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Abstract. In this paper, we study the complexity of recognizing powers of chordal graphs and
its subclasses. We present the first polynomial time algorithm to recognize squares of proper interval
graphs and give an outline of an algorithm to recognize k-th powers of proper interval graphs for
every natural number k. These are the first results of this type for a family of graphs that contains
arbitrarily large cliques.

On the other hand, we show the NP-completeness of recognizing squares of chordal graphs,
recognizing squares of split graphs and recognizing chordal graphs that are squares of some graph.
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1. Introduction. Root and root finding are concepts familiar to most branches
of mathematics. In graph theory, H is a root of G = (V, E) if there exists a positive
integer k such that z and y are adjacent in G if and only if their distance in H is at
most k. If H is a kth root of G, then we write G = H* and call G the kth power of
H. Note that the terms “power” and “root” are used because of the close relationship
with matrix multiplication. Graph roots are associated with problems in distributed
computing [26] and computational biology [31, 24] where graph roots are useful in the
reconstruction of phylogeny.

For any class of graphs, recognition is a fundamental structural and algorithmic
problem; in this paper, we study recognition problems on graph powers. Generally,
it is a difficult task to determine whether a given graph G has a k-th root or not. In
1967, Mukhopadhyay [30] characterized general graphs which possess a square root
and in the following year Geller [13] solved the problem for general digraphs. In 1974,
Escalante, Montejano and Rojano [9] characterized graphs and digraphs with a k-th
root. However, all of these characterizations on powers of general graphs are not
polynomial in the sense that they do not yield a polynomial time algorithm. The
complexity of graph power recognition was unresolved until 1994 when Motwani and
Sudan [29] proved the NP-completeness of recognizing squares of graphs. About the
same time, Lin and Skiena [25] gave a linear time algorithm to recognize squares
of trees. Somewhat surprisingly, until very recently, trees are the only non-trivial
family of graphs where the square recognition problem is known to have a polynomial
time algorithm (for classes of graphs with diameter at most 2, such as the class
of cographs, the square recognition problem is trivial since the square is always a
clique). In [22], Lau presented a polynomial time algorithm to recognize squares of
bipartite graphs (it is worth noting that Motwani and Sudan [29] believed that this
problem would be NP-complete). In this paper, we give a polynomial time algorithm
to recognize squares of proper interval graphs. This is the first class of graphs that
does not contain trees and furthermore allows graphs with arbitrarily large cliques
(the algorithms for trees and bipartite graphs are very dependent on the existence of
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no cliques of size > 2). An obvious extension of the square recognition problem is
that of k-th power recognition. For k& > 2 it was solved for trees in polynomial time
[18]; for bipartite graphs it is NP-complete [22]. In this paper we show that for proper
interval graphs it is in P, for every fixed k. In [16], Harary and McKee introduced
the closed-neighborhood intersection multigraph as a useful multigraph version of the
square of a graph. They characterized those multigraphs which are squares of chordal
graphs and gave an algorithm to go from the squared chordal graph back to its unique
square root. In this paper, we show the NP-completeness of recognizing squares of
chordal graphs. Also, we prove the NP-completeness of recognizing squares of split
graphs and recognizing chordal graphs that are squares of some graph. Flotow [11]
studied a related problem to graph powers recognition; he gave sufficient conditions
for a graph whose power is a chordal graph (or an interval graph).

1.1. Overview of this paper. In this paper, we study the complexity of recog-
nizing powers of chordal graphs and its subclasses. In section 2, we present the first
polynomial time algorithm to recognize squares of proper interval graphs. And we
sketch an outline of a polynomial time algorithm to recognize k-th powers of proper
interval graphs for every natural number k. Our approach is based on a non-trivial
use of dynamic programming. In section 3, we prove the NP-completeness of recog-
nizing squares of chordal graphs, recognizing squares of split graphs, and recognizing
chordal graphs that are squares of some graph. Note that split graphs and bipartite
graphs have a similar partitioning structure but squares of bipartite graphs can be
recognized in polynomial time [22]. Before presenting our results we survey some
important results concerning graph powers and present our terminology.

1.2. Related work. The literature is rich with results on graph roots and pow-
ers. Given a graph G with property P, does G* have property P? Substantial work has
been done on closure properties of powers of special classes of graphs, such as chordal
graphs [1, 8], interval graphs [33], co-comparability graphs [6], strongly chordal graphs
[27, 34, 2], circular arc graphs [34], and AT-free graphs [33, 3]. Given a graph G, what
can be said about the properties of G*¥? Since the number of edges increases with the
index of the power of a graph, it is natural to expect that sufficiently large powers
do possess some Hamiltonian type properties. For instance, Fleischner [10] proved
that the square of every 2-connected graph is Hamiltonian and Sekanina [36] proved
that the cube of every non-trivial connected graph is Hamiltonian connected. Besides
the mathematical property questions on graph powers, the following is an obvious
question to ask from an algorithmic point of view. Given a graph G, can we solve
some optimization problems on G* efficiently? Many optimization problems remain
difficult in the case of powers of graphs [25]. On the other hand, a Hamiltonian cycle
in the square of a 2-connected graph can be found in polynomial time [21] and the
chromatic number of the square of a planar graph can be approximated within a con-
stant factor in polynomial time [28]. Also, Ramachandran [32] proved, without using
computers, that if G is a planar graph with a square root or a cube root, then G is 4
colorable.

1.3. Basic terminology. Our basic notation and terminology reference is [38].
We denote a graph G with vertex set V(G) and edge set E(G) by G = (V, E) where n
and m denote |V| and | E| respectively. A loop is an edge whose endpoints are equal.
Multiple edges are edges having the same pair of endpoints. A simple graph is a graph
having no loops or multiple edges. When u and v are endpoints of an edge, they
are adjacent and are neighbors. We write u <> v or uv € E(Q) for “u is adjacent to
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v”. All the graphs we consider are simple, undirected and loopless, unless otherwise
specified. The complement G of a simple graph G is the simple graph with vertex set
V(G) defined by uwv € E(G) if and only if uv ¢ E(G). A graph G' = (V',E') is a
subgraph of G = (V,E)if V! CV and E' C E. G’ is an induced subgraph of G, written
G[V'], if it is a subgraph of G and it contains all the edges uv such that u,v € V' and
uv € E(G).

The degree of a vertex v in a graph G, written deg(v) is the number of edges
incident with v. A pendant vertex is a vertex with degree one. An isolated vertex
is a vertex with degree zero. The open neighborhood of v, written Ng(v) or N(v),
is the set of vertices adjacent to v. The closed neighborhood of v, written Ng[v], is
Ng(v)U{v}. When U is a set of vertices, Ng[U] = |,y Na[v]- If G has a u,v-path,
then the distance from u to v, written dg(u,v) is the least length of a u, v-path. The
k-th neighborhood of v, written N (v), is the set of vertices with distance k to v. A
graph G is connected if each pair of vertices in G is connected by a path; otherwise,
G is disconnected. A clique in a graph G is a set of pairwise adjacent vertices. When
the set has size r, the clique is denoted by K,. An independent set (or stable set) in
a graph is a set of pairwise nonadjacent vertices.

