 4.3. (Case A) If Algorithm 4 returns a circulation f with demand graph D for some good vector u such

that ⟨Lsym(D), Yt⟩ ≥ 1, then the feedback matrix Mt := Π− 1
2Lsym(D)Π− 1

2 in step 2(a) of Algorithm 3 satisfies
∥Mt∥ ≲ β.

Proof. Since u is good, the sets L,R are disjoint and π(L), π(R) ≥ c · π(V) for some (small) constant c. In the
bi-directional max-flow problem in Algorithm 2, each vertex i in L ∪ R has degree at most r′ · β · π(i) ≲ β · π(i)
as r′ = max{1, π(R)/π(L)} ≤ 1/c. This implies that the demand graph satisfies Lsym(D) ≼ O(β · Π), and thus

Mt = Π− 1
2Lsym(D)Π− 1

2 ≼ O(βI).

4.4.3 Finding Many Violating Paths If we are in case B for some good vector u, then we show how to
construct a large matching of flow paths between pairs of vertices with small embedding distance using the
following algorithm.

Algorithm 5 Matching(u)

Input: s-t flow f⃗ and t-s flow ⃗f obtained from Step 2 of Algorithm 4, with parameters (G, u, c, β, κ).

1. Decompose the two flows into at most m flow paths between sets L and R. Ignore the original direction of
the paths and reorient every path from L to R. In particular, the paths we get are (pr, ir, jr, fpr)

k
r=1 where

k ≤ 2m. For each r ∈ [k], pr is a path from ir ∈ L to jr ∈ R, with weight fpr .

2. Discard any path pr with ⟨vjr − vir , u⟩ < σ or ∥vjr − vir∥
2
> 4

βc .

3. Define M′
u so that M′

u(i, j) is the sum of the weights of all remaining paths from i to j. Return

Mu :=
1

β ·max
{
1, π(R)/π(L)

}M′
u.

The reason that we ignored the original direction of the paths in Algorithm 5 is that we are trying to find
paths in Kn, rather than in G, that violate the triangle inequality. Thus, it is fine if the resulting violating paths
from chaining together the matchings do not correspond to paths in G.

Lemma 4.5. (Case B) If Algorithm 4 returns a circulation f with demand graph D for some good vector u such
that ⟨Lsym(D), Yt⟩ < 1, then Algorithm 5 returns a fractional matching Mu with w(Mu) ≳ c2, where each edge

ij in Mu satisfies ⟨vj − vi, u⟩ ≥ σ and ∥vj − vi∥2 ≲ 1
βc . Moreover, there is a randomized algorithm to compute

Mu in expected time O(m log n).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited611

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Since Algorithm 4 returns a circulation f , both flows f⃗ and ⃗f from Algorithm 2 are saturating. This
implies that the flow value for f⃗ and ⃗f is at least

∑
j∈R β · π(j) = β · π(R) ≥ β · c · π(V) = β · c, and thus∑

i∈L,j∈R

(
D(i, j) +D(j, i)

)
≥ β · c

where D is the demand graph of the circulation f = 1
2 (f⃗ + ⃗f).

Next, we bound the total weight of the flow paths that we discard in step (2) of Algorithm 5. Since u is good
(see Lemma 4.4), all flow paths are between vectors i, j such that ⟨vj − vi, u⟩ ≥ σ, so no paths will be discarded
this way. Our assumption implies that

1 > ⟨Lsym(D), Yt⟩ =
1

2

∑
i∈L,j∈R

(
D(i, j) +D(j, i)

)
· ∥vi − vj∥2 ,

and thus an average flow path is between pairs i, j with ∥vi − vj∥2 < 2
βc . By Markov’s inequality, at least half of

the flow of f is on flow paths between i, j with ∥vi − vj∥2 ≤ 4
βc . Therefore, we discard at most half of the flow of

f in Step (2) of Algorithm 5, and hence the weight of M′
u is at least βc/2.

By the construction of the bidirectional flow in Algorithm 2, each source and sink vertex has degree at most
β · π(i) ·max{1, π(R)/π(L)} ≤ β · π(i)/c. So, scaling M′

u down by this factor gives a fractional matching Mu as
defined in Definition 4.1, with w(Mu) at least c

2/2.
Finally, we bound the runtime of the algorithm. The only non-trivial step is step 1, in which we must

decompose a fractional single-commodity flow into integral flow paths. The following theorem due to Lau and
Kwok show that this can be done in almost linear time on expectation

Theorem 4.2. ([28, Theorem 5]) Given a fractional s − t flow f⃗ , there is a randomized algorithm that, in

O(m log n) expected time, returns a flow path decomposition (pr, f⃗pr)
k
r=1 where k ≤ m and each pr is a path from

s to t with flow value f⃗pr along the path.

It follows that if case B happens often enough, then we can construct a fractional matching cover as defined
in Definition 4.2.

Lemma 4.6. Suppose that conditioned on u being a good vector, the probability that we are in case B is at least
1/2. Then M = {Mu}u∈Rn is a (σ, δ)-matching cover with σ, δ = Ω(1).

Proof. Clearly, conditions (i) and (ii) in Definition 4.2 are met. As long as u is a good vector, w(Mu) ≳ c2 by
Lemma 4.5. As a random vector is a good vector with probability at least γ by Lemma 4.4, we conclude that
M = {Mu}u∈Rn is a (σ, δ)-matching cover with σ = Ω(1) and δ = γ · c2 = Ω(1).

We apply Sherman’s chaining theorem on the matching cover to construct many violating paths for step 2(b)
in Algorithm 3.

Lemma 4.7. (Violating Paths) Given the (Ω(1),Ω(1))-matching cover M in Lemma 4.6, by setting β =

O
(√

logn
ϵ

)
, there is a randomized algorithm using O(

√
ϵ log n) max-flow computations to find paths p1, . . . , ps

with weight fp1 , . . . , fps , so that the feedback matrix Mt := −Π− 1
2

(∑s
r=1 fpr · Tpr

)
Π− 1

2 satisfies ⟨Mt, Xt⟩ ≥ 1 and

∥Mt∥ = Õ(nϵ/ϵ3/2), with success probability Ω(n−ϵ).

