
Additive Approximation for Bounded Degree Survivable Network
Design∗

Lap Chi Lau† Mohit Singh‡

Abstract

In the minimum bounded degree Steiner network problem, we are given an undirected graph with an
edge cost for each edge, a connectivity requirementruv for each pair of verticesu andv, and a degree
upper boundbv for each vertexv. The task is to find a minimum cost subgraph that satisfies all the
connectivity requirements and degree upper bounds. Letrmax := maxu,v{ruv} andOPT be the cost of an
optimal solution that satisfies all the degree bounds. We present approximation algorithms that minimize
the total cost and the degree violation simultaneously.

• In the special case whenrmax = 1, there is a polynomial time algorithm that returns a Steinerforest
of cost at most2OPT and the degree of each vertexv is at mostbv + 3.

• In the general case, there is a polynomial time algorithm that returns a Steiner network of cost at
most2OPT and the degree of each vertexv is at mostbv + 6rmax + 3.

The algorithms are based on the iterative relaxation method, and the analysis of the algorithms is nearly
tight.

∗A preliminary version appeared in Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 759-768, 2008.
†The Chinese University of Hong Kong. Research supported by HK RGC grant 413609.
‡Microsoft Research, Redmond.

1 Introduction

Network design plays a central role in combinatorial optimization and approximation algorithms. Develop-
ments in this area have led to general algorithmic techniques, and provide useful models for practical applica-
tions. In recent years, much effort has been put into designing approximation algorithms for network design
problems with additional degree constraints. These problems generalize basic problems in combinatorial op-
timization, and have applications in various areas including VLSI design, vehicle routing and communication
networks. In these applications, degree constraints occuras a natural modeling tool forworkloadof nodes.
For example, in typical applications of network design problems to multicasting, the degree constraint on a
switch corresponds to a bound on the multicast copies it can make in the network [3].

In this paper, we study the survivable network design problem with degree constraints. Given connectivity
requirementsruv for all pairs of vertices, aSteiner networkis a subgraph in which there are at leastruv edge-
disjoint paths betweenu andv for all pairsu, v. In the minimum bounded degree Steiner network problem,
we are given an undirected graphG with an edge cost for each edge, a connectivity requirement for each
pair of vertices, and a degree upper boundbv for each vertexv. The task is to find a minimum cost Steiner
networkH of G satisfying all the degree bounds, that is,degH(v) ≤ bv for all v. This problem captures other
network design problems as special cases; for example, aSteiner forestis a Steiner network withruv ∈ {0, 1}
for all pairs. The feasibility problem of finding a Steiner network satisfying all the degree bounds is already
NP-hard. Hence, the minimum bounded degree Steiner networkproblem has two optimization objectives: to
minimize the total cost and to minimize the degree violation. We design bicriteria approximation algorithms
that optimize both objectives simultaneously. The main results are the following.

Theorem 1.1 There is a polynomial time algorithm for the minimum boundeddegree Steiner forest problem
that returns a Steiner forestF of cost at most2OPT anddegF (v) ≤ bv + 3 for all v, whereOPT is the cost of
an optimal solution that satisfies all the degree bounds.

Theorem 1.2 There is a polynomial time algorithm for the minimum boundeddegree Steiner network problem
that returns a Steiner networkH of cost at most2OPT anddegH(v) ≤ bv + 6rmax + 3 for all v, whereOPT

is the cost of an optimal solution that satisfies all the degree bounds andrmax := maxu,v{ruv}.

Previously the best guarantees known on the degree for both Steiner forest and Steiner network are2bv+2
in [16], even when there are no costs on the edges. Theorems 1.1 and 1.2 provide the firstadditiveapproxima-
tion algorithms that violate the degrees by at most a constant for many problems, including Steiner trees and
Steiner forests (+3), k-edge-connected subgraphs (+O(k)), and Steiner networks (+O(rmax)). Moreover,
these results can be achieved while simultaneously matching the best guarantees known for the minimum cost
Steiner forest and Steiner network problems [1, 9]. This provides a unifying algorithmic framework for a
large class of network design problems.

The algorithms are based on the iterative relaxation methodapplied to a linear programming relaxation
as in [9, 14, 21]. The analysis of the linear programming relaxation is nearly tight. There are examples in
which the optimal fractional solution has maximum degreeB, but any integral solution would have maximum
degree at leastB + 2 for Steiner forests in [14], and at leastB + Ω(rmax) for Steiner networks as shown in
Figure 13 in Section 3.3.

1.1 Techniques

The algorithms are based on the iterative relaxation methodin [14, 21, 15], which adapts Jain’s iterative
rounding method [9] to the minimum bounded degree Steiner network problem. The approach in [14] relies
on the following lemma about the extreme point solutions of the linear program for Steiner networks: “If
every vertex with a degree constraint has degree at least five, then in any extreme point solution there is an

1

edgee with xe ≥ 1/2.” This lemma leads to a new relaxation step to Jain’s iterative rounding method to deal
with degree bounds: If there is a vertex with degree at most four, then the degree constraint for that vertex is
removed. This relaxation step only incurs an additive constant three on the degree bounds. After this step, the
algorithm can always pick an edge withxe ≥ 1/2 as in Jain’s approach, and hence the cost and the degrees
are violated by at most a multiplicative factor of two. As illustrated in the example in Figure 1, the algorithm
in [14] may actually violate the degree bounds by a multiplicative factor of two.

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

(a) (b) (c)

Figure 1: The original graph is shown in (a). There are degree constraints onx andy, both are⌈k/2⌉. The connectivity
requirements are one for all pair of vertices. The fractional solution with all edges having value1/2 is an extreme point
solution. The algorithm in [14] may return the integral solution in (b) where the degree bounds are violated by a
multiplicative factor of two, although there is an integralsolution as shown in (c) where the degree bounds are violated
by at most an additive constant one.

To achieve additive approximation on the degree bounds, we need to avoid paying a multiplicative factor
of two on the degree bounds when picking edges with value1/2. We note that such edges are inevitable as
a factor of two on the cost is best possible using the linear program relaxation for Steiner networks. In our
algorithm for Steiner forests, we first generalize the relaxation step to remove the degree constraint of every
vertex with degree at mostbv + 3, which is possible since the degree bounds would only be violated by at
most an additive constant three. The main technical contribution is the following lemma about the extreme
point solutions: “If every vertexv with degree constraint has degree at leastbv + 4, then in any extreme point
solution there is an edge withxe ≥ 1/2 between two verticeswithout degree constraints.” This leads us to
a modified iterative algorithm that only selects edges withxe ≥ 1/2 between two vertices without degree
constraints, which departs from existing iterative rounding algorithms that pick edges depending only on the
fractional values. For example, in Figure 1, the algorithm will only choose edges from{xi, yi} and return the
solution in (c). By only choosing those edges, degree constraints would not be violated when they are present,
and are only violated by at most an additive constant three when they are removed. This approach can be
extended to Steiner networks, by proving that in any extremepoint solution there are edges withxe ≥ 1/2
between two “low degree vertices”. The proofs of these characterizations of the extreme point solutions
require new ideas on the counting argument, which cruciallyexploit the parameterrmax.

1.2 Related Work

For the minimum cost Steiner network problem, Jain [9] introduced the iterative rounding method to ob-
tain a2-approximation algorithm, improving on a line of research that applied primal-dual methods to these
problems. For bounded-degree spanning trees and Steiner trees, Fürer and Raghavachari [7] gave an approx-
imation algorithm which violates the degrees by at most an additive constant one. This result has generated
much interest in obtaining approximation algorithms for network design problems with degree constraints

2

[12, 13, 11, 14, 6, 18, 4, 5, 19, 20, 8, 21]. A highlight of this line of research is an(1, bv + 2)-approximation
algorithm1 for the minimum bounded degree spanning tree problem by Goemans [8]. Recently, the iterative
relaxation method has been used to obtain the best bounds known for these problems:(1, bv+1) for spanning
trees [21],(2, 2bv + 2) for arborescence [14], and(2, 2bv + 2) for Steiner forests and Steiner networks [16].

In independent work, Bansal, Khandekar and Nagarajan [2] obtained improved approximation algorithms
for degree bounded network design problems indirectedgraphs. They gave an(1ǫ ,

bv
1−ǫ + 4) approxima-

tion algorithm for the minimum bounded degree arborescenceproblem (and more generally for problems
with intersecting supermodular connectivity requirements) for any0 < ǫ ≤ 1

2 (see also [17] for a slight
improvement). Moreover, they obtained the first additive approximation algorithm for the bounded degree
arborescence problem which violates the degrees by at most an additive constant two. In order to obtain
additive guarantees on the degree bounds, however, the costof the arborescence becomes unbounded. They
showed that this cost-degree tradeoff in their result is indeed best possible using the natural linear program-
ming relaxation [2], which is an exact formulation when there are no degree constraints. In contrast, our
results show that inundirectedgraphs it is possible to achieve additive approximation on the degree bounds
for the minimum bounded degree Steiner network problems, while matching the best known approximation
on the cost. Finally, we remark that both results are based onthe iterative relaxation method in [9, 14, 21],
which provides a unifying framework to achieve (nearly) tight analysis for the natural linear programming
relaxations for network design problems.

2 Minimum Bounded Degree Steiner Forests

In the minimum bounded degree Steiner forest problem, we aregiven a graphG = (V,E), a costce on each
edgee, a degree boundbv for each vertexv ∈ V , and a set of source sink pairs(si, ti). The task is to return
a Steiner forestF (a forest that connects each source sink pair) of minimum cost with degF (v) ≤ bv for
all v ∈ V . Let OPT be the cost of an optimal solution that satisfies all the degree bounds. We shall give a
polynomial time algorithm that returns a Steiner forestF of cost at most2OPT with degF (v) ≤ bv + 3 for all
v ∈ V .

2.1 Preliminaries

We begin by formulating a linear program for the problem. Definef(S) = maxu∈S,v/∈S {ruv} for each subset
S ⊆ V . For the Steiner forest problem,f(S) ∈ {0, 1} sinceruv ∈ {0, 1} for all u, v ∈ V . It is known thatf
is askew supermodularfunction [9], that is, for every two subsetsX andY , either

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y), or

f(X) + f(Y) ≤ f(X − Y) + f(Y −X).

