Bipartite Roots of Graphs
(Extended Abstract)

Lap Chi Lau
Department of Computer Science
University of Toronto
chi@cs.toronto.edu

Abstract

Graph H is aroot of graph G if there exists a natural number
k such that zy € E(G) & du(z,y) < k where du(z,y) is
the length of a shortest path in H from z to y. In such a
case, H is a k-th root of G and we write G = H* and call G
the k-th power of H. Motwani and Sudan proved that it is
NP-complete to recognize squares of graphs and believed it
is also NP-complete to recognize squares of bipartite graphs.
In this paper, we show, rather surprisingly, that squares of
bipartite graphs can be recognized in polynomial time. Also,
we show that counting the number of different bipartite
square roots of a graph can be done in polynomial time
although this number could be exponential in the size of
the input graph. Furthermore, we can generate all bipartite
roots of a graph G in time O(max{A(G) - M, r(G)}) where
A(QG) is the maximum degree of G, M is the time complexity
to do matrix multiplication, and r(G) is the number of
different bipartite square roots of G. By using the tools
developed, we are able to give a new and simpler linear time
algorithm to recognize squares of trees and a new algorithmic
proof that tree square roots, when they exist, are unique up
to isomorphism. Finally, we prove the NP-completeness of
recognition of cubes of bipartite graphs.

1 Introduction

Root and root finding are concepts familiar to most
branches of mathematics. In graph theory, H is a root
of G = (V, E) if there exists a positive integer k such
that

zy € E(G) & dy(zx,y) <k,

where dg (z,y) is the length of a shortest path in H from
z to y. If H is a kth root of G, then we write G = H*
and call G the kth power of H. Note that the terms
“power” and “root” are used because of their close rela-
tionship with matrix multiplication. Also, graph roots
are associated with problems in distributed computing
[13] and computational biology [17, 11] where graph
roots are useful in the reconstruction of phylogeny.

For any class of graphs, recognition is a fundamen-

tal structural and algorithmic problem; in this paper, we
study the recognition problems on graph powers. Or-
dinarily, it is a difficult task to determine whether a
given graph G has a k-th root or not. Also, the num-
ber of k-th roots could be exponential in the size of the
input graph. In 1960, Ross and Harary [20] character-
ized squares of trees and showed that tree square roots,
when they exist, are unique up to isomorphism. In
1967, Mukhopadhyay [16] characterized general graphs
which possess a square root and in the following year
Geller [7] solved the problem for general digraphs. In
1974, Escalante, Montejano and Rojano [4] character-
ized graphs and digraphs with a k-th root. However,
all characterization on powers of general graphs are not
polynomial in the sense that they do not yield a poly-
nomial time algorithm. The complexity of graph power
recognition was unresolved until 1994 when Motwani
and Sudan [15] proved the NP-completeness of recog-
nizing squares of graphs and stated that they believed
it is also NP-complete to recognize squares of bipartite
graphs. About the same time, Lin and Skiena [12] gave
linear time algorithms to recognize squares of trees and,
based on the characterization given by Harary, Karp
and Tutte [8], to find square roots of planar graphs.

1.1 Owur results In this paper, we will present a
O(A(G)- M) algorithm to recognize squares of bipartite
graphs. Our algorithm is constructive in the sense that
it will construct a bipartite square root of the input
graph if it has one. First, in section 2, given a graph
G, we show that if we specify the neighborhood of one
vertex in the bipartite roots of G, then there is at most
one bipartite root of G that satisfies this condition and
that bipartite root can be computed in O(M) time.
Then, in section 3, we reduce the general problem to
at most 2- A(G) instances of the above special case and
thus the complexity of recognizing squares of bipartite
graphs is O(A(G) - M). With the same complexity, in
section 4, we can count the number of different bipartite
square roots of a graph although this number could



be exponential in the size of the graph. Furthermore,
we can generate all bipartite roots of a graph in time
O(A(G) - M, r(@)). Finally, we present a new and
simpler linear time algorithm to recognize squares of
trees, a new algorithmic proof that tree square roots,
when they exist, are unique up to isomorphism and the
NP-completeness proof of recognizing cubes of bipartite
graphs. Our basic notation and terminology reference
is [22).

1.2 Related Research The literature is rich with
results on graph roots and powers. Given a graph G
with property P, does G* have property P? Substantial
work has been done on closure properties of powers of
special classes of graphs, such as chordal graphs [1], in-
terval graphs [18], co-comparability graphs [3], strongly
chordal graphs [19], circular arc graphs [19], and AT-free
graphs [18]. Given a graph G, what can be said about
the properties of G¥? Since the number of edges in-
creases with the index of the power of a graph, it is nat-
ural to expect that sufficiently large powers do possess
some Hamiltonian type properties. For instance, Fleis-
chner [5] proved that the square of every 2-connected
graph is Hamiltonian; Sekanina [21] proved that the
cube of every non-trivial connected graph is Hamil-
tonian connected. Besides the mathematical property
questions on graph powers, the following is an obvious
question to ask from an algorithmic point of view. Given
a graph G, can we solve some optimization problems in
G* efficiently? Many optimization problems remain dif-
ficult in the case of powers of graphs [12]. On the other
hand, the chromatic number of the square of a planar
graph can be approximated within a constant factor in
polynomial time [14].

2 Preliminaries

In general, the theoretically most efficient way to com-
pute the square of a graph is to do matrix multiplication.
By means of a linear time reduction, one can show that
computing the square of a bipartite graph has the same
complexity as computing the square of a general graph
[10]. We will show, however, that computing a bipartite
square root of a graph is much easier than computing
an arbitrary square root of a graph. The problem is
formally stated and some observations are presented in
the following.