A graph G is chordal if G does not have an induced cycle of length at least 4. A
vertex v is simplicial if G[N (v)] is a clique. Let o = [v1,va,...,v,] be an ordering of
the vertices in a graph G. We say that o is a simplicial elimination ordering if each
v; is a simplicial vertex of G[{vi,...,v,}]. It is well known that a graph is chordal if
and only if it has a simplicial elimination ordering. A graph is weakly chordal if G and
G contain no induced cycle of length at least 5. Let Z = {I;, I»,...,I,} be a finite
collection of intervals of the real line and let G7 be its intersection graph. G is an
interval graph if G is the intersection graph Gz of an interval model Z. G is a proper
interval graph if G is an interval graph with an interval model where no two intervals
I, I, € T properly contain each other. Furthermore, G is a proper interval graph if
and only if it is a wnit interval graph, namely an interval graph where all intervals
are of the same length. Both interval graphs and proper interval graphs [5, 7] can
be recognized in linear time. Furthermore, a fully dynamic algorithm for recognizing
and representing proper interval graphs is available [17]. A graph is a split graph if
there is a partition of its vertex set into a clique and a stable set. Clearly split graphs
are chordal.

2. Squares of Proper Interval Graphs. In this section, we will present the
first polynomial time algorithm to solve SQUARE OF PROPER INTERVAL GRAPH.

PROBLEM SQUARE OF PROPER INTERVAL GRAPH
INSTANCE A graph G = (V, E).
QUESTION  Does there exist a proper interval graph H such that H?> = G?

The algorithm is based on a dynamic programming approach and it is conceptu-
ally simple. The outline of this section is as follows. First we develop some special
structural properties of the square of a proper interval graph. This gives us insight
into a polynomial time recognition algorithm. To facilitate our discussion, we then
introduce the notation for the description of our algorithm. Then, we prove some
lemmas and a decomposition theorem which is the core of our algorithm. And then
we present the algorithm formally, prove its correctness and analyze the complexity.
Finally, we give an outline to extend the algorithm to recognize k-th powers of proper
interval graphs for every natural number k.
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PROBLEM  k-TH POWER OF PROPER INTERVAL GRAPH
INSTANCE A graph G = (V, E).
QUESTION  Does there exist a proper interval graph H such that H* = G?

2.1. Preliminaries. Let G be a proper interval graph and V(G) = {g1,-..,9n}-
Let Iz (g;) be the corresponding interval of g;. We denote the left endpoint of 1g(g;)
by lefta(g;) and the right endpoint of I5(g;) by rightc(g;). In the remainder of this
section, we will assume that leftg(g1) < leftg(ge) < ... < leftg(gn). Since G is
a proper interval graph, leftq(g;) < lefta(g;) implies rightg(g;) < rightg(g;). We
call such an ordering a total vertex ordering in a proper interval graph.

A set S of vertices (intervals) is consecutive if S = {gi, gi+1,gi+2,-- -, 9;} for some
1 < i < j < n and we define leftg(S) = lefta(g;) and rightg(S) = rightg(g;)-
Given two non-empty sets of consecutive vertices S; and Ss, we say S; < Ss if and
only if S; and Sy are disjoint and leftg(S1) < lefts(S2). For technical reasons, we
say S; < Sy when S; = 0 or Sy = .

A graph class C is closed under powers if for every G € C and every k, G¥ € C. C
is strongly closed under powers if G* € C for some k implies G¥*! € C. The following
theorem characterizes the closure property of proper interval graphs under powers.

THEOREM 2.1. [88] The class of proper interval graphs is strongly closed under
powers.

In particular, if H is a proper interval graph, then H? is a proper interval graph.
In light of this theorem, to determine if G is the square of a proper interval graph,
we can, without loss of generality, assume that G is a proper interval graph.

Given a graph G, there are O(n + m) algorithms (e.g. [5]) which determine if G
is a proper interval graph and construct an interval representation if it is. Therefore,
in the following sections, to determine if G is the square of a proper interval graph,
we assume G is a proper interval graph and the corresponding interval representation
is given. If G is the square of a proper interval graph, we use H to denote a proper
interval graph square root of G. We will let V(G) = {g1,92,.-.,9n} and V(H) =
{h1,h2,...,h,}. We define G[i,j] = Glgi,9i+1,9i+2;---,9;] and similarly for H.
Without loss of generality, we assume G and H are connected in the rest of this
section.

2.1.1. Computing the square of a proper interval graph. Before we dis-
cuss how to find a proper interval square root H of a given proper interval graph G,
we first consider how to compute H? from a proper interval graph H. This will give
us insight into how to do the reverse operation. In general graphs, we can compute
the square of a graph by doing matrix multiplication. But in proper interval graphs,
there is a more effective and yet very intuitive way to compute the square of H by
looking at the interval representation of H. Figure 2.1 presents a proper interval
graph H and Figure 2.2 shows H2. In the figures, numbers on the left represent the
vertex names while numbers on the right represent the leftmost neighbor names (to
be defined later). This example will be used throughout this section.

Given a total vertex ordering of a proper interval graph, the following properties
are obvious.

PROPOSITION 2.2. Given a proper interval graph H with o total vertex ordering,
Nglhi] is consecutive for any 1 <i < n.

With this property, it is easy to compute the square of a proper interval graph.
By Proposition 2.2, we know that Ng[h;] is consecutive. Let Ng[h;] = {hi,..., he}.
We say h; is the leftmost neighbor of h; denoted by lg(h;) and hy is the rightmost
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Fig. 2.1. A proper interval graph H together with the names of the parents.
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Fic. 2.2. G = H?.

neighbor of h; denoted by rg(h;). For technical reasons, we set {g(hi1) = h1 and
’I'H(hn) = hy,.

ProproOSITION 2.3. Let Nglh;] = {hi,...,he} with 1 < i < j < k < n.
Then Ng=[h;] = Nu[h;]U Nglhg] for any 1 < j < n. In other words, Ngz2[h;] =
Nullu(h;)]U Nalru(h;)].

COROLLARY 2.4. Given a proper interval graph H, N3 [h;] = {lu(la(hy)),-- -,
re(ra(h;))} for any 1< j <n.

Notice that if i < j, then left(I(I(h;))) < left(I(l(h;))) and right(r(r(h;))) <
right(r(r(h;))). So a total vertex ordering in H is a total vertex ordering in H2. In
other words, if G is the square of a proper interval graph, then it has a proper interval
graph square root H such that G and H have the same vertex ordering. We will prove
this fact formally later and it is very useful when we construct a proper interval graph
square root since it significantly reduces the search space.

