
Bipartite Roots of Graphs

LAP CHI LAU

University of Toronto

Abstract. Graph H is a root of graph G if there exists a positive integer k such that x and y are
adjacent in G if and only if their distance in H is at most k. Motwani and Sudan [1994] proved the
NP-completeness of graph square recognition and conjectured that it is also NP-complete to recognize
squares of bipartite graphs. The main result of this article is to show that squares of bipartite graphs can
be recognized in polynomial time. In fact, we give a polynomial-time algorithm to count the number
of different bipartite square roots of a graph, although this number could be exponential in the size
of the input graph. By using the ideas developed, we are able to give a new and simpler linear-time
algorithm to recognize squares of trees and a new algorithmic proof that tree square roots are unique
up to isomorphism. Finally, we prove the NP-completeness of recognizing cubes of bipartite graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Graph roots, graph powers, bipartite graphs

1. Introduction

Root and root finding are concepts familiar to most branches of mathematics. In
graph theory, H is a root of G = (V, E) if there exists a positive integer k such that
x and y are adjacent in G if and only if their distance in H is at most k. If H is a
kth root of G, then we write G = H k and call G the kth power of H (see Figure 1).

For any class of graphs, recognition is a fundamental structural and algorith-
mic problem; in this article, we study the recognition problems on graph powers.
Ordinarily, it is a difficult task to determine whether a given graph G has a kth
root or not. Also, the number of kth roots could be exponential in the size of the
input graph. Ross and Harary [1960] characterized squares of trees and showed that
tree square roots, when they exist, are unique up to isomorphism. Mukhopadhyay
[1967] characterized general graphs that possess a square root, and in the following
year, Geller [1968] solved the problem for general digraphs. Escalante et al. [1974]
characterized graphs and digraphs with a kth root. However, all characterizations

The author is supported by Microsoft Fellowship.

Author’s address: Department of Computer Science, University of Toronto, 10 King’s College Road,
Toronto, Ont., M5S 3G4, Canada, e-mail: chi@cs.toronto.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1549-6325/06/0400-0178 $5.00

ACM Transactions on Algorithms, Vol. 2, No. 2, April 2006, pp. 178–208.

Bipartite Roots of Graphs 179

FIG. 1. G (a tree), G2 and G3.

of powers of general graphs are not polynomial in the sense that they do not yield
polynomial-time algorithms. The complexity of graph power recognition was unre-
solved until 1994 when Motwani and Sudan [1994] proved the NP-completeness of
recognizing squares of graphs and stated that they believed it is also NP-complete
to recognize squares of bipartite graphs. About the same time, Lin and Skiena
[1995] gave linear-time algorithms for recognizing squares of trees and, based on
the characterization given by Harary et al. [1967] finding square roots of planar
graphs. Recently, Lau and Corneil [2004] presented polynomial-time algorithms
for recognizing kth powers of proper interval graphs for every fixed k. On the other
hand, they showed the NP-completeness of recognizing squares of chordal graphs,
recognizing squares of split graphs and recognizing chordal graphs that are squares
of some graph.

1.1. OUR RESULTS. The main result of this article is to show that squares of
bipartite graphs can be recognized in polynomial-time. In Section 2, we give an
overview of this algorithm and show how to reduce the problem of recognizing
squares of bipartite graphs to two auxiliary problems. The algorithm for the first
auxiliary problem is given in Section 3, and an involved algorithm for the second
auxiliary problem is presented in Section 4. Then, in Section 5, we show how to
modify the algorithm to count the number of different bipartite square roots of a
graph. Using the techniques developed, in Section 6, we present a new and simpler
linear-time algorithm to recognize square of trees, and a new algorithmic proof that
tree square roots are unique up to isomorphism. Finally, in Section 7, we show the
NP-completeness of recognizing cubes of bipartite graphs.

1.2. NOTATION AND DEFINITIONS. Our basic notation and terminology refer-
ence is West [2001]. We denote a graph G with vertex set V (G) and edge set E(G)
by G = (V, E). When u and v are endpoints of an edge, they are adjacent and are
neighbors. We write u ↔ v or uv ∈ E(G) for “u is adjacent to v”. All the graphs
we consider are simple, undirected and loopless, unless otherwise specified. The

complement G of a simple graph G is the simple graph with vertex set V (G) defined

by uv ∈ E(G) if and only if uv /∈ E(G). A graph G ′ = (V ′, E ′) is a subgraph
of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E . G ′ is an induced subgraph of G, written
G[V ′], if it is a subgraph of G and it contains all the edges uv such that u, v ∈ V ′
and uv ∈ E(G).

The degree of a vertex v in a graph G, written deg(v) is the number of edges
incident with v . The maximum degree is denoted �(G). The open neighborhood
NG(v) of v is the set of vertices adjacent to v in G, and the closed neighborhood
NG[v] of v is NG(v) ∪ {v}. When U is a set of vertices, NG[U] = ⋃

v∈U NG[v].
If G has a u,v-path, then the distance from u to v , written dG(u, v) is the least

180 LAP CHI LAU

length of any u, v-path. The kth neighborhood N k
G(v) of v is the set of vertices at

distance k from v . A graph G is connected if each pair of vertices in G is connected
by a path; otherwise, G is disconnected. A maximal connected subgraph of G is a
subgraph that is connected and is not contained in any other connected subgraph.
The components of a graph are its maximal connected subgraphs.

A clique in a graph G is a set of pairwise adjacent vertices. When the set has size
r , the clique is denoted by Kr . An independent set (or stable set) in a graph is a set
of pairwise nonadjacent vertices. The clique number ω(G) is the maximum clique
size in G; while the independence number α(G) is the maximum independent set
size in G. The chromatic number χ (G) of a graph G is the minimum number of
colors needed to label the vertices so that adjacent vertices receive different colors.
The clique cover number θ (G) of a graph G is the minimum number of cliques in
G needed to cover V (G). These four parameters of a graph are very important in
many optimization problems on graphs.

A graph is bipartite if there is a bipartition of its vertex set into two disjoint
stable sets called the partite sets of G. Two vertices are on the same side if they are
in the same partite set; otherwise, they are on different sides. A complete bipartite
graph is a bipartite graph such that two vertices are adjacent if and only if they are
on different sides. When the sets have size r and s, the complete bipartite graph is
denoted by Kr,s . A tree is a connected graph with no cycle. A leaf is a vertex v of
degree 1; the only neighbor of v is the parent of v . A star is a tree with diameter 2,
and a double star is a tree with diameter 3.

2. Squares of Bipartite Graphs

In this section, we give an overview of the polynomial-time algorithm to solve the
SQUARE OF BIPARTITE GRAPH (SB) problem.

PROBLEM. SQUARE OF BIPARTITE GRAPH (SB)
INSTANCE. A graph G.
QUESTION. Does there exist a bipartite graph B such that B2 = G?

Henceforth, we assume, without loss of generality, that G is connected; hence,
B must also be connected. The following simple observation is very useful in later
proofs.

PROPOSITION 2.1. Let B be a bipartite graph such that B2 = G. If uv ∈ E(G)
and u, v are on different sides of B, then uv ∈ E(B).

PROOF. Suppose, by way of contradiction, that uv /∈ E(B). Since u and v are on
different sides of B, they do not share any common neighbor in B. So uv /∈ E(B2)
and this contradicts the assumption that B2 = G. As a result, uv ∈ E(B).

Here we introduce two important auxiliary problems to solve SB. Let B =
(X, Y, E) be a bipartite graph with X and Y as the partite sets. Suppose we fix the
partite sets of the bipartite roots of G. Then, from Proposition 2.1, the edge set of the
bipartite root is forced. In fact, the unique bipartite root candidate is B = (X, Y, E)
with E(B) = {uv | uv ∈ E(G) and u ∈ X and v ∈ Y }. Extending this idea, we
show that the following problem can be solved in polynomial time.

Bipartite Roots of Graphs 181

FIG. 2. An illustration of the algorithm SBN.

PROBLEM. SB WITH A SPECIFIED NEIGHBORHOOD (SBN)
INSTANCE. A graph G, v ∈ V (G) and U ⊆ NG(v).
QUESTION. Does there exist a bipartite graph B such that B2 = G and

NB(v) = U?

Given an instance of SBN, it turns out that we can construct the unique candidate
solution in polynomial time. This result will be presented in Section 3. Now we
introduce the second auxiliary problem. We say a vertex v in a bipartite graph is
maximal if NB(v) �⊂ NB(u) for all u ∈ V (B); an edge e = uv in a bipartite graph
is maximal if both u and v are maximal vertices. Using the result of SBN, we can
further show that the following problem is polynomial-time solvable.

PROBLEM. SB WITH A SPECIFIED MAXIMAL EDGE (SBE)
INSTANCE. A graph G, xy ∈ E(G).
QUESTION. Does there exist a bipartite graph B such that B2 = G and xy

is a maximal edge in B?

Given an instance of SBE, we can solve it in time O(M(n)) by reducing it
to at most two instances of SBE, where M(n) is the time complexity of doing a
matrix multiplication operation for two n × n matrices. Here, we need to do matrix
multiplications to check if the candidate solutions are actually bipartite square roots
of G.

Now, with the polynomial-time algorithm for SBE, we show how to solve SB in
polynomial-time. Given an instance of SB, we pick a vertex x in G with maximum
degree and note that it must be a maximal vertex in B for any bipartite square
root B of G. Also, if G is the square of a bipartite graph B, there is at least one
vertex y ∈ NG(x) such that y ∈ NB(x) and y is maximal in B (consider a vertex
y with maximum degree amongst vertices in NB(x)). Therefore, if G is the square
of a bipartite graph, then there must exist a neighbor y of x in G with xy being a
maximal edge in B. Since NG(x) is of cardinality at most �(G) where �(G) denotes
the maximum degree of G, the time complexity of SB is at most �(G) times the
complexity of SBE. This completes the high-level description of the algorithm for
SB. The algorithm for SBN is presented in Section 3 and the algorithm for SBE is
given in Section 4.

3. Bipartite Square Roots with One Specified Neighborhood

As mentioned in the previous section, given an instance of SBN, if there is a solution,
then there is a unique solution. The following is an algorithm to find the unique
candidate solution. Figure 2 illustrates the concept of the algorithm.

182 LAP CHI LAU

SBN
C1 ← {v}
C2 ← U
V2 ← C1 ∪ C2

k ← 2
while (Vk is a proper subset of V (G)) do

Ck+1 ← NG(Ck−1) − Vk

Vk+1 ← Vk ∪ Ck+1

k ← k + 1
X ← ⋃

i C2i+1

Y ← ⋃
i C2i

E ← {xy | x ∈ X, y ∈ Y and xy ∈ E(G)}

LEMMA 3.1. Given an instance of SBN, the algorithm outputs the unique so-
lution, if some solution exists.

PROOF. Without loss of generality, we assume v ∈ X . Starting from v in X and
U in Y , we enlarge the forced bipartition in each iteration. In the algorithm, after
the (k −1)th iteration, Vk is the set of vertices that are forced to be on one side in B.
Since it is a bipartite graph, there is no edge between vertices on the same side. On
the other hand, by Proposition 2.1, all the edges between vertices on different sides
are in B. So Ek = {uw | uw ∈ E(G) and u ∈ (Vk ∩ X) and w ∈ (Vk ∩ Y)} is
the forced edge set in B[Vk]. Thus, Bk = (Vk, Ek) is the forced induced bipartite
subgraph of any bipartite square root B of G with NB(v) = U . Suppose the
algorithm terminates at the i th iteration; then Vi = V (G) and Bi = (Vi , Ei) is the
forced bipartite graph square root of G.