Problem SQUARE OF BIPARTITE GRAPH (SB)
Instance A graph G = (V, E).
Question Does there exist a bipartite graph B =

(X,Y, E') such that B?> = G?
Without loss of generality, we assume G and B are
connected. By observing that vertices on different sides

of a bipartite graph do not share common neighbors, we
claim the following easy result which is fundamental in
later proofs.

PROPOSITION 2.1. Let B be a bipartite graph such that
B?2 = G. If w € E(G) and u,v are on different sides
of B, then uwv € E(B).

Now, we show that if we specify the neighborhood
of one vertex in the bipartite roots, there is at most one
such bipartite root and that root can be constructed in
linear time.

Problem SQUARE OF BIPARTITE GRAPH WITH
ONE SPECIFIED NEIGHBORHOOD (SBN)

Instance A graph G = (V,E), v € V(G) and
U g Ng(’l}).

Question Does there exist a bipartite graph B =

(X,Y, E') such that B2 = G and Ng(v) =
U?
The following is a linear time algorithm to construct
the unique solution (if some solution exists).

ALGORITHM 2.1. SBN

Cy « {v}

Cy U

Vo 01 U Cz

k+2

while (Vi C V(G)) do
Crk+1 + Ng(Cr-1) — Vi
Vi1 < Vu UCria

k+—k+1
X UiZl i1
Ve Uy Coi

E + {zy |z € X,y €Y and zy € E(G)}

LEMMA 2.1. Given an instance of SBN, the algorithm
constructs the unique solution in linear time, if some
solution exists.

Proof. (Sketch) Starting from v € X and U C Y, we
enlarge the forced bipartition of B in each iteration. In
the first iteration, C5 = Ng(v) — Np[v] and it is not
difficult to see that C3 must be placed in X. In the
(k — 1)-th iteration of the algorithm for k& > 2, V}, is
the set of vertices that are forced to be on one side of
B (while C4,Cs, ... must be placed in X and C2,Cy, ...
must be placed in V). If V}, C V(G) and G is connected,
Cry1 # 0 and it is forced to be on the opposite side as
Cy in B (or otherwise B% # (). Since G is connected,
an execution of the above algorithm will terminate. By
Proposition 2.1, E' = {uw | v € X,w € Y and vw €
E(G)} is the forced edge set for any bipartite graph B
such that B2 = G and Ng(v) = U; this proves the
lemma. Note that Algorithm 2.1 can be implemented



to run in linear time. An illustration of Algorithm 2.1
is shown in Figure 1.

C,=N(C)-V,

Cyn

G=v C=N(C)-V, Cy Cur2=NCY -V iy

Figure 1: An illustration of Algorithm 2.1

LEMMA 2.2. SBN can be solved in O(M) time.

Proof. Note that by Algorithm 2.1, B is constructed
for any input graph G. Therefore, we have to verify if
B? = G and this requires matrix multiplication.

In fact, Lemma 2.2 implies a polynomial time
algorithm to recognize squares of bipartite graphs with a
small degree vertex (e.g., trees, bipartite planar graphs)
by exhaustively “guessing” a small degree vertex and its
neighborhood.

3 Squares of bipartite graphs

We say a vertex v in a bipartite graph is mazimal if
Np(v) ¢ Np(u) for all u € V(B) on the same side as
v; an edge e = wv in a bipartite graph is mazimal if
both v and v are maximal vertices. When a vertex in a
bipartite graph is adjacent to all vertices on the opposite
side, we say it is a universal vertex. By extending the
idea of SBN, we introduce the following problem:

Problem SQUARE OF BIPARTITE GRAPH WITH
ONE SPECIFIED MAXIMAL EDGE (SBE)
A graph G = (V, E), zy € E(Q).

Does there exist a bipartite graph B =
(X,Y,E') such that B> = G and zy is a

mazimal edge in B?

Instance
Question

Notice that if SBE is polynomial time solvable,
then so is SB. To see this, given an instance of SB,
we pick a vertex x in G with maximum degree and note
that it must be a maximal vertex in B for any bipartite
square root B of G. Also, if G is the square of a bipartite
graph B, there is at least one vertex y € Ng(z) such
that y € Np(x) and y is maximal in B (consider a vertex
y with maximum degree amongst vertices in Ng(z)).
Since Ng(z) is of cardinality at most A(G), the time
complexity of SB is at most A(G) times the complexity
of SBE. Our main result is that SBE can be solved in
O(M) time. In particular, we reduce SBE to at most
2 instances of SBN. Given the partial solution where
initially z and y are on different sides, the algorithm

incrementally enlarges the partial solution until it can
be reduced to at most 2 instances of SBN.

3.1 Preliminaries We say that a graph G with
0(@) < 2 (8(G) is the clique cover number of G) a co-
bipartite graph (the complement of a bipartite graph).
Given a co-bipartite graph H; we denote the connected
components of H by Cy,...,C} and we say they are
the co-components of H (the connected components of
the complement). A co-component is trivial if its vertex
set is of size 1; otherwise it is non-trivial. Henceforth,
when we say a co-component, we mean a non-trivial co-
component. For any co-component 61- of a co-bipartite
graph H, H[C;] is a connected bipartite graph, we call
the vertex set that corresponds to a partite set of H[C}]
a part. Let H be an induced co-bipartite subgraph of
G and let Cj,...,C}, be its co-components. A vertex
v € V(G) —V(H) is of:

e type 0 to C; if v is not adjacent to any vertex in
Ci;

e type 1 to C; if v is adjacent to some vertices in
exactly one part, called adjacent part, of C;;

o type 2to C; if v is adjacent to some vertices in both
parts of C;.