2.1.2. Notation for the algorithm. We introduce some notation to facilitate
our discussion. We say v; is the parent of v; and v; is a child of v; if v; is the leftmost
neighbor of v;. In Figure 2.1 and Figure 2.2, the number in parenthesis beside an
interval indicates the parent of the corresponding vertex. Notice that if v; is a child
of v;, then v; is not adjacent to v;_1. For every v;, there is a unique parent, denoted
by p(vi). On the other hand, v; may have many children and we denote the set of
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children of v; by C(v;). For example, in Figure 2.1, Cr(ha) = {hs, he}. For technical
reasons, C(vy) = N(v1) (i-e. v1 ¢ C(v1)) but p(vy) = v;. Note that v; may have no
children. For example, in Figure 2.1, Cg(hs) = 0. If v; = I(I(v;)), then we say v; is
the grandparent of v;, denoted by gp(v;), and v; is a grandchild of v;.

Let X be a set of consecutive vertices. We define C(X) = |J,cx C(v). Notice
that it is possible that X NC(X) # 0; however, we are only interested in the case when
XNC(X) = and thus X < C(X). C(X) is the union of the set of children of vertices
in X. Welet C°(X) = X, C}(X) = C(X), and more generally C*(X) = C(C*1(X)).
Notice that if C¢(X) = 0, then C**!(X) = (). We define e(X) = k where k is the
maximum value such that C*(X) # 0 and we define C*(X) = Up<;<(x) C*(X)- So
C*(X) is the set of descendants of vertices in X together with X. We say that C*(X)
is the chain of X and e(X) is the length of the chain. If v’ € C'(v), then v' is a child
of v, and if v € C?(v), then v' is a grandchild of v. Furthermore if v' € C}(v), then
v' is a descendant of v. Finally, if X <Y < Cg(X), then we denote C&(X)UCL(Y)
by C&(X,Y).

The remainder of this section goes as follows. In subsection 2.2, we will prove
that if G is a proper interval graph square, then there exists a proper interval graph
H with the same vertex ordering as in G such that H?> = G. Then we will show
some properties of chains in subsection 2.3, and prove the decomposition theorem
in subsection 2.4. Finally, we present the algorithm and analyze its complexity in
subsection 2.5 and extend it to recognize k-th powers of proper interval graphs in
subsection 2.6.

2.2. H? and H share the same vertex ordering.

LeEMMA 2.5. If G is a proper interval graph square, then there exists a proper
interval graph H with the same vertex ordering as in G such that H> = G.

Proof. We prove by induction on 4 that there exists H; such that {g1,...,g:} in
G are mapped to {h1,...,h;} in H; and H;> = G. And thus H' = H, is a proper
interval graph with the same vertex ordering as in G.

First we prove the base case when ¢ = 1. Suppose H is a proper interval graph
square root of G. If g; in G is mapped to hy in H, then H; = H and we are done.
So suppose ¢; in G is mapped to h; in H such that 1 < j; we consider two cases.

Case 1: In H, there are a < j < b such that dg(ha, h;) = 2 and dg(hj, ) = 2.
In H?, h; is adjacent to h, and hy. Since Ig(g1) is the leftmost interval in G,
g1 is a simplicial vertex in G and its neighborhood induces a clique in G. Since
G = H?, h; is a simplicial vertex in H? and thus h, and h; are adjacent in HZ.
Since hjha, hjhy ¢ E(H), rightg(he) < leftr(h;) and rightg(h;) < lefta(hy) in
H. Therefore, h, and hy are not adjacent in H. Since h, and hy are adjacent in
H?, there exists h. such that h,h. € E(H) and hyh. € E(H). However, this implies
that lefta(he) < rightu(he) < lefta(h;) < righta(h;) < lefta(hy) < rightu(he)
and thus Ig(h.) is an interval which properly contains Ig(h;). This contradicts the
assumption that H is a proper interval graph. So case 1 is impossible.

Case 2: In H, Ig(h;) either intersects all the intervals on its left or it intersects
all the intervals on its right. Without loss of generality, we assume the former case
such that h; is a neighbor of h; for all i < j. As I(g1) is the leftmost interval in G,
g1 is a simplicial vertex and Ng[g1] C Nglgk] if gr is a neighbor of ¢g; in G. Since
G = H? and g¢; is mapped to hj, Ng2[h;] C Npyz[h;] for all i < j. On the other
hand, by Corollary 2.4, rightg(h;) > rightm(h;) implies Ny2[h;] C Npy=[h;] for all
i < j. Therefore Ny2[h;] = Ng=[h;] for all i < j. In particular, Ng2[hi] = Ng=[h;].
Therefore, we can construct H; from H by switching the preimages of h; and h;.



CHORDAL ROOTS OF GRAPHS 7

Clearly, H;?> = H? = G. So the base case holds.

Now we assume g, ..., g in G are mapped to hi,...,hg in Hy respectively and
H;? = G. We will construct Hy,; from Hj, such that g,...,gx41 in G are mapped
t0 hy,...,heyt in Hyyq respectively and Hyy1? = G. If gpyq in G is mapped to
hgy1 in Hy, then Hy,q = Hj and we are done. So suppose gr4+1 in G is mapped
to hj in Hy with j > k+ 1. Since Ig(gr+1) is the leftmost interval in G[k + 1,n],
by Corollary 2.4, we have Ngp1 11[9i] € Nepi,u)lgr41] for ¢ > k + 1. Since G = Hj
and gy is mapped to hj, Ny, 2p k[hi] C Np,2pp(h;] for K+ 1 <@ < j. On the
other hand, since leftm, (h;) < leftm, (h;) for any k+ 1 < i < j, by Corollary 2.4,
NHk2[1,k][hj] - Nsz[l,k][hi] for k+1<i<j. So, NHkQ[l,k][hi] = NHkQ[l,k][hj] for
k+1 < i < j. By essentially the same argument, we also have Ny, 241,0)[h5] =
NHk2[k+1,n][hi] fork+1<i<y.

Therefore Ny, 2[h;] = Ny, 2[h;] for k +1 < i < j. In particular, Ny, 2[hgt1] =
N, 2[h;]. Thus we may construct Hy1 from Hy by switching the preimages of h; and
hit1. Clearly, Hyy1> = Hf = G and g1,...,gk41 in G are mapped to hy, ..., g1
in Hyy1. By induction, we can construct H,. So H' = H, and this completes the
proof. O

By Lemma 2.5, we can assume that if G is a proper interval graph square, then
there is a proper interval graph H such that H? = G and H and G share the same
vertex ordering (i.e. g; in G is mapped to h; in H for all 7). So later on, g; and h;
actually mean the same vertex but g; refers to the one in G and h; refers to the one
in H.

2.3. Parent and children relationship. Now we characterize H based on
the parent-children relationship in G' which is analogous to Corollary 2.4. But in
the following lemma, we characterize H by just using the leftmost neighbors instead
of using both leftmost and rightmost neighbors. This allows us to construct H by
considering one direction only (from left to right, i.e. from 1 to n).

LEMMA 2.6. Let G be a proper interval graph square and let H be a proper interval
graph with the same vertezx ordering as in G. H?> = G if and only if gpu(h;) = pc(9;)
for 1 <j<n.

Proof. Since G and H share the same vertex ordering, if H2 = G, by Corollary 2.4,
gpu(hj) = pa(g;) for 1 < j <mn.

