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Abstract— Motivated by practical networking scenarios, we in-
troduce a notion of restricted communication called conservative
networking. Consider a network of lossless links and a number of
independent sources. Each node needs to recover a certain subset
of the sources. However, each node is conservative in that all
information it receives can only be a function of the sources it will
ultimately recover. For acyclic networks, we show that conservative
networking admits a clean characterization: (i) the rates achievable
by integer routing, factional routing, and network coding are equal,
and (ii) this rate is determined by a simple cut bound. However, this
clean characterization does not extend to cyclic networks. We present
cyclic examples showing that (i) fractional routing can be strictly
better than integer routing, and (ii) network coding can be strictly
better than fractional routing. This work underscores the difficulties
generally encountered in cyclic networks.

I. INTRODUCTION

In their pioneering work on network coding, Ahslwede et
al. [1] determined the capacity (maximum achievable rate) for
multicasting information in a network of lossless channels
with bit-rate constraints. Ahslwede et al. showed that the
multicast capacity is equal to the minimum capacity of a cut
separating the source from a receiver. Furthermore, an example
is given [1], which shows that the traditional routing scheme,
where nodes only store and forward data, cannot achieve the
multicast capacity in general. Instead, to achieve the capacity,
we need to allow nodes to perform network coding, i.e.,
generating output data by encoding (i.e., computing certain
functions of) previously received input data.

By now, the problem of single session multicasting is well
understood, from both theoretical and practical perspectives.
However, the multi-session network coding problem, where
multiple multicast sessions with independent data share a
network, remains an open challenge.

In this paper, we focus on a restricted form of multi-
session communication called conservative networking. By
being conservative, we require each node to reject any received
message that involves information that this node does not need.
In other words, all information a node is allowed to receive
can only be a function of the sources it will ultimately recover.

There are at least two motivations for considering the
conservative networking model. First, in practical networks
such as a peer-to-peer network, nodes may be conservative
because (i) they have no incentive to forward to others
data in which they have no vested interest, and (ii) there
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are many security issues that arise when data is forwarded
through nodes which are not the intended recipients. Second,
conservative networking problems involving a single session
are theoretically elegant, and optimal solutions can easily be
characterized.

Conservative networking with a single session is essentially
a broadcasting problem, where the source node wants to
transfer the same information to all other nodes (see, e.g.,
Edmonds [2] or Wu et al. [3]). One of Edmonds’ fundamental
results in graph theory establishes that the broadcast capacity
can be achieved by routing. Specifically, given a directed
graph and a source node s, the maximum number of edge
disjoint spanning trees rooted at s is equal to the minimum
capacity of cuts separating the source from another node. Thus,
for conservative networking with a single session, routing is
optimal and network coding is not needed to achieve capacity.

This motivates us to investigate whether Edmonds’ theorem
can be generalized in the multi-session setting. For acyclic
networks, we indeed obtain a clean characterization: (i) the
rates achievable by integer routing, factional routing, and
network coding are equal, and (ii) this rate is determined by
a simple cut bound.

Somehow surprisingly, this clean characterization does not
extend to cyclic networks. We present cyclic examples show-
ing that (i) fractional routing can be strictly better than integer
routing, and (ii) network coding can be strictly better than
fractional routing. Our construction is based on a graphical
reduction, which transforms any multi-session unicast problem
G into a multi-session conservative networking problem G′.
We show the graphical reduction preserves the routing capacity
and does not decrease the coding capacity. Then by applying
the reduction to known multiple unicast examples, we obtain
the desired counter examples.

II. PRELIMINARIES

A. Communication Problems

We begin with informal definitions. A communication prob-
lem is modeled as a directed graph in the following way.
Nodes (computers, routers, etc.) participating in the problem
are modeled as vertices of the graph. Communication channels
between nodes are modeled as edges. If a node has a stream
of information that it wishes to share with some other entities,
then the information is called a commodity, the node which
has the information is called a source, and the nodes which
wish to receive the information are called receivers. In general,
a communication problem will involve several commodities.
More formally, we have



Definition 2.1: A communication problem is a tuple
(
G = (V,E), k, (s1, T1), . . . , (sk, Tk)

)

where G = (V,E) is a directed graph, k ∈ N is an integer
specifying the number of commodities, si ∈ V is the source
for commodity i, and Ti ⊆ V − si is the set of receivers for
commodity i.

