Additive Approximation for Bounded Degree Survivable Netw
Design

Lap Chi Laud Mohit Singh

Abstract

In the minimum bounded degree Steiner network problem, weyaen an undirected graph with an
edge cost for each edge, a connectivity requiremgntor each pair of vertices andv, and a degree
upper bound, for each vertexw. The task is to find a minimum cost subgraph that satisfieshall t
connectivity requirements and degree upper boundsr L&t := max,, ,{r., } andoPTbe the cost of an
optimal solution that satisfies all the degree bounds. Wsgnteapproximation algorithms that minimize
the total cost and the degree violation simultaneously.

¢ In the special case when,., = 1, there is a polynomial time algorithm that returns a Stefosgst
of cost at mos2opTand the degree of each vertex at most,, + 3.

e In the general case, there is a polynomial time algorithm tbiairns a Steiner network of cost at
most2opPTand the degree of each vertexs at most,, + 67, + 3.

The algorithms are based on the iterative relaxation methiod the analysis of the algorithms is nearly
tight.

*A preliminary version appeared in Proceedings of the 40thuah ACM Symposium on Theory of Computing, 759-768, 2008.
TThe Chinese University of Hong Kong. Research supportedbyRIGC grant 413609.
*Microsoft Research, Redmond.

1 Introduction

Network design plays a central role in combinatorial optition and approximation algorithms. Develop-
ments in this area have led to general algorithmic techsigaied provide useful models for practical applica-
tions. In recent years, much effort has been put into dasigapproximation algorithms for network design
problems with additional degree constraints. These pnablgeneralize basic problems in combinatorial op-
timization, and have applications in various areas inclgdiLSI design, vehicle routing and communication
networks. In these applications, degree constraints ags@r natural modeling tool favorkload of nodes.
For example, in typical applications of network design peais to multicasting, the degree constraint on a
switch corresponds to a bound on the multicast copies it clterim the network [3].

In this paper, we study the survivable network design probAdéth degree constraints. Given connectivity
requirements:,,, for all pairs of vertices, &teiner networks a subgraph in which there are at leagt edge-
disjoint paths between andv for all pairsu, v. In the minimum bounded degree Steiner network problem,
we are given an undirected graphwith an edge cost for each edge, a connectivity requiren@nédch
pair of vertices, and a degree upper boupdor each vertexo. The task is to find a minimum cost Steiner
network H of GG satisfying all the degree bounds, thatdsg (v) < b, for all v. This problem captures other
network design problems as special cases; for exam3teiner foresis a Steiner network with,,,, € {0,1}
for all pairs. The feasibility problem of finding a Steinertwerk satisfying all the degree bounds is already
NP-hard. Hence, the minimum bounded degree Steiner nefwvolilem has two optimization objectives: to
minimize the total cost and to minimize the degree violatidfe design bicriteria approximation algorithms
that optimize both objectives simultaneously. The mainltesare the following.

Theorem 1.1 There is a polynomial time algorithm for the minimum boundedree Steiner forest problem
that returns a Steiner foredt of cost at mostopTanddeg(v) < b, + 3 for all v, whereopT s the cost of
an optimal solution that satisfies all the degree bounds.

Theorem 1.2 There is a polynomial time algorithm for the minimum boundegkee Steiner network problem
that returns a Steiner network of cost at moseorPT anddegy (v) < b, + 6rmax + 3 for all v, whereoprT
is the cost of an optimal solution that satisfies all the dedveunds ana,,x := max, , {7y }-

Previously the best guarantees known on the degree for beitieBforest and Steiner network &xg, + 2
in [16], even when there are no costs on the edges. Theordrasd 1.2 provide the firstdditiveapproxima-
tion algorithms that violate the degrees by at most a cohfdamany problems, including Steiner trees and
Steiner forests+3), k-edge-connected subgraphs@(k)), and Steiner networksHO(rmax)). Moreover,
these results can be achieved while simultaneously mat¢h@best guarantees known for the minimum cost
Steiner forest and Steiner network problems [1, 9]. Thisvioles a unifying algorithmic framework for a
large class of network design problems.

The algorithms are based on the iterative relaxation me#pmiied to a linear programming relaxation
as in [9, 14, 21]. The analysis of the linear programmingxaian is nearly tight. There are examples in
which the optimal fractional solution has maximum degbgdut any integral solution would have maximum
degree at leasB + 2 for Steiner forests in [14], and at leaBt+ 2 (r,.x) for Steiner networks as shown in
Figure 13 in Section 3.3.

1.1 Techniques

The algorithms are based on the iterative relaxation methdd4, 21, 15], which adapts Jain’s iterative
rounding method [9] to the minimum bounded degree Steinevark problem. The approach in [14] relies
on the following lemma about the extreme point solutionshef linear program for Steiner networks: “If
every vertex with a degree constraint has degree at leastlfier in any extreme point solution there is an

edgee with . > 1/2.” This lemma leads to a new relaxation step to Jain’s iteeatbunding method to deal
with degree bounds: If there is a vertex with degree at mast tbhen the degree constraint for that vertex is
removed. This relaxation step only incurs an additive amtshree on the degree bounds. After this step, the
algorithm can always pick an edge with > 1/2 as in Jain’s approach, and hence the cost and the degrees
are violated by at most a multiplicative factor of two. Asiitrated in the example in Figure 1, the algorithm

in [14] may actually violate the degree bounds by a multgdlie factor of two.

(@) (b) (c)

Figure 1: The original graph is shown in (a). There are degree comstranz andy, both are[k/2]. The connectivity
requirements are one for all pair of vertices. The fractisofution with all edges having valuig'2 is an extreme point
solution. The algorithm in [14] may return the integral dano in (b) where the degree bounds are violated by a
multiplicative factor of two, although there is an integsalution as shown in (c) where the degree bounds are violated
by at most an additive constant one.

To achieve additive approximation on the degree bounds,esd to avoid paying a multiplicative factor
of two on the degree bounds when picking edges with vajize We note that such edges are inevitable as
a factor of two on the cost is best possible using the lineagnam relaxation for Steiner networks. In our
algorithm for Steiner forests, we first generalize the rafax step to remove the degree constraint of every
vertex with degree at most, + 3, which is possible since the degree bounds would only betadl by at
most an additive constant three. The main technical caritoib is the following lemma about the extreme
point solutions: “If every vertex with degree constraint has degree at léast 4, then in any extreme point
solution there is an edge with. > 1/2 between two verticewithoutdegree constraints.” This leads us to
a modified iterative algorithm that only selects edges with> 1/2 between two vertices without degree
constraints, which departs from existing iterative romgdalgorithms that pick edges depending only on the
fractional values. For example, in Figure 1, the algorithithenly choose edges froriz;, y; } and return the
solution in (c). By only choosing those edges, degree caimssrwould not be violated when they are present,
and are only violated by at most an additive constant threenvthey are removed. This approach can be
extended to Steiner networks, by proving that in any extreoiat solution there are edges with > 1/2
between two “low degree vertices”. The proofs of these attarizations of the extreme point solutions
require new ideas on the counting argument, which crucexdploit the parametety, ..

1.2 Related Work

For the minimum cost Steiner network problem, Jain [9] idtrced the iterative rounding method to ob-
tain a2-approximation algorithm, improving on a line of researchttapplied primal-dual methods to these
problems. For bounded-degree spanning trees and Stedest firer and Raghavachari [7] gave an approx-
imation algorithm which violates the degrees by at most atiti’é constant one. This result has generated
much interest in obtaining approximation algorithms fotwark design problems with degree constraints

[12, 13, 11, 14, 6, 18, 4, 5, 19, 20, 8, 21]. A highlight of thieel of research is afl, b, + 2)-approximation
algorithm' for the minimum bounded degree spanning tree problem by Gosri8]. Recently, the iterative
relaxation method has been used to obtain the best boundsKoothese problemg(1, b, + 1) for spanning
trees [21],(2, 2b, + 2) for arborescence [14], an@, 2b, + 2) for Steiner forests and Steiner networks [16].