Proof. We apply Sherman’s Theorem 4.1 on M with l = Θ(ϵ) and k = Θ(
√
ϵ log n) to obtain an efficiently

sample-able distribution D over (u1, . . . , uk) so that the expected total weight of paths in M(u1, . . . , uk) between

i, j with ∥vi − vj∥2 ≥ l = Θ(ϵ) is at least e−O(k2) · π(V) = O(n−ϵ). Since the total weight is at most 1, by a
reverse application of Markov’s inequality, we will find vectors u1, . . . , uk where the weight of such good paths in
M(u1, . . . , uk) is at least

1
2n

−ϵ, with probability at least n−ϵ. With such u1, . . . , uk, by Claim 4.1, we can find paths

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited612

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

p1, . . . , ps with
∑s
r=1 fpr ≥ 1

2n
−ϵ in O(mk2) = Õ(m) time, such that for 1 ≤ r ≤ s the path pr = (vi1 , . . . , vik+1

)
satisfies

k∑
j=1

∥∥vij − vij+1

∥∥2 ≲
k

β · c
≲

√
ϵ log n

β · c
but

∥∥vi1 − vik+1

∥∥2 ≥ l ≳ ϵ,

where the first inequality is by the property that each edge ij in each fractional matching has ∥vi − vj∥2 ≤ 4
βc in

Lemma 4.5. Thus, by choosing β = Θ
(√

ϵ logn
c·l

)
= Θ

(√
logn
ϵ

)
with the appropriate constant, the paths violate

triangle inequality so that

⟨Tpr , Yt⟩ =
k∑
j=1

∥∥vij − vij+1

∥∥2 − ∥∥vi1 − vik+1

∥∥2 ≲ −ϵ =⇒
〈 s∑
r=1

fprTpr , Yt

〉
≲ −ϵ · n−ϵ

Setting y = Θ(nϵ/ϵ) with the appropriate implicit constant and the feedback matrix Mt :=

−Π− 1
2 (y

∑s
r=1 fprTpr)Π

− 1
2 , we ensure that ⟨Mt, Xt⟩ = ⟨−y

∑s
r=1 fprTpr , Yt⟩ ≥ 1.

Finally, we bound ∥Mt∥ to bound the width of the oracle. Note that the edges in these violating paths form a
subgraph of the graphMu1

∪· · ·∪Muk
. In each of these graphs, the total degree of vertex i is at most 2β·π(i) ≤ 2β,

and so the total degree of each vertex i in the union is at most 2β ·k. Thus, ∥Mt∥ ≤ 2y ·β ·k = Õ(nϵ/ϵ3/2).

4.4.4 Proof of Proposition 4.2 We are ready to put together the results in this subsection to finish the proof

of Proposition 4.2. Set β = O
(√

logn
ϵ

)
. Recall that, by Lemma 4.4, there is a positive constant γ such that

u ∼ N(0, I) is a good vector with probability at least γ.
Suppose that when conditioned on u being a good vector, we are in case C of Algorithm 4 with probability

at least 1
4 . This means that, with probability at least γ

4 = Ω(1), a set S with ϕ⃗π(S) = O
(
β
κ

)
= O

(
1
κ

√
logn
ϵ

)
will

be returned by Claim 4.2. Therefore, after O(log n) independent samples of u, such a sparse cut will be returned
with high probability, and so Algorithm 3 can be terminated.

Similarly, suppose that when conditioned on u being a good vector, we are in case A of Algorithm 4 with
probability at least 1/4. This means that, with probability Ω(1), a feedback matrixMt := Π− 1

2Lsym(D)Π− 1
2 from

a circulation f with demand graph D can be returned with ⟨Mt, Xt⟩ ≥ 1 and ∥Mt∥ ≲ β ≲
√

logn
ϵ by Claim 4.3.

Therefore, after O(log n) independent samples of u, such a circulation will be returned with high probability, and
so Algorithm 3 can proceed to the next iteration.

Otherwise, suppose that when conditioned on u being a good vector, we are in case B of Algorithm 4 with
probability at least 1/2. By Lemma 4.7, we can use Sherman’s result to chain together O(

√
ϵ log n) such flows to

find violating paths p1, . . . , ps so that the feedback matrix Mt := Π− 1
2 (
∑2
r fpr · Tpr)Π− 1

2 satisfies ⟨Mt, Xt⟩ ≥ 1

and ∥Mt∥ = Õ(nϵ/ϵ3/2), with probability at least Ω(n−ϵ). Therefore, after Õ(nϵ) chaining attempts using a total

of Õ(nϵ) max-flow computations, such violating paths will be returned with high probability, and Algorithm 3
can proceed to the next iteration.

These covers all the cases. The width and the runtime of the oracle are dominated by the step of finding
violating paths.

4.5 Main Result and Corollary In this subsection, we prove Theorem 1.2 and Proposition 1.1.

Proof. (Theorem 1.2) By Lemma 4.2, if there is an oracle with width ρ and approximation factor α, then the

regret minimization Algorithm 3 either certifies that ϕ⃗π(G) ≥ Ω(1/κ) or finds a cut S ⊆ V with ϕ⃗π(S) ≤ O(α/κ)
for a given κ in O(ρ2 log n) iterations. Combining the oracle in the large core case in Lemma 4.3 and the oracle
in the well spread case in Proposition 4.2, we obtain an oracle with width ρ = O(nϵ/ϵ3/2) and approximation
ratio α = O(

√
log n/ϵ). Therefore, by doing binary search on κ, we can obtain a O(

√
log n/ϵ)-approximation

algorithm by running a total of Õ(n2ϵ) iterations of MMWU in Algorithm 3.

Now, we will bound the runtime of each iteration. By Proposition 4.2, each iteration requires Õ(nϵ) max-
flow computations. After each max-flow computation, we need to perform a flow-path decomposition either in
Algorithm 5 or by computing the edges of the demand graphDt, which can be implemented in expected O(m log n)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited613

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

time by Theorem 4.2. In addition, each iteration requires the use of a matrix exponential, whose computation
is too long. Thus, instead of computing Yt, we will approximately compute its Gram decomposition using the
following lemma:

Lemma 4.8. (Matrix Exponential Computation) Let v1, . . . vn be the Gram decomposition of the matrix Yt
in step 1 of Algorithm 3. There is a randomized algorithm that, in Õ(ρm/δ2) time, computes vectors v̂1, . . . v̂n ∈ Rd
for d = O(log n/δ2) such that with probability at least 1− n−1,

∥v̂i = v̂j∥2 ∈ (1± δ) ∥vi − vj∥2 ± n−Ω(1) ∀i, j ∈ V

In particular, Lemma 4.8 implies that if L is any Laplacian matrix (possibly with negative edge-weights) satisfying
⟨L,

∑
i v̂iv̂

⊤
i ⟩ ≥ 1, then ⟨L, Yt⟩ ≥ 1 − 2δ. Since all our feedback matrices are always of the form Π−1/2LΠ−1/2

for some Laplacian L, it suffices to use v̂1 . . . v̂n as the embedding vectors at step 1 of the algorithm in order to
ensure that ⟨Mt, Xt⟩ ≥ 1− 2δ for every iteration t even though we never have to explicitly compute Xt.

Since ρ = Õ(nϵ), the overall runtime of each iteration is dominated by the runtime of Õ(nϵ) maxflow
computations.

An interesting corollary is about a dual certificate using circulations in Proposition 1.1.

Proof. (Proposition 1.1) Apply Lemma 4.2 with κ ≳
√

logn
ϵ /ϕ⃗π(G) for a suitable implicit constant, Algorithm 3

will always outputs a dual solution with value Ω(1/κ) rather than a cut as there is no cut S with ϕ⃗π(S) ≤
O
(

1
κ

√
logn
ϵ

)
≤ 1

2 ϕ⃗π(G). Therefore, we can find a circulation F with demand graph D, and weights yp over

shortcut cycles, such that

ϕπ(F) ≥ λ2

(
Π− 1

2

(
Lsym(D)−

∑
p

ypTp

)
Π− 1

2

)
≳
ϕ⃗π(G)√
log n

,

where the first inequality is by (4.13).