A vertex v is type 1 universal to C; if it is adjacent
to all vertices in the adjacent part; similarly, v is type
2 universal to C; if it is adjacent to all vertices in Cj.
Suppose = and y are the vertices that are part of the
input to SBE; without loss of generality, we assume
z € X and y € Y in B. Let P, = Ng(z) — Ng(y),
P, = Ng(y)—Ng(z) and we say P,, = P,UP, is the set
of private neighbors. Also, we say Cyy = Ng(z)NNg(y)
is the set of common neighbors.

LEMMA 3.1. Suppose B = (X,Y,E), zy € E(B) and
B? = G; then (Ng(z) —y) U (NB(y) — z) = Cyy and
G[Cyy) is a co-bipartite graph.

By Lemma 3.1, G[C,,] is a co-bipartite graph. We
let the trivial co-components of G[Cy,| be ¢1, ..., ¢ and
the co-components be C1, ..., C}. Before we proceed to
the outline of the algorithm, we first show an important
lemma, of placing co-components.

LEMMA 3.2. Suppose B = (X,Y,E), zy € E(B) and
B®> = G. Given a co-component C of G[Cyy]; all
vertices in one part of C must be on one side of B while

all vertices in the other part of C must be on the other
side of B.

Proof. Let U and W be the two parts of C and U =
Uy UU; and W = W1 U W,. Suppose that, in B, U;
and W, are in X while Uy and W5 are in Y. Since U;



and W; are in X, by Proposition 2.1, y is adjacent to
every vertex in U; and Wi in B and thus G[U; U W] is
a clique. By the same argument, G[U, U W3] is a clique.
Also G[U] and G[W] are cliques by the definition of a
part of a co-component. So in G we have all possible
edges between {U; UWs} and {Uz2 U W1} and thus they
are disconnected in G. Now we have contradicted the
fact that C is a co-component unless one of {U; U W}
or {U; UW;} is empty and thus the lemma holds.

In order words, given a co-component C = {UUW}
of G[X,,] where U and W are the two parts of C, we just
have to consider the orientation of C in B (i.e. whether
U is placed in X and W is placed in Y or U is placed
in Y and W is placed in X). If the orientation of a co-
component is fixed (i.e. it was placed by the algorithm),
we refer to it as a fixed co-component; otherwise, it
is a free co-component. At the beginning, every co-
component is free.

3.2 Outline of the algorithm Our algorithm will
place Ng(z) U Ng(y) in B in several stages; in each
stage some vertices will be placed in B. In the first
stage, all vertices in Py, of G will be placed in B. Then,
all trivial co-components of G[Cy,]| will be placed in B
in the second stage. Note that if there is just one free
co-component C left, then we are finished since we just
have to consider at most two possibilities (two instances
of SBN). The difficult case is when we have many
free co-components. So, henceforth, when we place co-
components in B, we make the assumption that there
are at least two free co-components left.

Using the position of vertices in P, in B and the
edges in G between vertices in P, and the free co-
components, we place the free co-components in B. In
particular, we first look for some easy configurations in
G to place some or all free co-components in B. Then,
if there are still at least two free co-components left, the
unresolved graph G has some very special structures and
we use them to place the remaining free co-components
in B. When finished, by Lemma 3.1, we are able to
determine Ng(z) and Ng(y) and thus the problem is
reduced to SBN. The algorithm outline is as follows.

AvrcoriTHM 3.1. SBE
1 PLACE PRIVATE NEIGHBORS
Description: Place P, in X and P, in Y.
2 CHECK CO-BIPARTITENESS

Description: Ensure that G[C.,] is a co-
bipartite graph.

3 PLACE TRIVIAL cO-COMPONENTS

Description: Place all trivial co-components.

Post-condition: (3.1) In B, there is no edge
between any trivial co-component and vertices in
P,

4 No TYPE 0 VERTEX

Assumption: (3.1)
Description: Ensure that (4.1) happens.

Post-condition: (4.1) For v € Py, v is not a
type 0 vertex to any co-component.

5 TYPE 2 FORCING

Assumption: (4.1)

Description: If v € P,y is a type 2 vertex to
a co-component, then we place all co-components
such that v is not a universal type 2 vertex to
them.

Post-condition: (5.1) If v € P,y is a type
2 vertex to a co-component in G, then v is a
universal type 2 vertex to all free co-components
in G.

Post-condition: (5.2) If v € P,y is a type 1
vertex to a free co-component in G, then v is a
type 1 vertex to all co-components in G.

6 TYPE 1 FORCING

Assumption: (3.1), (5.2)

Description: We place all co-components unless
(6.1) happens.

Post-condition: (6.1) For all v € Py, if vis a
type 1 vertex to a free co-component in G, then v
is a universal type 1 vertex to all co-components
and v’s adjacent part of all fixed co-components
were placed on the same side as v.

7 MoORE TYPE 1 FORCING

Assumption: (5.2)

Description: If there exist type 1 vertices in
P,,, then we place all co-components unless (7.1)
happens.

Post-condition: (7.1) Type 1 vertices in Py
that are on the same side have the same neigh-
borhood and type 1 vertices in P, that are on
different sides have disjoint neighborhood.

8 PLACE INCOMPLETE CO-COMPONENT

Assumption: (5.2), (6.1)

Description: If v € P, is a type 1 vertex, then
we place all incomplete co-components.

Post-condition: (8.1) If there exists a type 1
vertex in Py, then every free co-component is a
complete co-component.