In independent work, Bansal, Khandekar and Nagarajan [2jioéd improved approximation algorithms
for degree bounded network design problemglirected graphs. They gave a@, 11’;"6 + 4) approxima-
tion algorithm for the minimum bounded degree arborescgmoblem (and more generally for problems
with intersecting supermodular connectivity requirersgribr any0 < e < % (see also [17] for a slight
improvement). Moreover, they obtained the first additiveragimation algorithm for the bounded degree
arborescence problem which violates the degrees by at moatiditive constant two. In order to obtain
additive guarantees on the degree bounds, however, thefcbs arborescence becomes unbounded. They
showed that this cost-degree tradeoff in their result ig@ulbest possible using the natural linear program-
ming relaxation [2], which is an exact formulation when #herre no degree constraints. In contrast, our
results show that imndirectedgraphs it is possible to achieve additive approximationhendegree bounds
for the minimum bounded degree Steiner network problemdgewmatching the best known approximation
on the cost. Finally, we remark that both results are baseiti@iterative relaxation method in [9, 14, 21],
which provides a unifying framework to achieve (nearlyhtiginalysis for the natural linear programming
relaxations for network design problems.

2 Minimum Bounded Degree Steiner Forests

In the minimum bounded degree Steiner forest problem, weigen a graphG = (V, E), a costc, on each
edgee, a degree boundl, for each vertex € V, and a set of source sink paifs;, ¢;). The task is to return
a Steiner fores#' (a forest that connects each source sink pair) of minimunh wdbl deg,(v) < b, for
all v € V. LetoPT be the cost of an optimal solution that satisfies all the depainds. We shall give a
polynomial time algorithm that returns a Steiner forBsbf cost at moseopT1 with degy(v) < b, + 3 for all
velV.

2.1 Preliminaries

We begin by formulating a linear program for the problem. Befi(S) = max,cg ,¢5 {ru} for each subset
S C V. For the Steiner forest problenfi(S) € {0, 1} sincer,, € {0,1} for all u,v € V. Itis known thatf
is askew supermoduldunction [9], that is, for every two subsels andY’, either

fXO)+ V) < f(XNY)+f(XUY),or

FXO)+fY) < X =Y)+ f(Y = X).

For a subseE’ C E, we denoter(E’) :=) . z.. Forasubsef C V, §(S) denotes the set of edges in
E with exactly one endpoint it$, andd(S) := [0(S)|. For a vertexwo € V, we writed(v) for 6({v}) and
d(v) for d({v}). The following is a linear programming formulation for thénimum bounded degree Steiner
forest problem, in which the degree constraints are on aesabverticesdV C V.

*An (a, f(by,))-approximation algorithm for the minimum bounded degresirétr network problem is a polynomial time algo-
rithm that returns a solution of cost at mestopTanddeg(v) < f(b.) for all v, whereopTis the optimal cost of a Steiner Network
with deg(v) < b, for all v.

(LP) minimize clz) = Y ceme
eck
subject to z(6(5)) > f(9) vScV
z(6(v)) < by YoeW
T > 0 Veec F

For a setS C V, the corresponding constraints(S)) > f(S) defines a vector iiRl”!: the vector has an
one corresponding to each edge §(S) and a zero otherwise. We call this vector tearacteristic vector
of 6(S), and denote it byxss). Let F = {S | 2(6(5)) = f(S)} be the set of tight constraints from the
connectivity requirement constraints. A family of set&isiinar, if for any two sets in the family, either one
contains the other or they are disjoint. In undirected gsafitis well known that

2(6(X)) + z(8(Y)) > z(6(X NY)) +2(5(X UY)) and

2(0(X)) +2(0(Y)) = 2(6(X = Y)) +2(5(Y — X))

for any two subsetX andY. Sincef is skew supermodular, it follows from standard uncrossiggiments
(see e.g. [9, 14]) that an extreme point solution of the abimear program is characterized by a laminar
family of tight constraints. The following Lemma 2.1 is pealin [14].

Lemma 2.1 Suppose that the requirement functipof (LP) is skew supermodular. Letoe an extreme point
solution of (LP) such that < z. < 1 for all edgese € E. Then, there exist a laminar famiy of sets and a
setT' C W such thatr is the unigue solution to

{2(8(0)) = by | v e T} [{=(8(S)) = f(S) | S € L}.
that satisfies the following properties:
1. The vectors(sg) for S € £ and X, for v € T are linearly independent.
2. |E| = |L|+|T].
3. Forany setS € L, X5(5) # Xs(v) foranyv € W.

The laminar familyZ obtained in Lemma 2.1 defines a directed fordest which nodes correspond to sets
in £ and there exists an edge from geto setS if R is the smallest set containirtg We call R the parent
of S andS achild of R. For clarity, we will refer the vertices of foreét by nodes A node with no parent is
called aroot and a node with no child is calledi@af. Given a nodeR, the subtree rooted ak consists ofRR
and all its descendants. The following is an important dédimithat is used in several places in proofs.

Definition 2.2 (Owned by) A vertexv is ownedby a setS if v € S and .S is the smallest set if containing
V.

Minimum Bounded Degree Steiner Forest
1. Initialization F' < 0, f'(S) < f(S) forall S C V.
2. While F' is not a Steiner forest do
(a) Computing an optimal extreme point solution:

Find an optimal extreme point solutiansatisfying f/” and remove every edgewith x. = 0.

(b) Removing a degree constraint:
For everyv € W with degree at most, + 3, removev from V.

(c) Picking an 1-edge:
For each edge = {u, v} with z. = 1, adde to F', removee from G, and decreask,, b, by one.

(d) Picking a heavy edge with no degree constraints:
For each edge = {u, v} with z. > 3 andu,v ¢ W, adde to F and remove: from G.

(e) Updating the connectivity requirements:
For every sefS C V, setf’(S) « f(S) — dr(S).

3. ReturnF.

Figure 2: An iterative algorithm for the minimum bounded aegSteiner forest problem.

2.2 lterative Algorithm

Our algorithm is an iterative relaxation algorithm as shawhigure 2. The main difference from the previous
iterative rounding algorithms is in Step 2d, where a heawgedd picked only if both endpoints do not have
degree constraints. This is the step to avoid a multiplieatactor of two on the degree bounds. Also, by
only picking edges with no degree constraints, there is ral he update the degree bounds fractionally as in
[14]. Another difference is that the relaxation step haslneralized to remove a degree constraint when a
vertex has degree at mdst+ 3.

The Step 2a of the algorithm can be implemented in polynoima since the separation problem for
the linear programming formulation is the min-cut probledf. [Moreover, the number of the iterations is
bounded bym + n, since in each iteration we either remove a degree conswaipick an edge. Hence,
the algorithm can be implemented in polynomial time. Théofeing lemma is in the heart of the algorithm,
which shows that the algorithm always succeeds.

Lemma 2.3 Every extreme point solutianto the above linear program must satisfy one of the following
1. Thereis an edgewithz., = 0or z. = 1.
2. There is an edge = {u, v} withz, > 3 andu,v ¢ W.
3. There is a vertex € W with degree at most, + 3.

We note that the updated connectivity requirement functiaa also a skew supermodular function. With
Lemma 2.3, using a simple inductive argument as in [14],ntloa shown that the algorithm returns a Steiner
forest of cost at most twice the optimal cost and the degremaci vertex is at most, + 3. The rest of this
section is devoted to the proof of Lemma 2.3.

2.3 A New Counting Argument

The proof of Lemma 2.3 is by contradiction. LEtbe the laminar family and”™ C W be the set of tight
vertices defining the extreme point optimal solutisras described in Lemma 2.1. The contradiction is
obtained by a counting argument. Each edgé&’iis assigned two tokens. Then the tokens will be reassigned
such that each member 6fand each vertex il get at least two tokens, and there are still some extra tokens
left. This will give us a contradiction to property 2 of Lemi24d.