Now we prove the reverse direction. If gpa(h;) = pa(g;) for 1 < j < n, we prove
that H?> = G by induction. First we prove the base case that Ng2[h,] = Ng[gn]-
By COI‘OHaI‘y 2.4, NH2 [hn] = {lH(lH(hn)), .,hn}. Since lH(lH(hn)) = ng(hn) =
pc(gn) and G and H share the same vertex ordering, Ng2[h,] = Ng[gn] and thus the
base case holds.

Now suppose that Ng2[h;] = Nglg;] for k+1 < j < n. Consider Ng2[h];
by the induction hypothesis, Ngz[ht] N {hr+1,---,hn} = Nelgr] N {gk+1,---,9n}-
Since lg(lg(hi)) = gpu(hr) = pa(gr) and G and H share the same vertex order-
ing, Ngz[hg] N {h1,...,ht} = Nglgr] N {91,-..,9k}. Therefore, we conclude that
Np2[hg] = Nglgx] and this completes the induction step. O

The following easily proved proposition describes a basic property of a chain based
on the definition.

PROPOSITION 2.7. If X <Y < C(X), then C*(X) < C{Y) < CHY(X) for
i>0.

The following lemma formalizes the idea that a chain in H is composed of two
chains in G.

LEMMA 2.8. Let H> = G where H and G share the same verter ordering. If
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X <Y < Cg(X) and Cy(X) =Y, then Cu(CL(X)) = CL(Y) and Cy(CL(Y)) =
CEY(X) fori > 0. Furthermore, eg(X) = eq(Y) or eg(X) = eg(Y) + 1.

Proof. Since X <Y < Cg(X) and Cyx(X) =Y, by Lemma 2.6, Cy(Y) = Cq(X).
And since H? = G, if Cg(X) # 0, then Y # 0. By Proposition 2.7, Cg(X) < Cg(Y).
Repeating the same argument, since ¥ < Cg(X) < Cg(Y) and Cu(Y) = Cg(X),
we have Cy(Cg(X)) = Cg(Y). And since H? = G, if Cg(Y) # 0, then Cg(X) # 0.
By induction, we have C(C§(Y)) = C4 ' (X) and Cr(CY (X)) = CL(Y). Also, by
Lemma 2.6, if C5™ (X)) # 0, then CL(Y) # 0; if C5™(Y) # 0, then CZ(X) # 6. So
eqg(X)=eg(Y) or eg(X) =eg(Y) + 1 and this completes the proof. O

So, a necessary condition for C%(X,Y) to form Cj(X) is that the length of
C&(X) and the length of CF(Y) are about the same.

The following two propositions are useful for decomposition. Their proofs follow
directly from the definitions.

PROPOSITION 2.9. Suppose X < C(X). If X1 UXs = X and X; < X3, then
Ct(Xl) U Cl(Xg) = Ct(X) and C&(Xl) < C&(X2) fori>0.

PROPOSITION 2.10. Suppose X <Y < C(X). Let X1 U Xy = X and X; <
Xs and similarly Y UYs =Y and V1 < Ya. Then CH{(X) = C¥{X1) U C{(Xs),
C{(X;1) < C{(X3) and CH(Y) = C(Y1) U CH(Yz), C' (Y1) < C(Ys) for i > 0. Also,
CH(X1) < CY(Xa) < CH(Y1) < C¥(Yz) < C™FH(Xy) for i > 0.

Proof. The first two statements follow from Proposition 2.9. The last statement
follows from Proposition 2.7. O

2.4. A decomposition theorem. The following is an important definition for
our algorithm. Intuitively, it checks if C%(X,Y) can form C}(X); in other words, to
check if G[C%(X,Y)] has a square root with special properties.

DEFINITION 2.11. Suppose X <Y < Cg(X); G[CL(X,Y)] is matched if and
only if there exists H' with the same vertex ordering as G[CE(X,Y)] such that

(P1) H™ = GIC5(X,Y)];

(P2) H'[X] is a clique;

(P8) pur(h;) € X if and only if h; e X UY.
We say H' is a matched root of G[CE(X,Y)].

We will decompose G into small graphs that correspond to chains in H, then we
will construct matched roots (i.e. chains in H) independently and combine them to
form a root of G. Note that (P2) and (P3) are necessary conditions for H' to be
H[C} (X))

The following lemma is a rephrasing of Lemma 2.6 in the case of matched roots.
It characterizes matched roots based on the parent-children relationship in G.

LEMMA 2.12. Suppose X <Y < Cq(X); let H have the same vertex set and the
same vertex ordering as G[CL(X,Y)] and assume H satisfies (P2) and (P3). Then
H? = G[CL(X,Y)] if and only if gpu(h;) = pa(g:) for all g; € CL(X,Y) - X =Y.

Proof. By Lemma 2.6, H? = G[C&(X,Y)] if and only if gpu(h;) = pox,v)(9i)
for all g; € C&(X,Y). Notice that pos (x,v)(9:) = pa(g:) for all g; € C&(X,Y) — X.
Also, (P2) and (P3) holding for H guarantee gpm(h;) = pa(g;) for all g; € X UY.
Therefore, H? = G[C%(X,Y)] if and only if gpm (h;) = pa(g;) for all g; € CL(X,Y) —
X-Y.0O

The following is a rephrasing of Lemma 2.8 in the case of a matched root. Note
that the only difference between Lemma 2.13 and Lemma 2.8 is that Cr(C& (X)) =
C2(Y) holds in Lemma 2.8.

LEMMA 2.13. Suppose G[CE(X,Y)] is matched and let H be a matched root of
GICL(X,Y)]. Then Cu(CL(X)) = CL(Y) fori>1 and Cu(CL(Y)) = CEH(X) for
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i > 0. Furthermore, eq(X) =eg(Y) oreg(X) =eq(Y) + 1.

Proof. By (P3) of H, pg(h;) € X if and only if h; € X UY. Since H? =
GICL(X,Y)], Cu(Y) = Cg(X). By Proposition 2.7, Cg(X) < Cg(Y). Since
Cu(Y) < Cg(X) < Cg(Y) and Cy(Y) = Cg(X), by Lemma 2.8, the results fol-
low. O

As mentioned previously, if H?> = G, then we can combine matched roots to
construct root of G. The following lemma shows the reverse direction, namely, we
can find matched roots in H. This justifies our approach of constructing matched
roots.

LEMMA 2.14. Let H have the same vertex ordering as in G and H?> = G. If
X <Y < Cqg(X), H[X] is a cliqgue and Cur(X) =Y, then G[CL(X,Y)] is matched.

Proof. Let H' = H[C};(X)]; we will show that H' is a matched root of G[C% (X, Y)].
First, since H2 = G, X <Y < Cg(X) and Cy(X) = Y, by Lemma 2.8, C}(X) =
C&(X,Y). We now show (P1)-(P3) are satisfied for H'. Since H[X] is a clique,
(P2) is satisfied. Since Cy(X) =Y, (P3) is satisfied. For (P1), by our construction,
par(hi) = pu(h;) for all h; € Cj(X) — X. So in H', gpm (hi) = gpu(h;) for all
hi € C(X) — X — Cu(X). Since H?> = G, by Lemma 2.6, gpu(hi) = pc(g:) for
all 4. Therefore gpu(h;) = pa(g;) for all g; € CE(X,Y) — X — Y. By Lemma 2.12,
H"? = G[CL(X,Y)] and thus (P1) is satisfied; by Definition 2.11, G[C(X,Y)] is
matched. O

Now we have enough machinery to prove the decomposition theorem. First, the
following theorem reduces the original problem to finding a matched root. Intuitively,
it corresponds to the partition of the neighborhood of g; in G (i.e. guessing the
neighborhood of h; in H).