5 Primal-Dual Algorithms for Reweighted Eigenvalues and
Cut-Matching Game

In this section, we show that the regret minimization framework can also be used to compute reweighted
eigenvalues in Section 5.1 and to derive cut-matching game in Section 5.2.

5.1 Reweighted Eigenvalues In this subsection, we use the regret minimization framework to compute the
reweighted eigenvalue defined in [23]. The main result is that there is a primal-dual algorithm to compute λ∗2(G)
in O(log n/λ∗2(G)) iterations, with each iteration taking almost linear time. This combined with Theorem 1.2 will
prove Theorem 1.3.

The reweighted eigenvalue was used in [23] to approximate the directed edge conductance ϕ⃗(G), which is a

special case of the π-weighted directed edge expansion ϕ⃗π(G) when π(i) = w(δ+(i)) + w(δ−(i)), the total degree
of vertex i. The result in this subsection only applies to this special case. To avoid confusion, we use the notation
dw(i) := w(δ+(i)) +w(δ−(i)) to denote the total degree of vertex i instead of using π(i), and Dw := Diag(dw) to
denote the diagonal total-degree matrix instead of using Π.

From Definition 2.3, the reweighted eigenvalue is formulated as

(5.14) λ∗2(G) := max
F∈F(G)

λ2

(
D

− 1
2

w

(
Lsym(F)

)
D

− 1
2

w

)
.

To construct a circulation F that maximizes the objective value, we can use the regret minimization framework as
in Section 2.3.2 and Section 4.2. This framework reduces the above maximization problem to the simpler task of
finding a circulation Ft ∈ F(G) that maximizes ⟨Ft, Xt⟩ whereXt is the density matrix in the matrix multiplicative
update method in the t-th iteration, which can be found using a min-cost flow computation. Then, the regret
bound in Theorem 2.2 can be used to prove that the average circulation 1

T

∑T
t=1 Ft will be an approximate

maximizer to λ∗2(G).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited614

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Alternatively, using the min-max formulation from [23][Proposition 3.4] where

λ∗2(G) = min
v1,...,vn∈Rn

max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2

subject to

n∑
i=1

dw(i) · vi = 0⃗

n∑
i=1

dw(i) · ∥vi∥2 = 1,

(5.15)

we can also interpret the following algorithm as a natural way to play a minimax game between a primal
“embedding” player and a dual “circulation” player.

Algorithm 6 Regret Minimization Algorithm for Reweighted Eigenvalue

Input: A directed graph G = (V,E,w) and step size η ∈ (0, 1).

Initialization: X0 = 1
n−1 (I −D

1
2
w11

⊤D
1
2
w).

For t = 0 to T − 1:

1. Given Xt ≽ 0 such that tr(Xt) = 1 and Xt ⊥ D
1
2
w1, let Yt := D

− 1
2

w XtD
− 1

2
w and v1, . . . , vn be the Gram

decomposition of Yt.

2. (Dual Player) Compute circulation Ft := argmaxF∈F(G)

∑
i<j

1
2 (F (i, j) + F (j, i)) · ∥vi − vj∥2 and set the

feedback matrix Mt := D
− 1

2
w Lsym(Ft)D

− 1
2

w .

3. (Primal Player) Update X ′
t+1 := exp

(
− η

ρ

∑t
i=0Mi

)
. Let Xt+1 be obtained from X ′

t+1 by projecting it

onto the space orthogonal to D
1
2
w1 and scaling it to have trace 1.

Output F = 1
T

∑T−1
t=0 Ft.

We bound the number of iterations to obtain a good approximate solution.

Theorem 5.1. (Regret Minimization for Reweighted Eigenvalue) Let 0 < η < 1/2. The solution F
returned by Algorithm 6 satisfies

λ2

(
D

− 1
2

w Lsym(F)D
− 1

2
w

)
≥ (1− 2η) · λ∗2(G) after T =

log n

η2λ∗2(G)
iterations.

Moreover, each iteration can be implemented using one min-cost flow computation.

Proof. The main step is to lower bound the inner product ⟨Mt, Xt⟩ in each iteration. The observation is that
v1, . . . , vn form a feasible solution to the λ∗2(G) program as stated in (5.15). To see this, we just need to check
that v1, . . . , vn satisfies the constraints in (5.15). Since YtDw1 = 0⃗ and Yt =

∑
i viv

T
i , we have

∑
i dw(i) · vi = 0⃗.

Also, we have tr(Xt) =
∑
i dw(i) · ∥vi∥

2
= 1. Therefore, by the definition of Ft in step (2) of Algorithm 6 and

λ∗2(G) in (5.15),

(5.16) ⟨Mt, Xt⟩ = ⟨Lsym(Ft), Yt⟩ = max
F∈F(G)

∑
i<j

1

2

(
F (i, j) + F (j, i)

)
· ∥vi − vj∥2 ≥ λ∗2(G).

Note that the width5 is ∥Mt∥ ≤ 1 because each vertex i has degree at most dw(i) in Ft ∈ F(G). As each Mt ≽ 0,

by applying the regret bound (2.8) in Theorem 2.2 restricting to the subspace orthogonal to D
1
2
w1, it follows that

λ2

(
D

− 1
2

w Lsym(F)D
− 1

2
w

)
≥ 1

T

T−1∑
t=0

⟨Mt, Xt⟩ · (1− η)− log n

ηT
≥ (1− η) · λ∗2(G)−

log n

ηT
≥ (1− 2η) · λ∗2(G),(5.17)

5This is the reason that this theorem does not hold for general π.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited615

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

where the last inequality is by our choice of T . Finally, note that the maximization problem in step (2) of
Algorithm 6 can be solved using one min-cost flow computation, which can be implemented in m1+o(1) time by
the results of [11].

5.1.1 Fast Algorithm for Cheeger-Type Guarantee Note that Algorithm 6 is fast when λ∗2(G) is large.

On the other hand, when λ∗2(G) is small, then ϕ⃗(G) is also small by the directed Cheeger inequality in (2.10),
and thus the O(

√
log n)-approximation in Theorem 1.2 is better than the directed Cheeger guarantee. So, we can

combine Theorem 5.1 and Theorem 1.2 to prove Theorem 1.3.

Proof. (Theorem 1.3) First, we apply Algorithm 3 and Lemma 4.2 with 1/κ := 1/ log1.5 n to either certify

ϕ⃗(G) ≳ 1/ log1.5 n or to find a set S with ϕ⃗(S) ≲ 1/ log n. In the latter case, we know that the set S1 with

ϕ⃗(S1) ≲
√
log n · ϕ⃗(G) returned by Theorem 1.2 has smaller directed edge conductance than the guarantee by the

directed Cheeger inequality in (2.10), and so we are done.

In the former case, we compute a set S2 of directed edge conductance ϕ⃗(S2) ≲
√
ϕ(G) log 1/ϕ⃗(G) and

return S2. Since ϕ⃗(G) ≥ 1/ log1.5 n in this case, the directed Cheeger inequality in (2.10) implies that

λ∗2(G) ≥ ϕ⃗2(G)/ log(1/ϕ⃗(G)) ≥ 1/ log4 n. By setting η = 1/4, we can get a 1/2-approximation of λ∗2(G) in
O(log5 n) iterations using Algorithm 6.