Definition 2.4 (Heavy edge)An edgee is heavyif z, > 1/2.
Assumption 2.5 If conditions of Lemma 2.3 do not hold, then
1. there is no 0-edge and no 1-edge,
2. every heavy edge has an endpointiin

3. each vertex € W has at leasb, + 4 > 5 edges incident to it.

Initial token assignment scheme An edgee = (u,v) has two tokens. One token efis assigned ta: and
the other token of is assigned t@ except in the following special rule when we assign the tslkasfollows.

1. If e = (u,v) is a heavy edge with € W andw is not contained in the smallest setdncontainingv,
then the token of from e is given to the smallest sét € £ containing both:, andwv. If such a setS
does not exist, then that token is unassigned (i.e. an e&emtthat will not be used).

We note that gives up at most two tokens by this rule. This is because eaaih edgee is a heavy
edge ind(R) whereR be the smallest set if that contains), and f(R) = 1 and so there are at most
two heavy edges in(R). This is where we use the fact that,, = 1 for the Steiner forest problem.

(@) (b) ©

Figure 3:Rule (1) of the initial token assignment scheme. This is angthat is useful in collecting extra tokens for
S. In this figure, a vertex is black if it is i}/, and it is white if it is not inl/. In (a), v gives its token frone to .S by
rule (1). In (b), rule (1) applies to bothhandv, and thus both, andv give its token frome to S. In (c), rule (1) only
applies tov and sou keeps its token. Note thaty must be a heavy edge for this rule to apply.

The following definitions are important to the analysis.

Definition 2.6 (Out-heavy edge)An edgee = {u,v} is anout-heavy edgef S € Lifu € S\ W and
veW\ Sandz, > 1.

Definition 2.7 (Classes)For a setS € L, we says is of:

e Class laif |§(S)| = 2 and S has one out-heavy edgewith z. > 3.

6

Class Ib if S has two out-heavy edges.

Class llaif |6(S)| = 3 andz, < & for each edge € §(5).

Class llb if S has one out-heavy edge Ififs not of Class I.

Class Il otherwise.

1
3 1 1 1 1 = 1 1
PR - - - - 3 il -
4 4 2 2 3 4 2
1
la b lla 11

Figure 4:The figure shows examples of sets of each class. A vertex i \flii is not in 1/, and it is black if it is in

W. (An endpoint without a vertex shown means that this infafomeis not important.) A heavy edge is represented by
a thick line. Note the definitions of Class la, Class Ib ancs€Ildb require out-heavy edges. The rightmost example is
a Class 1l set, although it has a heavy edge.

The following lemma shows that the tokens can be reassigméuas each member df and each vertex
in W gets at least two tokens. The proof is by induction on theHiedthe laminar family, from leaves to
roots.

Lemma 2.8 Suppose that Assumption 2.5 holds. Then, for any subtrdw déminar familyZ rooted atsS,
we can reassign tokens assigned to verticeS isnd nodesk C S in the initial token assignment scheme
such that

1. Every vertex iV N S gets at least two tokens.

2. Every nodeRk C S and in the subtree gets at least two tokens.
3. S gets at least two tokens.$fis of Class I.

4. S gets at least three tokensSfis of Class Il

5. S gets at least four tokens f is of Class IlI.

Before proving Lemma 2.8, we show that Lemma 2.3 follows fta@mma 2.8. Suppose by contradiction
that the conditions in Lemma 2.3 do not hold. Then AssumpHdnholds. Initially, each edge if is
assigned two tokens, and so there are tot2llly| tokens. After the reassignment of the tokens by applying
Lemma 2.8 to each of the root nodesdneach vertex il gets two tokens and each node in the laminar
family gets two tokens, and so there &1i&V'| + 2|L| tokens. If there are some extra token left, then this
would imply that2| E| > 2|W| + 2|£| > 2|T| + 2|L£|, contradicting property 2 of Lemma 2.1. To complete
the proof, we just need to show that there are some extrasdkén If there is a root nod#' in £ of Class Il
or Class lll, then there is some extra token leftSims it has at least three tokens. It remains to consider the
case when all root nodes are of Class |. kdbe one such root node amg be an out-heavy edge 6fwith
v € W — S. Note thatv cannot be in another root node by the definition of Class | aodibereforey is not
contained in any root node. By Assumption 2.5(3), each xerte W has at least five edges incident on it.
As Rule (1) does not apply tg it gets at least five tokens from the initial token assigninseheme, and thus
there is some extra token left @n To summarize, if the conditions of Lemma 2.3 do not holdntii@vould
lead to a contradiction by Lemma 2.8. Henceforth, it remé&nsrove Lemma 2.8.

7

2.4 Proof of Lemma 2.8

Throughout the proof we assume that Assumption 2.5 hold® proof will follow from induction on the
height of nodesS in the rooted directed foredt. Before we proceed with the induction, we give the following
lemma which shows that verticesiii are assigned many tokens.

Claim 2.9 Each vertexv € W is assigned at least four tokens by the initial token ass@rtracheme. Le&f
be the set that owns. Thenw is assigned exactly four tokens only if:

1. d(w) =5, by, = 1, and there is one heavy edge®n é(w).
2. d(w) = 6, b, = 2, and there are two heavy edgesDin §(w).

Proof: The initial token assignment scheme assigns one tokenftor each of its incident edges except
when Rule (1) applies in which casés a heavy edge in(S). SincesS is a tight set in the laminar familg,
we havef(S) = 1, and therefore)(S) can have at most two heavy edges. By Assumption 2.9(3)) >
by, +4 > 5. There are two cases to consider. The first case is when thateriost one heavy edge &fS5)
incident atw. Then,w is assigned at leasgi(w) — 1 > 4 tokens, and it is exactly four only i(w) = 5.

The second case is when there are two heavy edgégSofincident atw. Thenz(d(w) N d§(S)) > 1.
Combining this with Assumption 2.5(1) that there are no edgeith x. = 0, we get thab,, = z(§(w)) > 1
as the two heavy edges contribute one and the other edgethuatmisome positive value. Being an integer,
by > 2. Therefored(w) > b, +4 > 6, and sow receives at least(w) — 2 > 4 tokens, and it is exactly four
only if d(w) = 6. O

Now we proceed with the induction. First we prove the base gd®en the nodé is a leaf node of the
forestL.

Claim 2.10 (Base Case)l.emma 2.8 is true for leaf nodes 6f

Proof: Let S € £ be a leaf node in the laminar family. Let= |S' N 1| be the number of vertices iV that

S owns. We prove the claim by considering different casds bfl > 2, then each of thévertices inWW has
degree at least five and receives one token for each edgeimedit in the initial token assignment scheme,
except for heavy edges incident at it whose other endpomttin S. But sincez(4(.5)) = 1, there can be at
most two such heavy edges. Hence, verticeld/im S receive at leasil — 2 > 2] + 4 tokens. Thus we can
reassign these tokens such that eachveirtices gets at two tokens adgets four tokens.

If [= 1, letw be the only vertex il” owned bysS, thenw has at least four tokens by Claim 2.9. Sag;an
collect at least two tokens from, and only needs at most two more tokens. Singe) andx (., are linearly
independent, there must be at least one edged(S) \ d(w)) U (§(w) \ §(S)). Each such edge has at least
one endpoint: ¢ W in S — w, andu is assigned one token by the initial token assignment schantkethus
S can collect one token from. So, if there are at least two such edges, theran collect two more tokens.
We will argue that there must be at least two such edges. Seppdhe contrary that there is only one edge
e € (6(S)\ o(w)) U (d(w) \ 4(S5)), saye € d(w) \ 6(S). Thendb,, = z(6(w)) = x(8(S)) + ze = f(S) + ze.
Since bothf (S) andb,, are integers, this implies that = 0 or x. = 1, a contradiction to Assumption 2.5(1).
Therefore, there are at least two such edges, arfticam collect two more tokens.

The final case that we have not addressed yet is WherD. In this case,S gets at least/(.S) tokens.
Therefore, it gets two tokens only # is of Class I, three tokens only if it is of Class I, and at tefasr
tokens in any other case, proving Lemma 2.8. O

2.4.1 Induction Step

Let S be a set that has some childrendn By induction, we assume that Lemma 2.8 holds for each dRild
of S. We will not reassign the tokens assigned to vertices arsdvaitin R and use the same reassignment
as given by the induction hypothesis. What we will do is tdemdlthe excess tokens & to give to.S, i.e.