The channels of a communication problem are used to
transmit information. This is usually formalized by defining
an alphabet of symbols which can be sent on a channel, and
asserting that, at each time step, an edge may send a message,
which consists of a single symbol from this alphabet. This can
be formalized (see, e.g., Harvey et al. [4]), although we do not
do so here. Rather, we assume that the reader has previously
seen a formalization, or is willing to believe that a reasonable
formalization exists. The reader should also note that handling
cyclic graphs involves several subtleties.

In general, the channels of a communication problem may
have different bandwidths. For simplicity, we ignore this effect
and assume that all channels have the same capacity. This
assumption amounts to assuming that there is a single alphabet
from which any edge may transmit any symbol.

For communication problems arising in practice, it is com-
mon that, for each commodity, there is a single receiver node
which wishes to receive that commodity. More formally, we
have

Definition 2.2: A k-pairs communication problem is one in
which each |Ti| = 1. In the literature, this is also known as a
multiple-session unicast problem.

Given a communication problem, the natural question to
study is: How much information can be sent from the source
of a commodity to the receivers? To state this question in more
detail, we need additional definitions.

B. Solutions
A solution is a scheme for transmitting a commodity from

its source node to its receiver nodes, via the communication
channels. Informally, we require that, for each receiver node, it
must be able to reconstruct the information for all commodities
that it wishes to receive, given the messages that arrived on its
inbound edges. One can define different classes of solutions,
based on various schemes for constructing messages.

A routing solution is one in which the information of the
commodity is regarded as immutable. It cannot be manipulated
or coded with other commodities.

The basic sort of routing solution is an integer routing
solution, in which every edge is associated with a single
commodity, and at every time step, the message transmitted
on an edge consists of a single symbol from its associated
commodity’s information stream. In the language of combina-
torial optimization, an integer routing solution is a packing of
k directed Steiner trees; the ith tree is rooted at si, and spans
the nodes Ti + si. For k-pairs communication problems, an
integer routing solution is simply a packing of k edge-disjoint
directed si-ti paths.

One can also define fractional routing solutions where, at
each time step, an edge is associated with a single commod-
ity, but at different time steps, the edge can be associated
with different commodities. This amounts to multiplexing
several integer routing solutions over several time steps. In the
language of combinatorial optimization, a fractional routing
solution amounts to a fractional packing of Steiner trees. For
k-pairs communication problems, a fractional routing solution
is simply a (fractional) multicommodity flow.

Finally, the most general sort of solution is a network coding
solution. In such solutions, the message transmitted on an edge
can be an arbitrary function of the edges already received
by the edge’s tail node. Network coding solutions have no
counterpart in combinatorial optimization.

C. Rate

The quality of a solution is determined by the amount of
information that it can transmit. This notion is captured by the
(concurrent) rate of the solution, defined as follows.
• Integer routing solution: Let p be an integer. Suppose

that a solution packs p Steiner trees for each commodity
i, where all of these trees are disjoint. Then we say that
the solution has rate p.

• Fractional routing solution: Let p be a rational number.
Suppose that the solution fractionally packs Steiner trees
and the total weight of all trees for commodity i is at
least p. Then we say that the solution has rate p.

• Network coding solution: Suppose that the solution deliv-
ers a symbols of the information stream to the receivers
over b time steps. Then we say that the solution has rate
p = a/b. This is only a vague, intuitive definition; for a
formal definition see, e.g., Harvey et al. [4].

Given a communication problem, it is interesting to compare
the best rate that can be achieved by solutions of the various
classes. We define:

Rint(G) = max rate of an integer routing solution
Rfrac(G) = max rate of a fractional routing solution
N (G) = supremum rate of a network coding solution

It is very interesting to understand these quantities further. A
natural question is: Are there simple upper and lower bounds
on these quantities?