For a subsetE′ ⊆ E, we denotex(E′) :=
∑

e∈E′ xe. For a subsetS ⊆ V , δ(S) denotes the set of edges in
E with exactly one endpoint inS, andd(S) := |δ(S)|. For a vertexv ∈ V , we writeδ(v) for δ({v}) and
d(v) for d({v}). The following is a linear programming formulation for the minimum bounded degree Steiner
forest problem, in which the degree constraints are on a subset of verticesW ⊆ V .

1An (α, f(bv))-approximation algorithm for the minimum bounded degree Steiner network problem is a polynomial time algo-
rithm that returns a solution of cost at mostα · OPT anddeg(v) ≤ f(bv) for all v, whereOPT is the optimal cost of a Steiner Network
with deg(v) ≤ bv for all v.

3

(LP) minimize c(x) =
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊂ V

x(δ(v)) ≤ bv ∀ v ∈W

xe ≥ 0 ∀ e ∈ E

For a setS ⊆ V , the corresponding constraintx(δ(S)) ≥ f(S) defines a vector inR|E|: the vector has an
one corresponding to each edgee ∈ δ(S) and a zero otherwise. We call this vector thecharacteristic vector
of δ(S), and denote it byχδ(S). Let F = {S | x(δ(S)) = f(S)} be the set of tight constraints from the
connectivity requirement constraints. A family of sets islaminar, if for any two sets in the family, either one
contains the other or they are disjoint. In undirected graphs, it is well known that

x(δ(X)) + x(δ(Y)) ≥ x(δ(X ∩ Y)) + x(δ(X ∪ Y)) and

x(δ(X)) + x(δ(Y)) ≥ x(δ(X − Y)) + x(δ(Y −X))

for any two subsetsX andY . Sincef is skew supermodular, it follows from standard uncrossing arguments
(see e.g. [9, 14]) that an extreme point solution of the abovelinear program is characterized by a laminar
family of tight constraints. The following Lemma 2.1 is proved in [14].

Lemma 2.1 Suppose that the requirement functionf of (LP) is skew supermodular. Letx be an extreme point
solution of (LP) such that0 < xe < 1 for all edgese ∈ E. Then, there exist a laminar familyL of sets and a
setT ⊆W such thatx is the unique solution to

{x(δ(v)) = bv | v ∈ T}
⋃
{x(δ(S)) = f(S) | S ∈ L}.

that satisfies the following properties:

1. The vectorsχδ(S) for S ∈ L andχδ(v) for v ∈ T are linearly independent.

2. |E| = |L|+ |T |.

3. For any setS ∈ L, χδ(S) 6= χ
δ(v) for anyv ∈W .

The laminar familyL obtained in Lemma 2.1 defines a directed forestL in which nodes correspond to sets
in L and there exists an edge from setR to setS if R is the smallest set containingS. We callR theparent
of S andS a child of R. For clarity, we will refer the vertices of forestL by nodes. A node with no parent is
called aroot and a node with no child is called aleaf. Given a nodeR, thesubtree rooted atR consists ofR
and all its descendants. The following is an important definition that is used in several places in proofs.

Definition 2.2 (Owned by) A vertexv is ownedby a setS if v ∈ S andS is the smallest set inL containing
v.

4

Minimum Bounded Degree Steiner Forest

1. InitializationF ← ∅, f ′(S)← f(S) for all S ⊆ V .

2. WhileF is not a Steiner forest do

(a) Computing an optimal extreme point solution:
Find an optimal extreme point solutionx satisfyingf ′ and remove every edgee with xe = 0.

(b) Removing a degree constraint:
For everyv ∈W with degree at mostbv + 3, removev from W .

(c) Picking an 1-edge:
For each edgee = {u, v} with xe = 1, adde toF , removee from G, and decreasebu, bv by one.

(d) Picking a heavy edge with no degree constraints:
For each edgee = {u, v} with xe ≥

1
2 andu, v /∈W , adde toF and removee from G.

(e) Updating the connectivity requirements:
For every setS ⊆ V , setf ′(S)← f(S)− dF (S).

3. ReturnF .

Figure 2: An iterative algorithm for the minimum bounded degree Steiner forest problem.

2.2 Iterative Algorithm

Our algorithm is an iterative relaxation algorithm as shownin Figure 2. The main difference from the previous
iterative rounding algorithms is in Step 2d, where a heavy edge is picked only if both endpoints do not have
degree constraints. This is the step to avoid a multiplicative factor of two on the degree bounds. Also, by
only picking edges with no degree constraints, there is no need to update the degree bounds fractionally as in
[14]. Another difference is that the relaxation step has been generalized to remove a degree constraint when a
vertex has degree at mostbv + 3.

The Step 2a of the algorithm can be implemented in polynomialtime since the separation problem for
the linear programming formulation is the min-cut problem [9]. Moreover, the number of the iterations is
bounded bym + n, since in each iteration we either remove a degree constraint or pick an edge. Hence,
the algorithm can be implemented in polynomial time. The following lemma is in the heart of the algorithm,
which shows that the algorithm always succeeds.

Lemma 2.3 Every extreme point solutionx to the above linear program must satisfy one of the following:

1. There is an edgee with xe = 0 or xe = 1.

2. There is an edgee = {u, v} with xe ≥
1
2 andu, v /∈W .

3. There is a vertexv ∈W with degree at mostbv + 3.

We note that the updated connectivity requirement functionf ′ is also a skew supermodular function. With
Lemma 2.3, using a simple inductive argument as in [14], it can be shown that the algorithm returns a Steiner
forest of cost at most twice the optimal cost and the degree ofeach vertex is at mostbv + 3. The rest of this
section is devoted to the proof of Lemma 2.3.

5

2.3 A New Counting Argument

The proof of Lemma 2.3 is by contradiction. LetL be the laminar family andT ⊆ W be the set of tight
vertices defining the extreme point optimal solutionx as described in Lemma 2.1. The contradiction is
obtained by a counting argument. Each edge inE is assigned two tokens. Then the tokens will be reassigned
such that each member ofL and each vertex inW get at least two tokens, and there are still some extra tokens
left. This will give us a contradiction to property 2 of Lemma2.1.

Definition 2.4 (Heavy edge)An edgee is heavyif xe ≥ 1/2.

Assumption 2.5 If conditions of Lemma 2.3 do not hold, then

1. there is no 0-edge and no 1-edge,

2. every heavy edge has an endpoint inW ,

3. each vertexv ∈W has at leastbv + 4 ≥ 5 edges incident to it.

Initial token assignment scheme: An edgee = (u, v) has two tokens. One token ofe is assigned tou and
the other token ofe is assigned tov except in the following special rule when we assign the tokens as follows.

1. If e = (u, v) is a heavy edge withv ∈ W andu is not contained in the smallest set inL containingv,
then the token ofv from e is given to the smallest setS ∈ L containing bothu andv. If such a setS
does not exist, then that token is unassigned (i.e. an extra token that will not be used).

We note thatv gives up at most two tokens by this rule. This is because each such edgee is a heavy
edge inδ(R) whereR be the smallest set inL that containsv, andf(R) = 1 and so there are at most
two heavy edges inδ(R). This is where we use the fact thatrmax = 1 for the Steiner forest problem.

u

+1

+1

S

(a) (b) (c)

R R R

v
u

S

+2

v
u

S

+1

+1v

Figure 3:Rule (1) of the initial token assignment scheme. This is a newrule that is useful in collecting extra tokens for
S. In this figure, a vertex is black if it is inW , and it is white if it is not inW . In (a),v gives its token frome to S by
rule (1). In (b), rule (1) applies to bothu andv, and thus bothu andv give its token frome to S. In (c), rule (1) only
applies tov and sou keeps its token. Note thatuv must be a heavy edge for this rule to apply.

The following definitions are important to the analysis.

Definition 2.6 (Out-heavy edge)An edgee = {u, v} is an out-heavy edgeof S ∈ L if u ∈ S \ W and
v ∈W \ S andxe ≥ 1

2 .

Definition 2.7 (Classes)For a setS ∈ L, we sayS is of:

• Class Ia: if |δ(S)| = 2 andS has one out-heavy edgee with xe >
1
2 .

6

• Class Ib: if S has two out-heavy edges.

• Class IIa: if |δ(S)| = 3 andxe < 1
2 for each edgee ∈ δ(S).

• Class IIb: if S has one out-heavy edge butS is not of Class I.

• Class III: otherwise.

Ib

2

1
2

11

3

1

3

1

3

1

4
6

1

6

16

1 1

4

1

4

3

4 2

1

2

1

IIbIIa IIIIa

Figure 4:The figure shows examples of sets of each class. A vertex is white if it is not inW , and it is black if it is in
W . (An endpoint without a vertex shown means that this information is not important.) A heavy edge is represented by
a thick line. Note the definitions of Class Ia, Class Ib and Class IIb require out-heavy edges. The rightmost example is
a Class III set, although it has a heavy edge.

The following lemma shows that the tokens can be reassigned so that each member ofL and each vertex
in W gets at least two tokens. The proof is by induction on the height of the laminar family, from leaves to
roots.

Lemma 2.8 Suppose that Assumption 2.5 holds. Then, for any subtree of the laminar familyL rooted atS,
we can reassign tokens assigned to vertices inS and nodesR ⊆ S in the initial token assignment scheme
such that

1. Every vertex inW ∩ S gets at least two tokens.

2. Every nodeR ⊂ S and in the subtree gets at least two tokens.

3. S gets at least two tokens ifS is of Class I.

4. S gets at least three tokens ifS is of Class II.

5. S gets at least four tokens ifS is of Class III.

Before proving Lemma 2.8, we show that Lemma 2.3 follows fromLemma 2.8. Suppose by contradiction
that the conditions in Lemma 2.3 do not hold. Then Assumption2.5 holds. Initially, each edge inE is
assigned two tokens, and so there are totally2|E| tokens. After the reassignment of the tokens by applying
Lemma 2.8 to each of the root nodes inL, each vertex inW gets two tokens and each node in the laminar
family gets two tokens, and so there are2|W | + 2|L| tokens. If there are some extra token left, then this
would imply that2|E| > 2|W | + 2|L| ≥ 2|T | + 2|L|, contradicting property 2 of Lemma 2.1. To complete
the proof, we just need to show that there are some extra tokens left. If there is a root nodeS in L of Class II
or Class III, then there is some extra token left inS as it has at least three tokens. It remains to consider the
case when all root nodes are of Class I. LetS be one such root node anduv be an out-heavy edge ofS with
v ∈W − S. Note thatv cannot be in another root node by the definition of Class I nodes. Therefore,v is not
contained in any root node. By Assumption 2.5(3), each vertex v ∈ W has at least five edges incident on it.
As Rule (1) does not apply tov, it gets at least five tokens from the initial token assignment scheme, and thus
there is some extra token left onv. To summarize, if the conditions of Lemma 2.3 do not hold, then it would
lead to a contradiction by Lemma 2.8. Henceforth, it remainsto prove Lemma 2.8.