R gives at least one token ®if R is of Class Il, andR gives at least two tokens t§ if R is of Class III.
Moreover, S will collect excess tokens assigned to vertices owned land tokens assigned by Rule (1) in
the initial token assignment scheme. We will show that thekens are enough to satisfy Lemma 2.8 for set
S.

We do the same case analysis, as we did for the base case, mmtber of vertices of¥” owned by.sS,
sayl. While the argument in the base case was simple, here weeweitl to do further case analysis. The case
when! > 2 is quite simple and dealt in Claim 2.11. The case whenl is the most complex and is shown by
further case analysis based on the number and classes dfiltieis of S. This is done in Claim 2.12-2.14.
The final case wheh = 0 is dealt in Claim 2.15. We remark that Rule (1) of the initiakeén assignment
scheme and the asymmetry in the definition of out-heavy edgesrucial in Claim 2.15 and also in many
places in Claim 2.13 and Claim 2.14.

Claim 2.11 Suppose that € £ owns at least two vertices /. Then Lemma 2.8 also holds 6t

Proof: The argument here is exactly the same as in base case. Wegddnitfar completeness. Suppose that
S ownsws,...,w; € W wherel > 2. Each vertexv; needs only two tokens to satisfy Lemma 2.8. We will
redistribute the excess tokens from these vertices tm thatS has at least four tokens to satisfy Lemma 2.8.
By Assumption 2.5(3), each vertex; is of degree at least five. By the token assignment schemb, eac
vertexw; would have at least five tokens, unless it gives up some tokeRute (1). For Rule (1) to apply,
there must be a heavy edged(s). Sincef(S) = 1, (S) can have at most two heavy edges, and so Rule
(1) is applied at most twice for all vertices il owned byS. Therefore, there are still at leagt— 2 tokens
assigned tavy, . .., w; by the token assignment scheme. Since each vertdx owned byS needs only two
tokens, there ar8l — 2 excess tokens. If > 2, thenS can collect at least four tokens from these excess
tokens, and thus Lemma 2.8 holds for O

Next, we consider the case wheéhowns exactly one vertex im’. We will prove thatS satisfies
Lemma 2.8 in the following three claims. First, we begin watheasy claim.

Claim 2.12 Suppose tha$ owns a vertexv in W. If S has a Class Il child or at least two Class Il children,
then Lemma 2.8 holds fdf.

Proof: Let S own a vertexw € W. By Claim 2.9,w has at least four tokens, and Sacan collect at least
two tokens fromw. If S has a Class Il child?, thenR has four tokens anél can collect two tokens fronk.
Similarly, if S has two Class Il childre®; and R», thenS can collect one token from each. In any caSe,
can collect at least four tokens, proving the claim. O

The following claim solves the case whéras one Class Il child.

Claim 2.13 Suppose tha$ owns a vertexv in W. If S has at least one Class Il child, then Lemma 2.8 holds
for S.

Proof: Let the children ofS be R, ..., R; and Ry be a class Il child. IfS has at least two Class Il children
or at least one Class lll child, then Lemma 2.8 holdsYday Claim 2.12. So, we assume thahas no Class
Il child and at most one Class Il child, arigh, . .., R; are Class | children. Sincg; is a class Il child and
has at least three tokenS,can collect at least one token fraR) . If w is assigned at least five tokens, then

9

can collect three more tokens froRy, and that would be enough for Lemma 2.8. Therefore, by ClaBn 2
we assume that is assigned exactly four tokens, and there is at least ong/ leglef in 6(w) N §(S). Then

S can collect two more tokens from, and needs one more token. dfowns an endpoint of an edge i,
then S can collect one more token. So, we further assumeStdties not own a vertex. The assumptions in
this claim so far are summarized in Figure 5. We will distiisgiutwo cases to finish the proof. Recall titat
has already collected three tokens, and just needs one ol@e (if S is of Class Il).

@ (b) (©

Figure 5: This is the case analysis whéhowns a vertex if? and has one Class Il chilg; .

In (a), we summarize the assumptions after the first paragrb@laim 2.13: (1)R; is a Class Il child, while all other
children (if any) are Class | children; (2) is the only vertex in¥ owned bysS, and it received exactly four tokens from
the token assignment scheme, ghid a heavy edge in(w) N §(S). (3) S does not own any vertex other than

In (b), we summarize the argument in the first case. In thegasagraph, we argue that we can assume that any out-
heavy edge of?; for i > 2 hasw as an endpoint. The interesting case here is that if the ethdpoint is inR; for

j # i, thenS can collect one more token by Rule (1) of the token assignmeimtme. In the second paragraph, we
show that this implies that(w) = 6 and there are two heavy edggy in 6(5). In the third paragraph, we argue that
the remaining case left is whé®y, is the only Class | child of and R, is of Class la. Finally, in the fourth paragraph,
we show that the remaining case is not possible.

In (c), we summarize the argument in the second case. We #rguBs = 0, andx(F;) = x(F2) = «(F3) = 1/2.
Then we argue tha®; must be of Class IlIb, anfi; has an out-heavy edge, and$ds also of Class Ilb.

1. The first case is when there are some Class | childrén lret R; be a Class | child fof > 2. By the
definition of Class |,R; has an out-heavy edge with u € R; \ W andv € W \ R;. SinceS does not
own any vertex other tham (see Figure 5(a)), either= w orv € R; for j #iorv ¢ S. In the second
case when € R; for j # i, then this edge gives one tokenddby Rule (1) of the token assignment
scheme, and thuS can collect one more token, and we are done. In the last caseuvh S, thenuv
is also an out-heavy edge 6f and thusS is of Class IIb and only requires three tokens, and we are also
done. Hence, we assume that every out-heavy edgg béasw as an endpoint, as shown Figure 5(b).

Let eo be an out-heavy edge dt,. Thenb, = z(6(w)) > z., + ¢ > 1, as bothe, and f are
heavy and other edgesdifw) (which exist asi(w) > 5 by Assumption 2.5(3)) have positive values by
Assumption 2.5(1). This implies tha}, > 2 asb,, is an integer, and s&(w) > 6 by Assumption 2.5(3).
We assumed in the first paragraph thés assigned exactly four tokens in the token assignmentisehe
(see Figure 5(a)). By Claim 2.9, this implies that = 2 andd(w) = 6 and there are two heavy edges
ino(S) Nd(w).

Let g be the other heavy edge éifw) N §(S). If there is another heavy edgg incident onw, then

by = x(6(w)) > Tey + Tey + x5 + x4 > 2, asd(w) = 6 and every edge has a positive value by

10

Assumption 2.5(1), contradicting, = 2. So, there are no other heavy edges incidentvogxcept
f,9g,ea. Therefore,R, is the only Class | child irb and R, is of Class Ib (as each other Class | child
has at least one other out-heavy edge withs an endpoint, and R, is of Class Ib child then it has
another out-heavy edge with as an endpoint).

We will show that this remaining case is not possible. As weehessumed that does not own any
endpoint other thaw (see Figure 5(a)), it follows that{w)\6(S) = §(w, R1)Ud(w, Rz), andd(R;) =
(5('&0, Rl) U (5(R1, Rg), andé(Rg) = 6(w, Rg) U (5(R1, Rg) Sinceb,, = 2 andw(&(w) N (5(S)) =1,it
follows thatz(d(w) \ 6(5)) = 1. Also,z(6(R1)) = z(6(R2)) = 1 asf(R1) = f(Rz2) = 1. Therefore,
we must haver(§(w, R1)) = x(d(w, R2)) = x(d(R1, R2)) = 1/2. Hence,R, cannot be of Class la,
as otherwiser(5(w, Ry)) > e, > 3.