At the very least, we have the following inequalities

Rint(G) ≤ Rfrac(G) ≤ N (G), (1)

since any integer routing solution is trivially a fractional
one, and any fractional routing solution is trivially a coding
solution. Some natural questions include: When are these
inequalities strict? When does equality hold?

D. Conservative Solutions

As stated earlier, this paper focuses on a particular class of
solutions called conservative solutions. Informally, a solution
is conservative if commodity i is never transmitted outside the
set Ti + si. More formally, we have



Definition 2.3: The set of commodities that vertex v wishes
to send/receive is denoted c(v). The set of commodities that
both endpoints of an edge e = (u, v) wish to send/receive is
denoted c(e). Thus,

c(v) := { i : v ∈ Ti + si }
c(e) := c(u) ∩ c(v).

A solution is called conservative if every message transmitted
on edge e is only a function of the commodities in c(e).

The notation Rcons
int (G) is defined to be the maximum rate

of a conservative integer routing solution in G. The notations
Rcons

frac (G) and N cons(G) are defined similarly. As in Eq. (1),
we have

Rcons
int (G) ≤ Rcons

frac (G) ≤ N cons(G). (2)

Note that conservative solutions for k-pairs communication
problems are rather trivial.

E. LP characterization of Rcons
frac (G)

In general, integer routing rates and network coding rates are
quite difficult to analyze. However, fractional routing solutions
can be characterized using linear programs. Conservative frac-
tional routing solutions have a particularly clean formulation,
which we describe next.

Definition 2.4 (Flow): An s–t flow is a nonnegative vector
f of length |E| satisfying the flow conservation constraint

excessv(f) = 0 ∀v ∈ V − {s, t}, (3)

where

excessv(f) :=
∑

e∈E s.t.
head(e)=v

fe −
∑

e∈E s.t.
tail(e)=v

fe, (4)

is the flow excess of v, i.e., the amount of incoming flow
minus the amount of outgoing flow for node v. Rather, the flow
excess is not required to be zero at s and t. The flow excess
at the destination node t (i.e., excesst(f)) is an important
quantity called the value of the flow.

Let Fs,t(r) denote the set of s–t flows in G, each with flow
value r. Then f ∈ Fs,t(r) if and only if

f ≥ 0, (5)
excesss(f) = −r, (6)
excesst(f) = r, (7)
excessv(f) = 0, ∀v ∈ V − {s, t} . (8)

Constraint (6) is in fact redundant as it can be derived from
(7) and (8). Note that the above inequalities are linear in f
and r; for this reason, Fs,t(r) is called the s–t flow polytope.
A useful property of Fs,t(r) is its linearity in r, i.e.,

Fs,t(r) = r · Fs,t(1) := { rf : f ∈ Fs,t(1) } . (9)

The maximum rate of fractional routing, Rcons
frac (G), is given

by the following linear program.

max r

s.t. g1 + · · ·+ gk ≤ c

gi(e) = 0 ∀e /∈ Gi

f i
t ≤ gi ∀i ∈ [k], ∀t ∈ Ti

f i
t ∈ Fsi,t(r) ∀i ∈ [k], ∀t ∈ Ti

Here [k] denotes the set {1, . . . , k} and Gi denotes the
subgraph induced by the node set Ti+si. This can be explained
as follows. We split the total available capacity c into k parts
(or subgraphs) g1, . . ., gk, one for each commodity. Due to
the conservative networking constraint, we can assume that the
flows for commodity i only use edges in Gi. Each subgraph gi

must support a broadcast rate of r. Due to Edmonds’ theorem
and the Max-Flow-Min-Cut Theorem, this holds if and only
if gi contains an si–t flow f i

t with rate r for each t ∈ Ti.

F. A Cut Condition

We now derive a “cut condition” (upper bound) on
N cons(G). First, define the notation

E[A,B] := { (a, b) ∈ E : a ∈ A, b ∈ B } .