9 FINAL PLACEMENT I



Assumptions: (4.1), (5.1), (5.2), (6.1), (7.1),
(8.1).
Description: Place all co-components if V(G) =

Ng(z) U Ng(y).
10 FINAL PLACEMENT II

Assumptions: (4.1), (5.1), (5.2), (6.1).

Description: Place all co-components if V(G) C
Ng(z) U Ne(y).

3.3 Algorithm Now we present the details of each
part. If at any point the return command is executed,
the output is returned and the execution halts. We omit
the details of PLACE PRIVATE NEIGHBORS and CHECK
CO-BIPARTITENESS since they are trivial.

3.3.1 Place Trivial co-Components We can as-
sume G[Cyy] is a co-bipartite graph by Lemma 3.1.
The following two technical lemmas are useful in PLACE
TRIVIAL CO-COMPONENTS.

LEMMA 3.3. Suppose B = (X,Y,E), zy € E(B) and
B? = G. Let ¢ be a trivial co-component of G[Cyy] in
G. Ifc € X, then Np[z] C Ng[c] and Ng[z] C Ng[].
Otherwise, if ¢ € Y, then Np[y] C Np[¢] and Ngly] C
Ng[c]. (Proof omitted.)

LEMMA 3.4. Suppose B = (X,Y,E) and B> = G. Let
u and v be vertices in different partite sets of B. Then
Nglu] = Ng[v] if and only if u and v are both universal
vertices in B. (Proof omitted.)

ALGORITHM 3.2. PLACE TRIVIAL CO-COMPONENTS

Casel : Py #0
for any trivial co-component ¢
if NG[E] = Ng[x]
then place ¢ in X
else if N¢[¢] = Ne¢[y]
then place ¢in Y
else return “No”
: sz =0
for any trivial co-component ¢
place ¢ arbitrarilyin X or Y

Case 2

LEMMA 3.5. PLACE TRIVIAL CO-COMPONENTS 48 cor-
rect.

Proof. (Sketch) Case 1: P,, # (. By Lemma 3.3 and
the maximality of z, if Ng[¢] # Ng[z], then € cannot be
placed in X. Also, by Lemma 3.4 and the maximality
of y, if Ng[c] = Ng[z], then ¢ must be placed in X. The
same argument applies when z is replaced by y and thus
the lemma holds.

Case 2: P,, = (. In this case, z and y are both
universal vertices in B. It can be proven that regardless
of the position of ¢, the square graph is the same.

COROLLARY 3.1. In B, there is mo edge between any
trivial co-component ¢ of G[Cyy] and Pyy.

Proof. By PLACE TRIVIAL CO-COMPONENTS, Ng[¢] is
either equal to Ng[z] or Ng[y]. This implies that Ng[¢]
is either equal to Np[z] or Ng[y] and thus € is not
adjacent to any vertex in P,y in B.

3.3.2 No Type 0 Vertex We now show that for any
vertex v € Py, it is either a type 1 or a type 2 vertex
to a co-component.

LEMMA 3.6. Suppose B = (X,Y,E), zy € E(B), B? =
G and v € P,y is adjacent to z € Cyy in B. If C is
a co-component such that z ¢ C and there is a vertex
u € C but uv ¢ E(G), then C can not be placed such
that u and v are on the same side of B.

Proof. Suppose, by way of contradiction, that v and v
are on the same side of B. Since z is in a different co-
component than C, zu € E(G). Since zu,zv € E(G),
by Proposition 2.1, zu, zv € E(B). Hence, uv € E(B?)
but this contradicts the assumption that B? = G.

LEMMA 3.7. No TYPE O VERTEX s correct.

Proof. Suppose, by way of contradiction, that v is a
type 0 vertex to a co-component C in G. Without
loss of generality, we assume that v € P, in B. By
Corollary 3.1, v is not adjacent to any trivial co-
component in B. Since v € P,, v and x have a common
neighbor 2z in B. So z must be in a co-component c
such that C' # C. Since C is a co-component, there
are vertices u,w on different parts of C that are not
adjacent to v in G. Since vz € E(B) and z ¢ C, by
Lemma 3.6, neither u nor w can be placed on the same
side as z or otherwise the assumption that B?2 = G is
contradicted. Therefore, if B2 = G, v does not exist
and the lemma holds.

COROLLARY 3.2. After the execution of NO TYPE 0
VERTEX, for any vertex v € Py and any co-component

U, v is either a type 1 vertex to C ora type 2 vertex to
C.

3.3.3 Type 2 Forcing

ALGORITHM 3.3. TYPE 2 FORCING
for v € Py
if v is a type 2 vertex to a co-component c

for any free co-component g;é c
if there is a vertex u € C s.t. uv ¢ E(G)
place C s.t. u is on the side opposite v

if there are at least two free _c;o-components left
if there is a vertex u € C' s.t. uv ¢ E(G)
place C’ s.t. u is on the side opposite v



LEMMA 3.8. Suppose B = (X,Y,E), zy € E(B), B? =
G and v € Py is a type 2 vertex to a co-component C.

If C is a co-component such that C # C' and there is a
vertex u € C' that is not adjacent to v in G, then C can

not be placed such that u and v are on the same side of
B.

Proof. Let w and z be vertices of different parts of c’
such that they are adjacent to v. By Lemma 3.2, exactly
one of w or z is on the side opposite v in B. Without
loss of generality, we assume z is on the side opposite
v in B. By Proposition 2.1, zv € E(B). Hence, by
Lemma 3.6, this lemma follows.

LEMMA 3.9. TYPE 2 FORCING is correct.