2. The second case is whé is the only child ofS. Consider the three edge séis = d(w) N 4(.5),
E; = §(w,Ry) andEs = §(R1) N (S); see Figure 5(c). As we have assumed thiatoes not own
any endpoint other tham (see Figure 5(a)), it follows that(w) = E; + E», §(R1) = E2 + E3 and
6(S) = E1 + E3. Sincexs(s), Xs(w): Xs(r,) are linearly independent, this implies thig # 0, as
otherwisexs(s)y = Xs(w) — Xo(r,)- Note thate(E1) + x(FEz) = 2(0(w)) = by, andz(Ez) + z(E3) =
z(0(Ry1)) = f(R1) = 1, andz(Ey) + z(E3) = z(6(5)) = f(S) = 1. Asb, > 1is an integer
andz(E3) > 0, the only solution ig,, = 1 andz(E;) = x(E2) = x(E3) = 1/2. This implies
that R; cannot be of Class lla; otherwise eithEr and E53 consists of a single heavy edge (since
|0(R1)| = |E2| + | E3| = 3 for a Class lla child), contradicting thdt, is of Class lla. SoR; must be
of Class llb, and thus there is an out-heavy edge 6(R:). If e € E», thenb,, > z. + x5 > 1, as
d(w) > 5 and other edges have positive values, contradictingithat 1. Thereforee € E5. Then,e
is also an out-heavy edge 6f So,S is of Class llb and only needs three tokens, and we are done.

We have considered all the cases wisenas at least one Class Il child, and Lemma 2.8 holdssfor O

The following claim solves the case whérhas only Class | children, which has many cases in the proof.
Claim 2.14 Suppose tha$ owns a vertex it/’. Then Lemma 2.8 holds fof.

Proof: By Claim 2.12 and Claim 2.13, i§ has at least one Class Il child or one Class Ill child, then
Lemma 2.8 holds fof. So it remains to consider the case wttthas only Class | children. L&k, ..., R;

be the Class | children of. By the definition of Class I, there are no heavy edges with em#point in
one Class | child and another endpoint in another Class dl.chiet » be the number of out-heavy edges of
Ry U...U Ry that are also i (S). Notice that it suffices to colleat — & tokens forS to prove the claim. In
the following, we distinguish two cases, wher> 1 and whem, = 0.

1. We consider the case whén> 1. See Figure 6 for an illustration. Let{ be an out-heavy edge in
0(S) N Jd(Ry). ThensS is of Class llb, and only needs three tokenswlis assigned at least five tokens
by the token assignment scheme, thtecan collect three tokens from, and we are done. So, by
Claim 2.9, we assume thathas exactly four tokens. Thefcan collect two tokens frorm, and needs
only one more token. Ag(S) = 1 and there is already a heavy edgec §(S), Case (2) of Claim 2.9
cannot happen. So, by Claim 2.9, the only possibility leth&tb,, = 1, d(w) = 5 and there is one
heavy edgéf in 6(w)Nd(S). This implies that (S) = {e1, f}, asf(S) = 1 ande;, f are heavy edges.
Suppose thab has another Class | chil®;. ThenRs has an out-heavy edgg. Sincees ¢ §(5),
this implies thates € §(w), asw is the only vertex i/ owned byS. However, sincel(w) = 5 and
every edge has a positive value, this implies that= z(6(w)) > ., + x5 > 1, a contradiction to
Claim 2.9. SoR; does not exist. Hencg&; is the only child ofS. Sinced(w) = 5, d(R;) = 2, and
|0(w) N6(S)| = 1, there must be an edde, z) with x € S — R;. So.S can collect one token from,
as required.

11

Figure 6: We illustrate the argument in the subcase when 1, which is in the case whefi owns only one vertex
in W and all the children of are of Class I.

2. Next we consider the case whian= 0. Then, every out-heavy edge & is incident omv, asw is
the only vertex inl// that is owned bys. By the token assignment schemereceives one token from
each of its incident edge, except when Rule (1) applies ichvbase: is a heavy edge in(S). Since
f(S) =1, there are at most two heavy edges (), and sow receives at leasi(w) — 2 tokens by the
token assignment scheme. Therefore(if)) > 8, thenw has at least six tokens, asdcan collect four
tokens fromw, and we are done. Henceforth, we assume Thatd(w) > 5 (by Assumption 2.5(3)),
and we further consider three subcases depending on the ofadjw).

In the following subcases, recall that we assumed $hatvns only one vertexs in W, every childR;
of Sis of Class |, and every out-heavy edgefyfis incident onw.

Figure 7: In this figure, we are in the case (2a) of Claim 2.14, in whicbwns only one vertex; in W, every child

R; of S is of Class |, every out-heavy edge Bf is incident onw, and furthermore(w) = 7. We further restrict this
subcase to the scenario when there are two heavy edgés jm §(S), S does not own any vertex other than and

§(w) \ 6(S) = §(w,U._, R;), and argue that it is not possible.

(a) Suppose thai(w) = 7. If there is at most one heavy edgedifw) N §(S), thenw receives at
least six tokens by the token assignment scheme Sacah collect four tokens fromv, and this
is enough. So, assume that there are two heavy edgés im §(.S), and hencéd(w) Nd(S)| =
|0(S)| = 2. Then,w receives exactly five tokens by the token assignment schante$ can
collect three tokens fronw, and it needs one more. H owns an endpoint other than, then

12

S can collect one more token, and we are done. So, we furthemasthatS does not own an
endpoint other tham. Therefores(w) \ 6(S) = 6(w,U._, R;). See Figure 7 for an illustration.
We argue that the remaining case is not possible. Noteldhat Ul_, R;)| = [5(w) \ 6(S)| =
|0(w)| — [0(w) N6(S)| =7 —2 = 5. Sinced(R;) = 2 for each Class | child, this implies that
[> 3. EachR; has an out-heavy edgg incident onw. If [> 4, sinced(w) = 7 and every edge
has a positive value, it follows thaf, = z(6(w)) > z(6(w) NI(S)) + Xey + Tey + Teg + Tey, > 3,

a contradiction tal(w) > b, + 4 by Assumption 2.5(3). Thereforé, must have exactly three
children Ry, Ry, R3. Since|d(w,U._, R;)| = 5, there are exactly two children witli(R;)| =
|0(w, R;)| = 2, sayR; andRs. Again,b,, = z(d(w)) = z(6(w)Nd(S))+x(6(R1))+z(0(R2))+
Te, > 1+ 141+ > 3, acontradiction tel(w) > b, + 4 by Assumption 2.5(3).

(b) Supposel(w) = 6. This implies that,, < 2 by Assumption 2.5(3). Also, sina&w) = 6 and
every edge has a positive value, there are at most three kdgeg incident ta.
If there is no heavy edge i{w)N4d(S), thenw receives at least six tokens by the token assignment
scheme, and' can collect four tokens fromv, which is enough. So, assume that there is at least
one heavy edge ifi(w) N §(S).
Suppose that there are two heavy edgegin N (.S). See Figure 8(a) for an illustration. Then
receives at least four tokens by the token assignment scleerdé can collect two tokens from
w, and it needs two more. SinggsS) = 1, |d(w)Nd(S)| = |§(S)| = 2. Each childR; is of Class
I, and has one out-heavy edge incidentianAs there are at most three heavy edges incident to
w, the only possibility is that has exactly one chil®;. Sinced(w) = 6, |§(w) Nd(S)| = 2and
|0(w) Nd(Ry1)| < 2, there are at least two edgesdifw) with the other endpoint it$ — R;, and
so S can collect two tokens from these two endpoints, and we amne.do

(@ (b) (©)

Figure 8: In this figure, we are in the case (2b) of Claim 2.14, in whitbwns only one vertexs in T, every child
R; of S is of Class |, every out-heavy edge Bf is incident onw, and furthermorel(w) = 6. We further argue that
there are at most three heavy edges incident.to

In (a), we consider the scenario when there are two heavysadgéw) N d§(S), in which.S can collect two tokens from
w and two tokens from two other endpoints that it owns.