Explicitly, we will prove by induction on k that if there exists a bipartite graph
B = (X, Y, E) such that B2 = G and NB(v) = U , then Bk is an induced bipartite
subgraph of B with the following properties:

(Pk1) Ci �= ∅ for 1 ≤ i ≤ k
(Pk2) ui ∈ Ci ⇒ NG(ui) ⊆ Vk for 1 ≤ i ≤ k − 2
(Pk3) for ui ∈ Ci , ui ∈ X iff i is an odd number for 1 ≤ i ≤ k
(Pk4) ui ∈ Ci ⇒ ∃ui−1 ∈ Ci−1 such that ui−1ui ∈ Ek for 2 ≤ i ≤ k

Without loss of generality, we assume v ∪ U ⊂ V (G) and U �= ∅. By the specifi-
cation of SBN, B2 is clearly an induced bipartite subgraph of any bipartite square
root B of G with NB(v) = U . Since (Pk2) is only applicable when k ≥ 3, the base
case is B3. We will show that if there exists a bipartite graph B such that B2 = G
and NB(v) = U , then (P31)-(P34) hold.

For (P31), C1 = {v} and C2 = U ⊆ NG(v) are not empty by our assumption.
Suppose, by way of contradiction, that C3 = ∅. From the algorithm, C3 = NG(C1)−
V2. Since C3 = ∅, we have NG(v) = C2 = U = NB(v). But then, it is easy to
see that if there is an edge between V2 and V (B) − V2 in B, then B2 �= G. So
V2 is disconnected from V (B) − V2 in any bipartite square root B of G such
that NB(v) = U . Since V2 ⊂ V (B), B is disconnected and this contradicts the
assumption that G is connected. So (P31) holds in B3.

By the algorithm, C3 = NG(C1) − V2. So NG(v) = C2 ∪ C3 ⊆ V3 and thus (P32)
holds.

For (P33), C1 = {v} is in X by assumption. Since C2 = U = NB(v), C2 must be
in Y . By the algorithm, C3 = NG(v)− V2 and thus C3 = NG(v)− NB[v]. By (P31),

Bipartite Roots of Graphs 183

C3 �= ∅. So any vertex u in C3 is adjacent to v in G but not in B. By Proposition 2.1,
C3 must be in X and thus (P33) holds.

For (P34), it is true for vertices in C2 since C2 = U = NB(v). For any vertex
u3 ∈ C3, by (P33), it is on the same side as v in B. Also it is adjacent to v in G.
So, if B2 = G, u3 and v should share at least one common neighbor in B. Since
NB(v) = C2 and C2 �= ∅, u3 has at least one neighbor in C2 and thus (P34) holds.
So the base case holds and therefore B3 is an induced bipartite subgraph for any
bipartite square root B of G with NB(v) = U .

Now assume the statements hold for Bk for k ≥ 3; Bk is an induced bipartite
subgraph for any bipartite square root B of G such that NB(v) = U . If Vk = V (G),
then we are done. So we assume Vk ⊂ V (G). We show that the statements also
hold for Bk+1. In the following, we assume that k is even. The case when k is odd
uses exactly the same arguments.

For (Pk+1,1), by the induction hypothesis, (Pk1) holds and so C1, . . . , Ck are not
empty. It suffices to show that Ck+1 �= ∅. Suppose, by way of contradiction, that
Ck+1 = ∅. Then Vk+1 = Vk and so Vk+1 ⊂ V (G). By the induction hypothesis, (Pk2)
holds in Bk and so NG(Vk−2) ⊆ Vk . From the algorithm, Ck+1 = NG(Ck−1) − Vk .
Since Ck+1 = ∅, it implies NG(Vk−1) ⊆ Vk . Now we will argue that Vk+1 = Vk
is disconnected from V (B) − Vk+1 in any bipartite square root B of G such that
NB(v) = U . Since NG(Vk−1) ⊆ Vk , if B2 = G, then NB(Vk−1) ⊆ NG(Vk−1) and
thus there is no edge between Vk−1 and V (G) − Vk in B. The only possibility
left is that there is an edge ukv between uk ∈ Ck and v ∈ V (G) − Vk in B. By
the induction hypothesis, Bk is an induced subgraph of B with (Pk1-Pk4) hold. By
(Pk4) of Bk , uk ∈ Ck implies there exists uk−1 ∈ Ck−1 such that ukuk−1 in Ek and
thus in E(B). However, this implies that vuk−1 ∈ E(B2) and this contradicts the
assumption that B2 = G. Therefore, Vk+1 is disconnected in any bipartite square
root B of G such that NB(v) = U . But this contradicts the assumption that G is
connected. So (Pk+1,1) holds in Bk+1.

By the induction hypothesis, (Pk2) holds in Hk . By the algorithm, Ck+1 =
NG(Ck−1) − Vk and so NG(Ck−1) ⊆ Vk+1, thus (Pk+1,2) holds in Bk+1.

Now we consider (Pk+1,3). Since we assume k is even, by the induction hypothesis
(Pk3), Ck−1 is in X . By (Pk+1,1), Ck+1 �= ∅. For any vertex uk+1 in Ck+1, it is adjacent
to a vertex uk−1 in Ck−1 in G. Suppose, by way of contradiction, that uk+1 is in
Y . By Proposition 2.1, uk+1uk−1 ∈ E(B). By the induction hypothesis, Bk is an
induced subgraph of B with (Pk1-Pk4) hold. By (Pk4) of Bk , uk−1 ∈ Ck−1 implies
there exists uk−2 ∈ Ck−2 such that uk−1uk−2 in Ek and thus in E(B). However, this
implies that uk+1uk−2 ∈ E(B2) but this contradicts the assumption that B2 = G.
So (Pk+1,3) holds in Bk+1.

For (Pk+1,4), by the induction hypothesis (Pk4), it suffices to show that it is also
true for vertices in Ck+1. For any vertex uk+1 in Ck+1, it is adjacent to a vertex uk−1 in
Ck−1 in G. By (Pk+1,3), Ck+1 and Ck−1 are on the same side. Therefore, if B2 = G,
uk+1, uk−1 must share a common neighbor in B. By (Pk,2), NG(Vk−2) ⊆ Vk . Since
B2 = G, NG(Vk−2) ⊆ Vk implies NB(Vk−2) ⊆ Vk . So, uk+1 does not have a
neighbor in Vk−2 in B. By (Pk+1,2), NG(Ck−1) ⊆ Vk+1. So, for uk+1 to share a
common neighbor with uk−1, uk+1 must have a neighbor in Ck . So (Pk+1,4) 2 holds.

As a result, Bk+1 is an induced bipartite subgraph of any bipartite square root
B of G such that NB(v) = U . By (Pk1), in each iteration, we add at least one
more vertex to the forced bipartition of B. Eventually, there is an i ≤ n such that
Vi = V (G) and then B = Bi is the unique bipartite square root of G such that
NB(v) = G, if some solution exists.

184 LAP CHI LAU

LEMMA 3.2. SBN can be solved in time O(M(n)).

PROOF. We solve this problem in two phases. In the first phase we construct the
unique candidate B as shown in Lemma 3.1. By using an implementation similar
to breadth first search, B can be constructed in linear-time. Notice that even if G
does not have a square root, B is constructed. So in the second phase we have to
check if B2 = G. If B2 = G, we say “YES”. Otherwise, we say “NO” since B is the
unique candidate. The second phase can be done by doing matrix multiplication
and thus the total complexity is O(M(n)).

4. Bipartite Square Roots with One Specified Maximal Edge

In this section, we present a polynomial-time algorithm for SBE. In particular,
we reduce SBE to at most 2 instances of SBN. Given the partial solution where
initially x and y are on different sides, the algorithm incrementally enlarges the
partial (forced) solution until it can be reduced to at most 2 instances of SBN.
The organization of this section is as follows. In Section 4.1, we first introduce the
necessary notations and prove some preliminary structural results. Then we outline
the algorithm in Section 4.2. In Section 4.3, we give the algorithmic details and
prove the correctness of each step.

4.1. PRELIMINARIES. Recall that the chromatic number χ (G) is the minimum
number of colors needed to label the vertices of G so that adjacent vertices receive
different colors. It is well known that a graph G is bipartite if and only if χ (G) ≤ 2.
The clique covering number θ (G) of a graph G is the minimum number of cliques in

G to cover V (G); note that θ (G) = χ (G). So we say that a graph G with θ (G) ≤ 2
a co-bipartite graph (i.e., the complement of a bipartite graph).

Given a co-bipartite graph H ; we denote the connected components of H by

C1, . . . , Ck and we say they are the co-components of H (i.e., connected compo-
nents in the complement of H). A co-component is trivial if its vertex set is of

size 1. For any co-component Ci of a co-bipartite graph H , H [Ci] is a connected

bipartite graph, we call the vertex set that corresponds to a partite set of H [Ci]

a part. Let H be an induced co-bipartite subgraph of G and let C1, . . . , Ck be its
co-components. A vertex v ∈ V (G) − V (H) is of:

—type 0 to Ci if v is not adjacent to any vertex in Ci ;

—type 1 to Ci if v is adjacent to some vertices in exactly one part, called adjacent
part, of Ci ;

—type 2 to Ci if v is adjacent to some vertices in both parts of Ci .

A vertex v is type 1 universal to Ci if it is adjacent to all vertices in the adjacent

part; similarly, v is type 2 universal to Ci if it is adjacent to all vertices in Ci .
Suppose x and y are the vertices that are part of the input to SBE. We always

assume x ∈ X and y ∈ Y in B. Let Px = NG(x) − NG(y), Py = NG(y) − NG(x)
and we say Pxy = Px ∪ Py is the set of private neighbors. Also, we say Cxy =
NG(x) ∩ NG(y) is the set of common neighbors. The following lemma describes
the structures of the vertices in Cxy in B and G.

LEMMA 4.1. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G;
then (NB(x) − y) ∪ (NB(y) − x) = Cxy and G[Cxy] is a co-bipartite graph.

Bipartite Roots of Graphs 185

PROOF. First, we show that (NB(x) − y) ∪ (NB(y) − x) = Cxy . Consider an
arbitrary vertex v ∈ Cxy; we claim that v is either in NB(x) or NB(y). Suppose v is
in X ; since vy ∈ E(G), by Proposition 2.1, vy ∈ E(B). A similar argument applies
if v is in Y . Furthermore, since we consider graphs without loops, x and y are not
in Cxy . So we have Cxy ⊆ (NB(x) − y) ∪ (NB(y) − x). On the other hand, consider
an arbitrary vertex u ∈ NB(x) − y, it is obvious that u ∈ NB2 (x). Also, since
xy ∈ E(B), u ∈ NB2 (y). A similar argument applies if u ∈ NB(y) − x . Therefore,
u ∈ NB2 (x)∩NB2 (y). Since B2 = G, u ∈ Cxy . Hence, (NB(x)− y)∪(NB(y)−x) =
Cxy . Finally, NB(x) − y and NB(y) − x induce cliques in B2 and thus in G. So
G[Cxy] is a co-bipartite graph.

By Lemma 4.1, G[Cxy] is a co-bipartite graph. Henceforth, we let the trivial co-
components of G[Cxy] be c1, . . . , cl and the co-components be C1, . . . , Ck . Before
we proceed to the outline of the algorithm, we first show an important lemma of
placing co-components, which will be used implicitly many times (see Section 4.2).

LEMMA 4.2. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G. Given a co-
component C of G[Cxy]; all vertices in one part of C must be on one side of B
while all vertices in the other part of C must be on the other side of B.