We show how to compute S2 from the computations done in Algorithm 6 and the flow-based rounding
algorithm for the directed Cheeger inequality in Section 3.3. Let λ := min1≤t≤T ⟨Lsym(Ft), Yt⟩ and u1, . . . , un
be the Gram decomposition of a Yt that achieves this minimum. Since u1, . . . , un is a solution to (5.15) with
objective value λ, using the Gaussian projection and the metric rounding step in Section 3.3, we can obtain a set

S2 with ϕ⃗(S2) ≲
√
λ log(1/ϕ⃗(G)).

It remains to argue that λ ≲ ϕ⃗(G) to prove the approximation guarantee. By (5.17) in the proof of
Theorem 5.1, we have

λ2

(
D

− 1
2

w Lsym(F)D
− 1

2
w

)
≥ λ(1− η)− λ∗2(G) · η ≥ λ(1− 2η) =

1

2
λ,

where the second inequality is because λ ≥ λ∗2(G) by (5.16) and the last equality is because η = 1/4. This implies
that

λ ≤ 2λ2

(
D

− 1
2

w Lsym(F)D
− 1

2
w

)
≤ 2λ∗2(G) ≤ 4ϕ⃗(G),

where the second inequality is due to F ∈ F(G) and (5.14), and the last inequality is by the easy direction

in (2.10). This proves that ϕ⃗(S2) ≲
√
ϕ(G) log 1/ϕ⃗(G).

Finally, we bound the time complexity of the algorithm. Computing S1 takes Õ(m1+ϵ) for an arbitrarily
small constant ϵ using the fast max-flow algorithm in [11]. In the case that we also need to compute S2, it
takes O(m1+o(1)) time to compute a 1/2-approximation of λ∗2(G), where the bottleneck is the min-cost flow

computations in step (2) of Algorithm 6. Note that once again, the matrix exponential can be computed in Õ(m)
time each iteration by Lemma 4.8. Finally, the metric rounding step also takes O(m1+o(1)) time, as it also requires
O(log n) max-flow computations in Lemma 3.1.

5.2 Cut-Matching Game Louis [25] considered the following cut-matching game for directed graphs. In each
round, the cut player chooses a bisection (S, S) of the vertices, and the matching player chooses a directed perfect
matching between (S, S), which is defined as an Eulerian graph where each vertex has indegree and outdegree
exactly one. Louis proved that there is a cut-player strategy such that the union of the directed perfect matchings
has edge expansion Ω(1) in O(log2 n) iterations. Note that the edge expansion in [25] is the special case of
Definition 1.1 when π(i) = 1 for all i ∈ V .

In this subsection, we use the matrix multiplicative weight update method in Algorithm 3 to derive an
improved cut-player strategy and prove Theorem 1.4. We also extend the cut-matching game to the more general
setting of π-weighted directed edge expansion in Definition 1.1, for which the bipartition returned by the cut
player may not be balanced.

For general π-weighted directed edge expansion, the requirement of the matching player is to output a directed
fractional perfect matching defined as follows.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited616

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 7 Cut Player Strategy

1. Let D1, . . . , Dt−1 be the directed perfect matchings played so far. Let Mi = Π− 1
2Lsym(Di)Π

− 1
2 . Compute

Xt from M1, . . . ,Mi−1 using step (3) of Algorithm 3.

2. Let v1, . . . , vn be the Gram decomposition of Yt := Π− 1
2XtΠ

− 1
2 as in step (1) of Algorithm 3.

3. If there is a vertex i with π(i) ≥ 1
4π(V), then output the bipartition L = {i} and R = V \{i}.

4. Otherwise, let u ∼ N (0, I) be a random vector. Let y = median
(
{⟨u, vi⟩ : i ∈ V }

)
where the median is with

respect to π. Output the bipartition L = {i : ⟨u, vi⟩ ≤ y} and R = L.

Algorithm 8 Matching Player Requirement

Given a bipartition L,R from the cut player, the matching player must play a directed fractional perfect matching
D, which is defined as a weighted Eulerian subgraph where each i ∈ L has indegree and outdegree exactly
π(R)π(i)/π(L) and each j ∈ R has indegree and outdegree exactly π(j).

Note that when π is uniform, then the cut player will always return a bisection, and the matching player will
always return a directed (fractional) perfect matching where each vertex has indegree and outdegree one, and so
this is a proper generalization of Louis’ cut-matching game.

The plan is to analyze the cut-player strategy using the regret bound in Theorem 2.2 as follows.

ϕ⃗π(D) ≥ λ2

(
Π− 1

2Lsym(D)Π− 1
2

)
≥ 1

T

T∑
t=0

⟨Lsym(Dt), Yt⟩ · (1− η)− ρ log n

ηT
≳

1

log n
,

whereD := 1
T

∑T
t=1Dt. The first inequality is by the easy direction of λ△π in Proposition 3.1, the second inequality

is by the regret bound in Theorem 2.2, and the third inequality is what we would like to achieve in the following.
The key quantity that we would like to lower bound is Wt := ⟨Lsym(Dt), Yt⟩, which is a random variable with

respect to the filtration Ft that is what happened up to round t of the algorithm. At each round t, we would like
to lower bound Et[Wt] where Et[·] = E[·|Ft−1]. Then, we apply some basic martingale concentration results to
show that with good probability, we process does not deviate from the expectation by much.

Claim 5.1. (Expectation) Et[Wt] ≳ 1
logn for any t in step (4) of Algorithm 7.

Claim 5.2. (Concentration) In step (4) of Algorithm 7, for any constant δ > 0,

Pr

[
T∑
t=0

Wt ≥
T∑
t=0

Et[Wt]−
δ · T
log n

]
≥ 1− exp

(
− Ω

(
δ2 · T
log2 n

))
.

Given the previous two claims, we can simply apply (2.8) from Theorem 2.2 with some η and ρ ∈ Θ(1), and

conclude that with constant probability ϕ⃗π(D) ≳ 1/ log n, which implies Theorem 1.4 by multiplying T on both
sides.

5.2.1 Approximating Directed Edge Expansion As in [20, 31, 25], a corollary of the cut-matching game
is an approximation algorithm for approximating directed edge expansion.

Note that this algorithm is essentially a special case of Algorithm 3, where we implement the Oracle in a
similar manner as in the project max flow algorithm (Algorithm 4). That is, we project our embedding vectors
in a random direction and call bi-directional maxflow with β = 1. Then we either output a cut and terminate or
update the embedding with the symmetric Laplacian of a circulation.

Corollary 5.1. Given an edge capacitated directed graph G = (V,E,w) and a parameter κ > 0, there is an
algorithm using the cut-matching game in Theorem 1.4 such that, in O(log2 n) iterations, either builds a directed

Eulerian subgraph to certify that ϕ⃗π(G) ≳ 1
κ ·

1
logn or outputs a cut S with ϕ⃗π(S) ≲ 1

κ . Furthermore, each iteration

can be computed using O(1) single-commodity flows.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited617

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 9 Cut-Matching-Game Approximation Algorithm (G, κ)

Initiate a cut-matching game where the cut player follows Algorithm 7. Each iteration, do the following:

1. Given the cut L,R returned by the cut player and a congestion value κ, compute a bidirectional max flow
on (L,R, κ, β = 1) using Algorithm 2.