Proof. The first for loop is justified by Lemma 3.8. If
there are at least two free co-components left, there
exists a co-component C' # C' such that v is a universal
type 2 vertex to C. By applying Lemma 3.8 with C is
replaced by C, the lemma follows.

COROLLARY 3.3. After the ezecution of TYPE 2
FORCING, if v is a type 2 vertex to a co-component in B
and there are at least two free co-components left, then
v is a universal type 2 vertex to all free co-components.

COROLLARY 3.4. After the ezxecution of TYPE 2
FORCING, if v is a type 1 vertex to a free co-component
in G, then v is a type 1 vertex to all co-components in

G.

3.3.4 Type 1 Forcing

LeEMMA 3.10. Suppose B = (X,Y,E), zy € E(B) and
B? = G. Ifv € P,y is a type 1 vertez to all co-
components in G, there is exactly one co-component C
such that the adjacent part of C to v is on the opposite
side as v in B. Furthermore, v is a universal type 1
vertex to any co-component C' in G where C' #C.

Proof. (Sketch) First it is easy to see that there is at
least one co-component in B such that the adjacent part
of v is on the opposite side as v; otherwise, v does not
share a common neighbor with x or y, a contradiction.
Suppose there are more than one such co-component or
v is not a universal type 1 vertex to a co-component
with the adjacent part of v on the same side as v, by
similar argument as in Lemma 3.8, we have B? # G;
thus the lemma holds.

Let v € P,y be a type 1 vertex to all co-components
in G. By Lemma 3.10, if zy € E(B) and B? = G,
then there is exactly one co-component C such that the
adjacent part of C to v is on the opposite side as v in
B; we call C the active co-component of v in B.

ALGORITHM 3.4. TYPE 1 FORCING

for v € P,y that is a type 1 vertex to a free co-component

if there exists a fixed co-component C s.t. C’s adjacent
part to v is on the side opposite v
for any free co-component C
place C s.t. the adjacent part to v is on the
same side as v
return SBN

if there is one free co-component C s.t. v is not a
universal type 1 vertex to C
place C as the active co-component of v in B
for any free co-component C' # C
place C st C's adjacent part to v is on
the same side as v
return SBN

LEMMA 3.11. TYPE 1 FORCING is correct.

Proof. (Sketch) In either case, C' must be the active co-
component by Lemma 3.10 and the lemma, follows.

COROLLARY 3.5. After the execution of TyYPE 1
FORCING, if v € Py is a type 1 vertex to a free co-
component in G, then v is a universal type 1 vertex to
all co-components in G. Furthermore, for any fixed co-
component C, the adjacent part of C to v is on the same
side as v in B.

By Corollary 3.3 and Corollary 3.5, after the exe-
cution of TYPE 1 FORCING, a vertex v € P,y is either
a universal type 2 vertex to all free co-components or a
universal type 1 vertex to all co-components. For the
sake of simplicity, henceforth, we refer a vertex of the
former case a type 2 verter and a vertex of the latter
case a type 1 vertex.

3.3.5 More Type 1 Forcing

ALGORITHM 3.5. MORE TYPE 1 FORCING

1. if v and v are type 1 vertices in P,, and are on the
same side in B and there exists a free co-component
C s.t. w's and v’s adjacent parts on C are different
for each orientation of C
place free co-components by Lemma 3.10
if SBN return TRUE
return FALSE

2. if uw and v are type 1 vertices in P,y and are on different
sides in B and there exists a free co-component C
s.t. u’s and v’s adjacent parts on C are the same
for each orientation of C
place free co-components by Lemma 3.10
if SBN return TRUE
return FALSE

LEMMA 3.12. MORE TYPE 1 FORCING is correct.



Proof. (Sketch) In either case, C' must be the active co-
component of some vertex by Corollary 3.5 and thus the
lemma, follows from Lemma, 3.10.

COROLLARY 3.6. If after the execution of MORE TYPE
1 FORCING we still have two free co-components left,
then we have the following. For type 1 vertices in Pyy:
if they are on the same side, their neighborhood on the
free co-components are the same; if they are on different
sides, their neighborhoods on the free co-components are
disjoint.

3.3.6 Place Incomplete co-Components We say
a co-component C is complete if there is no edge between
the two parts of C (i.e. a complete bipartite graph
in the complement); otherwise, C' is an incomplete co-
component. Now, if there is a type 1 vertex v € Py,
then we will fix the orientations of all free incomplete
co-components.

ALGORITHM 3.6. PLACE INCOMPLETE CO-COMPONENT

if there is a type 1 vertex v € Pyy
for any free co-component C
if C is an incomplete co-component in G
place C s.t. the adjacent part of C to v
is on the same side as v

LEMMA 3.13. PLACE INCOMPLETE CO-COMPONENT
1s correct.

Proof. Let w,z be two vertices in different parts of
C and wz € E(G). Without loss of generality, we
assume w is on the adjacent part of v. Suppose, C
is placed so that w and v are on different sides in B.
By Corollary 3.5, vw € E(G). Since vw,wz € E(G),
by Proposition 2.1, vw,wz € E(B). Therefore, vz €

E(B?); a contradiction.

COROLLARY 3.7. After the execution of PLACE IN-
COMPLETE CO-COMPONENT, if there is a type 1 vertex
in Py, then every free co-component is complete.