PROOF. Let U and W be the two parts of C and U = U1∪U2 and W = W1∪W2.
Suppose that, in B, U1 and W1 are in X while U2 and W2 are in Y . Since U1 and
W1 are in X , by Proposition 2.1, y is adjacent to every vertex in U1 and W1 in B
and thus G[U1 ∪ W1] is a clique. By the same argument, G[U2 ∪ W2] is a clique.
Also G[U] and G[W] are cliques by the definition of a part of a co-component.
So in G we have all possible edges between {U1 ∪ W2} and {U2 ∪ W1} and thus

they are disconnected in G. Now we have contradicted the fact that C is a co-
component unless one of {U1 ∪ W2} or {U2 ∪ W1} is empty and thus the lemma
holds.

4.2. OUTLINE OF THE ALGORITHM. By Lemma 4.2, given a co-component C =
{U ∪W } of G[Xxy] where U and W are the two parts of C , we just have to consider

the orientation of C in B (i.e., whether U is placed in X and W is placed in Y ,
or U is placed in Y and W is placed in X). If the orientation of a co-component
has been fixed (i.e., it was placed by the algorithm), we refer to it as a fixed co-
component; otherwise, it is a free co-component. At the beginning of the algorithm,
every co-component is free.

Our algorithm will place NG(x) ∪ NG(y) in B in several steps; in each step some
vertices will be placed in B. In the first step, all vertices in Pxy of G will be placed
in B. Then, all trivial co-components of G[Cxy] will be placed in B in the second
step. Note that if there is just one free co-component C left, then we are finished
since we just have to consider at most two possibilities by Lemma 4.2, and each
instance can be solved by a call to SBN. The difficult case is when we have many
free co-components. So, henceforth, when we place co-components in B, we make
the following assumption.

Remark 4.3. There are at least two free co-components left when we place
co-components in B.

186 LAP CHI LAU

Using the positions of vertices in Pxy in B and the edges in G between vertices in
Pxy and the vertices in free co-components, we will fix the free co-components in
B in many different steps. In each step, we look for some configurations in G from
which we can force the orientations of some free co-components in B. Then after
we fix those free co-components, we can assume more structures in the remaining
free co-components, and we can force the orientations of more remaining free co-
components in B. After several such procedures, if there are still at least two free
co-components left, we have a very symmetrical structure where the remaining
free co-components are very similar to each other. To finish up, we argue that any
arbitrary orientations of the remaining free co-components would give the same
squared graph. Therefore, we can just place the remaining free co-components
arbitrarily, and the problem reduces to an instance of SBN, and we are done by
using the result in Section 3. The following is an elaborated algorithm outline, this
is intended to be used by the reader for future reference.

SBE

1 PLACE PRIVATE NEIGHBORS

Description: Place Px in X and Py in Y .

2 CHECK CO-BIPARTITENESS

Description: Ensure that G[Cxy] is a co-bipartite graph.

3 PLACE TRIVIAL CO-COMPONENTS

Description: Place all trivial co-components.
Post-condition (3.1) (by Corollary 4.8): In B, there is no edge between any trivial co-
component and vertices in Pxy .

4 NO TYPE 0 VERTEX

Assumption: (3.1)
Description: Ensure that (4.1) happens.
Post-condition (4.1) (by Corollary 4.11): For v ∈ Pxy , v is not a type 0 vertex to any
co-component.

5 TYPE 2 FORCING

Assumption: (4.1)
Description: If v ∈ Pxy is a type 2 vertex to a co-component, then we place all co-
components such that v is not a universal type 2 vertex to them.
Post-condition (5.1) (by Corollary 4.14): If v ∈ Pxy is a type 2 vertex to a co-component
in G, then v is a universal type 2 vertex to all free co-components in G.
Post-condition (5.2) (by Corollary 4.15): If v ∈ Pxy is a type 1 vertex to a free co-component
in G, then v is a type 1 vertex to all co-components in G.

6 TYPE 1 FORCING

Assumption: (3.1), (5.2)
Description: We place all co-components unless (6.1) happens.
Post-condition (6.1) (by Corollary 4.18): For all v ∈ Pxy , if v is a type 1 vertex to a free
co-component in G, then v is a universal type 1 vertex to all co-components and v’s adjacent
part of all fixed co-components were placed on the same side as v .

7 MORE TYPE 1 FORCING

Assumption: (5.2)
Description: If there exist type 1 vertices in Pxy , then we place all co-components unless
(7.1) happens.
Post-condition (7.1) (by Corollary 4.20): Type 1 vertices in Pxy that are on the same side
have the same neighborhood on the free co-components and type 1 vertices in Pxy that are
on different sides have disjoint neighborhood on the free co-components.

Bipartite Roots of Graphs 187

8 PLACE INCOMPLETE CO-COMPONENT

Assumption: (5.2), (6.1)
Description: If v ∈ Pxy is a type 1 vertex, then we place all incomplete co-components.
Post-condition (8.1) (by Corollary 4.22): If there exists a type 1 vertex in Pxy , then every
free co-component is a complete co-component.

9 FINAL PLACEMENT I
Assumptions: (4.1), (5.1), (5.2), (6.1), (7.1), (8.1).
Description: Place all co-components if V (G) = NG(x) ∪ NG(y).

10 FINAL PLACEMENT II
Assumptions: (4.1), (5.1), (5.2), (6.1).
Description: Place all co-components if V (G) ⊂ NG(x) ∪ NG(y).

4.3. ALGORITHM. Notice that the algorithm is executed in a sequential order.
If at any point the return command is executed, the output is returned and the
execution halts. Also, if the assert command fails, the execution of the algorithm
will terminate and return “NO”. So when we analyze properties of the graph before
the execution of a particular step, we assume the previous steps are finished and the
execution has not halted yet.

PLACE PRIVATE NEIGHBORS

(1) for any vertex x ′ ∈ Px

place x ′ in X
(2) for any vertex y′ ∈ Py

place y′ in Y

4.3.1. Place Private Neighbors. The following lemma shows the correctness
of PLACE PRIVATE NEIGHBORS.

LEMMA 4.4. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G; then, in B,
every vertex in Px is in X and every vertex in Py is in Y .

PROOF. Suppose, by way of contradiction, that x ′ ∈ Px but x ′ is placed in Y in
B. So, x and x ′ are on different sides of B. Since xx ′ ∈ E(G), by Proposition 2.1,
xx ′ ∈ E(B). Since xy ∈ E(B) by assumption, x ′y ∈ E(B2). On the other hand,
since x ′ ∈ Px , x ′y /∈ E(G). Therefore, B2 �= G; a contradiction. The same
argument applies for y′ ∈ Py; thus, the lemma holds.

4.3.2. Check Co-Bipartiteness. Before we proceed, by Lemma 4.1, we first
ensure that G[Cxy] is a co-bipartite graph.

CHECK CO-BIPARTITENESS

(1) compute G[Cxy]

(2) assert that each connected component of G[Cxy] is a bipartite graph

4.3.3. Place Trivial Co-Components. Recall that a trivial co-component c of

G[Cxy] is an isolated vertex in G[Cxy] (i.e., in G, c is adjacent to every vertex in
Cxy − c). The following is the algorithm to place trivial co-components:

188 LAP CHI LAU

PLACE TRIVIAL CO-COMPONENTS

Case 1. Pxy �= ∅
for any trivial co-component c

assert that either NG[c] = NG[x] or NG[c] = NG[y]
if NG[c] = NG[x]
then place c in X
else place c in Y

Case 2. Pxy = ∅
for any trivial co-component c

place c arbitrarily in X or Y

To prove the correctness of PLACE TRIVIAL CO-COMPONENTS, we need the fol-
lowing two lemmas.

LEMMA 4.5. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G. Let c be
a trivial co-component of G[Cxy] in G. If c ∈ X, then NB[x] ⊆ NB[c] and
NG[x] ⊆ NG[c]. Otherwise, if c ∈ Y , then NB[y] ⊆ NB[c] and NG[y] ⊆ NG[c].

PROOF. By Lemma 4.1, (NB(x) − y) ∪ (NB(y) − x) = Cxy . Since c is a trivial
co-component of G[Cxy], c is adjacent to all other vertices in Cxy in G. If c ∈ X
in B, it is in a different partite set than NB(x) in B. Since NB(x) − y ⊆ Cxy , by
Proposition 2.1, c is adjacent to all vertices in NB(x) − y in B. Also, since cy ∈
E(G), by Proposition 2.1, cy ∈ E(B). Therefore, NB(x) ⊆ NB(c). Since B2 = G,
NG(x) ⊆ NG(c). By the same argument, if c ∈ Y in B, then NB(y) ⊆ NB(c) and
NG(y) ⊆ NG(c).

LEMMA 4.6. Suppose B = (X, Y, E) and B2 = G. Let u and v be vertices in
different partite sets of B. Then NG[u] = NG[v] if and only if u and v are both
universal vertices in B.

PROOF. One direction is easy; if u and v are both universal vertices in B, since
B2 = G, NB2 [u] = NB2 [v] = NG[u] = NG[v] = V (G).

Now we prove the other direction. Suppose, by way of contradiction, that u and
v are vertices in different partite sets of B and NG[u] = NG[v] but u and v are
not both universal vertices in B. Let S = NB[u] ∪ NB[v] and T = V (B) − S.
Since u and v are not both universal vertices in B, T �= ∅. We now show that
S and T are disconnected in B. Suppose, by way of contradiction, that there is
an edge st ∈ E(B) such that s ∈ S and t ∈ T . Without loss of generality, we
assume s is on the same side as u and thus on the different side than v . By our
construction of S, s ∈ NB(v). So vt ∈ E(B2). On the other hand, t /∈ S implies
t /∈ NB(u). Since u and t are on different sides of B, ut /∈ E(B2). Since B2 = G,
NG[u] �= NG[v]; a contradiction. So S and T are disconnected in B; however, this
contradicts the assumption that G is connected. We conclude that u and v are both
universal vertices in B.

Now we are ready to prove the correctness of PLACE TRIVIAL CO-COMPONENTS.

LEMMA 4.7. PLACE TRIVIAL CO-COMPONENTS is correct.

PROOF

Case 1. Pxy �= ∅. By Lemma 4.4, in any bipartite graph B such that B2 = G
and xy ∈ E(B), there is no edge between {x, y} and Pxy in B. Since Pxy �= ∅, x
and y are not both universal vertices in B. First, we show that if NG[c] �= NG[x],

Bipartite Roots of Graphs 189

then c can not be placed in X . If NG[c] �= NG[x], then either NG[x] �⊆ NG[c] or
NG[x] ⊂ NG[c]. In the former case, c can not be placed in X by Lemma 4.5; in the
latter case, c can not be placed in X by the maximality of x (recall that, in SBE, we
require x to be a maximal vertex in B).

Now we show that if NG[x] = NG[c], then c must be placed in X in B. Suppose,
by way of contradiction, that c is placed in Y in B. By Lemma 4.6, c and x are
both universal vertices in B. Since x is a universal vertex in B, NG(x) = V (G)
and thus Py = ∅. Since Pxy �= ∅, Px �= ∅ and thus y is not a universal vertex in
B. So NB(y) ⊂ NB(c); this contradicts the assumption that y is a maximal vertex
in B and thus B is not a solution to SBE. The same argument applies when x is
replaced by y. Also notice that since Pxy �= ∅, by Lemma 4.6, NG[x] �= NG[y] and
thus there is no ambiguity in the Case 1 of this algorithm. Hence, for any trivial
co-component c, the position of c is well defined and thus Case 1 is correct.