7

2.4 Proof of Lemma 2.8

Throughout the proof we assume that Assumption 2.5 holds. The proof will follow from induction on the
height of nodeS in the rooted directed forestL. Before we proceed with the induction, we give the following
lemma which shows that vertices inW are assigned many tokens.

Claim 2.9 Each vertexw ∈W is assigned at least four tokens by the initial token assignment scheme. LetS
be the set that ownsw. Thenw is assigned exactly four tokens only if:

1. d(w) = 5, bw = 1, and there is one heavy edge ofS in δ(w).

2. d(w) = 6, bw = 2, and there are two heavy edges ofS in δ(w).

Proof: The initial token assignment scheme assigns one token tow for each of its incident edgese, except
when Rule (1) applies in which casee is a heavy edge inδ(S). SinceS is a tight set in the laminar familyL,
we havef(S) = 1, and thereforeδ(S) can have at most two heavy edges. By Assumption 2.5(3),d(w) ≥
bw + 4 ≥ 5. There are two cases to consider. The first case is when there is at most one heavy edge ofδ(S)
incident atw. Then,w is assigned at leastd(w) − 1 ≥ 4 tokens, and it is exactly four only ifd(w) = 5.

The second case is when there are two heavy edges ofδ(S) incident atw. Thenx(δ(w) ∩ δ(S)) ≥ 1.
Combining this with Assumption 2.5(1) that there are no edges e with xe = 0, we get thatbw = x(δ(w)) > 1
as the two heavy edges contribute one and the other edges contribute some positive value. Being an integer,
bw ≥ 2. Therefore,d(w) ≥ bw +4 ≥ 6, and sow receives at leastd(w)− 2 ≥ 4 tokens, and it is exactly four
only if d(w) = 6. 2

Now we proceed with the induction. First we prove the base case when the nodeS is a leaf node of the
forestL.

Claim 2.10 (Base Case)Lemma 2.8 is true for leaf nodes ofL.

Proof: Let S ∈ L be a leaf node in the laminar family. Letl = |S ∩W | be the number of vertices inW that
S owns. We prove the claim by considering different cases ofl. If l ≥ 2, then each of thel vertices inW has
degree at least five and receives one token for each edge incident at it in the initial token assignment scheme,
except for heavy edges incident at it whose other endpoint isnot inS. But sincex(δ(S)) = 1, there can be at
most two such heavy edges. Hence, vertices inW ∩ S receive at least5l − 2 ≥ 2l + 4 tokens. Thus we can
reassign these tokens such that each ofl vertices gets at two tokens andS gets four tokens.

If l = 1, letw be the only vertex inW owned byS, thenw has at least four tokens by Claim 2.9. So,S can
collect at least two tokens fromw, and only needs at most two more tokens. Sinceχδ(S) andχδ(w) are linearly
independent, there must be at least one edgee in (δ(S) \ δ(w)) ∪ (δ(w) \ δ(S)). Each such edge has at least
one endpointu /∈ W in S − w, andu is assigned one token by the initial token assignment scheme, and thus
S can collect one token fromu. So, if there are at least two such edges, thenS can collect two more tokens.
We will argue that there must be at least two such edges. Suppose to the contrary that there is only one edge
e ∈ (δ(S) \ δ(w)) ∪ (δ(w) \ δ(S)), saye ∈ δ(w) \ δ(S). Thenbw = x(δ(w)) = x(δ(S)) + xe = f(S) + xe.
Since bothf(S) andbw are integers, this implies thatxe = 0 or xe = 1, a contradiction to Assumption 2.5(1).
Therefore, there are at least two such edges, and soS can collect two more tokens.

The final case that we have not addressed yet is whenl = 0. In this case,S gets at leastd(S) tokens.
Therefore, it gets two tokens only ifS is of Class I, three tokens only if it is of Class II, and at least four
tokens in any other case, proving Lemma 2.8. 2

8

2.4.1 Induction Step

Let S be a set that has some children inL. By induction, we assume that Lemma 2.8 holds for each childR
of S. We will not reassign the tokens assigned to vertices and sets withinR and use the same reassignment
as given by the induction hypothesis. What we will do is to collect the excess tokens ofR to give toS, i.e.
R gives at least one token toS if R is of Class II, andR gives at least two tokens toS if R is of Class III.
Moreover,S will collect excess tokens assigned to vertices owned byS and tokens assigned by Rule (1) in
the initial token assignment scheme. We will show that thesetokens are enough to satisfy Lemma 2.8 for set
S.

We do the same case analysis, as we did for the base case, on thenumber of vertices ofW owned byS,
sayl. While the argument in the base case was simple, here we will need to do further case analysis. The case
whenl ≥ 2 is quite simple and dealt in Claim 2.11. The case whenl = 1 is the most complex and is shown by
further case analysis based on the number and classes of the children ofS. This is done in Claim 2.12-2.14.
The final case whenl = 0 is dealt in Claim 2.15. We remark that Rule (1) of the initial token assignment
scheme and the asymmetry in the definition of out-heavy edgesare crucial in Claim 2.15 and also in many
places in Claim 2.13 and Claim 2.14.

Claim 2.11 Suppose thatS ∈ L owns at least two vertices inW . Then Lemma 2.8 also holds forS.

Proof: The argument here is exactly the same as in base case. We do it again for completeness. Suppose that
S ownsw1, . . . , wl ∈ W wherel ≥ 2. Each vertexwi needs only two tokens to satisfy Lemma 2.8. We will
redistribute the excess tokens from these vertices toS, so thatS has at least four tokens to satisfy Lemma 2.8.

By Assumption 2.5(3), each vertexwi is of degree at least five. By the token assignment scheme, each
vertexwi would have at least five tokens, unless it gives up some token by Rule (1). For Rule (1) to apply,
there must be a heavy edge inδ(S). Sincef(S) = 1, δ(S) can have at most two heavy edges, and so Rule
(1) is applied at most twice for all vertices inW owned byS. Therefore, there are still at least5l − 2 tokens
assigned tow1, . . . , wl by the token assignment scheme. Since each vertex inW owned byS needs only two
tokens, there are3l − 2 excess tokens. Ifl ≥ 2, thenS can collect at least four tokens from these excess
tokens, and thus Lemma 2.8 holds forS. 2

Next, we consider the case whenS owns exactly one vertex inW . We will prove thatS satisfies
Lemma 2.8 in the following three claims. First, we begin withan easy claim.

Claim 2.12 Suppose thatS owns a vertexw in W . If S has a Class III child or at least two Class II children,
then Lemma 2.8 holds forS.

Proof: Let S own a vertexw ∈ W . By Claim 2.9,w has at least four tokens, and soS can collect at least
two tokens fromw. If S has a Class III childR, thenR has four tokens andS can collect two tokens fromR.
Similarly, if S has two Class II childrenR1 andR2, thenS can collect one token from each. In any case,S
can collect at least four tokens, proving the claim. 2

The following claim solves the case whenS has one Class II child.

Claim 2.13 Suppose thatS owns a vertexw in W . If S has at least one Class II child, then Lemma 2.8 holds
for S.

Proof: Let the children ofS beR1, . . . , Rl andR1 be a class II child. IfS has at least two Class II children
or at least one Class III child, then Lemma 2.8 holds forS by Claim 2.12. So, we assume thatS has no Class
III child and at most one Class II child, andR2, . . . , Rl are Class I children. SinceR1 is a class II child and
has at least three tokens,S can collect at least one token fromR1. If w is assigned at least five tokens, thenS

9

can collect three more tokens fromR1, and that would be enough for Lemma 2.8. Therefore, by Claim 2.9,
we assume thatw is assigned exactly four tokens, and there is at least one heavy edgef in δ(w)∩ δ(S). Then
S can collect two more tokens fromw, and needs one more token. IfS owns an endpoint of an edge inE,
thenS can collect one more token. So, we further assume thatS does not own a vertex. The assumptions in
this claim so far are summarized in Figure 5. We will distinguish two cases to finish the proof. Recall thatS
has already collected three tokens, and just needs one more token (ifS is of Class III).

2

1

I

R
R

II

w

+4

f

S

2

1

I

R
R

II

f

S

2E

1E

e

f

3

w

E

1R

II

+1

g

+4

w

2e

S

(c)(b)(a)

Figure 5: This is the case analysis whenS owns a vertex inW and has one Class II childR1.
In (a), we summarize the assumptions after the first paragraph of Claim 2.13: (1)R1 is a Class II child, while all other
children (if any) are Class I children; (2)w is the only vertex inW owned byS, and it received exactly four tokens from
the token assignment scheme, andf is a heavy edge inδ(w) ∩ δ(S). (3)S does not own any vertex other thanw.
In (b), we summarize the argument in the first case. In the firstparagraph, we argue that we can assume that any out-
heavy edge ofRi for i ≥ 2 hasw as an endpoint. The interesting case here is that if the otherendpoint is inRj for
j 6= i, thenS can collect one more token by Rule (1) of the token assignmentscheme. In the second paragraph, we
show that this implies thatd(w) = 6 and there are two heavy edgesf, g in δ(S). In the third paragraph, we argue that
the remaining case left is whenR2 is the only Class I child ofS andR2 is of Class Ia. Finally, in the fourth paragraph,
we show that the remaining case is not possible.
In (c), we summarize the argument in the second case. We arguethatE3 6= ∅, andx(E1) = x(E2) = x(E3) = 1/2.
Then we argue thatR1 must be of Class IIb, andE3 has an out-heavy edge, and soS is also of Class IIb.