3.3.7 Final Placement I Notice that by Corol-
lary 3.6, the unresolved graph has some very special
structures. For example, by Corollary 3.6, if there exist
type 1 vertices in Py, the active co-component (we do
not know which one at this point) is the same for all
type 1 vertices. We called an orientation of the free co-
components such that exactly one free co-component
is the active co-component a wvalid orientation. Now
we use the special structures of the graph to place all
free co-components. We have two cases to consider;
in FINAL PLACEMENT I, we consider the case when
Ng[z]U Ng[y] = V(G) (the case when Ng[z]U Ngly] C
V(G) is handled by FINAL PLACEMENT IT).

ALGORITHM 3.7. FINAL PLACEMENT I: when Ng[z] U
Ngly] =V(G)
Case 1: there exists a type 1 vertex in Py
find an arbitrary valid orientation

Case 2: there is no type 1 vertex in Py
find an arbitrary orientation

return SBN
LEMMA 3.14. FINAL PLACEMENT 1 is correct.

Proof. (Sketch) By the special structures of the unre-
solved graph as in Corollary 3.6, it can be shown that
any two placements by the algorithm yield the same
square graph.

3.3.8 Final Placement II In FINAL PLACEMENT
I1, we consider the case when Ng[z] U Ngly] C V(G).
We will use the neighborhood of a carefully chosen
“outside” vertex to decide the orientations of free co-
components.

ALGORITHM 3.8. FINAL PLACEMENT II: when Ng[z] U
Ngly] C V(G)
pick a vertex u € Ng[Cqy] — Na[z] — Nely]
Case 1: u is a universal type 1 vertex to all free
co-components in G
for orientation of the free co-components s.t.
adjacent parts of w are on the same side
if SBN return TRUE
return FALSE
Case 2: u is a universal type 1 vertex to exactly one
free co-component C in G
find an orientation with only C active
if SBN return TRUE
else return FALSE
Otherwise:
return “NO”

LEMMA 3.15. FINAL PLACEMENT II is correct.

Proof. (Sketch) First, v must exist or otherwise B is
disconnected. By the choice of u, it must be adjacent
to a vertex v € Pyy.

Case 1: there exists v € Np(u) N P,y that is a
type 2 vertex in G. By Corollary 3.3, v is a universal
type 2 vertex in G and thus it is universally adjacent to
exactly one part of each free co-component in B. So u
is a universal type 1 vertex to all free co-components in
B? = G. Those parts are on the opposite side as v in
B. So there are only two possibilities left (correspond
to possible positions of v), we try both.

Case 2: all vertices in Ng(u) N P,, are type 1
vertices in G. By Lemma 3.10, v is adjacent to exactly
one free co-component in B. So u is adjacent to exactly



one free co-component in B?. Then C must be the
active co-component in B and the lemma, follows from
Lemma, 3.10.

Note that in either case, all free co-components are
placed and thus SBE is reduced to at most two instances
of SBN.

THEOREM 3.1. SBE can be solved in O(M) time.

Proof. The correctness of this algorithm follows from
the correctness of all steps. Also, notice that except
the final verification step, all steps can easily be imple-
mented in O(n?).

THEOREM 3.2. SQUARE OF BIPARTITE GRAPH can be
solved in O(A(G) - M).

4 Counting and generating bipartite square
roots of a graph

It is natural to ask how many different bipartite square
roots a graph can have. In fact, by looking at the
SBE algorithm carefully, the only flexibility in the
algorithm of placing vertices is in PLACING TRIVIAL
CcO-COMPONENT when P,,, = () and FINAL PLACEMENT
I when Ng[z] U Ngly] = V(G). In the former case,
a trivial co-component can be placed in either X or
Y; in the latter case, depending on the existence of
type 1 vertices, either an arbitrary valid orientation or
an arbitrary orientation is considered. As mentioned
before, in either case, two arbitrary placements will
have the same square graph. Hence, when we are
just concerned with the existence of a bipartite square
root, it suffices to test for an arbitrary placement (i.e.
a representative). When we are concerned with the
number of different bipartite square roots of G, if the
representative is checked to be a bipartite square root
of G, then we have to count the number of arbitrary
placements, denoted by n,. We denote the number of
trivial co-components by ¢ and the number of free co-
components by f. Fortunately, it is easy to count the
number of arbitrary placements, summarized as follows:

Case 1 P, = (): n, = 2t+f

Case 2 P,y # 0, V(G) = Ng[z] U Ng[y]
and there is no type 1 vertex: n, = 27

Case 3 P,y # 0, V(G) = Ng[z] U Ng[y]
and there is a type 1 vertex: n, = f

THEOREM 4.1. Given G, the number of different bipar-
tite roots r(G) of G can be counted in O(A(G) - M).

Proof. First we pick a vertex z with maximum degree
in G; we know that it must be a maximal vertex in

any bipartite square root B of G. Then we sort the
vertices in Ng(z) by non-increasing degree. Suppose
the resulting ordering is {y1,...,yr}; we reduce SB to
k instances of SBE by following the order of the sorted
vertices. Consider an instance of SBE of = and y;; we
add additional constraints that {yi,...,y; 1} must be
on the same side as x. Notice that by adding these
additional constraints, they will not affect the execution
of the algorithm. In fact, these just help the algorithm
to to fix the free co-components.

It is clear that we do not over-count. The only
possible solutions that we may exclude are where zy; is
a maximal edge in the solution but some y; is also in YV’
where i < j. Consider the smallest such ¢, we argue that
those solutions are included when we count the solutions
of SBE with zy; as a maximal edge. The crucial point
is that the only place we use the maximality of y; in
the algorithm is in PLACE TRIVIAL CO-COMPONENTS,
where we forbid a trivial co-component ¢ with Ng(y;) C
N¢g(€) to be placed in Y by maximality of y;. Since
i < j, Na(yi) ¢ Ng(y;). Hence, those solutions are
included earlier and thus the algorithm counts correctly.