Case 2. Pxy = ∅. Let B be a bipartite graph with c is in X in B. Let B ′ be
a bipartite graph with the same vertex partition as B except c is in Y in B ′. By
Proposition 2.1, if B2 = G, then E(B) = {uv | u ∈ X, v ∈ Y and uv ∈ E(G)}
and similarly for E(B ′). We will show that E(B ′2) = E(B2). Since Pxy = ∅,
by Lemma 4.6, x and y are both universal vertices in B and B ′. For any two
vertices x1, x2 in X − c; since y is universal in B and B ′, x1x2 ∈ E(B2) and also

x1x2 ∈ E(B ′2). The same argument applies for any two vertices y1, y2 in Y − c.
For any two vertices x1 ∈ X − c, y1 ∈ Y − c; the adjacency is the same in B2 and

B ′2. Note that since V (G) = {x} ∪ {y} ∪ Cxy and c is a trivial co-component in
Cxy , c must be a universal vertex in B (i.e., NB(c) = Y) and B ′ (i.e., NB ′(c) = X).

So, NB2 [c] = NB ′2 [c] = V (G). Therefore E(B2) = E(B ′2); to construct a bipartite
square root of G, we can place c arbitrarily. Hence, Case 2 of PLACE TRIVIAL

CO-COMPONENTS is also correct.

COROLLARY 4.8. In B, there is no edge between any trivial co-component c of
G[Cxy] and Pxy.

PROOF. For any two vertices u, v on the same side in B, if NB(u) �= NB(v),
then NB2 [u] �= NB2 [v]. For any trivial co-component c of G[Cxy], by the assertion
in PLACE TRIVIAL CO-COMPONENTS, NG[c] is either equal to NG[x] or NG[y].
Since B2 = G, NB(c) is either equal to NB(x) or NB(y). It is clear that x has no
edge to Py and y has no edge to Px in B by the definition of private neighbor. Also,
by Lemma 4.4, x and Px are on the same side in B and similarly for y and Py . So,
{x, y} has no edge to Pxy in B and thus there is no edge between c and Pxy in B.

4.3.4. No Type 0 Vertex. We now show that for any vertex v ∈ Pxy , it is either

a type 1 or a type 2 vertex to any co-component C .

NO TYPE 0 VERTEX

for v ∈ Pxy

assert that v is not a type 0 vertex to some co-component

LEMMA 4.9. Suppose B = (X, Y, E), xy ∈ E(B), B2 = G and v ∈ Pxy is
adjacent to z ∈ Cxy in B. If C is a co-component such that z /∈ C and there is a
vertex u ∈ C but uv /∈ E(G), then C can not be placed such that u and v are on
the same side of B.

190 LAP CHI LAU

PROOF. Suppose, by way of contradiction, that u and v are on the same side of

B. Since z is in a different co-component than C , zu ∈ E(G). Since zu, zv ∈ E(G),
by Proposition 2.1, zu, zv ∈ E(B). Hence, uv ∈ E(B2) but this contradicts the
assumption that B2 = G.

LEMMA 4.10. NO TYPE 0 VERTEX is correct.

PROOF. Suppose, by way of contradiction, that v is a type 0 vertex to a co-

component C in G. Without loss of generality, we assume that v ∈ Px in B. By
PLACE PRIVATE NEIGHBORS, v is placed in X . By Lemma 4.1, NB(x) − y ⊆ Cxy .
By Corollary 4.8, v is not adjacent to any trivial co-component in B. Since v ∈ Px ,
v and x must have a common neighbor z in B (clearly, z is placed in Y). So z is in a

co-component C
′
such that C

′ �= C . Since C is a co-component, there are vertices

u, w on different parts of C that are not adjacent to v in G. Since vz ∈ E(B) and

z /∈ C , by Lemma 4.9, neither u nor w can be placed on the same side as z or
otherwise the assumption that B2 = G is contradicted. Therefore, if B2 = G, v
does not exist and the lemma holds.

COROLLARY 4.11. After the execution of NO TYPE 0 VERTEX, for any vertex
v ∈ Pxy and any co-component C, v is either a type 1 vertex to C or a type 2 vertex
to C.

4.3.5. Type 2 Forcing. The following algorithm forces the orientation of some
free co-components based on the position of vertices in Pxy in B which are type 2
vertices to some co-components in G:

TYPE 2 FORCING

for v ∈ Pxy

if v is a type 2 vertex to some co-component C
′

1. for any free co-component C �= C
′

if there is a vertex u ∈ C such that uv /∈ E(G)
place C such that u is on the side opposite v

2. if there are at least two free co-components left

if there is a vertex u ∈ C
′
such that uv /∈ E(G)

place C
′
such that u is on the side opposite v

LEMMA 4.12. Suppose B = (X, Y, E), xy ∈ E(B), B2 = G and v ∈ Pxy is a

type 2 vertex to a co-component C
′
. If C is a co-component such that C �= C

′
and

there is a vertex u ∈ C that is not adjacent to v, then C can not be placed such that
u and v are on the same side of B.

PROOF. Let w and z be vertices of different parts of C
′

such that they are
adjacent to v . By Lemma 4.2, exactly one of w or z is on the side opposite v in
B. Without loss of generality, we assume z is on the side opposite v in B. By
Proposition 2.1, zv ∈ E(B). Hence, by Lemma 4.9, the lemma follows.

LEMMA 4.13. TYPE 2 FORCING is correct.

PROOF. The correctness of the first part of the algorithm is justified by
Lemma 4.12. Suppose there are two free co-components left after the first part

Bipartite Roots of Graphs 191

(note that one is C
′
); there is a free co-component C such that C �= C

′
. Since C is

not fixed by the first part of TYPE 2 FORCING, v must be a universal type 2 vertex to

C . So, by applying Lemma 4.12 with C
′

replaced by C , we prove the correctness
of the second part of TYPE 2 FORCING.

COROLLARY 4.14. After the execution of TYPE 2 FORCING, if v is a type 2 vertex
to a co-component in G and there are at least two free co-components left, then v
is a universal type 2 vertex to all free co-components.

PROOF. This follows from the first part of TYPE 2 FORCING.

COROLLARY 4.15. After the execution of TYPE 2 FORCING, if v is a type 1 vertex
to a free co-component in G, then v is a type 1 vertex to all co-components in G.

PROOF. By Remark 4.3, there are two free co-components left. By Corol-
lary 4.14, if v is a type 2 vertex to some co-component, then v is a universal
type 2 vertex to all free co-components. So, if v is a type 1 vertex to a free co-
component, v is not a type 2 vertex to any co-component. Also, by Lemma 4.10,
v is not a type 0 vertex to any co-component. So, if v is a type 1 vertex to a free

co-component C , v is a type 1 vertex to all co-components.

4.3.6. Type 1 Forcing. In TYPE 1 FORCING, we use the vertices in Pxy that are
type 1 to some co-components to fix the orientations of some free co-components.

LEMMA 4.16. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G. If v ∈ Pxy is
a type 1 vertex to all co-components in G, there is exactly one co-component C ′
such that the adjacent part of C ′ to v is on the side opposite v in B. Furthermore,
v is a universal type 1 vertex to any co-component C in G where C �= C ′.

PROOF. First, we prove that there is at least one co-component in B such that
the adjacent part is on the side opposite v . Suppose, by way of contradiction, that
there is no co-component such that the adjacent part is on the side opposite v in B.
Without loss of generality, we assume that v ∈ Px . Since v is not adjacent to any
trivial co-component in B by Corollary 4.8, v does not share a common neighbor
with x in B. Hence, vx /∈ E(B2); this contradicts the assumption that v ∈ Px .

Now we prove that there is exactly one co-component C ′ such that the adjacent
part is on the side opposite v , and for other co-components, v is a universal type

1 vertex to them. First, there exists a vertex z ∈ C ′ such that zv ∈ E(G) and z
and v are on different sides of B. By Proposition 2.1, zv ∈ E(B). Suppose, by

way of contradiction, that there exists C �= C ′ that u, w are in different parts of C
but not adjacent to v . Since zv ∈ E(B) and z /∈ C , by Lemma 4.9, neither u nor
w can be placed on the same side as v or otherwise the assumption that B2 = G
is contradicted. Therefore, if C �= C ′, then v must be a universal type 1 vertex to

C . By the same argument (i.e., using Lemma 4.9), the adjacent part of C must be
placed on the same side as v .

Let v ∈ Pxy be a type 1 vertex to all co-components in G. By Lemma 4.16,

if xy ∈ E(B) and B2 = G, then there is exactly one co-component C such that

the adjacent part of C to v is on the side opposite v in B; we call C the active
co-component of v in B.

192 LAP CHI LAU

TYPE 1 FORCING

for v ∈ Pxy

if v is a type 1 vertex to some free co-component

1. if there exists a fixed co-component C
′
such that

C
′
’s adjacent part to v is on the side opposite v

for any free co-component C
place C such that the adjacent part to v

is on the same side with v
return SBN

2. assert that v is a type 1 universal vertex
to every fixed co-component

3. if there is one free co-component C such that

v is not a universal type 1 vertex to C
place C s.t. C’s adj. part to v is on the side opposite v
for any free co-component C

′ �= C
place C

′
such that C

′
’s adjacent part to v

is on the same side with v
return SBN

LEMMA 4.17. TYPE 1 FORCING is correct.

PROOF. If v is a type 1 vertex to a free co-component, by Corollary 4.15, v
is a type 1 vertex to all co-components. Now we consider the first case of TYPE 1

FORCING. If there is a fixed co-component C such that the adjacent part to v is on

the side opposite v , by Lemma 4.16, C is the active co-component of v in B and
thus the orientations of all free co-components in B are forced (i.e., the remaining
free co-components have to be placed such that the adjacent part to v is on the same
side as v). Then, all co-components are placed and thus the problem is reduced to
only one instance of SBN, we are finished.

So suppose the first case of TYPE 1 FORCING doesn’t apply, then every fixed
co-component has its adjacent part to v on the same side as v (i.e., they are not
the active co-component of v in B). By Lemma 4.16, except possibly the active
co-component, if xy ∈ E(B) and B2 = G, then v is a universal type 1 vertex to
every other co-component. This justifies the assertion.

Now we consider the final case of TYPE 1 FORCING. By Lemma 4.16, if xy ∈ E(B)

and B2 = G, then there is at most one co-component C such that v is not a

type 1 universal vertex to C . Furthermore, if such a free co-component C exists, by

Lemma 4.16, C must be the active co-component of v and thus the orientation of the
remaining free co-components are forced (i.e., the remaining free co-components
have to be placed such that the adjacent part to v is on the same side as v). Hence,
the problem is again reduced to only one instance of SBN and we are finished.

COROLLARY 4.18. Suppose the execution hasn’t halted yet after TYPE 1 FORC-
ING and let v be a type 1 vertex to a free co-component. Then for any fixed co-
component C, the adjacent part of C to v is on the same side as v in B. Furthermore,
v is a universal type 1 vertex to all co-components in G.

PROOF. Suppose there is a fixed co-component C with the adjacent part to v
is on the side opposite v , then by the first case of TYPE 1 FORCING, the problem is
reduced to one instance of SBN and the execution will halt.

Bipartite Roots of Graphs 193

So suppose the execution hasn’t halted after the first case, then the assertion
in TYPE 1 FORCING ensures that v is a type 1 universal vertex to every fixed co-
component. Similarly, if v is not a type 1 universal vertex to a free co-component,
then by the final case of TYPE 1 FORCING, the problem is reduced to one instance
of SBN and the execution will halt. So we can further assume that v is a universal
type 1 vertex to all co-components in G.