THEOREM 2.15. G is a proper interval graph square if and only if G[C%(X,Y)]
is matched for some X where X UY = Cg(g1) and X <Y.

Proof. If G is a proper interval graph square, by Lemma 2.5, then there exists
H with the same vertex ordering as in G and H?> = G. Let X = Cg(h1) and
Y = Cg(91)—X; clearly XUY = Cg(g1) and X <Y. We will show that G[C&(X,Y)]
is matched. In H, since X = Cg(h1), H[X] is a clique. Since Y = Cg(g1) — X and
H? = G, every vertex in Y has a neighbor in X and thus Cy(X) =Y. So H[X] is a
clique, Ca(X) =Y and X <Y < Cg(X); by Lemma 2.14, G[C%(X,Y)] is matched.

Now suppose G[CE(X,Y)] is matched for some X where X UY = Cg(g:1) and
X <Y. Let H' be a matched root of G[C(X,Y)]. We show how to construct H
from H' such that H> = G. Since X UY = Cg(g1), by Proposition 2.9, C%(X,Y) =
C&(Ca(g1))- Since Ca(g1) = Na(g1), C&(Ca(91)) = G—g1 = {92, - -.,gn}- Since H'
is a matched root of G[C%(X,Y)], V(H') = {ha,...,h,}. Since H?> = G — gy, H'[X]
is a clique and Cy:(X) =Y, by constructing H = H' + h; with Cg(hy) = X, it is
easy to verify that H2 = G. So G is a proper interval graph square. O

The following theorem is the core of the algorithm. It reduces the problem of
finding a matched root in a graph to finding matched roots in two smaller graphs. It
is the basis of the “decomposition” step in the algorithm.

THEOREM 2.16. Given X and Y with X <Y < Cg(X) in G with | X| > 2. Let
9o be the first vertex in X. Then G[C&(X,Y)] is matched if and only if G[CE(9q, A)]
and G[CE(X — gq,Y — A)] are both matched for some A where A <Y — A. (Note: A
could be an emptyset.)

Proof. Suppose G[C%(X,Y)] is matched and let H' be a matched root of G[C& (X, Y)].
We will show G[C&(ga,A)] and G[CE(X — gq,Y — A)] are both matched for some A
where A <Y — A. In particular, we set A = C'gr(h,) — X. Since H' has the same ver-
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tex ordering as G[CE(X,Y)], A <Y —A. If Cq(X) = 0, by Lemma 2.13, C4(X,Y) =
X UY and clearly G[Ck(gq, A)] and G[CL(X — g4, Y — A)] are both matched. So we
assume Cg(X) # 0; by Lemma 2.13, Cin (V) = Ce(X). Since H = G[C%(X,Y)],
by our choice of A, Cyi(A) = Cg(g,) and C (Y —A) = Cae(X —g,). By Lemma 2.14,
both G[C(A,Ca(ga))] and G[CE(Y — A,Cq(X — g,))] are matched and we let Hy
and H> be the corresponding matched roots.

We will show that H; = H'[Hq + h,] and H) = H'[H, + (X — h,)] are matched
roots of G[C{(ga, A)] and G[CE(X — g,,Y — A)] respectively. By (P2) for H', H'[X]
is a clique, so H'[h,] and H'[X — h,] are cliques and thus (P2) is satisfied in H]
and H). By (P3) for H', pg(h;) € X if and only if h; € X UY. Since we set
A = Cgi(h,) — X, it is clear that (P3) is satisfied in H{ and Hj. By (P1) for H;
and H,, Hi* = G[C%(A,Cg(gs))] and Ho? = G[CE(Y — A,Ca(X — g4))]. Since H'
is a matched root of G[C%(X,Y)], it is easy to check that H|? = G[CF(9q,A)] and
HY? = G[C%(X — ga, Y — A)]. Thus, by Definition 2.11, G[C%(ga, 4)] and G[C (X —
Ja, Y — A)] are both matched.

Suppose G[C(9a, A)] and G[CE(X — g4, Y — A)] are both matched for some A
where A <Y — A and let H; and Hy be the corresponding matched roots. We will
show how to construct a matched root H' of G[C}(X,Y)]. By Proposition 2.10,
C&(9ga, A) UCE(X —g,,Y — A) = C%(X,Y). Also by Proposition 2.10, we know the
total vertex order of Hy U Hs. We can construct H' by combining H; and Hs with
the order indicated by Proposition 2.10 and setting pg(h;) = hg for h; € X — h,.
Notice that in this ordering, if ¢ < j, then left(pa (h;)) < left(pa(h;)). So H' is
constructible with the parent-children relationship unchanged as in H; and Hs, except
for h; € X — hy. The concept is shown in Figure 2.3 where we combine two matched
roots to a matched root, recall that a matched root corresponds to two chains in
G. Tt is important to note that, in Figure 2.3, the parent-children relationship in H’
unchanged as in H; and H, (by looking at the intersection of intervals), except for
hi € X — hq. It is also worth noting that, unlike Figure 2.3, the length of C%(g4, A)
and the length of C% (X — g,,Y — A) could be very different.

By Lemma 2.12, gpg, (hi) = pc(g:) for all g; € Cf;(ga; A)— 9o — A and gpm, (h;) =
pa(g;) forall g; € CE(X —94,Y —A)— (X —g,) — (Y —a). As the parent relationship in
H' is unchanged as in H; and Hs, except for vertices in X — gq, so gpa(hi) = pa(g:)
for all g; € C&(X,Y) — X —Y. Since we set pr(h;) = h, for h; € X — g,, H'[X] is
a clique and thus H' satisfies (P2). By (P3) for H1 and Ha, pa, (hi) € {he} if and
only if h; € {ho,} U A and ps,(h;) € X — hy if and only if h; € (X — hy) U (Y — A).
Without changing the parent relationship except for vertices in X — g,, H' satisfies
(P3). By Lemma 2.12, H'> = G[C%(X,Y)] and thus G[C%(X,Y)] is matched. 00

The following theorem is the basis of the “propagation” step. It reduces the
problem of finding a matched root in a graph to finding a matched root in a smaller
graph; in particular, it reduces the length of the chain by one.

THEOREM 2.17. Given X = {g;} and Y with {g;} < Y < Cg(9i). Then
G[CL({9:},Y)] is matched if and only if G{CE(Y,Ca(gi))] is matched.