In (b), we consider the scenario when there is exactly oneyhedgef in 6(w) N d(S) andS has exactly two children
Ry and Ro. We further assume that does not own any vertex other than Then, no matter how we place the other
edge ofR;, we reach a contradiction.

In (c), we consider the scenario when there is exactly oneyhedgef in §(w) N d(S) andS has exactly one childk; .
We further assume thét does not own any vertex other than but then it implies that the characteristic vectors are
linearly dependent.

13

(©

Henceforth, we assume that there is exactly one heavy ¢dgej(w) N §(S). By the token
assignment scheme; receives at least five tokens. S®can collect three tokens from, and

it needs only one more. 1% owns another endpoint other than thenS can collect one more
token, as required. So, we further assume thdbes not own an endpoint. We assumed that each
R; has an out-heavy edgg incident onw (ash = 0 in Case (2); see the caption in Figure 8).
As there are at most three heavy edges incident ¢asb,, < 2 in Case (2b); see the caption in
Figure 8) and one of these heavy edges i§(ifi), S has at most two children. In the following
two paragraphs, we will consider the two scenarios whidsas exactly two children (Figure 8(b))
and S has exactly one child (Figure 8(c)). Recall ti$abnly needs to collect one more token.

SupposeS has exactly two childre?; and R,. We will show in this paragraph that this case is
not possible; see Figure 8(b). Since edthhas an out-heavy edgg incident onw, there are
three heavy edges incident an Thusb,, > 1, and sob,, = 2 (as we assumet, < 2 in Case
(2b)). If 6(w, R;) = 0(R;), thenb,, > xf + x(6(R1)) + @, > 1/24+1+1/2 =2, asd(w) =6
and every edge has a positive value, a contradiction. Heveassume thai(w, R;) = {e; } and
d(w, Ro) = {e2}. SUppose&(Ri, Ry) # 0. Letd(Ry, Ra) = {e}. Thenz, + z¢, = x(d(R1)) =
f(R1) =1,andz.+x., = x(§(R2)) = f(R2) = 1, andze, +x¢, = z(d(w))—z(d(w)Nd(S)) =

by — f(S) = 1. Thereforex, = z., = z., = 1/2, but there is a heavy edge between two Class
| children, a contradiction to the definition of Class |. See must havej(R;, Ry) = . Let
Ry = {ey, f1} and Ry = {es, f2}. The only possibility left isf; € §(S) and f> € §(S). Note
thatz., + x5 = x(0(R1)) = f(R1) = 1, andz,, + x4, = x(6(R2)) = f(R2) = 1, and
Ty +Tey +2(6(w)NO(S)) = 2(d(w)) = by =2, anday, + x5, +2(0(w)N(S)) = 2(6(5)) =
f(S) = 1. Solving these equations, we hav@(w) N 6(S)) = 1/2. Sincef € §(w) NJ(S) is a
heavy edge, this implies thditis the only edge id(w) N §(S). But thend(w) = {e1, e2, f}, and
henced(w) = 3, a contradiction.

The final remaining case is whe$i has exactly one child?;, and there is exactly one heavy
edgef in §(w) N §(S). See Figure 8(c) for an illustration. Recall thaitonly needs to collect
one more token, when there is exactly one heavy gdmes(w) N §(S). If S owns an endpoint
other thamw, then S can collect one more token, as required. So, we further asshat.S
does not own an endpoint other than We prove that this case would not happen. Note that
z(6(w) No(S)) + xz(d(w, Ry)) = z(d(w)) = by = 2, andx(d(w, Ry)) + z(6(R1) N 6(S)) =
2(6(R1)) = f(R1) = 1, andz(d(w) N 6(S)) + z(6(R1) N6(S)) = =(6(5)) = f(5) = L.
Solving these equations, we have(R;1) N d(S)) = 0. Thereforep(w, R;) = 6(R;), and hence
Xs(w) = Xs(Rr1) T Xs(s), contradicting the linear independence of these chaiatitevectors.

Supposel(w) = 5. See Figure 9 for an illustration. This implies that < 1 by Assump-
tion 2.5(3), and henck, = 1. Also, sinced(w) = 5 and every edge has a positive value, there is
at most one heavy edge incident@onEach childR; has a heavy edge incident onw. So,S has
exactly one childr,, and there is no heavy edgedfw)Nd(S). By the token assignment scheme,
w receives five tokens, ansl can collect three tokens from, and it needs only one more. $f
owns an endpoint, thefi can collect one more token, as required. So, we further asshats
does not own an endpoint.

We prove that this remaining case is not possible. Notewtf&tw) N §(S)) + z(d6(w, Ry)) =
z(6(w)) = by = 1, andz(d(w, Ry)) + z(6(R1) N6(S)) = z(0(R1)) = f(R1) = 1, and
z(6(w) NI(S)) + z(0(R1) N(S)) = z(8(S5)) = f(S) = 1. Solving these equations, we have
z(6(R1) N6(S)) = z(d(w, Ry)) = z(6(w) Nd(S)) = 1/2. Sinced(R;) = 2, there is only one
edgee € §(R1) N4(Y), havingz, = 1/2. By the definition of Class l¢ must be an out-heavy
edge ofR; in §(5), contradictingh = 0 assumed in Case (2).

14

Figure 9: In this figure, we are in the case (2c) of this claim, in whitbwns only one vertex in W, every childR;
of S'is of Class I, every out-heavy edge Bf is incident onw, and furthermoré(w) = 5. We further restrict this to the
scenario whers has only one (Class 1) chil®;, there is no heavy edge &ifw) N §(S), andS does not own any vertex
other thanw.

We have considered all the cases and completed the prooawhQ@l14. O

Proof of Lemma 2.8: We now complete the proof of Lemma 2.8 by solving the case whednes not own
any vertex inlW. Let h be the number of out-heavy edgesdnand lett be the number of tokens th&tcan
collect (from the vertex that it owns, from the excess tokias its children have, or from the token that it
receives from Rule (1) of the token assignment scheme).drfidlfowing, we say that a nodR is of Type A

if Ris of Class la or of Class lla. To prove Lemma 2.8, it sufficebdeeh + t > 4 if S is not of Type A,
andh +t > 3if Sis of Type A.

Claim 2.15 Suppose that' does not own a vertex iW. Each Class Ib, Class IIb, or Class Il chil® of S
can contribute at leas? to i 4 t. And each Class la, Class lla child can contribute at lebgh & + ¢.

Proof: If R is of Class lll, then it has two excess tokens, and so it domiies two tat. And if R is of Class
Ila, then it has one excess token, and so it contributes ohe to

If R is of Class llb, then it has one excess token which contribotee tot, and one out-heavy edge
e € 0(R). If e € 6(S5), thene contributes one ta. Otherwise, since' does not own any vertex i/, the
other endpoint ot is in some other child?’ of S. Then,e contributes one t@ by Rule (1) of the token
assignment scheme. Sogontributes one té + ¢, and thusk contributes two td + ¢.

Finally, we consider Class | children. By the same argumerdt®mve, each out-heavy edge contributes
one toh +t, By definition, an edge can be an out-heavy edge of at mosttilteaf S, and so its contribution
to ¢ will not be double counted. IR is of Class Ib, then it has two out-heavy edges, and so it iborés two
toh + t. If Ris of Class la, then it has one out-heavy edge, and it conéigbone toh + ¢. O

We are ready to finish the proof of Lemma 2.8 by consideringhtimaber of children of. Recall that it
suffices to havé, + ¢ > 4 if S is not of Type A, andh + ¢ > 3 if S is of Type A.

1. S has at least four children. By Claim 2.15, each child canrdouie at least one té + ¢, and so
h+t>4.

2. S has exactly three children. If there is a child which is noTgbe A, thenh + ¢ > 4 by Claim 2.15,
and we are done. So, we assume thdtas exactly three Type A childreR,, Rs, R3. If S owns an
endpoint, then alsé + ¢ > 4. So, we further assume th&tdoes not own an endpoint. See Figure 10
for an illustration. We divide this case into two subcasepeahding on whethe$ has a Class la child.