4.4. CHECKPOINT. Now we summarize what we have proved so far. By Re-
mark 4.3, there are two free co-components left. By Corollary 4.14, if v ∈ Pxy is a
type 2 vertex to a free co-component, it is a universal type 2 vertex to all free co-
components. By Corollary 4.18, if v ∈ Pxy is a type 1 vertex to a free co-component,
it is a universal type 1 vertex to all co-components. By Corollary 4.11, v is not a
type 0 vertex to any co-component. Henceforth, we refer a vertex of the former
case a type 2 vertex and a vertex of the latter case a type 1 vertex.

For any type 1 vertex v ∈ Pxy , by Lemma 4.16, there is exactly one co-component

C (the active co-component) such that C’s adjacent part to v is placed on the
side opposite v in B. If we can determine which co-component is the active co-
component of v in B, then the orientation of the remaining co-components are
forced by Lemma 4.16 (i.e., the remaining co-components have to be placed such
that the adjacent part to v is on the same side as v). So suppose there is a type 1 vertex
v in Pxy . Then we can reduce SBE to at most n instances of SBN by trying every
possibility for the active co-component of v . Notice that this observation together
with the FINAL PLACEMENT steps already give us an O(n · M(n)) algorithm for
SBE, as there are at most n possibilities for the active co-component.

4.4.1. More Type 1 Forcing. In MORE TYPE 1 FORCING, we search for a free co-
component C that regardless of C’s orientation, C has to be the active co-component

of some type 1 vertex. Suppose we can find such a free co-component C , then SBE
is reduced to at most 2 instances of SBN.

LEMMA 4.19. MORE TYPE 1 FORCING is correct.

PROOF. Suppose the first if statement is true. By Lemma 4.2, there are only

two ways to place C . Without loss of generality, we assume C is placed so that C’s
adjacent part to u is on the side opposite u in B. Recall that by Corollary 4.18, u is a

MORE TYPE 1 FORCING

(1) if u and v are type 1 vertices in Pxy that are on the same side in B
and there exists a free co-component C
such that u’s and v’s adjacent parts on C are different

for each orientation of C
place all free co-components based on Lemma 4.16
if SBN return TRUE

return FALSE

(2) if u and v are type 1 vertices in Pxy that are on different sides in B
and there exists a free co-component C
such that u’s and v’s adjacent parts on C are the same

for each orientation of C
place all free co-components based on Lemma 4.16
if SBN return TRUE

return FALSE

194 LAP CHI LAU

type 1 universal vertex to every co-component. Since C is the active co-component
of u in B, by Lemma 4.16, the orientations of the remaining free co-components are
forced (the remaining free co-components have to be placed so that the adjacent part
to u is on the same side as u) and thus we can apply SBN. The same argument applies

if C is placed so that C’s adjacent part to v is on the side opposite v . Therefore, the
problem is reduced to at most two instances of SBN. A similar argument applies
for the second if statement.

COROLLARY 4.20. If after the execution of MORE TYPE 1 FORCING we still have
two free co-components left, then we have the following. For type 1 vertices in Pxy:
if they are on the same side, their neighborhood on the free co-components are the
same; if they are on different sides, their neighborhoods on the free co-components
are disjoint.

PROOF. Suppose there are two type 1 vertices u, v ∈ Pxy that are on the same
side but their neighborhood are not the same. By Corollary 4.18, u and v are
universal type 1 vertex to every co-component. Also, by Corollary 4.18, all the
fixed co-components have their adjacent part to u and v on the same side as u and
v . So, if their neighborhood on the free co-components are not the same, there is a

free co-component C such that u’s and v’s adjacent parts to C are different. By the
first if of MORE TYPE 1 FORCING, the problem is reduced to at most two instances of
SBN and the execution halts. The other case of the corollary follows similarly.

4.4.2. Place Incomplete Co-Components. We say a co-component C is com-
plete if there is no edge between the two parts of C (i.e., a complete bipartite graph

in the complement); otherwise, C is an incomplete co-component. Now, if there
is a type 1 vertex v ∈ Pxy , then we will fix the orientations of all free incomplete
co-components.

PLACE INCOMPLETE CO-COMPONENT

if there is a type 1 vertex v ∈ Pxy

for any free co-component C
if C is an incomplete co-component in G

place C such that the adjacent part of C to v
is on the same side as v

LEMMA 4.21. PLACE INCOMPLETE CO-COMPONENT is correct.

PROOF. If v ∈ Pxy is a type 1 vertex, by Corollary 4.18, v is a universal type
1 vertex to all free co-components. Now consider an arbitrary incomplete free co-

component C ; let w, z be two vertices in different parts in C and wz ∈ E(G).
Without loss of generality, we assume w is in the adjacent part of v . By Lemma 4.2,

there are only two ways of placing C . Suppose, by way of contradiction, that C is
placed such that the adjacent part of v is on the side opposite v . Since wv ∈ E(G)
and wz ∈ E(G), by Proposition 2.1, wv ∈ E(B) and wz ∈ E(B). Therefore,
vz ∈ E(B2) but this contradicts the assumption that v is a type 1 vertex in G.

COROLLARY 4.22. After the execution of PLACE INCOMPLETE CO-
COMPONENT, if there is a type 1 vertex in Pxy, then every free co-component is
complete.

Bipartite Roots of Graphs 195

4.4.3. Final Placement I. If the execution has not halted yet at this point, the
unresolved graph has some very special structures. By Remark 4.3, the graph has at
least two free co-components. From the discussion of Section 4.4, a vertex in Pxy
is either a type 1 or a type 2 vertex. Recall that a type 1 vertex is a universal type 1
vertex to all free co-components, and a type 2 vertex is a universal type 2 vertex to all
free co-components. We denote the set of type 1 vertices in Px by P1

x and the set of

type 2 vertices in Px by P2
x ; similarly for P1

y and P2
y . By Corollary 4.20, vertices in

P1
x have the same neighborhood in the free co-components. We denote the adjacent

parts of vertices in P1
x of the free co-components by C

x
1, . . . , C

x
k , and similarly,

the adjacent parts of vertices in P1
y of the free co-components by C

y
1, . . . , C

y
k . By

Corollary 4.20, C
x
i �= C

y
i for all i . If P1

x ∪ P1
y �= ∅, then by Lemma 4.16, exactly one

free co-component Ci , the active co-component, should be placed so that C
x
i is in Y

and C
y
i is in X (in this case, Ci is the active co-component of all type 1 vertices in Pxy

in B). For all other free co-components C j for i �= j , by Lemma 4.16, C
x
j should be

placed in X and C
y
j should be placed in Y . We say such an orientation of all free co-

components is valid, since only such orientation is allowed by Lemma 4.16. Now we
place all free co-components. We have two cases to consider; in FINAL PLACEMENT

I, we consider the case when NG[x] ∪ NG[y] = V (G). In this case, we claim that
every valid orientation yield the same squared graph. In FINAL PLACEMENT II, we
consider the case when NG[x] ∪ NG[y] ⊂ V (G) where we can use an “outside”
vertex to determine the orientations of the free co-components in B.

FINAL PLACEMENT I: when NG[x] ∪ NG[y] = V (G)

Case 1: there exists a type 1 vertex in Pxy

assert that there is no edge between P1
x and Py

assert that there is no edge between P1
y and Px

place the free co-components by an arbitrary valid orientation

Case 2: there is no type 1 vertex in Pxy

place the free co-components by an arbitrary orientation

return SBN

LEMMA 4.23. Suppose B = (X, Y, E), xy ∈ E(B) and B2 = G. If the execu-
tion of SBE hasn’t halted yet and there exists a type 1 vertex in Pxy, then there is
no edge between Px

1 and Py and there is no edge between P y
1 and Px in G.

PROOF. Suppose, by way of contradiction, there is an edge between px
1 ∈ Px

1
and py ∈ P y in G. Since there exists a type 1 vertex in Pxy , as mentioned at the

beginning of this subsection, there is exactly one free co-component C that has to be

placed so that C
x

is in Y and C
y

is in X . Let cy be a vertex in C
y
. Since pycy ∈ E(G)

(regardless of the type of py) and px
1 py ∈ E(G), by Proposition 2.1, pycy ∈ E(B)

and px
1 py ∈ E(B). Therefore, cy px

1 ∈ E(B2) but cy px
1 /∈ E(G) by definition; this

contradicts the assumption that B2 = G and the proof is completed.

LEMMA 4.24. FINAL PLACEMENT I is correct.

PROOF. Recall that by Remark 4.3, there are at least two free co-components C1

and C2 left. Let B and B ′ be two bipartite graphs with different (valid) orientations.

We claim that E(B2) = E(B ′2).

196 LAP CHI LAU

Case 1. There exists a type 1 vertex. Without loss of generality, we assume

that C1, C2 are the active co-components of B and B ′ respectively. Recall that

for the active co-component C , C
x

is placed in Y and C
y

is placed in X ; while

for a remaining co-component C
′
, C ′x is placed in X and C ′y is placed in Y . By

Proposition 2.1, if B2 = G, then E(B) = {uv | u ∈ X, v ∈ Y and uv ∈ E(G)}
and similarly for B ′. Recall that for two vertices u ∈ X , v ∈ Y , uv ∈ E(B) if and
only if uv ∈ E(B2) since they do not share common neighbor. By our construction

of B and B ′, for u ∈ X − C1 − C2 and v ∈ Y − C1 − C2, uv ∈ E(B) if and only if

uv ∈ E(B ′). Therefore, for u ∈ X − C1 − C2 and v ∈ Y − C1 − C2, uv ∈ E(B2)

if and only if uv ∈ E(B ′2). Now we consider the case where u ∈ X − C1 − C2

and v ∈ X − C1 − C2. We will show that uv ∈ E(B2) and uv ∈ E(B ′2). Let z
be a vertex in Cx

1 which is placed in Y in B. Since NG[x] ∪ NG[y] = V (G), we
have uz ∈ E(G) and vz ∈ E(G). By Proposition 2.1, uz ∈ E(B) and vz ∈ E(B).
Therefore, uv ∈ E(B2). By a similar argument (by setting z to be a vertex in Cx

2),

we have uv ∈ E(B ′2). Furthermore, the same argument applies for u ∈ Y −C1−C2

and v ∈ Y − C1 − C2.
Finally, we have to show that the edges with at least one endpoint in C1 ∪ C2 are

the same in B2 and B ′2. Let cx
1 , cx

2 , cy
1 , cy

2 be an arbitrary vertex in C
x
1, C

x
2, C

y
1, C

y
2

respectively. We do so by verifying that

(1) NB2 (cx
i) = NB ′2 (cx

i) = V (G) − P y
1 − C

y
i for i = 1, 2.

(2) NB2 (cy
i) = NB ′2 (c

y
i) = V (G) − Px

1 − C
x
i for i = 1, 2.

Recall that in B, C
x
1, C

y
2 are in Y and C

y
1, C

x
2 are in X . First we check the neighbors

of cx
2 in B2. By Corollary 4.22, there is no edge between cx

2 and cy
2 in G and thus in

B. Also, there is no edge between cx
2 and vertices in P y

1 in G and thus in B. Since cx
2

is on the side opposite cy
2 and vertices in P y

1 , there is no edge between them in B2

because they do not share common neighbor in B. On the other hand, cx
2 is adjacent

to all vertices in Y − P y
1 −C

y
2 in B and thus in B2. Since cx

1 is adjacent to all vertices
in X −C

y
1 in B and cx

1 is adjacent to cx
2 in B, cx

2 is adjacent to all vertices in X −C
y
1 in

B2. Also, since y is adjacent to all vertices in C
y
1 in B and y is adjacent to cx

2 in B, cx
2

is adjacent to all vertices in C
y
1 in B2. Therefore, NB2 (cx

2) = V (G) − P y
1 − C

y
2. The

same argument applies and thus we have NB2 (cy
2) = V (G)− Px

1 −C
x
2. By a similar

argument (by changing the role of C1 and C2), we have NB ′2 (cx
1) = V (G)− P y

1 −C
y
1

and NB ′2 (c
y
1) = V (G) − Px

1 − C
x
1.