Proof. Suppose G[CE({g:},Y)] is matched and let H' be a matched root of
G[CE:({9:},Y)]. We will show that H' — h; is a matched root of G[C& (Y, Ca(gi))]-
By (P3) for H', h; is the parent of the vertices in Y in H'. So H'[Y] is a clique and
thus (P2) is satisfied in H' — h;. Also, by Lemma, 2.13, Cy: (Y) = Cg(g;) and thus
(P3) is satisfied in H' — h;. And clearly, (H' — h;)> = G — g;. By Definition 2.11,
G[CL(Y, Ci(g:))] is matched.

Suppose G[CE(Y,Cq(gi))] is matched and let Hy be a corresponding matched
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root. By (P2), H[Y] is a clique. By (P3), pr, (h;) € Y if and only if h; € Y UCq(g;)-
By constructing H' = Hy + h; with Cy(hi) = Y, H” = G[C%({g:},Y)] and (P2),
(P3) are satisfied in H'. So, by Definition 2.11, G[C%({g:},Y)] is matched. O
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2.5. Algorithm, correctness and complexity. The following recursive algo-
rithm is an implementation of the decomposition procedure. P is a prefix of S if
P < S — P, note that P could be an emptyset.

MAIN PROGRAM
for every prefix P of Cz(g1) do
if MATCH (P, Cg(g1) — P) then output “YES”
output “No”

MarcH (X = {ga,...}, Y)
Case: X =10
if Y = () then return TRUE
else return FALSE
Case: X ={g,}
return MATCH (Y, Cg(ga))
Otherwise:
for every prefix P of Y do
if ( MarcH ({g,}, P) and MATCH (X — g,, Y — P) )
then return TRUE
return FALSE

THEOREM 2.18. The algorithm is correct.

Proof. In MAIN PROGRAM, we reduce the recognition of the square of a proper
interval graph to finding a matched root. Then we use the results obtained in the
previous subsection to find a matched root; this is done by the recursive function
MATCH.

The correctness of the MAIN PROGRAM is justified by Theorem 2.15. Now we
look into the recursive function MATCH. The first case is the base case when the
X-chain ends. If the Y-chain also ends, then X and Y are matched. Otherwise, X
and Y are not matched. The second case is the “propagation” step. Its correctness is
justified by Theorem 2.17. The final case is the “decomposition” step. Its correctness
is justified by Theorem 2.16. O

THEOREM 2.19. SQUARE OF PROPER INTERVAL GRAPH can be solved in O(n®).

Proof. The key observation is that X = {ga, gat1,---,9p} and Y = {gc, gct1,---, 94}
are consecutive sets. So there are at most O(n?) instances of MATCH since there are
at most n possibilities of each a,b, ¢, d. Therefore, we can use dynamic programming
to solve this problem. Explicitly, we can create a table of size O(n*) to store the
results of all possible instances. Each entry in the table can be computed in time at
most O(n). The total complexity is at most O(n%). To implement the algorithm, we
can use a standard trick of “caching” the solutions when we run the recursion so that
each entry of the table is computed at most once. O

Notice that the above algorithm is for the decision problem where a proper interval
graph is a proper interval graph square. To actually find a proper interval graph square
root, we need to add another four dimensional array to trace the partitions. This is a
standard technique of dynamic programming and is covered in many textbooks. For
simplicity in the description of the algorithm, we do not include the details of finding
the partitions.
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Now suppose we know the partitions; we show how to construct a proper interval
square root H of G. Suppose X = {hg,...,hp} andY = {h,,..., hg} and the partition
is (ha, {hec,-..,hi}) and (X —hg, {hit1,.-.,hq}). Then we set Cr(hy) = {he¢, ..., hi}.
Suppose X = {h,} and Y = {h,...,hq}; then we set Cg(h,) = Y. So from the
partitions, we can deduce the parent for any vertex. Then from the parents, we can
obtain the adjacency matrix of a proper interval graph square root.

2.6. Outline of the recognition algorithm of k-th powers of proper in-
terval graphs. By applying the same idea of the recognition algorithm of the square
of a proper interval graph, we can develop a polynomial time algorithm for the recog-
nition of the k-th power of a proper interval graph for any fixed k. We will not go
into full details. Also, we assume that G is not a complete graph. The outline of the
algorithm is as follows:

MAIN PROGRAM
for every partition of Cg(gy) into k consecutive sets S; < ... < Sg
if MatcH (51, 8Ss,...,Sk) then output “YES”
output “No”

MaAtcH (S1 ={9a>---},52,---,5k)
Case: S; =10
if Sy,..., Sk are all emptyset then return TRUE
else return FALSE
Case: S ={g,}
return MATCH (Sa,. .., Sk, Ca(ga))
Otherwise:
for every combination of prefixes P, ..., P of Sa,...,S; do
if (MaTcH ({94}, P2, ..., P;) and
MATCH (S1 — ga, S2— Po,..., Sk — P))
then return TRUE
return FALSE

THEOREM 2.20. k-TH POWER OF PROPER INTERVAL GRAPH can be solved in
time O(n**~1) and space O(n?*).

Proof. To apply dynamic programming, we have to create a table of size O(n?*)
since there are k pairs of integers. The main program is of complexity O(n*~1).
In MATCH, it takes at most @(n*F~!) to compute one entry in the table. The total
complexity is at most O(n®*~1). O

3. NP-completeness. In this section, we will show that recognizing squares of
chordal graphs, finding square roots of chordal graphs, and recognizing squares of
split graphs are all NP-complete. We will use SET SPLITTING and INTERSECTION
GRAPH BAsIS as formulated in [12] for our reductions.

PROBLEM  [SP4] SET SPLITTING

INSTANCE  Collection C of finite sets of elements from S.

QUESTION s there a partition of S into two subsets S; and Sy such that no
subset in C' is entirely contained in either S; or S3?

NOTE It is also known as HYPERGRAPH 2-COLORABILITY.
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PROBLEM [GT59] INTERSECTION GRAPH BaAsIS [19]

INSTANCE ~ Graph G = (V, E), positive integer K < |E|.

QUESTION Is G the intersection graph for a family of sets whose union has
cardinality K or less, i.e., is there a K-element set S and for each
v € V a subset S[v] C S such that {u,v} € E if and only if S[u]
and S[v] are not disjoint?

We will borrow the tail structure in [29] of a vertex v to ensure v has the same
neighborhood in any square root H of G. It enables one to exactly pin down the
neighborhood of v in any square root H of G.

LeEMMA 3.1. [29] If a,b,c,d are vertices of G such that

e The only neighbors of a are b and c.

e The only neighbors of b are a, ¢ and d.

e c&rd.
Then the neighbors, in V — {a,b,c,d}, of d in any square root of G are the same as
the neighbors, in V — {a,b,c,d}, of ¢ in G (see Figure 3.1 for an illustration).

F1G. 3.1. Tail in H and G = H2.

3.1. Squares of chordal graphs. In this subsection, we will show that to
determine if G is the square of a chordal graph is NP-complete.

PROBLEM  SQUARE OF CHORDAL GRAPH
INSTANCE A graph G = (V, E).
QUESTION Does there exist a chordal graph H such that G = H??