1. The first case is when there are some Class I children inS. LetRi be a Class I child fori ≥ 2. By the
definition of Class I,Ri has an out-heavy edgeuv with u ∈ Ri \W andv ∈W \Ri. SinceS does not
own any vertex other thanw (see Figure 5(a)), eitherv = w or v ∈ Rj for j 6= i or v /∈ S. In the second
case whenv ∈ Rj for j 6= i, then this edge gives one token toS by Rule (1) of the token assignment
scheme, and thusS can collect one more token, and we are done. In the last case whenv /∈ S, thenuv
is also an out-heavy edge ofS, and thusS is of Class IIb and only requires three tokens, and we are also
done. Hence, we assume that every out-heavy edge ofRi hasw as an endpoint, as shown Figure 5(b).

Let e2 be an out-heavy edge ofR2. Thenbw = x(δ(w)) > xe2 + xf ≥ 1, as bothe2 andf are
heavy and other edges inδ(w) (which exist asd(w) ≥ 5 by Assumption 2.5(3)) have positive values by
Assumption 2.5(1). This implies thatbw ≥ 2 asbw is an integer, and sod(w) ≥ 6 by Assumption 2.5(3).
We assumed in the first paragraph thatw is assigned exactly four tokens in the token assignment scheme
(see Figure 5(a)). By Claim 2.9, this implies thatbw = 2 andd(w) = 6 and there are two heavy edges
in δ(S) ∩ δ(w).

Let g be the other heavy edge inδ(w) ∩ δ(S). If there is another heavy edgee3 incident onw, then
bw = x(δ(w)) > xe2 + xe3 + xf + xg ≥ 2, asd(w) = 6 and every edge has a positive value by

10

Assumption 2.5(1), contradictingbw = 2. So, there are no other heavy edges incident onw except
f, g, e2. Therefore,R2 is the only Class I child inS andR2 is of Class Ib (as each other Class I child
has at least one other out-heavy edge withw as an endpoint, and ifR2 is of Class Ib child then it has
another out-heavy edge withw as an endpoint).

We will show that this remaining case is not possible. As we have assumed thatS does not own any
endpoint other thanw (see Figure 5(a)), it follows thatδ(w)\δ(S) = δ(w,R1)∪δ(w,R2), andδ(R1) =
δ(w,R1) ∪ δ(R1, R2), andδ(R2) = δ(w,R2) ∪ δ(R1, R2). Sincebw = 2 andx(δ(w) ∩ δ(S)) = 1, it
follows thatx(δ(w) \ δ(S)) = 1. Also,x(δ(R1)) = x(δ(R2)) = 1 asf(R1) = f(R2) = 1. Therefore,
we must havex(δ(w,R1)) = x(δ(w,R2)) = x(δ(R1, R2)) = 1/2. Hence,R2 cannot be of Class Ia,
as otherwisex(δ(w,R2)) ≥ xe2 >

1
2 .

2. The second case is whenR1 is the only child ofS. Consider the three edge setsE1 = δ(w) ∩ δ(S),
E2 = δ(w,R1) andE3 = δ(R1) ∩ δ(S); see Figure 5(c). As we have assumed thatS does not own
any endpoint other thanw (see Figure 5(a)), it follows thatδ(w) = E1 + E2, δ(R1) = E2 + E3 and
δ(S) = E1 + E3. Sinceχδ(S), χδ(w), χδ(R1) are linearly independent, this implies thatE3 6= ∅, as
otherwiseχδ(S) = χδ(w) − χδ(R1). Note thatx(E1) + x(E2) = x(δ(w)) = bw, andx(E2) + x(E3) =
x(δ(R1)) = f(R1) = 1, andx(E1) + x(E3) = x(δ(S)) = f(S) = 1. As bw ≥ 1 is an integer
andx(E3) > 0, the only solution isbw = 1 andx(E1) = x(E2) = x(E3) = 1/2. This implies
that R1 cannot be of Class IIa; otherwise eitherE2 andE3 consists of a single heavy edge (since
|δ(R1)| = |E2| + |E3| = 3 for a Class IIa child), contradicting thatR1 is of Class IIa. So,R1 must be
of Class IIb, and thus there is an out-heavy edgee in δ(R1). If e ∈ E2, thenbw > xe + xf ≥ 1, as
d(w) ≥ 5 and other edges have positive values, contradicting thatbw = 1. Therefore,e ∈ E3. Then,e
is also an out-heavy edge ofS. So,S is of Class IIb and only needs three tokens, and we are done.

We have considered all the cases whenS has at least one Class II child, and Lemma 2.8 holds forS. 2

The following claim solves the case whenS has only Class I children, which has many cases in the proof.

Claim 2.14 Suppose thatS owns a vertex inW . Then Lemma 2.8 holds forS.

Proof: By Claim 2.12 and Claim 2.13, ifS has at least one Class II child or one Class III child, then
Lemma 2.8 holds forS. So it remains to consider the case whenS has only Class I children. LetR1, . . . , Rl

be the Class I children ofS. By the definition of Class I, there are no heavy edges with oneendpoint in
one Class I child and another endpoint in another Class I child. Leth be the number of out-heavy edges of
R1 ∪ . . . ∪Rl that are also inδ(S). Notice that it suffices to collect4− h tokens forS to prove the claim. In
the following, we distinguish two cases, whenh ≥ 1 and whenh = 0.

1. We consider the case whenh ≥ 1. See Figure 6 for an illustration. Lete1 be an out-heavy edge in
δ(S) ∩ δ(R1). ThenS is of Class IIb, and only needs three tokens. Ifw is assigned at least five tokens
by the token assignment scheme, thenS can collect three tokens fromw, and we are done. So, by
Claim 2.9, we assume thatw has exactly four tokens. ThenS can collect two tokens fromw, and needs
only one more token. Asf(S) = 1 and there is already a heavy edgee1 ∈ δ(S), Case (2) of Claim 2.9
cannot happen. So, by Claim 2.9, the only possibility left isthat bw = 1, d(w) = 5 and there is one
heavy edgef in δ(w)∩δ(S). This implies thatδ(S) = {e1, f}, asf(S) = 1 ande1, f are heavy edges.
Suppose thatS has another Class I childR2. ThenR2 has an out-heavy edgee2. Sincee2 /∈ δ(S),
this implies thate2 ∈ δ(w), asw is the only vertex inW owned byS. However, sinced(w) = 5 and
every edge has a positive value, this implies thatbw = x(δ(w)) > xe2 + xf ≥ 1, a contradiction to
Claim 2.9. SoR2 does not exist. HenceR1 is the only child ofS. Sinced(w) = 5, d(R1) = 2, and
|δ(w) ∩ δ(S)| = 1, there must be an edge(w, x) with x ∈ S −R1. SoS can collect one token fromx,
as required.

11

x
2e+1

w

f

+4

1e

2

1

R
R

S

Figure 6: We illustrate the argument in the subcase whenh ≥ 1, which is in the case whenS owns only one vertexw
in W and all the children ofS are of Class I.

2. Next we consider the case whenh = 0. Then, every out-heavy edge ofRi is incident onw, asw is
the only vertex inW that is owned byS. By the token assignment scheme,w receives one token from
each of its incident edge, except when Rule (1) applies in which casee is a heavy edge inδ(S). Since
f(S) = 1, there are at most two heavy edges inδ(S), and sow receives at leastd(w)− 2 tokens by the
token assignment scheme. Therefore, ifd(w) ≥ 8, thenw has at least six tokens, andS can collect four
tokens fromw, and we are done. Henceforth, we assume that7 ≥ d(w) ≥ 5 (by Assumption 2.5(3)),
and we further consider three subcases depending on the value ofd(w).

In the following subcases, recall that we assumed thatS owns only one vertexw in W , every childRi

of S is of Class I, and every out-heavy edge ofRi is incident onw.

3R

2R
1R

w

S

Figure 7: In this figure, we are in the case (2a) of Claim 2.14, in whichS owns only one vertexw in W , every child
Ri of S is of Class I, every out-heavy edge ofRi is incident onw, and furthermored(w) = 7. We further restrict this
subcase to the scenario when there are two heavy edges inδ(w) ∩ δ(S), S does not own any vertex other thanw, and
δ(w) \ δ(S) = δ(w,∪li=1

Ri), and argue that it is not possible.

(a) Suppose thatd(w) = 7. If there is at most one heavy edge inδ(w) ∩ δ(S), thenw receives at
least six tokens by the token assignment scheme, andS can collect four tokens fromw, and this
is enough. So, assume that there are two heavy edges inδ(w) ∩ δ(S), and hence|δ(w) ∩ δ(S)| =
|δ(S)| = 2. Then,w receives exactly five tokens by the token assignment scheme,andS can
collect three tokens fromw, and it needs one more. IfS owns an endpoint other thanw, then

12

S can collect one more token, and we are done. So, we further assume thatS does not own an
endpoint other thanw. Therefore,δ(w) \ δ(S) = δ(w,∪li=1Ri). See Figure 7 for an illustration.

We argue that the remaining case is not possible. Note that|δ(w,∪li=1Ri)| = |δ(w) \ δ(S)| =
|δ(w)| − |δ(w) ∩ δ(S)| = 7 − 2 = 5. Sinced(Ri) = 2 for each Class I child, this implies that
l ≥ 3. EachRi has an out-heavy edgeei incident onw. If l ≥ 4, sinced(w) = 7 and every edge
has a positive value, it follows thatbw = x(δ(w)) > x(δ(w)∩ δ(S))+xe1 +xe2 +xe3 +xe4 ≥ 3,
a contradiction tod(w) ≥ bw + 4 by Assumption 2.5(3). Therefore,S must have exactly three
childrenR1, R2, R3. Since|δ(w,∪li=1Ri)| = 5, there are exactly two children with|δ(Ri)| =
|δ(w,Ri)| = 2, sayR1 andR2. Again,bw = x(δ(w)) = x(δ(w)∩δ(S))+x(δ(R1))+x(δ(R2))+
xe3 ≥ 1 + 1 + 1 + 1

2 > 3, a contradiction tod(w) ≥ bw + 4 by Assumption 2.5(3).

(b) Supposed(w) = 6. This implies thatbw ≤ 2 by Assumption 2.5(3). Also, sinced(w) = 6 and
every edge has a positive value, there are at most three heavyedges incident tow.

If there is no heavy edge inδ(w)∩δ(S), thenw receives at least six tokens by the token assignment
scheme, andS can collect four tokens fromw, which is enough. So, assume that there is at least
one heavy edge inδ(w) ∩ δ(S).