Now we check the neighbor of cx
1 in B2. By Corollary 4.22, there is no edge

between cx
1 and cy

1 in G and thus in B. Since cx
1 is on the side opposite cy

1 , there
is no edge between them in B2. On the other hand, cx

1 is adjacent to all vertices in
X − C

x
1 in B and thus in B2. Since cx

2 is adjacent to all vertices in Y − P y
1 − C

y
2 in

B and cx
1 cx

2 ∈ E(B), cx
1 is adjacent to all vertices in Y − P y

1 − C
y
2 in B2. Since x

is adjacent to all vertices in C
y
2 in B and cx

1 x ∈ E(B), cx
1 is adjacent to all vertices

in C
y
2 in B2. So, cx

1 is adjacent to V (G) − P y
1 − C

y
1 in B2, but not adjacent to C

y
1

in B2. Finally, we have to verify that cx
1 is not adjacent to vertices in P y

1 in B2. By
Corollary 4.8, vertices in P y

1 are not adjacent to any trivial co-component in B. By
Corollary 4.18, vertices in P y

1 are not adjacent to vertices of fixed co-components
in X in G and thus in B. Also, in a valid orientation, vertices in P y

1 are not adjacent

to vertices of free co-components in X except C y
1 in B. By Lemma 4.23, vertices in

Bipartite Roots of Graphs 197

P y
1 are not adjacent to vertices in Px in G and thus in B. Therefore, vertices in P y

1
are only adjacent to vertices in C y

1 in B. So, cx
1 does not share any common neighbor

with vertices in P y
1 in B and thus cx

1 is not adjacent to vertices in P y
1 in B2. As a

result, NB2 (cx
1) = V (G) − P y

1 − C y
1 . The same argument apples and thus we have

NB2 (cy
1) = V (G) − Px

1 − Cx
1 . By a similar argument (by changing the role of C1

and C2), we have NB ′2 (cx
2) = V (G) − P y

2 − C
y
2 and NB ′2 (c

y
2) = V (G) − Px

2 − C
x
2.

Therefore, E(B2) = E(B ′2). In other words, B2 = G if and only if B ′2 = G.
Hence, to construct a bipartite square root B of G, it suffices to consider an arbitrary
valid orientation and therefore the problem is reduced to only one instance of SBN.

Case 2. There is no type 1 vertex. In the previous case, the most difficult part is
to verify the adjacencies between vertices in Px

1 , P y
1 to the free co-components. In

this case, Px
1 , P y

1 = ∅. By using the arguments in the previous case, one can show
that by switching the orientation of one free co-component yields the same squared
graph. Hence, to construct a bipartite square root B of G, it suffices to consider an
arbitrary orientation and therefore the problem is reduced to only one instance of
SBN.

4.4.4. Final Placement II. In FINAL PLACEMENT II, we consider the case when
NG[x]∪NG[y] ⊂ V (G). We will use the adjacencies of a carefully chosen “outside”
vertex to decide the orientations of all the free co-components.

LEMMA 4.25. FINAL PLACEMENT II is correct.

PROOF. Since u /∈ NG[x]∪NG[y], if B2 = G, u is not adjacent to {x}∪{y}∪Cxy

in B. Since u ∈ NG[Cxy] − NG[x] − NG[y], if B2 = G, u must be adjacent to a
vertex v ∈ Pxy in B. Notice that u must exist, otherwise B is disconnected. We will
use the adjacencies of u to the free co-components in G to decide the orientations
of free co-components in B. Recall that v is either a type 1 or a type 2 vertex in G.

Case 1. There exists v ∈ NB(u) ∩ Pxy that is a type 2 vertex in G. By Corol-
lary 4.14, v is a universal type 2 vertex to every free co-component in G. By
Lemma 4.2, every co-component has to be placed so that exactly one part is on
the side opposite v . By Proposition 2.1, if B2 = G, v is universally adjacent to
exactly one part of each free co-component in B. Hence, u is universally adjacent
to exactly one part of each free co-component in B2 = G. Those parts are on the

FINAL PLACEMENT II: when NG[x] ∪ NG[y] ⊂ V (G)

pick a vertex u ∈ NG[Cxy] − NG[x] − NG[y]

Case 1: u is universally adjacent to exactly one part
of each free co-component in G

for each orientation of the free co-components such that
the adjacent parts of u are on the same side

if SBN return TRUE

return FALSE

Case 2: u is adjacent to exactly one part of

exactly one free co-component C in G
find the valid orientation with C active
if SBN return TRUE

else return FALSE

Otherwise: return NO

198 LAP CHI LAU

side opposite v in B. Since there are two possible positions for v (in X or in Y),
we try both possibilities. Once we fix all the free co-components, both NB(x) and
NB(y) are determined; so the problem is reduced to at most 2 instances of SBN.

Case 2. All vertices in NB(u)∩Pxy are type 1 vertices in G. By Corollary 4.18, v is
a universal type 1 vertex to every co-component in G. By Lemma 4.16, exactly one

co-component C (the active co-component) has to be placed so that C’s adjacent
part is on the side opposite v in B. By Proposition 2.1, if B2 = G, then v is
universally adjacent to one part of the active co-component in B but not adjacent
to vertices in any other co-component in B. Hence, u is universally adjacent to
one part of the active co-component in B2 but not adjacent to vertices in any other

co-component in B2. This implies that the co-component C that u is adjacent to
in G is the active co-component in B. By Lemma 4.16, this forces the orientation
of all other free co-components; so the problem is reduced to only 1 instance of
SBN.

THEOREM 4.26. SQUARE OF BIPARTITE GRAPH can be solved in O(�(G) ·
M(n)) time.

PROOF. After the execution of the FINAL PLACEMENT, any instance of SBE is
reduced to at most two instances of SBN. Notice that except the matrix multipli-
cation operation, all the steps can be done in O(n2) time. So, SBE can be solved
in O(M(n)) time. Therefore, by the argument at the end of Section 2, SQUARE OF

BIPARTITE GRAPH can be solved in O(�(G) · M(n)) time.

5. Counting and Generating Bipartite Square Roots

It is natural to ask how many different bipartite square roots a graph can have. In
fact, by looking at the SBE algorithm carefully, the only flexibility in the algorithm
of placing vertices is in PLACING TRIVIAL CO-COMPONENT when Pxy = ∅ and
FINAL PLACEMENT I when NG[x] ∪ NG[y] = V (G). In the former case, a trivial
co-component can be placed in either X or Y ; in the latter case, depending on the
existence of type 1 vertices, either an arbitrary valid orientation or an arbitrary
orientation is considered. As shown before, in either case, two arbitrary placements
will have the same squared graph. Hence, when we are just concerned with the
existence of a bipartite square root, it suffices to test for an arbitrary placement (i.e.,
a representative). When we are concerned with the number of different bipartite
square roots of G, if the representative is checked to be a bipartite square root of G,
then we have to count the number of arbitrary placements, denoted by n p. We denote
the number of trivial co-components by t and the number of free co-components by
f . Fortunately, it is easy to count the number of arbitrary placements, summarized
as follows:

Case 1. Pxy = ∅
n p = 2t+ f

Case 2. Pxy �= ∅, V (G) = NG[x] ∪ NG[y] and there is no type 1 vertex

n p = 2 f

Case 3. Pxy �= ∅, V (G) = NG[x] ∪ NG[y] and there is a type 1 vertex
n p = f

Bipartite Roots of Graphs 199

To see this, for the first case, since Pxy = ∅, no co-components will be fixed before
FINAL PLACEMENT I. Hence, every co-component is free to be placed independently,
so there are 2t+ f possibilities. For the second case, since Pxy �= ∅, there is no
flexibility for the position of trivial co-components. In FINAL PLACEMENT I, every
free co-component can be placed arbitrarily and independently, so there are 2 f

possibilities. For the last case, since there is a type 1 vertex, we just consider valid
orientations and there are exactly f possibilities. In all other cases of SBE, every
step is forced. Notice that when the problem is reduced to SBN, the solution is
unique by Lemma 3.2.

THEOREM 5.1. Given G, the number of different bipartite roots r (G) of G can
be computed in O(�(G) · M(n)).

PROOF. As we discussed before, given an instance of SBE, we can determine
the number of different solutions. Given an instance of SB, there are at most �(G)
instances of SBE. Notice that if we sum the number of solutions of each of the
�(G) instances of SBE, we may run into the problem of over-counting.

To overcome the problem of over-counting, we do the following. First, we pick a
vertex x with maximum degree in G; we know that it must be a maximal vertex in any
bipartite square root B of G. Then, we sort the vertices in NG(x) by nonincreasing
degree. Suppose the resulting ordering is {y1, . . . , yk}; we reduce SB to k instances
of SBE by following the order of the sorted vertices. Consider an instance of SBE
of x and yi ; we add additional constraints that {y1, . . . , yi−1} must be on the same
side as x . Notice that by adding these additional constraints, they will not affect the
execution of the algorithm. In fact, these just help the algorithm to narrow down
the possible choices (i.e., to fix the free co-components).

Now we claim that this algorithm counts the number of different bipartite roots
of a graph correctly. Obviously, by adding the additional constraints, we avoid the
problem of over-counting. We just have to show that we do not exclude some possi-
ble solutions and this completes the proof. First, it is clear that, for all j , we count all
solutions with xy j as a maximal edge and {y1, . . . , y j−1} in X . The only possible so-
lutions that we may exclude are where xy j is a maximal edge in the solution but some
yi is also in Y where i < j . Consider the smallest such i in the solution; we argue
that when we count the solutions of SBE with xyi as a maximal edge, those solutions
are included. The crucial observation is that the only place we use the maximality
of yi in the algorithm is in PLACE TRIVIAL CO-COMPONENTS. In PLACE TRIVIAL

CO-COMPONENTS, we exclude a trivial co-component c with NG(yi) ⊂ NG(c) to
be placed in Y by maximality of yi . Besides that, we do not use the fact that yi is a
maximal vertex in the bipartite square roots. Since i < j , NG(yi) �⊂ NG(y j). Hence,
the solutions with yi and y j on the same side are included (intuitively speaking, the
placement of y j will not affect the maximality of yi in the instance of SBE with
xyi as a maximal edge). As a result, this algorithm counts correctly.

Finally, notice that the additional constraints do not increase the complexity of
the algorithm. Also, the additional counting step can be performed in linear-time
(by just counting the number of trivial co-components and free co-components
left); the theorem follows.

THEOREM 5.2. Given G, all different bipartite roots of G can be generated in
O(max{�(G) · M(n), r (G)}).

200 LAP CHI LAU

In those cases that we may have many different solutions to SBE, we observe
that the graph is of small diameter. The following is a sufficient condition for a
graph to have a bounded number of different bipartite square roots.

THEOREM 5.3. Given G, let x be a vertex of maximum degree; if V (G) �=
NG[x] ∪ NG[y] for any y ∈ NG(x), then G has at most 2�(G) different bipartite
square roots.