15

(CY (b)

Figure 10: In this figure, we are in the case whérhas exactly three children arftidoes not own any vertex i.
We assume that all children are of Type A, andoes not own any vertex.

In (a), we consider the subcase whemas a Class la chil&,. We argue thaf is of Class la, and only require two
tokens, and can collect two tokens frdfa andR3, which must be of Class lla.

In (b), we consider the other subcase witehas three Class lla childreRy;, Rs, R3. Jain’s proof implies tha$' is also
of Class lla, and thus it only requires three tokens, and caritcollect one token from eact;.

The first subcase is whefihas a Class la child. Each Class la chitdhas an out-heavy edge with
ze;, > 1/2. Note that the other endpoint ef cannot be in another chil&; of S for i # j, by the
definition of Type A children. Also, sinc8 does not own any vertex i/ by Claim 2.14, this implies
thate; must be ind(S). Hence, sincef(S) = 1, S can have at most one Class | child, say. Let
0(R1) = {e1, f1}, wheree; is the out-heavy edge dR;. Assume, without loss of generality, that
f1 € 6(Rg). Sincef(S) = 1, we must haved(Rq, R3)| = 2; otherwise|d(R3) N J(S)| > 2 and thus
F(S) =x(8(9)) = @e, +2(0(R3)N(S)) > 1/2+ (1 —1/2) =1, since|é(R3)| = 3 and each edge

in §(R3) hasz. < 1/2 by the definition of Class lla. Sindé(R2, R3)| = 2, this implies that{(S) = 2,
and hences is of Class la and only requires two tokens. In fag€tcan collect two tokens, one token
from R, and one token fronRs3, and we are done.

The second subcase is whBn, Rs, R3 are all Class lla children. We use the following lemma in 3ain
proof.

Lemma 2.16 (Lemma 23.18 of [22])Thecorequiremenbf a setS is defined agl(S)/2 — f(.S). Sup-
poseS hasa children and owng’ endpoints, where: + 5 = 3. Furthermore, each child of, if any,
has a corequirement df/2. Then,S also has a corequirement f2.

In our case, wherf(S) = 1, S has a corequirement/2 if and only if d(S) = 3; in particular, a Class
lla node has a corequiremehf2. Therefore, Lemma 2.16 implies thétis also of Class lla, and thus
it only requires three tokens. S8,can collect three tokens, one from edgh as required.

3. S has exactly two childrei®; and R,. If both R, and R, are not of Type A, since each can contribute
two to h + ¢ by Claim 2.15, then we are done. We divide this case into tvaeases, depending on the
number of Type A children.

The first subcase is whey, is of Type A andR is not of Type A. See Figure 11(a) for an illustration.
So, by Claim 2.15,R; can contribute one téd + ¢ and R, can contribute two td + ¢, and soS
needs only one more token. # owns an endpoint, then we are done. So, we further assume that
S does not own an endpoint. We shall prove that this would nppéa. In this casey(6(R;) N

16

6(9)) +2(0(Ry, R2)) = 2(6(R1)) = f(R1) = 1, 2(6(R1) N6(S)) + x(6(R2) N6(S)) = x(5(5)) =
f(S) =1, andz(6(R2) N(S)) + x(d(R1, R2)) = xz(6(R2)) = f(R2) = 1, and hence we must have
z(6(R1) N4(S)) = x(6(R1, R2)) = z(d(R2) Nd(S)) = 1/2. Therefore,R; cannot be of Class la,
since otherwise it has an edge with > 1/2. Also, R; cannot be of Class lla, sine€R;) = 3, either
d(R1, Ra) or §(R2) N o(S) is a single edge with z. = 1/2, contradicting thaf?s is of Class lla.

@ (b) (©

Figure 11: In this figure, we are in the case whérhas exactly two childrei®;, R, andS does not own any vertex in
w.

In (a), we consider the subcase whgnis of Type A andR is not of Type A. We further assume thg&idoes not own

a vertex. Then we argue that this cannot happei®;asannot be of Type A.

In (b), we consider the scenario when bdth and R, are of Type A andR, is of Class la. We further assume that
S owns exactly one endpoint Then we show tha$ is also of Class la, and only requires two tokens, which can be
collected fromRs andwv.

In (c), we consider the scenario when bdth and R, are of Type A andR; is of Class lla. We further assume tHat
owns exactly one endpoint Then we show tha$' is also of Class lla, and only requires three tokens, whichlm
collected fromR;, Ry andwv.

The second subcase is when bé&thand R, are of Type A. By Claim 2.15, eacR; can contribute one
to h 4 t, and .S needs at most two more tokens. dfowns two endpoints, then we are done. By the
same argument as in the above paragraph, it cannot be théheaSedoes not own any vertex, and so
S must own at least one endpoint. So, we assumeStlostns exactly one endpoint SupposeR; is of
Class la, then its out-heavy edgemust be in(.S). See Figure 11(b) for an illustration. S&; cannot
be of Class la; otherwise(§(S)) > 1. If Ry is of Class lla, then we cannot hagR;, R2)| > 2 since
d(R;) = 2, and also cannot havyé(R2) N §(S)| > 2 sincef(S) = 1. Therefore, the only possibility
is [0(R1, R2)| = |0(v, R2)| = |0(R2) N4(S)| = 1. Hence,d(S) = 2 and soS is of Class la and
only requires two tokens. In fact can collect two tokens, one froi, and one fromy, as required.
Finally, supposeR; and R, are of Class lla. See Figure 11(c) for an illustration. Theis of Class
Ila by Lemma 2.16, and only requires three tokens. Anhchn collect three tokens, one froRy, one
from Ry also one fromv, as required.

4. S has exactly one child. By linear independence ofs.sy andx;sz) and f(S) = f(R) = 1, there
must be one edgg¢ € §(S) — §(R) and one edge € §(R) — 4(S). Hence,S must own at least two
endpoints, and thus can collect two tokensRIfs not of Type A, thenR contributes two td + ¢ by
Claim 2.15, andS has at least four tokens, and we are done. So, we assumg thaif Type A. We
divide this into two subcases, depending on whethés of Class la or Class lla.

The first subcase is wheR is of Class la. See Figure 12(a) for an illustration. Siscgoes not own
any vertex inl¥/, the out-heavy edge d® must be inj(S). Then,S is of Class Ilb and only require

17

S S

@ (b)

Figure 12: In this figure, we are in the case whsrhas exactly one child& andS does not own any vertex .
In (&), we consider the subcase wheiis of Class la.
In (b), we consider the subcase wheris of Class lla.

three tokens. IS owns at least three endpoints, th€mrcan collect three tokens, and we are done. So,
we assume tha owns exactly two endpoints. Then, we must haye= x, andd(S) = 2, and thusS
is also of Class la and only requires two tokens, and we acedaise.

The second subcase is whéris of Class lla. See Figure 12(b) for an illustration.Sliowns at least
three endpoints, thesi can collect four tokens, three tokens from the endpointsoaedtoken fromR,
and we are done. So, we assume thatwns exactly two endpoints. Then, we must haye= z, and
d(S) = 3. SinceR is of Class lla, this implies th&f of also of Class lla and only requires three tokens.
Note thatS can collect two tokens from the endpoints and one token ffyrand we are also done.

We have considered all the cases and completed the proohainiag?.8. O

As shown in the end of Section 2.3, Lemma 2.8 implies LemmavZh&h in turns implies Theorem 1.1.

3 Minimum Bounded Degree Steiner Networks

In this section, we prove Theorem 1.2. The linear programgmaiaxation is exactly the same as in the
previous section, except that the functipiis not necessarily &0, 1}-valued function.

3.1 Algorithm

Our approximation algorithm for the minimum bounded dedsésiner network problem is also an iterative
algorithm. 1t is similar to the algorithm for the minimum bwiled degree Steiner forest problem, with the
following main difference. In Step 2a, we define a sehigfh degree vertice$V;, = {v € W | z(6(v)) >

6 fmax }» Wherefr.x = maxgcy f(S). This set of vertices plays the same role as the set of vertidi no
degree constraints in the Steiner forest algorithm. TheStep 2d, we only pick a heavy edge when both of
its endpoints are not high degree vertices. This step esishat the degree bounds are only violated by an
additive term.