Suppose that there are two heavy edges inδ(w)∩δ(S). See Figure 8(a) for an illustration. Thenw
receives at least four tokens by the token assignment scheme, andS can collect two tokens from
w, and it needs two more. Sincef(S) = 1, |δ(w)∩ δ(S)| = |δ(S)| = 2. Each childRi is of Class
I, and has one out-heavy edge incident onw. As there are at most three heavy edges incident to
w, the only possibility is thatS has exactly one childR1. Sinced(w) = 6, |δ(w)∩ δ(S)| = 2 and
|δ(w) ∩ δ(R1)| ≤ 2, there are at least two edges inδ(w) with the other endpoint inS − R1, and
soS can collect two tokens from these two endpoints, and we are done.

SS

2

1

R
R

f

S

(c)

e

2

1

f

f

e

1e

1R

(b)(a)

w

f

w

1R

w

2

Figure 8: In this figure, we are in the case (2b) of Claim 2.14, in whichS owns only one vertexw in W , every child
Ri of S is of Class I, every out-heavy edge ofRi is incident onw, and furthermored(w) = 6. We further argue that
there are at most three heavy edges incident tow.
In (a), we consider the scenario when there are two heavy edges inδ(w)∩ δ(S), in whichS can collect two tokens from
w and two tokens from two other endpoints that it owns.
In (b), we consider the scenario when there is exactly one heavy edgef in δ(w) ∩ d(S) andS has exactly two children
R1 andR2. We further assume thatS does not own any vertex other thanw. Then, no matter how we place the other
edge ofRi, we reach a contradiction.
In (c), we consider the scenario when there is exactly one heavy edgef in δ(w) ∩ d(S) andS has exactly one childR1.
We further assume thatS does not own any vertex other thanw, but then it implies that the characteristic vectors are
linearly dependent.

13

Henceforth, we assume that there is exactly one heavy edgef in δ(w) ∩ δ(S). By the token
assignment scheme,w receives at least five tokens. So,S can collect three tokens fromw, and
it needs only one more. IfS owns another endpoint other thanw, thenS can collect one more
token, as required. So, we further assume thatS does not own an endpoint. We assumed that each
Ri has an out-heavy edgeei incident onw (ash = 0 in Case (2); see the caption in Figure 8).
As there are at most three heavy edges incident onw (asbw ≤ 2 in Case (2b); see the caption in
Figure 8) and one of these heavy edges is inδ(S), S has at most two children. In the following
two paragraphs, we will consider the two scenarios whenS has exactly two children (Figure 8(b))
andS has exactly one child (Figure 8(c)). Recall thatS only needs to collect one more token.

SupposeS has exactly two childrenR1 andR2. We will show in this paragraph that this case is
not possible; see Figure 8(b). Since eachRi has an out-heavy edgeei incident onw, there are
three heavy edges incident onw, Thusbw > 1, and sobw = 2 (as we assumedbw ≤ 2 in Case
(2b)). If δ(w,Ri) = δ(Ri), thenbw > xf + x(δ(R1)) + xe2 ≥ 1/2 + 1 + 1/2 = 2, asd(w) = 6
and every edge has a positive value, a contradiction. Hence,we assume thatδ(w,R1) = {e1} and
δ(w,R2) = {e2}. Supposeδ(R1, R2) 6= ∅. Let δ(R1, R2) = {e}. Then,xe + xe1 = x(δ(R1)) =
f(R1) = 1, andxe+xe2 = x(δ(R2)) = f(R2) = 1, andxe1+xe2 = x(δ(w))−x(δ(w)∩δ(S)) =
bw − f(S) = 1. Therefore,xe = xe1 = xe2 = 1/2, but thene is a heavy edge between two Class
I children, a contradiction to the definition of Class I. So, we must haveδ(R1, R2) = ∅. Let
R1 = {e1, f1} andR2 = {e2, f2}. The only possibility left isf1 ∈ δ(S) andf2 ∈ δ(S). Note
that xe1 + xf1 = x(δ(R1)) = f(R1) = 1, andxe2 + xf2 = x(δ(R2)) = f(R2) = 1, and
xe1 +xe2 +x(δ(w)∩ δ(S)) = x(δ(w)) = bw = 2, andxf1 +xf2 +x(δ(w)∩ δ(S)) = x(δ(S)) =
f(S) = 1. Solving these equations, we havex(δ(w) ∩ δ(S)) = 1/2. Sincef ∈ δ(w) ∩ δ(S) is a
heavy edge, this implies thatf is the only edge inδ(w) ∩ δ(S). But thenδ(w) = {e1, e2, f}, and
henced(w) = 3, a contradiction.

The final remaining case is whenS has exactly one childR1, and there is exactly one heavy
edgef in δ(w) ∩ δ(S). See Figure 8(c) for an illustration. Recall thatS only needs to collect
one more token, when there is exactly one heavy edgef in δ(w) ∩ δ(S). If S owns an endpoint
other thanw, thenS can collect one more token, as required. So, we further assume thatS
does not own an endpoint other thanw. We prove that this case would not happen. Note that
x(δ(w) ∩ δ(S)) + x(δ(w,R1)) = x(δ(w)) = bw = 2, andx(δ(w,R1)) + x(δ(R1) ∩ δ(S)) =
x(δ(R1)) = f(R1) = 1, andx(δ(w) ∩ δ(S)) + x(δ(R1) ∩ δ(S)) = x(δ(S)) = f(S) = 1.
Solving these equations, we havex(δ(R1)∩ δ(S)) = 0. Therefore,δ(w,R1) = δ(R1), and hence
χδ(w) = χδ(R1) + χδ(S), contradicting the linear independence of these characteristic vectors.

(c) Supposed(w) = 5. See Figure 9 for an illustration. This implies thatbw ≤ 1 by Assump-
tion 2.5(3), and hencebw = 1. Also, sinced(w) = 5 and every edge has a positive value, there is
at most one heavy edge incident onw. Each childRi has a heavy edgeei incident onw. So,S has
exactly one childR1, and there is no heavy edge inδ(w)∩δ(S). By the token assignment scheme,
w receives five tokens, andS can collect three tokens fromw, and it needs only one more. IfS
owns an endpoint, thenS can collect one more token, as required. So, we further assume thatS
does not own an endpoint.

We prove that this remaining case is not possible. Note thatx(δ(w) ∩ δ(S)) + x(δ(w,R1)) =
x(δ(w)) = bw = 1, andx(δ(w,R1)) + x(δ(R1) ∩ δ(S)) = x(δ(R1)) = f(R1) = 1, and
x(δ(w) ∩ δ(S)) + x(δ(R1) ∩ δ(S)) = x(δ(S)) = f(S) = 1. Solving these equations, we have
x(δ(R1) ∩ δ(S)) = x(δ(w,R1)) = x(δ(w) ∩ δ(S)) = 1/2. Sinced(R1) = 2, there is only one
edgee ∈ δ(R1) ∩ δ(S), havingxe = 1/2. By the definition of Class I,e must be an out-heavy
edge ofR1 in δ(S), contradictingh = 0 assumed in Case (2).

14

e
1R

w

S

Figure 9: In this figure, we are in the case (2c) of this claim, in whichS owns only one vertexw in W , every childRi

of S is of Class I, every out-heavy edge ofRi is incident onw, and furthermored(w) = 5. We further restrict this to the
scenario whenS has only one (Class I) childR1, there is no heavy edge inδ(w) ∩ δ(S), andS does not own any vertex
other thanw.

We have considered all the cases and completed the proof of Claim 2.14. 2

Proof of Lemma 2.8: We now complete the proof of Lemma 2.8 by solving the case whenS does not own
any vertex inW . Let h be the number of out-heavy edges inS, and lett be the number of tokens thatS can
collect (from the vertex that it owns, from the excess tokensthat its children have, or from the token that it
receives from Rule (1) of the token assignment scheme). In the following, we say that a nodeR is of Type A
if R is of Class Ia or of Class IIa. To prove Lemma 2.8, it suffices tohaveh + t ≥ 4 if S is not of Type A,
andh+ t ≥ 3 if S is of Type A.

Claim 2.15 Suppose thatS does not own a vertex inW . Each Class Ib, Class IIb, or Class III childR of S
can contribute at least2 to h+ t. And each Class Ia, Class IIa child can contribute at least1 to h+ t.

Proof: If R is of Class III, then it has two excess tokens, and so it contributes two tot. And if R is of Class
IIa, then it has one excess token, and so it contributes one tot.

If R is of Class IIb, then it has one excess token which contributes one tot, and one out-heavy edge
e ∈ δ(R). If e ∈ δ(S), thene contributes one toh. Otherwise, sinceS does not own any vertex inW , the
other endpoint ofe is in some other childR′ of S. Then,e contributes one tot by Rule (1) of the token
assignment scheme. So,e contributes one toh+ t, and thusR contributes two toh+ t.

Finally, we consider Class I children. By the same argument as above, each out-heavy edge contributes
one toh+ t, By definition, an edge can be an out-heavy edge of at most one child of S, and so its contribution
to t will not be double counted. IfR is of Class Ib, then it has two out-heavy edges, and so it contributes two
to h+ t. If R is of Class Ia, then it has one out-heavy edge, and it contributes one toh+ t. 2

We are ready to finish the proof of Lemma 2.8 by considering thenumber of children ofS. Recall that it
suffices to haveh+ t ≥ 4 if S is not of Type A, andh+ t ≥ 3 if S is of Type A.

1. S has at least four children. By Claim 2.15, each child can contribute at least one toh + t, and so
h+ t ≥ 4.

2. S has exactly three children. If there is a child which is not ofType A, thenh + t ≥ 4 by Claim 2.15,
and we are done. So, we assume thatS has exactly three Type A childrenR1, R2, R3. If S owns an
endpoint, then alsoh + t ≥ 4. So, we further assume thatS does not own an endpoint. See Figure 10
for an illustration. We divide this case into two subcases, depending on whetherS has a Class Ia child.