PROOF. In any bipartite square root B of G, x is a maximal vertex in B and
there is a vertex y ∈ NG(x) such that y ∈ NB(x) and y is a maximal vertex in B.
Therefore, there are at most �(G) instances of SBE. Since NG[x]∪ NG[y] �= V (G)
for all y ∈ NG(x), there is no flexibility in the algorithm for SBE and there are
at most 2 different solutions for each instance of SBE. Hence, there are at most
2�(G) different bipartite square roots.

6. Squares of Trees

Clearly a tree is a bipartite graph. We will use our tools developed for bipartite
graphs to give new proofs of some existing results for trees. In particular, we will
give a new and much simpler linear-time algorithm to recognize squares of trees
[Lin and Skiena 1995], and, as a consequence, a new proof that tree square roots
of a graph are unique up to isomorphism, when they exist [Ross and Harary 1960].

6.1. SIMPLE LINEAR-TIME ALGORITHM FOR RECOGNIZING SQUARES OF TREES.
First, we show that we can test if T 2 = G in linear time. Notice that this is also
shown in Lin and Skiena [1995], but here we give our own proof.

LEMMA 6.1. Given G and T , testing if T 2 = G can be done in O(m) where m
is the number of edges in G.

PROOF. Given T , find an arbitrary leaf v of T . Let u be v’s parent in T . It is
easy to see that NT 2 [v] = NT [u]. Therefore, if T 2 = G, then NT [u] must be equal
to NG[v]. If NT [u] �= NG[v], we just return “No”. Otherwise, we replace T, G by
T − v, G − v respectively and repeat the process. If only one vertex is remained in
T, G, it implies that NT 2 [w] = NG[w] for all w ∈ V (G). Therefore, T 2 = G and
we return “YES” in this case. In each iteration, we remove a vertex v and it takes at
most O(degG(v)) time. The total time complexity is

∑O(degG(v)) = O(m).

We will reduce SQUARE OF TREE to one instance of SBN. By doing so, we first
show that if G = T 2, then a maximal clique S in G corresponds to NT [v] for a
vertex v ∈ S. In such a case, we call v the center of S in T .

LEMMA 6.2. Suppose T 2 = G; if S ⊆ V (G) induces a maximal clique in G,
then S = NT [v] for a vertex v ∈ S.

PROOF. Clearly, if V (G) ≥ 3 and G = T 2, then |S| ≥ 3. Since T is a tree, there
are two vertices u, w ∈ S such that uw /∈ E(T). Since uw ∈ E(G) and G = T 2,
u and w share a common neighbor v in T . First, we claim that v is adjacent to all
vertices in S − v in T . Suppose, by way of contradiction, that v is not adjacent to
a vertex z ∈ S in T . Since S induces a maximal clique in G, there is a path Puz in
T from u to z of length at most 2 such that v /∈ Puz . By the same argument, there
is a path Pwz in T from w to z of length at most 2 such that v /∈ Pwz . Hence, there

Bipartite Roots of Graphs 201

are two vertex disjoint paths from u to w in T (uvw and Puz Pzw); this contradicts
the assumption that T is a tree. Therefore, S ⊆ NT [v]. By the maximality of S,
S = NT [v].

Finding a maximal clique in G can easily be done in linear time by a greedy
method. Given a maximal clique S in G, by Lemma 6.2, if we can deduce the
center of S, then the problem is reduced to an instance of SBN.

LEMMA 6.3. Given a maximal clique S in G, if v1, v2 ∈ S share a common
neighbor w in G − S, then either NT [v1] = S or NT [v2] = S. In other words,
either v1 or v2 is the center of S.

PROOF. By Lemma 6.2, S = NT [v] for a vertex v ∈ S. Suppose, by way of
contradiction, that neither v1 nor v2 is the center of S. Let the common neighbor of
v1 and v2 in G − S be w . Since G = T 2, there is a path Pv1w from v1 to w in T of
length at most 2 and similarly a path Pv2w from v2 to w in T of length at most 2.
Since w /∈ NT [v], v /∈ Pv1w and v /∈ Pv2w . Therefore, there are two vertex disjoint
paths from v1 to v2 in T (v1vv2 and Pv1w Pwv2

); a contradiction.

A natural approach to finding a tree root of a graph is to identify the leaves and
their parents, and repeat the process recursively. In fact, it is the approach used in
Lin and Skiena [1995] and Kearney and Corneil [1998]. Notice that Lin and Skiena
[1995] gave a linear time algorithm to find a tree square root of a graph, here we
use a different approach to give a simpler linear time algorithm.

THEOREM 6.4 (SEE ALSO LIN AND SKIENA [1995]). SQUARE OF TREE can be
solved in linear time.

PROOF. First of all, we find an arbitrary maximal clique S in G. By Lemma 6.2,
S corresponds to NT [v] for a v ∈ S.

Case 1. S = V (G). In this case, G is a complete graph and any complete star is
a tree square root of G.

Case 2. S ⊂ V (G). By Lemma 6.3, if two vertices v1, v2 in S share a common
neighbor in G − S in G, then one of them is the center. It is easy to see, if T is
connected, there is at least one such pair of vertices.

Case 2a. There are at least two distinct pairs of vertices. We pick two arbitrary
distinct pairs. By Lemma 6.3, if G = T 2, there is exactly one vertex v (the center)
that appears in more than one pair and thus NT [v] = S. So, in this case, the problem
is reduced to an instance of SBN.

Case 2b. There is only one distinct pair of vertices. Suppose the center of S in
T is v , it is easy to see that all vertices in S − v are leaves in T except exactly one
internal vertex u. So NT 2 (v) ⊆ NT 2 (u). Let v1, v2 be the only pair of vertices. Since
G = T 2, if NG(v1) ⊂ NG(v2), then v1 must be the center and thus the problem is
reduced to an instance of SBN. The only case left is when NG(v1) = NG(v2). In
this case, it implies the tree is of diameter 3 (and thus a double star, see Figure 3),
and thus v1 and v2 are indistinguishable (i.e., there are two different but isomorphic
tree square roots).

Now we show that the algorithm can be implemented in linear time. As we
discussed before, a maximal clique S in G can be found in linear time. To find a

202 LAP CHI LAU

FIG. 3. Two isomorphic but not equivalent double stars.

pair of vertices in S that share a common neighbor in G − S, it suffices to check the
neighborhood in S for every vertex in G − S; every edge is visited at most once.
Once we find two distinct pairs, we can reduce the problem to an instance of SBN.
So at any time of the algorithm, we just have to store one such pair of vertices.
Notice that in any case, the problem is reduced to at most one instance of SBN. As
mentioned in the proof of Lemma 3.2, the unique candidate can be constructed in
linear time. Then we test if the unique candidate is a tree. If it is, by Lemma 6.1,
the solution can be verified in linear time and we are done.

Ross and Harary [1960] showed that tree square roots of a graph, when they
exist, are unique up to isomorphism. Their proof is based on a characterization of
tree squares. We now give an algorithmic proof based on our algorithm.

THEOREM 6.5 (SEE ALSO ROSS AND HARARY [1960]). Tree square roots of a
graph, when they exist, are unique up to isomorphism.

PROOF. From the proof of Theorem 6.4, there are only two cases where we
can not pin down exactly the center of the maximal clique. The first case is when
the tree square root is a star while the second case is when the tree square root is
a double star. In both cases, the tree square roots of G are isomorphic. Note that if
we can pin down the center of the maximal clique, then by Lemma 3.2, the solution
is unique.

COROLLARY 6.6. If G = T 2 for some T of diameter greater than 3, then T is
the unique tree square root of G.

7. Cubes of Bipartite Graphs

Since SQUARE OF BIPARTITE GRAPH is polynomial time solvable, it is natural to
ask if we can find a bipartite k-th root of a graph in polynomial time for k ≥ 3.
We observe that Proposition 2.1 does not hold for k ≥ 3. In fact, we will show in
this section that it is NP-complete to determine if a given graph G is the cube of a
bipartite graph.

PROBLEM. CUBE OF BIPARTITE GRAPH

INSTANCE. A graph G = (V, E).
QUESTION. Does there exist a bipartite graph B such that G = B3?

In our reduction, we use SET SPLITTING as formulated in Garey and Johnson
[1979].

Bipartite Roots of Graphs 203

PROBLEM. [SP4] SET SPLITTING

INSTANCE. Collection C of finite sets of elements from S, positive integer
K ≤ |C |.

QUESTION. Is there a partition of S into two subsets S1 and S2 such that no
sub set in C is entirely contained in either S1 or S2?

NOTE. It is also known as HYPERGRAPH 2-COLORABILITY.

7.1. TAIL STRUCTURE. In Motwani and Sudan [1994], the tail structure of a
vertex v was introduced to ensure v has the same neighborhood in any square root
H of G. It enables one to pin down exactly the neighborhood of v in any square
root H of G. We generalize the tail structure of a vertex v such that v has the same
neighborhood in any kth root H of G. This enables us to pin down exactly the
neighborhood of v in any kth root H of G. Notice that these results apply to general
graphs G and H .

LEMMA 7.1. Let G be a connected graph with {v1, . . . , vk+1} ⊂ V (G) where

—NG(v1) = {v2, . . . , vk+1}
—NG(vi) ⊂ NG(vi+1) for all 1 ≤ i ≤ k

Then in any kth root H of G,

—NH (v1) = {v2}
—NH (vi) = {vi−1, vi+1} for all 2 ≤ i ≤ k
—NH (vk+1) − vk = NG(v2) − {v1, . . . , vk+1}.

PROOF. Since NH k (v1) = N 1
H (v1) ∪ · · · ∪ N k

H (v1), if H k = G, then NH k (v1) =
NG(v1) and thus N 1

H (v1)∪· · ·∪N k
H (v1) = {v2, . . . , vk+1}. Since v1 is not a universal

vertex in G, there is a vertex u such that dH (u, v1) > k and thus N i
H (v1) �= ∅ for 1 ≤

i ≤ k. Otherwise, there is no path between u and v1 in H and thus there is no path
between u and v1 in G which contradicts the assumption that G is connected. Since
NH k (v1) is the disjoint union of k sets (N 1

H (v1), . . . , N k
H (v1)) and NH k (v1) contains

k vertices only, in order to satisfy the constraint that N i
H (v1) �= ∅ for 1 ≤ i ≤ k, the

only possibility is |N i
H (v1)| = 1 for 1 ≤ i ≤ k. Therefore, it forces the path structure

in H (i.e., the neighbors of N i
H (v1) in H are N i−1

H (v1) and N i+1
H (v1) for i > 1). As

it is a path structure, if u ∈ N i
H (v1) and w ∈ N i+1

H (v1), then NH k (u) ⊆ NH k (w).

Since NG(vi) ⊂ NG(vi+1) and |N i
H (v1)| = 1 for 1 ≤ i ≤ k, if H k = G, we must

have N i
H (v1) = {vi+1}. Therefore, NH (v1) = {v2} and NH (vi) = {vi−1, vi+1} for all

2 ≤ i ≤ k. The first two properties of the lemma are satisfied. The final property is
just a consequence of the first two properties. With the first two properties satisfied,
NH k−1 (v2) = {v1, . . . , vk+1}. With one more step, NH k (v2) = {v1, . . . , vk+1} ∪
NH (vk+1). So if H k = G, then NG(v2) − {v1, . . . , vk+1} = NH (vk+1) − vk .

In order words, v2 (as seen in G) exactly pins down the neighborhood of vk+1 in
any kth root of G. We refer to the vertices {v1, . . . , vk} as the “tail vertices” of vk+1

(see Figure 4).