The rest of this section shows that SQUARE OF CHORDAL GRAPH is NP-hard
by reducing SET SPLITTING to it. It is clear that SQUARE OF CHORDAL GRAPH
is in NP, since guessing the square root H, verifying that H is a chordal graph and
G = H? can easily be done in polynomial time. Thus we will conclude that SQUARE
OF CHORDAL GRAPH is NP-complete.

3.1.1. The reduction. Given an instance of SET SPLITTING, we construct an
instance of SQUARE OF CHORDAL GRAPH. Let ¢; be the set of elements in subset j
and let C = {c1,...,¢m}. And let S = {uy,...,u,} be the ground set. The graph G
is constructed as follows (note that we will be using Lemma 3.1):

Vertices of G
e Element vertices: U;: 1 < i < n for each element w; in S.
o Subset vertices: Cj for each subset ¢; € C and tail vertices C},C%,C? for
each c;.
o Partition vertices: S; and Ss.
Edges of G
o FEdges of tail vertices of subset vertices: ¥c; € C
C} & C7,C8 & Cf,
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C? & C},C% & O,

C} < Cj and C; < U; for all u; € ¢;.
o Edges of subset vertices: Yc; € C

Cj ~ Sl,Cj ~ Sz,Cj « U; for all 4 and Cj « C, iﬁCj Ncg # .
e Fdges of element vertices: Yu; € U

U; & Uj for allg 75 i and U; & S1 and U; & Ss.

Before presenting the details of the proof, we first give some intuition behind the
transformation. From the tail structure, C’Jl- pins down the neighborhood of C; in any
square root H of G. So in any square root H of G, C; is adjacent to U; iff u; € c;.
Also, S; and Sy are adjacent to all U; in G to force S; and S2 to have a common
neighbor to all C; in H. Moreover, S; and S» are not adjacent in G to force S and
S2 to have no common neighbor in H and thus i, S2 represents a partition of the
ground set S.

LEMMA 3.2. If there is a partition of S into two subsets S; and Sz such that no
subset in C is entirely contained in either S1 or Sa2, then there exists a chordal graph
H such that H?> =G.

Proof. Edges of H.

e FEdges of subset vertices and its tail vertices:

C]3 And C?,C? g C},C} > CJ‘ and Cj & U; if and only if u; € Cj.
e FEdges of partition vertices:

Sk < U; if and only if u; € Sk.
e FEdges of subset vertices:

Ui < Uj for i # j.

It is a tedious but straightforward task to check that H2 = G. We leave the
details to the reader (see [23] for a full proof). O

For example, given C' = {c1,¢2,¢3,¢4}, c1 = {ur,ua,uz},co = {ua,us}, c3 =
{usg,ug}, ¢4 = {ur,us} and S = {uy,uz,u3,uq,us}, we construct G as shown in
Figure 3.2. The ellipse corresponds to a clique and we omit the clique edges to keep
the figure simpler. Also in the figure, C1, Cs, C3,Cy, S and Sy have two dotted lines
to the central ellipse. This indicates that each of them is universal to the vertices in
the central ellipse. In this example, S1 = {u1,us3,us} and S2 = {u2,us} is a possible
solution. The graph H corresponding to this solution is shown in Figure 3.3. The
reader may verify that H?> = G and H is chordal. A possible perfect elimination
ordering of H is {C3,...,C3,C?,...,C2,CL,...,C},Cy,...,C4,51,S2,Us,...,Us}.

We now show that if G is a square, then there is a partition of S into two subsets
S1 and S» such that no subset in C is entirely contained in either S; or Ss. First,
observing that {C?,C7,C},C;} satisfies the properties of Lemma 3.1, we have the
following consequence:

PRrOPOSITION 3.3. If H is a square root of G, then in H, C; is adjacent only to:
U; if u; € ¢j, and le-.

LemMA 3.4. If H is a square root of G, then there is a partition of S into two
subsets S1 and Sy such that no subset in C is entirely contained in either S1 or Ss.

Proof. Proposition 3.3 forces each subset vertex to be adjacent to its own elements
only. Together with the fact that S; and Sy are not adjacent to any tail vertices in
G, S1 and S; only have neighbors in the element set in H. Since S; «+» Sy in G, they
have no common element neighbor in H and so it is a partition on the element set.
And since S; and S2 are adjacent to all subset vertices in G but not in H, S; and S,
have a common neighbor with C; in the element set for all 4. Therefore, Ng(S1) and
N (S2) are the desired partitions. This completes the proof. O
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Fia.

FiG. 3.3. An ezample of H.

Notice that in the above lemma, we didn’t use the property that H is chordal.
In fact, any square root would tell us how to do set splitting. In particular, any
chordal root would tell us how to do set splitting. This completes the proof of NP-
completeness of SQUARE OF CHORDAL (GRAPH.

THEOREM 3.5. SQUARE OF CHORDAL GRAPH is NP-complete.

Since any square root would tell us how to do set splitting, we have the following
results.

THEOREM 3.6. For any class X of graphs which contains the class of chordal
graphs, SQUARE OF X GRAPH is NP-complete.

COROLLARY 3.7. Given G, determine if there exist a weakly chordal graph H
such that H? = G is NP-complete.
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COROLLARY 3.8. Given G, determine if there exist a perfect graph H such that
H? = G is NP-complete.

3.2. Square roots of chordal graphs. In this subsection, we will show that
given a chordal graph G, it is NP-complete to determine if there exists H such that
H? = G. Notice that the proof is almost identical to that of the previous subsection;
therefore, we will omit unnecessary details.

PROBLEM. SQUARE R0OOT oF CHORDAL GRAPH
INSTANCE. A chordal graph G = (V, E).
QUESTION. Does there exist a graph H such that H? = G?

The rest of this section shows that SQUARE ROOT OF CHORDAL GRAPH is NP-
hard by reducing SET SPLITTING to it. It is clear that SQUARE ROOT OF CHORDAL
GRAPH is in NP, since guessing the square root H and verifying that H?> = G can
be easily done in polynomial time. Thus we will conclude that SQUARE RooT OF
CHORDAL GRAPH is NP-complete.

3.2.1. The reduction. Given an instance of SET SPLITTING, we construct an
instance of SQUARE ROOT OF CHORDAL GRAPH. Let c¢; be the set of elements in
subset j, let C = {c1,...,¢m}, and let S = {uy,...,un} be the ground set. The graph
G is constructed as follows (note that we will be using Lemma 3.1):

Vertices of G
e Flement vertices: U;: 1 < i <n for each element u;.
o Subset vertices: C; for each subset ¢; € C' and tail vertices Cj,C?,C3 for
each c;.
e Partition vertices: S and Ss.
Edges of G
o Edges of tail vertices of subset vertices: Vc; € C
C? « C3,C% & C,
C? & C},C% & O,
C} < C; for all 4 and C} < U; for all u; € ¢j.
e Edges of subset vertices: Vc; € C
CJ‘ A d Sl,Cj <« SQ,C]' < U; for all 4 and Cj ~ C}, for all k.
e Fdges of element vertices: Yu; € U
Ui(—)Uj fOI‘i?é]', UZ<—>Sl andUiHSQ.