15

S

(a)

R1

R2

R3

e1

f1

S

R1

R2

R3

(b)

Figure 10: In this figure, we are in the case whenS has exactly three children andS does not own any vertex inW .
We assume that all children are of Type A, andS does not own any vertex.
In (a), we consider the subcase whenS has a Class Ia childR1. We argue thatS is of Class Ia, and only require two
tokens, and can collect two tokens fromR2 andR3, which must be of Class IIa.
In (b), we consider the other subcase whenS has three Class IIa childrenR1, R2, R3. Jain’s proof implies thatS is also
of Class IIa, and thus it only requires three tokens, and so itcan collect one token from eachRi.

The first subcase is whenS has a Class Ia child. Each Class Ia childRi has an out-heavy edgeei with
xei > 1/2. Note that the other endpoint ofei cannot be in another childRj of S for i 6= j, by the
definition of Type A children. Also, sinceS does not own any vertex inW by Claim 2.14, this implies
that ei must be inδ(S). Hence, sincef(S) = 1, S can have at most one Class I child, sayR1. Let
δ(R1) = {e1, f1}, wheree1 is the out-heavy edge ofR1. Assume, without loss of generality, that
f1 ∈ δ(R2). Sincef(S) = 1, we must have|δ(R2, R3)| = 2; otherwise|δ(R3) ∩ δ(S)| ≥ 2 and thus
f(S) = x(δ(S)) = xe1 +x(δ(R3)∩ δ(S)) > 1/2+ (1− 1/2) = 1, since|δ(R3)| = 3 and each edgee
in δ(R3) hasxe < 1/2 by the definition of Class IIa. Since|δ(R2, R3)| = 2, this implies thatd(S) = 2,
and henceS is of Class Ia and only requires two tokens. In fact,S can collect two tokens, one token
from R2 and one token fromR3, and we are done.

The second subcase is whenR1, R2, R3 are all Class IIa children. We use the following lemma in Jain’s
proof.

Lemma 2.16 (Lemma 23.18 of [22])Thecorequirementof a setS is defined asd(S)/2− f(S). Sup-
poseS hasα children and ownsβ endpoints, whereα + β = 3. Furthermore, each child ofS, if any,
has a corequirement of1/2. Then,S also has a corequirement of1/2.

In our case, whenf(S) = 1, S has a corequirement1/2 if and only if d(S) = 3; in particular, a Class
IIa node has a corequirement1/2. Therefore, Lemma 2.16 implies thatS is also of Class IIa, and thus
it only requires three tokens. So,S can collect three tokens, one from eachRi, as required.

3. S has exactly two childrenR1 andR2. If bothR1 andR2 are not of Type A, since each can contribute
two toh+ t by Claim 2.15, then we are done. We divide this case into two subcases, depending on the
number of Type A children.

The first subcase is whenR1 is of Type A andR2 is not of Type A. See Figure 11(a) for an illustration.
So, by Claim 2.15,R1 can contribute one toh + t andR2 can contribute two toh + t, and soS
needs only one more token. IfS owns an endpoint, then we are done. So, we further assume that
S does not own an endpoint. We shall prove that this would not happen. In this case,x(δ(R1) ∩

16

δ(S)) + x(δ(R1, R2)) = x(δ(R1)) = f(R1) = 1, x(δ(R1) ∩ δ(S)) + x(δ(R2) ∩ δ(S)) = x(δ(S)) =
f(S) = 1, andx(δ(R2) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R2)) = f(R2) = 1, and hence we must have
x(δ(R1) ∩ δ(S)) = x(δ(R1, R2)) = x(δ(R2) ∩ δ(S)) = 1/2. Therefore,R1 cannot be of Class Ia,
since otherwise it has an edge withxe > 1/2. Also,R1 cannot be of Class IIa, sinced(R1) = 3, either
δ(R1, R2) or δ(R2) ∩ δ(S) is a single edgee with xe = 1/2, contradicting thatR2 is of Class IIa.

v

(b)

1R

S

2R

1/2
1/2

1/2

A
1R

(a)

R

e1

IIa

IIa

IIa

Ia

(c)

2R

v

1R

S

2

S

Figure 11: In this figure, we are in the case whenS has exactly two childrenR1, R2 andS does not own any vertex in
W .
In (a), we consider the subcase whenR1 is of Type A andR2 is not of Type A. We further assume thatS does not own
a vertex. Then we argue that this cannot happen, asR1 cannot be of Type A.
In (b), we consider the scenario when bothR1 andR2 are of Type A andR1 is of Class Ia. We further assume that
S owns exactly one endpointv. Then we show thatS is also of Class Ia, and only requires two tokens, which can be
collected fromR2 andv.
In (c), we consider the scenario when bothR1 andR2 are of Type A andR1 is of Class IIa. We further assume thatS
owns exactly one endpointv. Then we show thatS is also of Class IIa, and only requires three tokens, which can be
collected fromR1, R2 andv.

The second subcase is when bothR1 andR2 are of Type A. By Claim 2.15, eachRi can contribute one
to h + t, andS needs at most two more tokens. IfS owns two endpoints, then we are done. By the
same argument as in the above paragraph, it cannot be the casethatS does not own any vertex, and so
S must own at least one endpoint. So, we assume thatS owns exactly one endpointv. SupposeR1 is of
Class Ia, then its out-heavy edgee1 must be inδ(S). See Figure 11(b) for an illustration. So,R2 cannot
be of Class Ia; otherwisex(δ(S)) > 1. If R2 is of Class IIa, then we cannot have|δ(R1, R2)| ≥ 2 since
d(R1) = 2, and also cannot have|δ(R2) ∩ δ(S)| ≥ 2 sincef(S) = 1. Therefore, the only possibility
is |δ(R1, R2)| = |δ(v,R2)| = |δ(R2) ∩ δ(S)| = 1. Hence,d(S) = 2 and soS is of Class Ia and
only requires two tokens. In fact,S can collect two tokens, one fromR2 and one fromv, as required.
Finally, supposeR1 andR2 are of Class IIa. See Figure 11(c) for an illustration. Then,S is of Class
IIa by Lemma 2.16, and only requires three tokens. AndS can collect three tokens, one fromR1, one
from R2 also one fromv, as required.

4. S has exactly one childR. By linear independence ofχδ(S) andχδ(R) andf(S) = f(R) = 1, there
must be one edgef ∈ δ(S) − δ(R) and one edgeg ∈ δ(R) − δ(S). Hence,S must own at least two
endpoints, and thus can collect two tokens. IfR is not of Type A, thenR contributes two toh + t by
Claim 2.15, andS has at least four tokens, and we are done. So, we assume thatR is of Type A. We
divide this into two subcases, depending on whetherR is of Class Ia or Class IIa.

The first subcase is whenR is of Class Ia. See Figure 12(a) for an illustration. SinceS does not own
any vertex inW , the out-heavy edge ofR must be inδ(S). Then,S is of Class IIb and only require

17

f

gg

f

IIaIa

(b)

R

S

R

(a)

S

Figure 12: In this figure, we are in the case whenS has exactly one childR andS does not own any vertex inW .
In (a), we consider the subcase whenR is of Class Ia.
In (b), we consider the subcase whenR is of Class IIa.

three tokens. IfS owns at least three endpoints, thenS can collect three tokens, and we are done. So,
we assume thatS owns exactly two endpoints. Then, we must havexf = xg andd(S) = 2, and thusS
is also of Class Ia and only requires two tokens, and we are also done.

The second subcase is whenR is of Class IIa. See Figure 12(b) for an illustration. IfS owns at least
three endpoints, thenS can collect four tokens, three tokens from the endpoints andone token fromR,
and we are done. So, we assume thatS owns exactly two endpoints. Then, we must havexf = xg and
d(S) = 3. SinceR is of Class IIa, this implies thatS of also of Class IIa and only requires three tokens.
Note thatS can collect two tokens from the endpoints and one token fromR, and we are also done.

We have considered all the cases and completed the proof of Lemma 2.8. 2

As shown in the end of Section 2.3, Lemma 2.8 implies Lemma 2.3, which in turns implies Theorem 1.1.

3 Minimum Bounded Degree Steiner Networks

In this section, we prove Theorem 1.2. The linear programming relaxation is exactly the same as in the
previous section, except that the functionf is not necessarily a{0, 1}-valued function.

3.1 Algorithm

Our approximation algorithm for the minimum bounded degreeSteiner network problem is also an iterative
algorithm. It is similar to the algorithm for the minimum bounded degree Steiner forest problem, with the
following main difference. In Step 2a, we define a set ofhigh degree verticesWh = {v ∈ W | x(δ(v)) ≥
6fmax}, wherefmax := maxS⊆V f(S). This set of vertices plays the same role as the set of vertices with no
degree constraints in the Steiner forest algorithm. Then, in Step 2d, we only pick a heavy edge when both of
its endpoints are not high degree vertices. This step ensures that the degree bounds are only violated by an
additive term.

First, we show that the algorithm returns a solution with theclaimed guarantees for cost and degree
in Theorem 1.2, assuming that the algorithm always proceedsin each of the iterations. Then, we show in
Lemma 3.2 that one of the conditions to proceed must be satisfied for any extreme point solution to the linear
program.

18

Minimum Bounded Degree Steiner Network

1. InitializationF ← ∅, f ′(S)← f(S) for all S ⊆ V .

2. WhileF is not a Steiner network do

(a) Computing an optimal extreme point solution:
Find an optimal extreme point solutionx satisfyingf ′ and remove every edgee with xe = 0.
SetWh = {v ∈W | x(δ(v)) ≥ 6fmax} andbv = x(δ(v)) for v ∈W .

(b) Removing a degree constraint:
For everyv ∈W with degree at most four, removev from W .

(c) Picking an 1-edge:
For each edgee = (u, v) with xe = 1, adde toF , removee from G, and decreasebu, bv by one.

(d) Picking a heavy edge with both endpoints low:
For each edgee = (u, v) with xe ≥ 1/2 andu, v /∈Wh, adde toF , removee from G,
and decreasebu andbv by 1/2.

(e) Updating the connectivity requirement function:
For everyS ⊆ V , setf ′(S)← f(S)− dF (S).

3. ReturnF .

Lemma 3.1 If in each iteration one of the conditions in Step 2b, Step 2c or Step 2d is satisfied, then the
algorithm returns a Steiner network with cost at most twice the optimal linear programming solution and the
degree bound of each vertex is violated by at most6rmax + 3.