A cut is an arbitrary subset U ⊆ V of the vertices. The edges
crossing the cut (from U to U ) are precisely E[U, U ]. Let
C ⊆ [k] be an arbitrary subset of the commodities. Let us now
consider the edges crossing the cut which, in a conservative
solution, can transmit commodities in C. Denote this set by

E[U,U ]C :=
{

e ∈ E[U, U ] : C ∩ c(e) 6= ∅ }
.

The commodities which must transmit information across the
cut are

CU :=
{

i ∈ C : si ∈ U and Ti ∩ U 6= ∅ }
.

A simple counting argument yields

Proposition 2.5: For every U ⊆ V , we have

N cons(G) ≤ |E[U,U ]C |
|CU | .

Let us define the conservative cut value on G to be

Ccons(G) := min
C⊆[k]

min
U⊆V

|E[U,U ]C |
|CU | .

Then Proposition 2.5 asserts that

N cons(G) ≤ Ccons(G). (10)

A natural question is: Is this bound tight?



III. ACYCLIC GRAPHS

We begin our investigation of conservative solutions by
considering acyclic graphs. Our main result is as follows.

Theorem 3.1: Consider a communication problem on an
acyclic graph G. Then

Rcons
frac (G) = N cons(G) = Ccons(G),

and
Rcons

int (G) = bN cons(G)c
(cf. Eq. (2) and Eq. (10)).

Proof. Let r = Ccons(G), and assume that this quantity is
positive. We will construct a conservative fractional routing
solution also of rate r, and a conservative integer routing
solution of rate brc. The argument is iterative, and it examines
the vertices in the topological order v1, v2, . . .. Suppose that
we have already considered vertices Vi = {v1, . . . , vi} and
that the messages transmitted between those vertices have
been adjusted to conform to a conservative fractional routing
solution.

Consider now the vertex vi+1, and assume for convenience
that it is not a source for any commodity. The edges inbound
to vi+1 are precisely

E[Vi, {vi+1}] = E[V −vi+1, {vi+1}],
since we consider the vertices in topological order.

Let us now construct a bipartite graph Hi+1 with vertex set
X ∪ Y where

X = { xj : j ∈ c(vi+1) }
Y = { ye : e ∈ E[ V −vi+1, {vi+1} ] } ,

and the xj’s and ye’s are new vertices. The graph Hi+1 has
an edge (xj , ye) iff j ∈ c(e). Now fix a set U ⊆ X , and let
C = { j : xj ∈ U }. Let δ(U) ⊆ Y denote the neighbors of
U in Hi+1. Then clearly

δ(U) = { ye : e ∈ E[ V −vi+1, {vi+1} ]C } .

Therefore

|δ(U)| = |E[ V −vi+1, {vi+1} ]C |
≥ r · |CV−vi+1 | (by Proposition 2.5)
= r · |c(vi+1) ∩ C|
= r · |U |.

(11)

By Hall’s Theorem (see the Appendix), Eq. (11) implies that
there exists a fractional matching M where each node in X
has (fractional) degree at least r. In other words, there exist
wj,e ≥ 0 such that

∑
e

wj,e ≥ r ∀j
∑

j

wj,e ≤ 1 ∀e.

Since G is acyclic, the nodes in Vi must have fully decoded all
commodities for which they are a receiver, using the routing

solution constructed so far. This means that, if wj,e > 0 then
the tail of edge e has already fully decoded commodity j, so
it can indeed provide a wj,e fraction of commodity j to vi+1

on edge e. Using this fractional matching, we augment the
conservative fractional routing solution on Vi to one on Vi+1.

The same argument applies to the case of integral routing
solutions. Eq. (11) also implies, via Hall’s Theorem, that there
exists an integral matching M for which each node in X
has (fractional) degree at least brc. Therefore a conservative
integer routing solution on Vi can be augmented to one on
Vi+1 with rate at least brc. ¥

IV. CYCLIC GRAPHS

In this section we investigate whether the results of the
previous section can be extended to graphs with cycles.
Surprisingly, the answer is no!