7.2. THE REDUCTION. The rest of this section shows that CUBE OF BIPARTITE

GRAPH is NP-hard by reducing SET SPLITTING to it. It is clear that CUBE OF BIPAR-
TITE GRAPH is in NP, since guessing the cube root B, verifying that B is a bipartite

204 LAP CHI LAU

FIG. 4. Tail in G = H k and H .

graph and G = B3 can easily be done in polynomial stime. Thus, we will conclude
that CUBE OF BIPARTITE GRAPH is NP-complete.

Given an instance of SET SPLITTING, we construct an instance of CUBE OF

BIPARTITE GRAPH. Let C = {c1, . . . , cm} denote the set of subsets where c j is
the set of elements in subset j . And let S = {u1, . . . , un} be the ground set. The
graph G is constructed as follows (note that we will be using Lemma 7.1):

Vertices of G

—Element vertices: Ui : 1 ≤ i ≤ n for each element ui .

—Subset vertices: C j for each subset c j ∈ C and tail vertices C1
j , C2

j , C3
j for each

c j .

—Partition vertices: S1 and S2.

—Connection vertex: X .

Edges of G

—Edges of tail vertices of subset vertices: ∀c j ∈ C,

C3
j ↔ C2

j , C3
j ↔ C1

j , C3
j ↔ C j

C2
j ↔ C1

j , C2
j ↔ C j , C2

j ↔ Ui for all ui ∈ c j ,

C1
j ↔ C j , C1

j ↔ Ci iff c j ∩ ci �= ∅, C1
j ↔ Ui iff ui ∈ c j , C1

j ↔ S1, C1
j ↔

S2, C1
j ↔ X.

—Edges of subset vertices: ∀c j ∈ C,
C j ↔ S1, C j ↔ S2, C j ↔ X, C j ↔ Ui for all i, C j ↔ Ci iff c j ∩ ci �= ∅.

Bipartite Roots of Graphs 205

FIG. 5. An example of G.

—Edges of element vertices: ∀u j ∈ S,
U j ↔ Ui for all i , U j ↔ S1, U j ↔ S2, U j ↔ X .

—Edges of partition vertices: S1 ↔ X , S2 ↔ X .

For example, given C = {c1, c2, c3, c4}, c1 = {u1, u2, u3}, c2 = {u2, u5}, c3 =
{u3, u4} and c4 = {u1, u4} and S = {u1, u2, u3, u4, u5}, we construct G as shown
in Figure 5. It is fairly complicated as the cube of a graph introduces many edges.
Each ellipse corresponds to a clique and we omit the clique edges to keep the figure
simpler. Also in the figure, C1, C2, C3, C4, S1 and S2 have two dotted lines to the
central ellipse. This represents that each of them has all the edges to the vertices in
the central ellipse.

In this example, S1 = {u1, u3, u5} and S2 = {u2, u4} is a possible solution. The
corresponding graph B is shown in Figure 6. The reader may verify that B3 = G.
Also, a proper 2-coloring of B is given in Figure 6 to show that B is bipartite.

LEMMA 7.2. If there is a partition of S into two subsets S1 and S2 such that
no subset in C is entirely contained in either S1 or S2, then there exists a bipartite
graph B such that B3 = G.

206 LAP CHI LAU

FIG. 6. An example of B.

PROOF. Edges of B.

—Edges of subset vertices and its tail vertices:
C3

j ↔ C2
j , C2

j ↔ C1
j , C1

j ↔ C j and C j ↔ Ui if and only if ui ∈ c j .

—Edges of partition vertices:
Sk ↔ Ui if and only if ui ∈ Sk .

—Edges of connection vertex:
X ↔ Ui for all i .

If a vertex u has a path of length at most k to v , then we say u reaches v in k
steps. Now we verify that in general the edge set of B3 is equal to the edge set of
G. We do this by following the order of the presentation of the edge set of G above.
It is clear that C3

j is only adjacent to C2
j , C1

j and C j in B3 for all j .

The vertex C2
j reaches C j in B in two steps. Since C j ↔ Ui in B if and only if

ui ∈ c j , C2
j ↔ Ui in B3 if and only if ui ∈ c j . So NB3 (C2

j) = NG(C2
j) for all j .

The vertex C1
j reaches C j in B in one step. In the second step, it reaches Ui iff

ui ∈ c j in B. Since we have a solution to the set splitting, every C j has a common
neighbor to S1 and a common neighbor to S2 in B. Furthermore, every Ui is adjacent
to X in B and thus C1

j reaches S1, S2 and X in B in the third step. Also, C j and Ci

share a common neighbor Uk in B iff ci ∩ c j �= ∅. So C1
j reaches Ci in B in the

third step iff ci ∩ c j �= ∅. We have NB3 (C1
j) = NG(C1

j) for all j .
The vertex C j reaches Ui in B in one step iff ui ∈ c j . Since we have a solution

to the set splitting, every C j has a common neighbor to S1 and a common neighbor
to S2 in B. Furthermore, every Ui is adjacent to X in B and thus C j reaches S1, S2

and X in B in the second step. Then C j reaches Ui for all i such that ui /∈ c j in B in
the third step through X . So C j reaches all Ui in B in three steps. Also, C j and Ci
share a common neighbor Uk in B iff ci ∩ c j �= ∅. So, C j reaches Ci in two steps
if ci ∩ c j �= ∅. On the other hand, if ci ∩ c j = ∅, Ci �↔ C j since Uh �↔ Uk for all
h, k. So C j reaches Ci in three steps iff ci ∩ c j �= ∅. Therefore, NB3 (C j) = NG(C j)
for all j .

Bipartite Roots of Graphs 207

The vertex U j is adjacent to X in B and thus it reaches all Ui in B in two steps
and then reaches S1 and S2 in B within three steps. So, NB3 (U j) = NG(U j) for all j .

S1 and S2 reach X in B in two steps. It should be pointed out that S1 �↔ S2

because it is a partition and thus S1 and S2 share no common elements. So,
NB3 (Sj) = NG(Sj) for all j .

We checked that the edge set of B3 is equal to the edge set of G. Now we show
that B is a bipartite graph thereby completing the proof. We do this by finding a
2-coloring of B. S1, S2, X, C j , C2

j for all j get color 1. Ui for all i , C1
j , C3

j for all
j get color 2. It is a routine matter to check that vertices in the same color class
are not adjacent.

We now show that if G has a cube root H (H may not be a bipartite graph), then
there is a partition of S into two subsets S1 and S2 such that no subset in C is entirely
contained in either S1 and S2. First, observing that {C3

j , C2
j , C1

j , C j } satisfies the
properties of Lemma 7.1, we have the following consequence:

PROPOSITION 7.3. If H is a cube root of G, then, in H, C j is adjacent to Ui if
and only if ui ∈ c j . Also, in H, C3

j is only adjacent to C2
j , C2

j is only adjacent to
C1

j and C3
j and C1

j is only adjacent to C j and C2
j .

Now we are ready to prove the reverse direction.

LEMMA 7.4. If H is a cube root of G, then there is a partition of S into two
sets S1 and S2 such that no subset in C is entirely contained in either S1 or S2.

PROOF. In H , Proposition 7.3 forces the adjacencies of the tail vertices and
subset vertices to its own elements only. So in H , S1 and S2 only have neighbors
in the element set and X . Since S1 �↔ S2 in G, they have no common element
neighbor in H and so it is a partition. And since S1 and S2 are adjacent to all C1

j ,
S1 and S2 must reach C j in exactly two steps and thus each of S1, S2 must have a
common neighbor with C j in the element set for all j . Therefore, NH (S1) ∩ S and
NH (S2) ∩ S is the desired partition; this completes the proof.

Notice that in the above lemma, we did not use the property that H is a bipartite
graph. In fact, any cube root of G will do. In particular, any bipartite cube root B
of G will do. We state it formally as follows.

LEMMA 7.5. If B is a cube root of G and B is bipartite, then there is a partition
of S into two subsets S1 and S2 such that no subset in C is entirely contained in
either S1 or S2.

The following theorem follows immediately from Lemma 7.2 and Lemma 7.5.

THEOREM 7.6. CUBE OF BIPARTITE GRAPH is NP-complete.

7.3. CUBES OF GRAPHS.

PROBLEM. CUBE OF GRAPH

INSTANCE. A graph G = (V, E).
QUESTION. Does there exist a graph H such that G = H 3?

In Lemma 7.2, we showed that if there is a partition, then we can construct a
bipartite graph B such that B3 = G. Since bipartite graph is a special case of
general graph, the following is a consequence.

208 LAP CHI LAU

THEOREM 7.7. CUBE OF GRAPH is NP-complete.

Although it has been generally expected that CUBE OF GRAPH is NP-complete,
Theorem 7.7 is the first result to show that it is indeed NP-complete. Extending
the NP-completeness to kth power for any fixed k > 3, however, may need a more
general reduction. Nonetheless, we strongly believe that the following problems
are NP-complete.

PROBLEM. kTH POWER OF GRAPH

INSTANCE. A graph G = (V, E).
QUESTION. Does there exist a graph H such that G = H k for a fixed k ≥ 2?

PROBLEM. kTH POWER OF BIPARTITE GRAPH

INSTANCE. A graph G = (V, E).
QUESTION. Does there exist a bipartite graph B such that G = Bk for a

fixed k ≥ 3?

8. Concluding Remarks

We presented a O(�(G) · M(n)) algorithm to find a bipartite square root and count
the number of different bipartite square roots of a graph. The obvious question to
ask for this algorithm is: can we reduce SB to a constant number of instances of
SBE? If we can do this faster than doing matrix multiplication, then we can obtain
an O(M(n)) algorithm for finding a bipartite square root of a graph which matches
the complexity of computing the square of a bipartite graph.

Taking a more general perspective (i.e., a tree is a bipartite graph), we give a new
and much simpler algorithm to find a tree square root of a graph, if it exists. It is
interesting to see if there is a faster algorithm to find a tree kth root of a graph (the
current complexity is O(n3) by Kearney and Corneil [1998]).

ACKNOWLEDGMENTS. I am very grateful to my supervisor Derek Corneil and two
anonymous referees for many helpful suggestions.

REFERENCES

ESCALANTE, F., MONTEJANO, L., AND ROJANO, T. 1974. Characterization of n-path graphs and of graphs
having nth root. J. Combin. Theory B 16, 282–289.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability—A Guide to the Theory of
NP-Completeness. Freeman, Oxford, UK.

GELLER, D. P. 1968. The square root of a digraph. J. Combin. Theory B 5, 320–321.
HARARY, F., KARP, R. M., AND TUTTE, W. T. 1967. A criterion for planarity of the square of a graph. J.

Combin. Theory 2, 395–405.
KEARNEY, P., AND CORNEIL, D. 1998. Tree powers. J. Algor. 29, 111–131.
LAU, L. C., AND CORNEIL, D. 2004. Recognizing powers of proper interval, split and chordal graphs.

SIAM J. Disc. Math. 18, 1, 83–102.
LIN, Y. L., AND SKIENA, S. 1995. Algorithms for square roots of graphs. SIAM J. Disc. Math. 8, 1,

99–118.
MOTWANI, R., AND SUDAN, M. 1994. Computing roots of graphs is hard. Disc. Appl. Math. 54, 81–88.
MUKHOPADHYAY, A. 1967. The square root of a graph. J. Combin. Theory 2, 290–295.
ROSS, I. C., AND HARARY, F. 1960. The square of a tree. Bell Syst. Tech. J. 39, 641–647.
WEST, D. 2001. Introduction to Graph Theory, Ed. 2, Prentice-Hall, Englewood Cliffs, NJ.

RECEIVED JULY 2004; ACCEPTED APRIL 2005

ACM Transactions on Algorithms, Vol. 2, No. 2, April 2006.