LEMMA 3.9. G is a chordal graph.

Proof. We do this by showing a simplicial elimination ordering of G. For all
C?, they are simplicial and we eliminate them first. Then for any C7, it is adjacent
only to C} and C; which are adjacent. So CJQ- is simplicial for all j and we eliminate
them. The union of the set of subset vertices and the set of element vertices induces
a complete graph. For all C’jl and Sy and S2, their neighbor sets are a subset of that
union. So all C} and S; and Ss are simplicial and we can eliminate them. Finally a
complete graph is left and this completes the proof that G is chordal. O

LEMMA 3.10. If there is a partition of S into two subsets S; and Sz such that no
subset in C' is entirely contained in either Sy or Sa, then there exist a graph H such
that H? = G.

Proof. Edges of H.

e Fdges of subset vertices and its tail vertices:

C]3 — 0‘72,012 <~ C;,C]l <~ Cj, Cj > U; iff u; € Cj and Cj « Cy, for all k.
e FEdges of partition vertices:

S < U; iff u; € Sk.
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e Fdges of subset vertices:
Ui(—)Uj fOI‘l;é]
It is a routine matter to check that H? = G (see [23] for a full proof). O

By observing that {C%,C7,C},C;} satisfies the properties of Lemma 3.1 and
using the same argument as previous section, we can prove the following result.

LEMMA 3.11. If H is a square root of G, then there is a partition of S into two
subsets S; and Sa such that no subset in C is entirely contained in either S1 or Ss.

THEOREM 3.12. SQUARE ROOT OF CHORDAL GRAPH is NP-complete.

It should be pointed out that H is actually a Berge graph (i.e. there is no odd
hole and no odd antihole in H); proofs are omitted. By the recent Strong Perfect
Graph Theorem [4], it implies that finding a perfect graph square root of a chordal
graph is also NP-complete.

THEOREM 3.13. It is NP-complete to determine if a chordal graph is the square
of a perfect graph.

3.3. Squares of split graphs. In this subsection, we will show that to deter-
mine if G is the square of a split graph is NP-complete.

Recall that an undirected graph G = (V, E) is defined to be split if there is a
partition V' = § + C of its vertex set into a stable set S and a complete set C. There
is no restriction on edges between vertices of S and vertices of C.

PROBLEM. SQUARE OF SPLIT GRAPH
INSTANCE.  Graph G = (V, E).
QUESTION. Does there exist a split graph H such that G = H??

The motivation of studying this problem is the similarity of the structure of split
graphs and the structure of bipartite graphs. While the vertex set of a bipartite graph
is partitioned into two independent set, the vertex set of a split graph is partitioned
into a clique and an independent set. In [22], we prove that squares of bipartite graphs
can be recognized in polynomial time. Note that since a split graph is of diameter
at most 3, the tail structure can not be applied in the reduction. In fact, we use a
totally different reduction for this problem.

Given an instance of INTERSECTION GRAPH BASIS, we transform it into an in-
stance of SQUARE OF SPLIT GRAPH. Without loss of generality, we will assume that
the graph in the instance of INTERSECTION GRAPH BASIS has no universal vertex
and no isolated vertex. Recall that in the previous reduction, any square root will
tell us the corresponding set splitting. In this reduction, we use the property that
the square root is a split graph in order to find the corresponding intersection graph
basis.

The transformation goes as follows. Given G = (V, E), we construct a graph G’ =
(V', E") by adding a set U of k universal vertices to G. Since G has no universal vertex,
there are exactly k universal vertices in G'. We will show that G is an intersection
graph of a family of sets whose union has cardinality at most & if and only if G’ has
a split root.

For example, given G as in Figure 3.4 and k = 4, Figure 3.4 shows the whole
transformation process. In the figure, G is in the top left corner. G is the intersection
graph for a family of sets whose union has cardinality 4. The 4-element set B is
shown with Bla] = {1}, B[b] = {1,3}, Blc] = {1, 2}, B[d] = {3,4}, Ble] = {2,4} and
B[f] = {4}. It is easy to verify that G is the intersection graph of B. The bottom
left corner shows G' which comes from G by adding 4 universal vertices. Every vertex
in G is adjacent to every vertex in U in G'. This is represented by the dotted lines
between G and U in G'. Also, U itself is a clique in G'. The bottom right corner
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shows H' which is a split square root of G'. The reader may verify that H' is a
split square root of G'. Finally, we observe that there is a one-to-one correspondence
between the solution to the INTERSECTION GRAPH BASIS problem and the solution
to the SQUARE OF SPLIT GRAPH problem.

b d
graph and intersection basis
G a f <>
C e B
construction

b d G S
s graph and
, a f i split square root
! <>

G’ i i e (o} e 3 i H1 i
° ° ° ° clique

F1G. 3.4. The whole transformation process of SQUARE OF SPLIT GRAPH.

THEOREM 3.14. SQUARE OF SPLIT GRAPH is NP-complete.

Proof. We now argue that G is the intersection graph for a family of sets whose
union has cardinality & or less if and only if there exist a split graph H such that
G' = H?.

First we prove the forward direction. If G is the intersection graph for a family
of sets whose union has cardinality k or less, then we construct H = (S + C, E) as
follows. Each vertex c in C corresponds to an element in B. If |B| < k, we add some
extra vertices to make |C| = k. Each vertex s in S corresponds to a vertex in G and s
is adjacent to the vertices corresponding to B[s]. Now we check that H2 = G'. Each
vertex in the complete set is universal in H? and thus corresponds to a vertex in U.
Two vertices u and v in the stable set have an edge in H? if and only if Bu] and B[v]
are not disjoint. Thus H?[S] is precisely the G subgraph of G'. Hence H? = G' as
required.

Now we prove the reverse direction. If H' = (S’ + C', E') is a split square root
of G', we construct the intersection graph basis as follows. Notice that a vertex in C’
in H' is a universal vertex in H'?. Since there are k vertices in G’ that are universal
vertices, there are at most k vertices in C' in H'. Furthermore, all the vertices in
G C V(G') must be in S’ and so there is no edge between any two vertices in S’.
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Two vertices u and v in the stable set have an edge in H'” if and only if N (u) and
Np (v) are not disjoint. Now we see that G has an intersection basis B such that
|B| < k by setting B = C'. For u € G, Blu] = Nu+(u) thereby showing that for any
split root of G, we can construct an intersection graph basis of cardinality at most
k. O

It is perhaps important to mention that, unlike the previous section, this result
does not imply finding square roots of a more general class (e.g. chordal graphs) is
NP-complete. It is because we use the property that the square root is a split graph
to force all the vertices that are not universal in the square to form an independent
set in the square root.

4. Concluding remarks. For k-TH POWER OF PROPER INTERVAL GRAPH,
the complexity of our algorithm is exponential in k. It is open whether there is a
polynomial time algorithm for k-TH POWER OF PROPER INTERVAL GRAPH when k
is part of the input. Also, it is open whether there is a polynomial time algorithm to
recognize squares of interval graphs, or more generally, k-th powers of interval graphs.
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