Theorem 4.1: There exist graphs G1 and G2 such that

Rcons
int (G1) ≤ Rcons

frac (G1)− 1 (12)
Rcons

frac (G2) < N cons(G2) (13)

Additionally, computing Rcons
int (G) is NP-hard.

A. The Reduction

The argument depends on a certain reduction from k-pairs
communication problems to general communication problems.
Let G denote a k-pairs problem. From this, we will construct
another communication problem G′.

The reduction from G to G′.

The new instance G′ is constructed as follows. For
each commodity, we create a new dummy node ui. The
vertices are

V ′ = V ∪ { ui : 1 ≤ i ≤ k } .

The edges are

E′ = E ∪ { (ti, ui) : 1 ≤ i ≤ k }
∪ { (ui, v) : 1 ≤ i ≤ k, v ∈ V } .

The receivers for commodity i are

Ti = V + ui.

An example of this reduction is shown in Fig. 1.

Lemma 4.2: Any rate-r integer routing solution for G cor-
responds to a rate-r conservative integer routing solution for
G′, and vice-versa.

Proof. ⇒: Given the integer routing solution for G, we
additionally transmit commodity i on the edges (ti, ui) and
(ui, v) for each v ∈ V . Every vertex in V + ui = Ti thereby
receives commodity i, so this is an integer routing solution for
G′. It is clearly conservative.
⇐: Suppose that we have a conservative integer routing

solution for G′, i.e., an integer packing of directed Steiner
trees. The Steiner tree for commodity i necessarily contains
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t1 t2
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u1 u2
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(b)

Fig. 1. (a) A graph G. (b) The graph G′ obtained by applying the reduction.

a path from si to ui, since ui is a receiver for commodity i
(i.e., ui ∈ Ti). This path does not traverse any uj where j 6= i
since uj /∈ Ti and since we assume that the given solution is
conservative. The penultimate vertex on this path must be ti,
so we obtain an si-ti path Pi which traverses only vertices in
V . The paths P1, . . . , Pk are disjoint (since they came from
an integer Steiner packing) and therefore they form an integer
routing solution for G. ¥

The same argument extends easily to the fractional case.

Lemma 4.3: Any rate-r fractional routing solution for G
corresponds to a rate-r conservative fractional routing solution
for G′, and vice-versa.

For the case of network coding, the easier direction of the
argument continues to hold.

Lemma 4.4: Any rate-r network coding solution for G
yields a rate-r conservative network coding solution for G′.

Thus we have shown that, for any k-pairs communication
problem G,

Rint(G) = Rcons
int (G′)

Rfrac(G) = Rcons
frac (G′)

N (G) ≤ N cons(G′).

One might be tempted to conjecture that N (G) = N (G′)
should also hold, but surprisingly this is false! This result,
proven in Section IV-D, gives yet another example of the
counter-intuitive nature of network coding.

s1

t1

s2

t2
Fig. 2. The communication problem proving Proposition 4.5.

s1 s2

t2 t1
Fig. 3. The communication problem proving Proposition 4.6.

B. Existing Results

Before proving our main theorem, we recall some well-
known results from the literature.

Proposition 4.5 (Folklore): There exists a k-pairs commu-
nication problem G for which Rint(G) ≤ Rfrac(G)− 1.

Proof. Let G be the communication problem shown in
Fig. 2. It has Rint(G) = 0 but Rfrac(G) = 1. ¥

Proposition 4.6: There exists a k-pairs communication
problem G in which Rfrac(G) < N (G).

Proof. The “butterfly graph” (Ahlswede et al. [1]) has a k-
pairs variant G shown in Fig. 3. This graph has Rfrac(G) =
1/2 but N (G) ≥ 1. ¥

Theorem 4.7 (Fortune et al. [5]): Given a k-pairs com-
munication problem G, the problem of deciding whether
Rint(G) = Rfrac(G) is NP-complete.