Proof: The proof is by a standard inductive argument. We provide a short explanation. Note thatf ′ in each
iteration remains a skew supermodular function, and so Lemma 3.2 continues to hold. Since we always pick
an edge withxe ≥ 1/2 and the remaining fractional solution is a feasible solution for the residual problem,
the cost of the solution returned is at most twice the cost of the linear programming solution as claimed in
Theorem 1.2.

Next, we bound the degree violation of a vertexv. First, observe that whilev ∈ Wh, we pick at most
bv − 6fmax edges incident onv, as we only do that in Step 2c and the degree bound ofv is reduced by one
whenever such an edge is picked. Whenv ∈W −Wh, we pick at most12fmax− 1 edges incident onv, since
we only do that in Step 2d or Step 2c and the degree bound is reduced by at least1/2 whenever we include
such an edge. Finally, whenv /∈ W , we pick at most four edges incident onv, since the degree ofv is at
most four by Step 2b. Hence, the number of edges picked that are incident onv is at most(bv − 6fmax) +
(12fmax − 1) + 4 = bv + 6fmax + 3. 2

For the correctness of the algorithm, we shall prove the following lemma in Section 3.2, which will ensure
that the algorithm terminates with a feasible solution, completing the proof of Theorem 1.2. The rest of this
section is devoted to the proof of Lemma 3.2.

Lemma 3.2 Letx be an extreme point solution to (LP),W be the set of vertices with degree constraints, and
Wh = {v ∈W | x(δ(v)) ≥ 6fmax}. Then at least one of the following is true.

1. There exists an edgee with xe = 1.

2. There exists an edgee = {u, v} with xe ≥ 1/2 andu, v /∈Wh.

19

3. There exists a vertexv ∈W with d(v) ≤ 4.

3.2 A Counting Argument

We shall prove Lemma 3.2 by a counting argument. Suppose, by way of contradiction, that none of the
conditions in the lemma holds. Then each edgee has0 < xe < 1, and each edgee with 1 > xe ≥ 1/2
(we call such an edge aheavy edge) must have at least one endpoint inWh, and each vertex inW must have
degree at least five.

We shall give two tokens for each edge (the initially token assignment scheme is explained below) for
a total of 2|E| tokens. Then, the tokens will be reassigned so that each member of L gets at least two
tokens, each vertex inT gets at least two tokens, and there are some extra tokens left. This will contradict
|E| = |L|+ |T | of Lemma 2.1, and thus completes the proof.

Our analysis is similar to Jain’s analysis, the main difference being the existence of heavy edges (with an
endpoint inWh), which our algorithm is not allowed to pick. In the following, we say a vertex inWh is a
high vertex. Since there are some heavy edges, a setS ∈ L may only have two edges inδ(S), and henceS
may not be able to collect at least three tokens as in Jain’s proof. To overcome this, we use a different token
assignment scheme so that a similar induction hypothesis asJain’s works.

Initial token assignment scheme:If e = {u, v} is a heavy edge,u ∈Wh andv /∈W , thenv gets two tokens
from e andu gets zero token. For every other edgee, one token is assigned to each endpoint ofe.

Co-requirement: We also need to refine the definition of co-requirement for thepresence of heavy edges:

coreq(S) =
∑

e∈δ(S), xe<1/2

(1/2 − xe) +
∑

e∈δ(S), xe≥1/2

(1− xe).

It is useful to note that this definition reduces to Jain’s definition of co-requirement if every heavy edge
e with xe ≥ 1/2 is thought of as two parallel edges, each aiming to achieve a value of1/2 but sharing the
currentxe value equally (i.e. each getsxe/2), so that summing1/2 − xe/2 over the two parallel edges gives
1− xe.

After this initial assignment, each vertex inV \ Wh receives at least as many tokens as its degree. In
particular, each vertex inW \Wh receive at least five tokens as their degree is at least five. Note that a vertex
v ∈ Wh might not have any tokens if all the edges incident on it are heavy edges. By exploiting the fact that
f(S) ≤ fmax, however, we shall show that vertices inWh canget backenough tokens. Finally, by the initial
token assignment scheme, an endpointv /∈ W can get two tokens from a heavy edge incident on it, because
the other endpoint of the heavy edge must be inWh.

We are ready to prove the following lemma which shows that thetokens can be reassigned as discussed
previously.

Lemma 3.3 For any subtree ofL rooted at nodeS, we can reassign tokens initially assigned to vertices inS
such that each vertex inT ∩ S gets at least two tokens, each node in the subtree gets at least two tokens, and
the rootS gets at least three tokens. Moreover, the rootS gets exactly three tokens only ifcoreq(S) = 1/2.

We now proceed by induction on the height of the subtree to prove Lemma 3.3. We first prove the base
case of the induction hypothesis where we also show a crucialClaim 3.4, which handles all sets that own
some vertices inW . We then use this claim in the main induction proof to complete the proof of Lemma 3.3.

Proof of base case of Lemma 3.3:LetS ∈ L be a leaf node. First, consider the case whenS ∩W = ∅. Then
S can get at leastδ(S) tokens from the vertices owned byS. Note that|δ(S)| ≥ 2, asx(δ(S)) is an integer
and there is no 1-edge. If|δ(S)| ≥ 4, thenS gets at least four tokens. If|δ(S)| = 3 andδ(S) contains a heavy
edge, thenS can get four tokens from the vertices it owns, since an endpoint v /∈W of a heavy edge has two

20

tokens by the token assignment scheme. If it does not containa heavy edge, thenS receives three tokens and
coreq(S) = 1/2. If |δ(S)| = 2, then at least one edge is a heavy edge. If both edges are heavy, thenS can get
four tokens; otherwise if only one edge is heavy then it gets three tokens and coreq(S) = 1/2.

Next, we consider the case whenS owns a vertexv ∈ S ∩ (W \Wh) but S does not own a vertex in
Wh. By the token assignment scheme,v receives at least five tokens. Sincev only needs two tokens, it has
three excess tokens which it can give toS. If there are two such vertices orS owns another endpoint, thenS
gets at least four tokens as required. Otherwise, we haveχδ(v) = χδ(S), which is a contradiction to the linear
independence of the characteristic vectors as stated in Lemma 2.1.

Finally, we consider the case whenS owns a vertex inWh, and show thatS can collect enough tokens for
the inductive argument. The following claim is the key to deal with degree constraints, which uses crucially
the parameterfmax. This claim holds also whenS is not a leaf in the laminar family, and will be used in the
induction step.

Claim 3.4 Suppose that the induction hypothesis holds for each child of S and thatS ownsr ≥ 1 vertices in
Wh. Then the number of excess tokens from the children ofS, plus the number of tokens owned byS, plus the
number of tokens left with vertices inWh owned byS is at least2r + 4.

Proof: Let S havec children. As each child has at least one excess token by the induction hypothesis, if
c ≥ 6r then we have6r tokens which is at least2r + 4. Hence, we assume thatc < 6r.

LetOh denote the vertices inWh owned byS. LetB :=
∑

v∈Oh
x(δ(v)) =

∑
v∈Oh

bv ≥
∑

v∈Oh
6fmax =

6rfmax. Informally, vertices inWh owned byS would have collected a total of at leastB tokens if the two
tokens at each edge were distributed evenly. However, by theinitial token assignment scheme, some vertices
in Oh may not get any token for the heavy edges incident on them. We are going to show that these vertices
can still “get back” the two tokens they need for the inductive argument.

For a childR of S, x(δ(R)) = f(R) ≤ fmax and similarlyx(δ(S)) ≤ fmax. Thus

x((∪v∈Oh
δ(v)) ∩ (∪Rδ(R) ∪ δ(S))) ≤ x(∪Rδ(R) ∪ δ(S)) ≤ (c+ 1)fmax.

Therefore, ∑

v∈Oh

∑

u:u owned by S

xuv ≥ B − (c+ 1)fmax ≥ fmax(6r − c− 1).

Since there is no 1-edge, there are at leastfmax(6r − c − 1) + 1 endpoints in the above sum where both the
endpoints are owned byS. Let e = {u, v} be such an edge withv ∈ Oh. If u ∈W , then bothu andv get one
token frome in the initial assignment. Ifu /∈ W , thenu gets two tokens frome in the initial assignment, but
these two tokens are owned byS. So, the number of tokens owned byS plus the number of tokens left with
vertices inOh is at leastfmax(6r − c− 1) + 1. Furthermore,S can also collect one excess token from each
child. So, the total number of tokensS can collect is at leastfmax(6r− c− 1) + c+1, which is a decreasing
function ofc. As c < 6r, the number of tokens is minimized atc = 6r − 1, which is at least6r ≥ 2r + 4. 2

In the base case, whenS owns a vertex inWh, S can collect2r+4 tokens by Claim 3.4. So, these tokens
can be reassigned so thatS has four tokens and each vertex inWh owned byS has two tokens, which is
enough for the induction hypothesis. 2

Proof of the induction step: The presence of heavy edges withxe ≥ 1/2 introduces some difficulties in
carrying out the inductive argument in [9]. We need to prove some lemmas which work with the new notion
of co-requirement and the presence of heavy edges.

For any setS, letwdeg(δ(S))

= |{e ∈ δ(S) : 0 < xe < 1/2}| + 2|{e ∈ δ(S) : xe ≥ 1/2}|

21

be theweighted degreeof S. This definition is keeping with the idea of thinking each edge withxe ≥ 1/2 as
two parallel edges. Observe that for anyv /∈ W , v receives exactlywdeg(v) tokens in the initial assignment
as it gets one token for each edge and two tokens for all heavy edges incident on it.S can take all the tokens
for all the vertices it owns which are not inW . We call these thetokens owned byS. LetG′ = (V,E′) be the
graph formed by replacing each heavy edgee by two edgese′ ande′′ such thatxe′ = xe′′ = xe/2. Observe
that

coreq(S) =
∑

e∈δ(S)∩E, xe<1/2

(1/2 − xe) +
∑

e∈δ(S)∩E, xe≥1/2

(1− xe) =
∑

e∈δ(S)∩E′

(1/2 − xe),

andwdeg(δ(S)) = |δ′(S)| whereδ′(S) = {e ∈ E′ : e ∈ δ(S)}. Observe that coreq(S) is integral orsemi-
integral (half-integral but not integral) depending on whetherδ′(S) is even or odd. We first prove the same
technical lemma as in Jain [9] with the new definitions of co-requirements and weighted degrees.