2. If we obtain a cut S, output S and terminate. If we obtain saturating flows in both directions, f⃗ and ⃗f ,
construct the demand graph of the circulation f = 1

2 (f⃗ + ⃗f) as follows:

(a) Let D⃗ be the demand graph for f⃗ . That is, for each i ∈ L and j ∈ R, if there is a flow path p ∈ f⃗ ,

then we add an edge (i, j) with weight f⃗p.

(b) Construct ⃗D from ⃗f the same way.

(c) The matching player plays Dt =
1
2 (D⃗ + ⃗D).

6 Other Generalizations

As mentioned in the introduction, the reweighted eigenvalue framework captures also vertex expansion and
hypergraph edge expansion. In each case, the framework produces an SDP for which a rounding algorithm
with Cheeger-like guarantee exists; see [23]. In this section, we show that, analogous to the case of directed edge
expansion, by adding ℓ22 triangle inequality constraints to the SDPs for vertex expansion and hypergraph edge
expansion, we obtain tighter relaxations which have an integrality gap of O(

√
log n) to the respective expansion

quantities. Moreover, there is an almost linear-time rounding algorithm for each of the SDPs.

6.1 Directed Vertex Expansion A vertex-capacitated directed graph G = (V,E, π) is a graph equipped with
a vertex weight/capacity function π : V → R+. Given such a graph, let S ⊂ V be a nonempty subset of vertices.
The set of out-neighbors of S is defined as ∂+(S) := {v /∈ S | ∃u ∈ S with uv ∈ E}, and the directed vertex

expansion ψ⃗π(S) and ψ⃗π(G) are defined as

ψ⃗π(S) :=
min

{
π
(
∂+(S)

)
, π

(
∂+(S)

)}
min

{
π(S), π(S)

} and ψ⃗π(G) := min
∅̸=S⊂V

ψ⃗π(S).

Note that these definitions capture undirected vertex expansion as a special case. Also, let

Fv(G) :=

F : E → R≥0

∣∣∣∣ ∑
j:ij∈E

F (i, j) =
∑
j:ji∈E

F (j, i) ≤ π(i) ∀i ∈ V

denote the set of feasible vertex-capacitated circulations on G.
By adding ℓ22 triangle inequality constraints to the embedding in [23, Proposition 3.3], we arrive at the

following program:

Definition 6.1. (Vertex Reweighted Eigenvalue with Triangle Inequalities) Given a vertex-
capacitated directed graph G = (V,E, π). The λ∆v

π (G) program for directed vertex expansion is

λ∆v
π (G) := min

v1,...,vn∈Rn
max

F∈Fv(G)

1

2

∑
ij∈E

F (i, j) · ∥vi − vj∥2

subject to
∑
i∈V

π(i) · vi = 0⃗∑
i∈V

π(i) · ∥vi∥2 = 1

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited618

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Note that this is almost identical to λ∆π for edge expansion in Definition 1.2. The only difference here is
that F is constrained by vertex capacity constraints instead of edge capacity constraints. An analogous proof to
Proposition 3.1 shows that λ∆v

π is indeed a relaxation of ψ⃗π, and by combining Lemma 3.4 and a vertex version
of Lemma 3.1 (see Lemma 6.1 below), we can bound the integrality gap of this SDP relaxation as follows:

Theorem 6.1. (Vertex Integrality Gap) Let G be a directed graph with vertex weights π : V → R+. Then
we have

λ∆v
π (G) ≲ ψ⃗π(G) ≲

√
log n · λ∆v

π (G).

In Section 2.2.3, we gave fast algorithms for approximating directed edge expansion using MMWU and
explander flows. These techniques can be easily adapted to approximating vertex expansion by changing edge
capacited flows to vertex capacitated flows. Moreover, it can be shown that the dual of the λ∆v

π (G) SDP can
be interpreted as finding the best vertex-capacitated expander flow to certify that G has large directed vertex
expansion. We can thus obtain the following vertex analogous of Theorem 1.2, Theorem 1.4, and Proposition 1.1.

Theorem 6.2. (Fast O(
√
log n) Approximation to ψ⃗π(G)) For small enough ϵ > 0, there is a randomized

algorithm that, given any vertex-capacitated directed graph G = (V,E, π), uses Õ(n3ϵ) directed max-flow

computations to compute a cut S ⊆ V , such that ψ⃗π(S) ≲
√

logn
ϵ · λ∆v

π (G) with constant probability.

Theorem 6.3. (Cut Matching Game for Directed Vertex Expansion) In the cut-matching game for
directed graphs, there is a cut player strategy so that, in O(log2 n) iterations, the union of the matchings played
by the matching player is an Eulerian graph with vertex expansion Ω(log n).

Proposition 6.1. (Vertex Dual Certificate) Given a graph G with vertex weights π : V → R+, there exists
a feasible circulation F ∈ Fv(G) such that:

ϕπ(F) ≳
ψ⃗π(G)√
log n

.

Remark 6.1. (undirected case) We remark that our definition of directed vertex expansion also captures
undirected vertex expansion, and that all the results presented above apply to the undirected case. Note that
the vector program presented in [18, Section 2.3] can also be rounded to give an O(

√
log n) approximation of

vertex expansion (vertex expansion defined here is within a constant factor of “minimum ratio vertex cut” in their
paper and is different from the “vertex expansion” in their appendix). Our program has the advantages that it
admits a fast primal-dual rounding algorithm and that it has an arguably simpler form.

While it is possible to prove Theorem 6.2, Theorem 6.3, and Proposition 6.1 directly by analyzing the λ∆v
π

program, a simpler way to obtain these results is by a reduction from vertex expansion to edge expansion.

Proposition 6.2. (Reduction from Directed Vertex Expansion to Directed Edge Expansion)
Let G = (V,E, π) be a vertex-capacitated directed graph. Then, there exists an edge-capacitated directed graph

G′ = (V ′, E′, w) over vertex weights π′, such that |V ′| = O(|V |), |E′| = O(|V | + |E|), and ϕ⃗π(G
′) ∼ ψ⃗π(G).

Moreover, such graph G′ can be constructed in linear time, and given any ∅ ≠ S′ ⊂ V we can compute in linear
time an ∅ ≠ S ⊂ V such that ψ⃗π(S) ≲ ϕ⃗π(S

′).

For brevity, we describe the (somewhat standard) reduction and leave the verification to the reader. For each
vertex i in G, create two copies iin and iout in G′, where π′(iin) = π(i) and π′(iout) = δ for a small positive
δ ≪ mini π(i), then draw an edge from iin to iout with edge weight π(i). For each edge e = ij ∈ E, draw an
edge from iout to jin with edge weight M ≫

∑
i π(i). Observe that this reduction can be computed in O(n+m)

time, and after that we simply apply this reduction to obtain Theorem 6.2, Theorem 6.3, and Proposition 6.1
from their edge expansion counterparts.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited619

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

6.1.1 Vertex Cheeger Rounding In this section, we will prove the following generalization of Theorem 1.3
to the vertex case:

Theorem 6.4. (Vertex Fast Cheeger-type Rounding) Given an graph G with vertex capacities π : V →
R+, there is an almost-linear time algorithm to obtain a set S such that ψ⃗π(G) ≲

√
ψ⃗π(S) · log dmax

ψ⃗π(G)
, where dmax

is the maximum unweighted degree of G.