In fact, a much stronger result can be shown.

Theorem 4.8 (Guruswami et al. [6]): It is NP-hard to ap-
proximate the value of Rint(G) to within a factor of |E|1/2−ε

for any ε > 0.

C. Proof of Main Theorem

We now assemble the results mentioned earlier to proof the
main theorem of this section.



Proof (of Theorem 4.1). Apply the reduction of Section IV-
A to the graph of G of Proposition 4.5, obtaining a graph G1.
This graph has Rcons

int (G1) = 0 and Rcons
frac (G1) = 1, thereby

proving Eq. (12).
Apply the reduction of Section IV-A to the graph of G

of Proposition 4.6, obtaining a graph G2. This graph has
Rcons

frac (G2) = 1/2 and N cons(G2) = 1, thereby proving
Eq. (13).

Apply the reduction of Section IV-A to the family of
instances used in Theorem 4.7. This shows that computing
the value Rcons

int (G) is NP-hard. ¥

For the sake of clarity, we now give a second, more direct
proof of Eq. (13).

Proof. Consider the communication problem G in Fig. 4 (a).
We claim that Rcons

frac (G) < N cons(G). It is important to note
that G is (just barely) cyclic; if it were acyclic, then we would
have Rcons

frac (G) = N cons(G) by Theorem 3.1.
The first step is to show that Rcons

frac (G) ≤ 1/2. (In fact,
this rate is obviously achievable.) Suppose that there exists a
conservative fractional routing solution of rate r.

• First, consider the set U = {v4, v5, v7}. Both commodi-
ties must enter U , via the two edges e1 and e2. Since our
solution is conservative, e1 can only send commodity 1.
So r units of e2’s capacity must be used commodity 2.

• Next, consider the set U = {v4}. Both commodities must
enter U , via the two edges e2 and e3. Since our solution
is conservative, e3 can only send commodity 2. So r units
of e2’s capacity must be used for commodity 1.

Combining these observations, we see that e2 must send r
units of both commodity 1 and commodity 2, so r ≤ 1/2.

The second step is to show that N cons(G) ≥ 1. (In fact,
this rate is obviously optimal.) This follows from the rate-1
network coding solution shown in Fig. 4 (b). Note that the
timing of message transmissions in the solution is critical —
commodity B must arrive at v4 on e3 before v4 can transmit
commodity A on e4. ¥

D. A Graph G with N (G) < N cons(G′)

Let G be the k-pairs communication problem shown in
Fig. 5 (a).

Lemma 4.9: N (G) = 2/3.
Proof. First we show that N (G) ≥ 2/3. Imagine divide each
commodity into two parts, each of size 1/3 unit. For example,
we write commodity A as A1, A2, and the combined size of
A1 and A2 is 2/3. The network coding solution shown in
Fig. 5 (b) achieves rate 2/3.

Now we show that N (G) ≤ 2/3. We treat each commodity
as a random variable, then use a sequence of entropy argu-
ments and Markov chain arguments to establish the bound.
For a detailed description of this technique see, Harvey et
al. [4], Jain et al. [7], Kramer and Savari [8], etc.

sA sB
v1 v2

v3

v4

v5 v6

v7 v8

e2e1

e3

e4

(a)

A B

A+BA B

B A
B

A+B A

sA sB

(b)

Fig. 4. (a) The communication problem to prove Eq. (13). The source
for commodity 1 is v1, and the receivers are T1 = {v3, v4, v5, v6, v8},
shown in red. The source for commodity 2 is v2, and the receivers are
T2 = {v3, v4, v5, v6, v7}, shown in light blue. (b) A conservative network
coding solution of rate 1.