Finally, notice that the additional constraints do
not increase the complexity of the algorithm. Also, the
additional counting step can be performed in linear time
(by just counting the number of trivial co-components
and free co-components left); the theorem follows.

THEOREM 4.2. Given G, all different bipartite roots of
G can be generated in O(max{A(G) - M, r(G)}).

5 Squares of Trees

Clearly a tree is a bipartite graph. We will use our tools
developed for bipartite graphs to give new proofs of the
existing results for trees. We will reduce SQUARE OF
TREE to one instance of SBN. By doing so, we first
show that if G = T2, then a maximal clique S in G
corresponds to Np[v] for a vertex v € S. In such a case,
we call v the center of S'in T'.

LEMMA 5.1. Suppose T? = G; if S C V(G) induces a
mazimal clique in G, then S = Nr[v] for a vertexv € S.
(Proof omitted)

Given a maximal clique S in G, by Lemma 5.1, if we
can deduce the center of S, then the problem is reduced
to an instance of SBN.

LEMMA 5.2. Given a mazimal clique S in G, if vy, vs €
S share a common neighbor w in G — S, then either
Nr[vi] = S or Nr[vs] = S. In other words, either vy or
vy is the center of S. (Proof omitted)

THEOREM 5.1. (see also [12]) SQUARE OF TREES can
be solved in linear time.



Proof. First of all, we find an arbitrary maximal clique
S in G. By Lemma 5.1, S corresponds to Nr[v] for a
veSs.

Case 1: S = V(G). In this case, G is a complete graph
and any complete star is a tree square root of G.

Case 2: S C V(G). By Lemma 5.2, if two vertices
v1,v9 in S share a common neighbor in G — S in G,
then one of them is the center. It is easy to see, if T' is
connected, there is at least one such pair of vertices.
Case 2a: There are at least two distinct pairs of
vertices. We pick two arbitrary distinct pairs. By
Lemma 5.2, if G = T?, there is exactly one vertex v
(the center) that appears in more than one pair and thus
Nr[v] = S. So, in this case, the problem is reduced to
an instance of SBN.

Case 2b: There is only one distinct pair of vertices.
Suppose the center of S in T is v, it is easy to see
that all vertices in S — v are leaves in T' except exactly
one internal vertex u. So Np2(v) C Np2(u). Let
v1,vs be the only pair of vertices. Since G = T?, if
Ng(v1) C Ng(vs), then vy must be the center and thus
the problem is reduced to an instance of SBN. The only
case left is when Ng(v;) = Ng(v2). In this case, any
tree root is of diameter 3 (a double star), and thus vy
and v, are indistinguishable.

Now we show that the algorithm can be imple-
mented in linear time. First, a maximal clique S in
G can be found in linear time. To find a pair of ver-
tices in S that share a common neighbor in G — S, it
suffices to check the neighborhood in S for every vertex
in G — S; every edge is visited at most once. Once we
find two distinct pairs, we can reduce the problem to
an instance of SBN. So at any time of the algorithm,
we just have to store one such pair of vertices. Notice
that in any case, the problem is reduced to at most one
instance of SBN. By Lemma 2.2, the unique solution
can be constructed in linear time, if some solution ex-
ists. The final verification step can be done in linear
time [12] and we are done.

THEOREM 5.2. (see also [20]) Tree square roots of a
graph, when they exist, are unique up to isomorphism.

Proof. From the proof of Theorem 5.1, there are only
two cases where we can not pin down exactly the center
of the maximal clique. The first case is when the tree
square root is a star while the second case is when the
tree square root is a double star. In both cases, the
tree square roots of G are isomorphic. Note that if we
can pin down the center of the maximal clique, then by
Lemma 2.2, the solution is unique.

5.1 Cubes of bipartite graphs Since SQUARE OF
BIPARTITE GRAPH is polynomial time solvable, it is

natural to ask if we can find a bipartite k-th root of
a graph in polynomial time for k¥ > 3. We observe that
Proposition 2.1 does not hold for £ > 3. In fact, we show
that it is NP-complete to determine if a given graph G
is the cube of a bipartite graph. In our reduction we
use SET SPLITTING as formulated in [6]. The idea of
the reduction is similar to that in [15].

Given an instance of SET SPLITTING, we construct
an instance of CUBE OF BIPARTITE GRAPH. Let
S = {ui,...,u,} be the set of elements and let C' =
{e1,...,¢m} denote the set of subsets of S. The SET
SPLITTING problem is to find a partition of S into Sy
and S3 such that no subset in C' is entirely contained in
either S; or Ss. The graph G is constructed as follows:

Vertices of G

o Element vertices: U;: 1 < i < n for each element
Uj.

e Subset vertices: C; for each subset ¢; € C' and tail
vertices C},C3,C? for each c;.

e Partition vertices: S1 and Ss.

o (Connection vertexr: X.
Edges of G

e Edges of tail vertices of subset vertices: Vc; € C,
C 03,08 & C},03 & Cj
CJ2 s C;,Cjz <« CJ,CJZ « U; for all u; € Cj,
le a4 Cj,C} « C; iff c; Ne; # Q,CJI & U; iff
u; € C]',C]1 — 51,0} <« SQ,C; ~ X.

o FEdges of subset vertices: Ve; € C,
Cj — Sl,Cj A nd SQ,C]' g X,Cj « U; for all
’i,Cj < C; iﬁ'CjﬁCi 75@

e Edges of element vertices: Yu; € S,
Uj + U; for all 4, Uj Sy, Uj Sy, Uj & X.
o FEdges of partition vertices: S1 > X, So < X.