While the previous theorems and proposition can be proved via reduction to ϕ⃗π, the same is not true of Theorem 6.4
because Theorem 1.3 only holds for the special case of directed edge conductance rather than the general ϕ⃗π.
Instead, we need a version of Lemma 3.1 for vertex expansion.

Lemma 6.1. (Vertex Metric Rounding Lemma) Given a graph G = (V,E), let d(·, ·) be a metric on V , and
let π : V → R+ be an arbitrary weight function over V . Suppose we are given disjoint vertex subsets L,R ⊆ V
as input to the algorithm. Let r := π(R)/π(L) and r′ := max{1, r}. Then there is an algorithm using O(log n)
maximum flow computations to output a set S with

ψ⃗π(S) ≲
r′ ·maxF∈Fv(G)

∑
i,j∈V F (i, j) · d(i, j)∑

i∈R π(i) · d(i, L)
.

Lemma 6.2. (Unsaturated Case, Vertex Version) Suppose Algorithm 2 with vertex capacities outputs a

cut S. Then ψ⃗π(S) ≤ (κ/βr′ − 1)−1, where r′ := max{1, r}.

Given these two modifications, the proof of Lemma 6.1 follows by combining Lemma 6.2 and Lemma 3.2
as in the proof of Lemma 3.1. The rest of the proof of Theorem 6.4 is analogous to that for Theorem 1.3 in
Section 5.1.1. First, we apply Theorem 6.2, and if we determine through this algorithm that ψ⃗π(G) is small,
then the O(

√
log n) approximation dominates the Cheeger bound. If on the other hand, we determine that

ψ⃗π(G) = Ω(1
log1.5 n

), then we solve the reweighted eigenvalue program for directed vertex expansion as defined

in [23, Definition 1.2] in O(log1.5 n) iterations of MMWU. Then, we apply Cheeger rounding to find a set S in

such that ψ⃗π(S) ≲
√
ψ⃗π(G) log

dmax

ψ⃗π(G)
as guaranteed by [23]. To round the ℓ1 program, we use flow rounding by

applying Lemma 6.1 to attain an almost-linear runtime.

6.2 Directed Hypergraph Expansion An edge-capacitated directed hypergraph H = (V,E,w) consists of
a set E of weighted directed hyperedges over vertex set V . For each edge e ∈ E, e = (He, Te) where He, Te ⊆ V
are the head sets and tail sets in e respectively, and w(e) is its weight. Given such a graph over vertex weights
π : V → R+, let S ⊂ V be a nonempty subset of vertices. The set of out-neighbours of S is defined as

δ+(S) := {e ∈ E : Te ∩ S ̸= ∅ and He ∩ Sc ̸= ∅}, and the directed hypergraph expansion ϕ⃗π(S) and ϕ⃗π(H) are
defined as

ϕ⃗π(S) :=
min(w(δ+(S)), w(δ+(S)))

min(π(S), π(S))
and ϕ⃗π(H) := min

∅̸=S⊂V
ϕ⃗π(S).

Note that this captures expansion in undirected hypergraphs by taking He = Te for each e ∈ E, and also
directed expansion in ordinary graphs by constraining |He| = |Te| = 1.

We again derive our SDP by adding ℓ22 triangle inequalities to the reweighted eigenvalue program for directed
hypergraphs. Although the program is not readily available in [23], its derivation follows the same idea of reducing
to the simple case of undirected edge expansion in ordinary graphs, via edge-constrained circulations on the clique
graph. Concretely:

Definition 6.2. (Directed Hypergraph Reweighted Eigenvalue with Triangle Inequalities)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited620

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Given an edge-capacitated directed hypergraph H = (V,E,w) over vertex weights π : V → R+. Let

F(H) :=

{
F : V × V → R≥0

∣∣∣∣∃{Fe : He × Te → R≥0}e∈E s.t. F (i, j) =
∑

e:i∈He,j∈Te

Fe(i, j),∑
i∈He,j∈Te

Fe(i, j) ≤ w(e) ∀e ∈ E,

∑
i∈V

F (i, j) =
∑
k∈V

F (j, k) ∀j ∈ V

}
be the set of feasible circulations on H. The λ∆π (H) program for directed hypergraph expansion is

λ∆π (H) := min
v1,...,vn∈Rn

max
F∈Fh(H)

∑
i<j

1

2
(F (i, j) + F (j, i)) ∥vi − vj∥2

subject to
∑
i∈V

π(i) · vi = 0⃗∑
i∈V

π(i) · ∥vi∥2 = 1

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2 ∀i, j, k ∈ V.

The intuition for defining feasible circulations on directed hypergraphs this way is that they correspond to
Eulerian reweightings of an underlying “clique graph” KH of the directed hypergraph H, where for each edge
(He, Te), we add an arc ij from every i ∈ He to j ∈ Te. The definition λ

△
π (H) is a natural one for various reasons.

First, it can be shown that λ△π (H) is a relaxation of ϕ⃗π(H). Second when H is an undirected hypergraph and π
is the total weighted degree, i.e. He = Te, ∀e ∈ E, and π(i) =

∑
e∋i w(e), then λ

△
π (H) is exactly the reweighted

eigenvalue program for undirected hypergraphs as defined in [23, Section 5.1] but with ℓ22 triangle inequalities.
Third, (iii) just as our program for directed graphs is a relaxation of the SDP in [1], this program is a relaxation
of the SDP in [10]. Note also that λ∆π for ordinary graphs may be considered a special case of Definition 6.2.

Again, our main results for edge expansion extend to hypergraph expansion.

Theorem 6.5. (Hypergraph Integrality Gap) Let H = (V,E,w) be an edge-capacitated directed hypergraph
with vertex weights π : V → R+. Then we have

λ∆π (H) ≲ ϕ⃗π(H) ≲
√
log n · λ∆π (H)

Theorem 6.6. (Fast O(
√
log n) Approximation to ϕ⃗π(H)) For small enough ϵ > 0, there is a randomized

algorithm that, given any edge-capacitated directed hypergraph H = (V,E,w) over vertex measure π : V → R+,

uses Õ(n3ϵ) directed max-flow computations to compute a cut S ⊆ V , such that ϕ⃗π(S) ≲
√

logn
ϵ · λ∆π (H) with

constant probability.

Proposition 6.3. (Hypergraph Dual Certificate) Given a hypergraph H = (V,E,w) with vertex weights
π : V → R+, there exists a feasible circulation F ∈ Fh(H) such that:

ϕπ(F) ≳
ϕ⃗π(H)√
log n

.

We can also define a cut-matching game for directed hypergraphs, where the matching player is required
to return an Eulerian subgraph of the clique graph KH satisfying the indegree and outdegree constraints as in
Algorithm 8.