H(sD) + H(e4) + H(e15)
≥ H(sD, e4, e13, e15, e17)
≥ H(sD, e4, e13, e15, e17, e10, e18, e19)
≥ H(sD, e4, e13, e15, e17, e10, e18, e19, sA)
≥ H(sD, e4, e13, e15, e17, e10, e18, e19, sA, e14)
≥ H(sD, e4, e13, e15, e17, e10, e18, e19, sA, e14, sC)
≥ H(sD, e4, e13, e15, e17, e10, e18, e19, sA, ..., sC , e5, e7)
≥ H(sD, e4, e13, e15, e17, ..., sA, ..., sC , e5, e7, e12)
≥ H(sD, e4, e13, e15, e17, ..., sA, ..., sC , e5, e7, e12, e16)
≥ H(sD, ..., e17, ..., sA, ..., sC , ..., e16, e21)
≥ H(sD, ..., e17, ..., sA, ..., sC , ..., e21, sB)
≥ H(sA, sB , sC , sD)
= H(sA) + H(sB) + H(sC) + H(sD)

Rewriting, H(sA)+H(sB)+H(sC) ≤ H(e4)+H(e15) ≤
2, implying that the network coding rate is at most 2/3. ¥

Lemma 4.10: N (G′) = 1.
Proof. The graph G′ is as shown in Fig. 5 (c). This figure
also describes a conservative network coding solution of rate
1. The crucial detail is the new edges from uB and uC to the
central vertex with out-degree 4. These edges can respectively
transmit the unencoded commodities B and C to the central
vertex. Therefore the unencoded commodities B and C can
be transmitted to tA and tD, allowing them to decode A and
D respectively. As long as tA, tB , tC , tD have decoded their
desired commodities, all receivers can decode their desired
commodities due to the edges (not shown) leaving the ui

vertices. ¥



12 138 9

20 2118 19

1 2

3 4 5

10 11
14 15 16 17

sA

tA

76

sB sC

sD

tBtC tD
(a)

(B1,B2) (D1,D2)(A1,A2) (C1,C2)

(D2,
B1+D1)

(B2,
B1+D1)

(C2,
A1+C1)

(A2,
A1+C1)

(B1,B2) (C1,C2)

B2 (B1, C1, 
C2+B2)

C2

C1 B1

A1 (A2, C2,
A1+C1)

(B2, D2,
B1+D1)

D1

sA

tA

(C2+B2,
B1)

(C2+B2,
C1)

sB sC

sD

tBtC tD
(b)

B DA C

D+BA+C

B C

B B+C C

C B
A A+C B+D D

sA

tA

B+CB+C
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Fig. 5. (a) The k-pairs communication problem for proving Lemma 4.9
and Lemma 4.10. (b) An optimal network coding solution of rate 2/3. (c)
The graph, after being transformed by the reduction of Section IV-A, has a
network coding solution of rate 1.
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APPENDIX
HALL’S THEOREM

In this appendix, we state the generalization of Hall’s
theorem used in Section III. Let H = (X∪Y,E) be a bipartite
graph. For U ⊆ X , let δ(U) denote the set of neighbors of
vertices in U .

Theorem 1.1 (Hall [9]): If |δ(U)| ≥ |U | for all U ⊆ X ,
then H has a perfect matching.

Proof. See Schrijver [10, Section 22]. ¥
Hall’s theorem has the following “packing generalization”.

Corollary 1.2: Let k be a positive integer. If |δ(U)| ≥ k·|U |
for all U ⊆ X , then H has k disjoint perfect matchings.

Proof. See Schrijver [10, Theorem 22.10]. The idea is to
split each X-vertex into k copies (with identical neighbors),
obtaining a graph H ′. By Theorem 1.1, H ′ has a perfect
matching, which can be split into k disjoint perfect matchings
of H . ¥

The generalization that we require is as follows.

Corollary 1.3: Let r = p/q be a rational number, where p
and q are positive integers. If |δ(U)| ≥ r · |U | for all U ⊆ X ,
then H contains p matchings M1, . . . , Mp such that:
• For every i ∈ [p], each X-vertex is incident with exactly

one edge in Mi, and
• Each Y -vertex has at most q incident edges amongst all

p of the matchings.

Proof. The proof is similar to Corollary 1.2 except that each
X-vertex is split into p copies, and each Y -vertex is split into
q copies. ¥