LEMMA 5.3. If there is a partition of S into two subsets
S1 and Sy such that no subset in C' is entirely contained
in either S1 or Sa, then there exists a bipartite graph B
such that B® = G.

Proof. (Sketch) Edges of B.

o Fdges of subset vertices and its tail vertices:
C]3 And C;,CJQ <« C;,le ~ Cj and Cj + U; if and
only if u; € ¢;.

e Edges of partition vertices:
S <> U; if and only if u; € Sk.



e FEdges of connection vertex:
X & U, for all 4.

It is a routine matter to check that E(B3?) = E(G)
and B is a bipartite graph.

We now show that if G has a cube root H (H is not
necessarily a bipartite graph), then there is a partition
of S into two subsets S; and S5 such that no subset in
C is entirely contained in either S; and S,. First, we
need the following technical proposition.

PROPOSITION 5.1. If H is a cube root of G, then, in
H, C; is adjacent to U; if and only if u; € cj. Also, in
H, C; is only adjacent to Cf-, CJ2 is only adjacent to C;
and C3 and Cj is only adjacent to C; and C3. (Proof
omitted)

LEMMA 5.4. If H is a cube root of G, then there is
a partition of S into two sets S1 and Sy such that no
subset in C is entirely contained in either Sy or Ss.

Proof. In H, Proposition 5.1 forces the adjacencies of
the tail vertices and subset vertices to its own elements
only. So in H, S; and S2 only have neighbors in the
element set and X. Since S; ¢ S; in G, they have no
common element neighbor in A and so it is a partition.
And since S; and S, are adjacent to all C}, Sy and S
must reach C} in exactly two steps and thus each of Sy,
S2 must have a common neighbor with C} in the element
set for all j. Therefore, Ng(S1) NS and Ng(S2) NS is
the desired partition; this completes the proof.

THEOREM 5.3. CUBE OF BIPARTITE GRAPH is NP-
complete.

6 Further research

An obvious question is whether a bipartite square root
of a graph can be computed in O(M) time. Another
question is whether a tree k-th root can be computed
in time less than O(n®) [9]. Also, the complexity of
recognition of squares of planar graphs is unknown.

Acknowledgment

I am grateful to my supervisor Derek Corneil for helpful
suggestions.

References

[1] R. Balakrishnan, P. Paulraja, Powers of chordal
graphs, Australian Journal of Mathematics Series A,
35, pp- 211-217, 1983.

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]
21]

[22]

V.N. Bhat-Nayak, Powers and roots of graphs: a
survey, Optimization, design of erperiments and graph
theory (Bombay, 1986), Indian Inst. Tech., Bombay,
246-282, 1988.

P. Damaschke, Distances in cocomparability graphs
and their powers, Discrete Applied Mathematics, 35,
pp. 67-72, 1992.

F. Escalante, L. Montejano, T. Rojano, Characteriza-
tion of n-path graphs and of graphs having nth root,
J. Combin. Theory B, 16, pp. 282-289, 1974.

H. Fleischner, The square of every two-connected graph
is Hamiltonian, J. Combin. Theory B, 16, pp. 29-34,
1974.

M.R. Garey, D.S. Johnson, Computers and Intractabil-
ity - A Guide to the Theory of NP-completeness, Free-
man, Ozford, 1979.

D.P. Geller, The square root of a digraph, J. Combin.
Theory B, 5, pp- 320-321, 1968.

F. Harary, R.M. Karp, W.T. Tutte, A criterion for
planarity of the square of a graph, J. Combin. Theory,
2, pp- 395-405, 1967.

P. Kearney, D. Corneil, Tree powers, Journal of Algo-
rithms, 29, pp. 111-131, 1998.

L.C. Lau, Bipartite roots of graphs,
hitp://www.cs.toronto.edu/~ chi/sb.ps.

Guo-Hui Lin, Paul E. Kearney, Tao Jiang, Phyloge-
netic k-Root and Steiner k-Root, Lecture Notes in
Computer Science, 1969, pp. 539-551, 2000.

Y.L. Lin, S. Skiena, Algorithms for square roots of
graphs, SIAM J. Disc. Math., Vol. 8, No. 1, pp. 99-
118, 1995.

N. Linial, Locality in distributed graph algorithms,
SIAM J. Comput., 21, pp. 193-201, 1992.

M. Molloy and M.R. Salavatipour, Frequency Chan-
nel Assignment on Planar Networks, Proceedings of
10th Annual European Symposium on Algorithms (ESA
2002), LNCS 2461, pp. 736-747

R. Motwani, M. Sudan, Computing roots of graphs
is hard, Discrete Applied Mathematics, 54, pp. 81-88,
1994.

A. Mukhopadhyay, The square root of a graph, J.
Combin. Theory, 2, pp. 290-295, 1967.

N. Nishimura, P. Ragde, D. Thilikos, On graph powers
for leaf-labeled trees, Journal of Algorithms, 42, pp.
69-108, 2002.

A. Raychaudhuri, On powers of interval and unit
interval graphs, Congr. Numer., 59, pp. 235-242, 1987.
A. Raychaudhuri, On powers of strongly chordal and
circular arc graphs, Ars Combin., 34, pp. 147-160,
1992.

I.C. Ross, F. Harary, The square of a tree, Bell System
Tech. J., 39, pp. 641-647, 1960.

M. Sekanina, On an ordering of the vertices of a graph,
Casopis Pést. Math., 88, pp. 265-282, 1963.

D. West, Introduction to graph theory, Prentice Hall,
Ed. 2, 2001.