Theorem 6.7. (Cut Matching Game for Directed Hypergraph Expansion) In the cut-matching game
for directed hypergraphs, there is a cut player strategy so that, in O(log2 n) iterations, the union of the matchings
played by the matching player is a feasible circulation on H with hypergraph expansion Ω(log n).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited621

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The key for obtaining these results is to relate hypergraph expansion ofH to the edge expansion of an ordinary
derived graph GH as in [10], which we present here for completeness.

Definition 6.3. (Derived Graph of Directed Hypergraphs [10, Fact 1.1]) Let H = (V,E,w) be an
edge-capacitated directed hypergraph over vertex weights π : V → R+. The derived graph GH = (V ′, E′, w′)
over vertex weights π′ : V ′ → R+ is defined as follows:

• V ′ := V ∪ {iine : e ∈ E} ∪ {ioute : e ∈ E}

• E′ := {(j, iine) : j ∈ He, e ∈ E} ∪ {(iine , ioute) : e ∈ E} ∪ {(ioute , k) : k ∈ Te, e ∈ E}

• w′(j, iine) = w′(ioute , k) = ∞ and w′(iine , i
out
e) = w(e) for all e ∈ E, (j, k) ∈ He × Te

• π′(i) = π(i) for all i ∈ V , and π′(iine) = π′(ioute) = 0 for all e ∈ E.

From [10, Fact 1], there is a correspondence between subsets S ⊆ V and S′ ⊆ V ′ so that ϕ⃗π(S) ∼ ϕ⃗π′(S′).

Therefore, if we perform a black-box reduction from ϕ⃗π(H) to ϕ⃗π′(GH), we obtain Theorem 6.6, Theorem 6.7,
and Proposition 6.3, although the approximation guarantees using this approach degrade to O(

√
log(n+m)) or

O(log(n+m)) (since |V ′| = Θ(n+m)), which are worse when m = ω(poly(n)).
To obtain these results in full, one needs to derive hypergraph analogues of Lemma 3.1, and of the algorithms

in Section 4 and Section 5.2. To this end, the key modification is to replace the bidirectional max-flow algorithm
in Algorithm 2 by its hypergraph counterpart, and we may leave the other components essentially unchanged.
We will need to define flows on hypergraphs H and obtain a hypergraph version of min-cut-max-flow theorem,
and this is achieved by considering flows and cuts on the derived graph GH :

1. Given L,R, a partition of V , we add vertices {s, t} to GH with s connected to L and t connected to R as
in Algorithm 2 and maximum s− t and t− s flows.

2. Each flow path is of the form (s, j1, i
in
e1 , i

out
e1 , j2, i

in
e2 , i

out
e2 , . . . , jℓ, t), where (jt, jt+1) ∈ Het × Tet for all

1 ≤ t ≤ ℓ − 1. It corresponds to the flow path (s, j1, j2, . . . , jℓ, t) in the respective s-t flow problem in the
clique graph KH . One can then check that bidirectional flows on GH correspond to Eulerian reweightings
on KH , i.e. feasible circulations on H.

3. The min-cut-max-flow theorem yields an s-t cut in GH . Since w′(j, iine) and w′(ioute , k) are large, the cut
edges will only be in one of the following types: (s, j), (j′, t), or (iine , i

out
e) (where j, j′ ∈ V). Thus, we derive

a hypergraph version of Lemma 3.3, whose proof follows closely that of the original version. Consequently,
we obtain a hypergraph version of Lemma 3.1.

Thus, the overall idea for generalizing our arguments for directed graphs to directed hypergraphs is to use the
derived graph GH to compute bi-directional flows. Then we can either find a directed sparse cut or many feasible
circulations in F(H), whose average can be used to certify that ϕ⃗π(H) is large through MMWU.

Finally, we will give the following generalization of Theorem 1.3 to undirected hypergraph conductance,
improving on the runtime of the algorithm in [23, Section 5]. Recall that for undirected hypergraphs, He = Te
for all e ∈ E.

Theorem 6.8. (Hypergraph Fast Cheeger-type Rounding) Given an edge-capacitated undirected hyper-
graph H = (V,E,w) with vertex weights π(i) =

∑
e:i∈He

w(e), there is an almost-linear time algorithm to obtain

a set S ⊆ V such that ϕπ(S) ≲
√
ϕπ(G) · log r, where r := maxe |He| is the maximum edge size of H.

The proof of Theorem 6.8 is analogous to that for vertex expansion, except that this time, it suffices to use
threshold rounding as in [23], which can be done in linear time.

We remark that by using the directed hypergraph metric rounding lemma outlined before, as well as a version
of Lemma 3.3 for directed hypergraphs, a fast Cheeger-type rounding algorithm exists for directed hypergraphs,
with the guarantee that

ϕ⃗π(S) ≲

√
ϕ⃗π(G) · log

r

ϕ⃗π(G)
.

This would necessitate a Cheeger inequality for directed hypergraphs, which is not available in [23] but follows
readily from their technique.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited622

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7 Summary

In this paper, we have given a unifying approach for generalizing all the major approximation algorithms for
undirected edge expansion to other settings, including directed edge expansion, directed vertex expansion and
directed hypergraph expansion. These algorithms may be summarized in a one-sentence formula: use flows to
implement an MMWU algorithm for solving a reweighted eigenvalue program or playing a cut-matching game.
Such short formula either recovers or improves all relevant past results.

On the practical side, it is worth noting that the algorithms presented in this paper are almost-linear time.
While we have theoretical guarantee on their runtimes and approximation ratios, we are curious about whether
they may be implemented to find good sparse cuts in large graphs quickly. Such implementation would bring
these algorithms into the practical realm; in particular, fast spectral algorithms for computing hypergraph sparse
cuts would be useful in certain machine learning applications, and fast algorithms for finding reweightings could
be useful in graphical neural networks for hypergraphs and directed graphs.

We believe our approach leaves much room for further research into graph partitioning problems. Since
multi-way graph partitioning has found many applications in clustering and classification, one interesting open
area of research is to design fast approximation algorithms for multi-way graph partitioning and generalize it
to the vertex, directed graph, and hypergraph settings. In [37], Yoshida recovered Cheeger-type inequalities for
partitioning problems on all submodular functions, which is more general than directed hypergraphs. Another
open problem could be to use flows and reweighted eigenvalues to obtain fast approximation algorithms for
partitioning problems on more general classes of submodular functions.

References

[1] Amit Agarwal, Moses Charikar, Konstantin Makarychev, Yury Makarychev. O(
√
logn) approximation algorithm for

min UnCut, min 2CNF deletion, and directed cut problems. In Proceedings of the 37th Annaul ACM Symposium on
Theory of Computing (STOC), 573–581, 2005.

[2] Noga Alon. Eigenvalues and expanders. Combinatorica, 6, 83–96, 1986.
[3] Noga Alon, Vitali Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial

Theory, Series B, 38(1), 73–88, 1985.
[4] Matthew Andres. Approximation algorithms for the edge-disjoint paths problem via Raecke decompositions. In

Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 277-286, 2010.
[5] Sanjeev Arora, Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs. In Proceedings of the

39th Annual ACM Symposium on Theory of Computing (STOC), 227–236, 2007.
[6] Sanjeev Arora, Satish Rao, Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal

of the ACM, 56(2):1–37, 2009.
[7] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability,

SCC, and shortest paths via directed expanders and congestion balancing. In Proceedings of IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), 1123–1134, 2020.