Claim 3.5 LetS be a set inL which ownsα tokens and hasβ children whereα + β = 3 and does not own
any vertex ofW . Furthermore, each child ofS, if any, has a co-requirement of1/2. Then the co-requirement
of S is 1/2.

Proof: Since each childR of S has a co-requirement of half, this implies that|δ′(R)| is odd. Note that we
assumeS does not own any vertex ofW . Using these facts and thatα + β = 3, the same argument as in
Exercise 23.3 of [22] can be used to show that|δ′(S)| is odd. Hence, the co-requirement ofS is semi-integral.
Now, we show that coreq(S) < 3/2, proving the claim. Clearly,

coreq(S) =
∑

e∈δ′(S)

(1/2 − xe) ≤
∑

R

coreq(R) +
∑

e

(1/2 − xe),

where the first sum is over all childrenR of S and the second sum is over all edges for whichS owns a
token. Sinceα + β = 3, there are a total of three terms in the sum. Since any term in the first sum is1/2
and in the second sum is strictly less than1/2, if α > 0 then we have coreq(S) < 3/2 which proves the
claim. So, assumeα = 0, i.e. S does not own any token. In this case, edges incident to children ofS cannot
all be incident atS, since otherwise it will violate the linear independence ofcharacteristic vectors inL in
Lemma 2.1. Therefore, we have coreq(S) <

∑
R coreq(R) = 3/2, proving the claim. 2

We are now ready to prove that the induction step holds, in which S has at least one child. IfS owns a
vertex inWh, then Claim 3.4 shows that the induction hypothesis holds. Henceforth, we assume thatS does
not own any vertices ofWh.

SupposeS owns some vertices inW \Wh. Each such vertex gets at least five tokens in the initial token
assignment. It needs only two tokens and hence can give threeexcess tokens toS. AsS has at least one child
R, R can give at least one excess token toS, and henceS gets at least four tokens as required.

Therefore, for the rest of the cases, we assume thatS does not own any vertex ofW . We note that the
remaining case analysis is very similar to that of Jain, withthe refined definition of co-requirement.

• S has at least four children. ThenS can take one excess token from each child.

• S has exactly three children. If any childS has two excess tokens or ifS owns a vertex thenS can
get four tokens. Otherwise, each of the three children ofS has a co-requirement of half andS owns
no vertices. Then, by Lemma 3.5, we have thatS has co-requirement of1/2 and it only needs three
tokens.

22

• S has exactly two childrenR1 andR2. If both of them have two excess tokens from the induction
hypothesis then we are done. Otherwise, letR1 have exactly one token and hence it has co-requirement
of 1/2 by the induction hypothesis. We claim thatS must own an endpoint. Suppose to the contrary
thatS does not own any endpoint. Then, if there areα edges betweenR1 andR2 in E′ (where we
replace each heavy edge by two parallel edges), we have

|δ′(S)| = |δ′(R1)|+ |δ
′(R2)| − 2α.

AsR1 has a co-requirement of half, we have|δ′(R1)| is odd and henceδ′(S) andδ′(R2) have different
parity and hence different co-requirements. The co-requirements ofS andR2 can differ by at most the
co-requirement ofR1 which is exactly half. Since,χδ′(S) 6= χδ′(R1) + χδ′(R2), there must be an edge
betweenR1 andR2 and therefore coreq(S) < coreq(R2) + 1/2. Similarly,χδ′(R2) 6= χδ′(S) + χδ′(R1)

and therefore there is an edge inδ′(S)∩ δ′(R1) which implies that coreq(R2) < coreq(S)+1/2. Thus,
their co-requirements are equal which is a contradiction. ThusS owns at least one endpoint.

If S owns at least two endpoints orR2 has two excess tokens, then we have four tokens forS. Otherwise,
by Lemma 3.5, we have that co-requirement ofS is half and it needs only three tokens.

• S has exactly one childR. Since both setsS andR are tight we have thatx(δ(S)) = f ′(S) and
x(δ(R)) = f ′(R). Sinceχδ(S) andχδ(R) are linearly independent, subtracting the two equations we
have thatx(δ(S)∆δ(R)) (∆ denotes symmetric difference) is a positive integer. Also,there are no
1-edges present and so|δ(S)∆δ(R)| ≥ 2, and each edge in the symmetric difference gives one token
to S. ThusS owns at least two endpoints. IfS owns three endpoints orR has two excess tokens
thenS can get four tokens. Otherwise,S has exactly two endpoints and exactly one child which has
co-requirement of1/2. Then, by Lemma 3.5,S has a co-requirement of1/2 and only needs three
tokens.

This completes the proof of the induction step. 2

This completes the proof of Lemma 3.3, which assigns two tokens to each set in the laminar familyL,
and each vertex inT which is contained in some setS ∈ L. For vertices inT which are not contained in any
setS ∈ L, we also have enough tokens. Observe that each vertexv ∈ W \Wh receives at least five tokens.
For vertices inWh not contained in any setS ∈ L, an argument identical to Claim 3.4 withS = V will give
at least two tokens to each vertex inWh. There is at least one extra token in any root ofL. Thus we have that
2|E| > 2|L|+2|T |, which contradicts Lemma 2.1. Therefore, one of the conditions in Lemma 3.2 holds, and
hence we have Theorem 1.2.

3.3 Integrality Gap Example

In Figure 13 we show that the linear program (LP) has an integrality gap ofB +Ω(rmax).

x1 x2

y1 y2
yky3

Figure 13: An integrality example of (LP).

23

In this example, we have a complete bipartite graph(X,Y ;E) whereX = {x1, x2} andY = {y1, . . . , yk}.
We set the connectivity requirements betweenyi andyj to be 1 for alli, j, betweenx1 andx2 to bek/2, and 0
otherwise. The fractional solution where all edges have fractional value1/2 is the optimal solution, in which
the degree ofx1 andx2 is equal tok/2 = ∆∗

f . On the other hand, it can be seen that in any integer solution,

the degree ofx1 andx2 must be at least34k = 3
2∆

∗
f . This example also shows that the integrality gap is at

least(2, bv + 1
2rmax).

Concluding Remarks

An interesting open question is to close the gap for the minimum bounded degree Steiner forest problem, i.e.
to determine whether the integrality gap of the linear programming relaxation isBv + 2 or Bv + 3. Another
interesting open question is to determine whether it is hardto approximate the minimum bounded degree
Steiner network problem with degree violationo(rmax).

The iterative relaxation method has been successfully applied to network design problems with degree
constraints [14, 21, 2], and recently it has also been applied to other combinatorial optimization problems and
also give simple proofs of existing results [10]. We hope that this method will find further applications.

Acknowledgement

We are very grateful to two anonymous reviewers for giving many useful suggestions that greatly improved
the presentation of this paper.

References

[1] A. Agrawal, P. Klein and R. Ravi,When trees collide: an approximation algorithm for the generalized
Steiner problem on networks, Proceedings of the twenty-third annual ACM symposium on Theory of
computing, pages: 134–144, 1991.

[2] N. Bansal, R. Khandekar and V. Nagarajan,Additive guarantees for degree bounded directed network
design, SIAM Journal on Computing, 29, 1413-1431, 2009.

[3] F. Bauer and A. Varma,Degree-constrained multicasting in point-to-point networks, Proceedings of
the Fourteenth Annual Joint Conference of the IEEE Computerand Communication Societies (Vol. 1),
INFOCOM ’95.

[4] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar,What would Edmonds do? Augmenting paths and
witnesses for degree-bounded MSTs, In Proceedings of APPROX 2005, pp. 26-39.

[5] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar.Push relabel and an improved approximation algo-
rithm for the bounded-degree mst problem, In Proceedings of ICALP 2006.

[6] T. Feder, R. Motwani, and A. Zhu,k-Connected spanning subgraphs of low degree, ECCC report 41,
2006.

[7] M. Fürer and B. Raghavachari,Approximating the minimum-degree Steiner tree to within one of optimal,
J. of Algorithms 17(3):409-423, 1994.

[8] M.X. Goemans,Minimum Bounded-Degree Spanning Trees,Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, 2006, pp. 273–282.

24

[9] K. Jain,A factor2-approximation algorithm for the generalized Steiner network problem, Combinator-
ica, 21:39-60, 2001.

[10] T. Király, L.C. Lau, M. Singh,Degree Bounded Matroids and Submodular Flows, Proceedings of the
13th International Conference on Integer Programming and Combinatorial Optimization (IPCO), 259-
272, 2008.

[11] P. Klein, R. Krishan, B. Raghavachari, and R. Ravi,Approximation algorithms for finding low-degree
subgraphs, Networks, 44(3): 203-215, (2004).

[12] J. Könemann and R. Ravi,A matter of degree: Improved approximation algorithms for degree bounded
minimum spanning trees, SIAM J. on Computing, 31:1783-1793, 2002.

[13] J. Könemann and R. Ravi,Primal-Dual meets local search: approximating MSTs with nonuniform
degree bounds, SIAM J. on Computing, 34(3):763-773, 2005.

[14] L.C. Lau, S. Naor, M. Salavatipour and M. Singh,Survivable network design with degree or order
constraints, SIAM Journal on Computing 39(3), 1062–1087, 2009.

[15] L.C. Lau, R. Ravi, M. Singh,Iterative Methods in Combinatorial Optimization, Cambridge University
Press, 2011.

[16] A. Louis, N.K. Vishnoi, Improved algorithm for degree bounded survivable network design problem,
in Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, 408-419,
2010.

[17] Z. Nutov,Degree-constrained node-connectivity, in Proceedings of the 10th Latin American Symposium
on Theoretical Informatics (LATIN), 582–593, 2012.

[18] B. Raghavachari,Algorithms for Finding Low Degree Structures, in Approximation algorithms, Dorit
Hochbaum (ed.), PWS Publishers Inc., pages 266-295, 1996.

[19] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, Harry B. Hunt, III , Approximation
Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems, Algorithmica 2001.

[20] R. Ravi and M. Singh,Delegate and conquer: An LP-based approximation algorithmfor minimum
degree MSTs.In Proceedings of ICALP 2006.

[21] M. Singh and L.C. Lau,Approximating Minimum Bounded Degree Spanning Trees to within One of
Optimal, In Proceedings of the 39th ACM Symposium on Theory of Computing, 2007.

[22] V. Vazirani, Approximation Algorithms, Springer, 2001.

25