[8] Chandra Chekuri, and Alina Ene. Poly-logarithmic approximation for maximum node disjoint paths with constant
congestion. In proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms (SODA),
326–341, 2013.

[9] T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, Chenzi Zhang. Spectral properties of hypergraph Laplacian
and approximation algorithms. Journal of the ACM, 65(3):1–48, 2018.

[10] T.-H. Hubert Chan, Bintao Sun. SDP primal-dual approximation algorithms for directed hypergraph expansion and
sparsest cut with product demands. In Proceedings of the 24th Annual International Computing and Combinatorics
Conference (COCOON), 688-700, 2018.

[11] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva. Maximum flow
and minimum-cost flow in almost linear-time. In Proceedings of the 63rd IEEE Annual Symposium on Foundations
of Computer Science (FOCS), 612–623, 2022.

[12] Julia Chuzhoy. Routing in undirected graphs with constant congestion. Proceedings of the 44th Annual ACM
Symposium on Theory of Computing (STOC), 855–874, 2012.

[13] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest paths with applications
to vertex-capacitated flow and cut problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing (STOC), 389–400, 2019.

[14] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A Deterministic
Algorithm for Balanced Cut with Applications to Dynamic Connectivity, Flows, and Beyond. In Proceedings of the
61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), 1159–1167, 2020.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited623

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[15] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint paths with congestion 2. Journal
of the ACM 63(5), 1–51, 2016.

[16] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decremental shortest paths via layered core
decomposition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2478–2496.

[17] William B Johnson and Joram Lindenstrauss Extensions of Lipschitz mappings into a Hilbert space. Contemporary
Mathematics. 26, 189–206, 1984.

[18] Uriel Feige, MohammadTaghi Hajiaghayi, James R. Lee. Improved approximation algorithms for minimum weight
vertex separators. SIAM Journal on Computing, 38(2):629–657, 2008.

[19] Satyen Kale. Efficient algorithms using the multiplicative weights update method. PhD thesis, Princeton University,
2007.

[20] Rohit Khandekar, Satish Rao, Umesh Vazirani. Graph partitioning using single commodity flows. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing (STOC), 385–390, 2006.

[21] Tsz Chiu Kwok, Lap Chi Lau, Kam Chuen Tung. Cheeger inequalities for vertex expansion and reweighted eigenvalues.
In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), 366–377, 2022.

[22] Vladimir Kolmogorov. A simpler and parallelizable O(
√
logn))-approximation algorithm for Sparsest Cut. In arXiv:

2307.00115
[23] Lap Chi Lau, Kam Chuen Tung, Robert Wang. Cheeger inequalities for directed graphs and hypergraphs using

reweighted eigenvalues. In Proceedings of the 55th Annual Symposium on Theory of Computing (STOC), 2023.
[24] Tom Leighton, Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation

algorithms. Journal of the ACM 46(6), 787–832, 1999.
[25] Anand Louis. Cut-matching games on directed graphs. In arXiv:1010.1047, 2010.
[26] Anand Louis. Hypergraph Markov operators, eigenvalues and approximation algorthms. In Proceedings of the 47th

Annual Symposium on Theory of Computing (STOC), 713–722, 2015.
[27] Anand Louis, Yury Makarychev. Approximation algorithms for hypergraph small set expansion and small set vertex

expansion. In Proceedings of APPROX-RANDOM, 339–355, 2014.
[28] Yin Tat Lee, Satish Rao, Nikhil Srivastava. A new approach to computing maximum flows using electrical flows. In

Proceedings of the 54th annual ACM symposium on Theory of Computing (STOC). 755–764, 2013.
[29] Anand Louis, Prasad Raghavendra, Santosh Vempala. The complexity of approximating vertex expansion. In

Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Secience (FOCS), 360–369, 2013.
[30] Sam Olesker-Taylor, Luca Zanetti. Geometric bounds on the fastest mixing Markov chain. In the 13th Innovations in

Theoretical Computer Science Conference (ITCS 2022).
[31] Lorenzo Orecchia, Leonard Schulman, Umesh Vazirani, Nisheeth Vishnoi. On partitioning graphs via single commodity

flows. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), 461–470, 2008.
[32] Thomas Rothvoss. Lecture notes on the ARV algorithm for sparsest cut. In arXiv preprint arXiv:1607.00854, 2016.
[33] Jonah Sherman. Breaking the multicommodity flow barrier for O(

√
logn)-approximations to sparsest cut. In

Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 363–372, 2009.
[34] Alistair Sinclair. CS271 Randomness and Computation Lecture 18 Fall 2022. https://people.eecs.berkeley.edu/ sin-

clair/cs271/f22.html, 2022.
[35] Luca Trevisan. Lecture notes on graph partitioning, expanders and spectral methods. 2016.
[36] Ramon Van Handel. Probability in High Dimension, APC 550 Lecture Notes Princeton University. 2016.
[37] Yuichi Yoshida. Cheeger inequalities for submodular transformations. In Proceedings of the 30th ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2582–2601, 2019.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited624

D
ow

nl
oa

de
d

11
/0

9/
24

 to
 9

9.
25

0.
19

9.
61

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Previous Work
	Undirected Graphs
	Directed Graphs

	Our Results
	Primal Formulation
	Dual Formulation
	Primal-Dual Algorithms
	Cheeger-Type Guarantee
	Cut-Matching Game
	Unifying Framework

	Technical Review and Overview
	Preliminaries
	Previous Works on Undirected Sparsest Cut
	Semidefinite Program with Triangle Inequalities
	Expander Flows
	Expander Flows vs Dual Program
	Cut-Matching Game
	Matrix Multiplicative Weight Update Method
	Primal-Dual Algorithms for Sparsest Cut
	Almost Linear-Time Primal-Dual Algorithm

	Previous Works on Directed Sparsest Cut
	Directed Semi-Metric for Directed Sparsest Cut
	Primal-Dual Algorithm for Directed Sparsest Cut
	Cut-Matching Game for Directed Graphs
	Reweighted Eigenvalues for Directed Graphs

	Our Techniques
	Organization

	Rounding Algorithms
	Metric Rounding Lemma
	Rounding Algorithm for Semidefinite Programming Solution
	Rounding Algorithm for Spectral Solution

	Almost Linear-Time Primal-Dual O(sqrt(log n))-Approximation
	Dual Program
	Dual Program as Expander Flow
	Intuition of the Dual Program

	Regret Minimization for Approximating Directed Edge Expansion
	Geometric Results for Implementation of Oracle
	Large Core Case
	Well Spread Case

	Fast Implementation of Oracle for Well-Spread Case
	Overview
	Project Max-Flow Algorithm
	Finding Many Violating Paths
	Proof of the well spread case

	Main Result and Corollary

	Primal-Dual Algorithms for Reweighted Eigenvalues and Cut-Matching Game
	Reweighted Eigenvalues
	Fast Algorithm for Cheeger-Type Guarantee

	Cut-Matching Game
	Approximating Directed Edge Expansion

	Other Generalizations
	Directed Vertex Expansion
	Vertex Cheeger Rounding

	Directed Hypergraph Expansion

	Summary