First, we show that the algorithm returns a solution with demed guarantees for cost and degree
in Theorem 1.2, assuming that the algorithm always proceedach of the iterations. Then, we show in
Lemma 3.2 that one of the conditions to proceed must be satifr any extreme point solution to the linear
program.

18

Minimum Bounded Degree Steiner Network
1. Initialization F' < 0, f'(S) < f(S) forall S C V.
2. While F' is not a Steiner network do

(a) Computing an optimal extreme point solution:
Find an optimal extreme point solutiansatisfying f/” and remove every edgewith x. = 0.
SetW), = {ve W |z(6(v)) > 6fmax} andb, = z(5(v)) forv e W.
(b) Removing a degree constraint:
For everyv € W with degree at most four, remowefrom .
(c) Picking an 1-edge:
For each edge = (u, v) with 2z, = 1, adde to F', removee from GG, and decreask,, b, by one.
(d) Picking a heavy edge with both endpoints low:

For each edge = (u,v) with z, > 1/2 andu,v ¢ W}, adde to F', removee from G,
and decreask, andb, by 1/2.

(e) Updating the connectivity requirement function:
For everyS C V, setf’(S) < f(S) — dp(S).

3. ReturnF.

Lemma 3.1 If in each iteration one of the conditions in Step 2b, Step 26tep 2d is satisfied, then the
algorithm returns a Steiner network with cost at most twiwe dptimal linear programming solution and the
degree bound of each vertex is violated by at nogt.. + 3.

Proof: The proof is by a standard inductive argument. We provideoat &xplanation. Note thaf’ in each
iteration remains a skew supermodular function, and so L&r32 continues to hold. Since we always pick
an edge withc, > 1/2 and the remaining fractional solution is a feasible solufior the residual problem,
the cost of the solution returned is at most twice the cosheflinear programming solution as claimed in
Theorem 1.2.

Next, we bound the degree violation of a vertexFirst, observe that while € W}, we pick at most
b, — 6 fmax €dges incident om, as we only do that in Step 2c and the degree boundisfreduced by one
whenever such an edge is picked. Whea W — W}, we pick at most 2 f,,.x — 1 edges incident on, since
we only do that in Step 2d or Step 2c and the degree bound iseddwy at least /2 whenever we include
such an edge. Finally, whan¢ W, we pick at most four edges incident ensince the degree af is at
most four by Step 2b. Hence, the number of edges picked teaheident onv is at most(b, — 6 fiax) +
(12fmax_1)+4:bv+6fmax+3- u

For the correctness of the algorithm, we shall prove thewaihg lemma in Section 3.2, which will ensure
that the algorithm terminates with a feasible solution, ptating the proof of Theorem 1.2. The rest of this
section is devoted to the proof of Lemma 3.2.

Lemma 3.2 Letx be an extreme point solution to (LP)] be the set of vertices with degree constraints, and
Wy, = {v €W |2(6(v)) > 6fmax}- Then at least one of the following is true.

1. There exists an edgewith z. = 1.

2. There exists an edge= {u, v} withz, > 1/2 andu,v ¢ W},

19

3. There exists a vertaxe W with d(v) < 4.

3.2 A Counting Argument

We shall prove Lemma 3.2 by a counting argument. Suppose, dyyols contradiction, that none of the
conditions in the lemma holds. Then each eddeas0 < z. < 1, and each edge with 1 > =, > 1/2
(we call such an edgel@avy edgemust have at least one endpointlif),, and each vertex i’ must have
degree at least five.

We shall give two tokens for each edge (the initially tokesigrement scheme is explained below) for
a total of2|E| tokens. Then, the tokens will be reassigned so that each ereaflC gets at least two
tokens, each vertex i’ gets at least two tokens, and there are some extra tokensTkaé will contradict
|E| = |L| + |T'| of Lemma 2.1, and thus completes the proof.

Our analysis is similar to Jain’s analysis, the main differe being the existence of heavy edges (with an
endpoint inW¥), which our algorithm is not allowed to pick. In the follovgnwe say a vertex im}, is a
high vertex. Since there are some heavy edges, & setC may only have two edges if(.S), and hences
may not be able to collect at least three tokens as in Jaio&fpifo overcome this, we use a different token
assignment scheme so that a similar induction hypotheslaia’s works.

Initial token assignment schemelf e = {u, v} is a heavy edge; € W}, andv ¢ W, thenv gets two tokens
from e andu gets zero token. For every other edg@ne token is assigned to each endpoint.of

Co-requirement: We also need to refine the definition of co-requirement forpttesence of heavy edges:

coredS) = > (1/2-xz)+ > (1-m).

e€d(S), ze<1/2 e€d(S), ze>1/2

It is useful to note that this definition reduces to Jain'smgin of co-requirement if every heavy edge
e with . > 1/2 is thought of as two parallel edges, each aiming to achievawe\of1/2 but sharing the
currentz, value equally (i.e. each gets/2), so that summind /2 — z./2 over the two parallel edges gives
1— z.

After this initial assignment, each vertex n\ W}, receives at least as many tokens as its degree. In
particular, each vertex i’ \ W}, receive at least five tokens as their degree is at least fivie tNat a vertex
v € W might not have any tokens if all the edges incident on it aspedges. By exploiting the fact that
f(S) < fmax, however, we shall show that verticesliry, canget backenough tokens. Finally, by the initial
token assignment scheme, an endpoigt 1 can get two tokens from a heavy edge incident on it, because
the other endpoint of the heavy edge must b&/in

We are ready to prove the following lemma which shows thatdkens can be reassigned as discussed
previously.

Lemma 3.3 For any subtree of. rooted at node5, we can reassign tokens initially assigned to verticeS in
such that each vertex ifi N S gets at least two tokens, each node in the subtree gets atteasokens, and
the rootS gets at least three tokens. Moreover, the rSajets exactly three tokens onlycired.S) = 1/2.

We now proceed by induction on the height of the subtree tegot@mma 3.3. We first prove the base
case of the induction hypothesis where we also show a cr@#&m 3.4, which handles all sets that own
some vertices ifV. We then use this claim in the main induction proof to conmgtae proof of Lemma 3.3.

Proof of base case of Lemma 3.3:et S € £ be a leaf node. First, consider the case wieniV = (). Then
S can get at leasi(.S) tokens from the vertices owned 5y Note that|6(S)| > 2, asz(d(S)) is an integer
and there is no 1-edge. |(S)| > 4, thenS gets at least four tokens. [if(S)| = 3 andd(.S) contains a heavy
edge, thert can get four tokens from the vertices it owns, since an emtipa¢ 17 of a heavy edge has two

20

tokens by the token assignment scheme. If it does not coatagavy edge, thefi receives three tokens and
cored S) = 1/2. If [0(S)| = 2, then at least one edge is a heavy edge. If both edges are teavy can get
four tokens; otherwise if only one edge is heavy then it datset tokens and coréff) = 1/2.

Next, we consider the case whéhowns a vertex» € S N (W \ W},) but .S does not own a vertex in
Wy. By the token assignment schemereceives at least five tokens. Sincenly needs two tokens, it has
three excess tokens which it can giveStolf there are two such vertices Srowns another endpoint, theh
gets at least four tokens as required. Otherwise, we Rave = xs(s), which is a contradiction to the linear
independence of the characteristic vectors as stated imlaepnl.

Finally, we consider the case whérowns a vertex iV}, and show that can collect enough tokens for
the inductive argument. The following claim is the key toldedh degree constraints, which uses crucially
the parametef,,.. This claim holds also whef is not a leaf in the laminar family, and will be used in the
induction step.

Claim 3.4 Suppose that the induction hypothesis holds for each chiftland thatS ownsr > 1 vertices in
Wy. Then the number of excess tokens from the childréh plus the number of tokens owned$yplus the
number of tokens left with vertices i, owned byS is at least2r + 4.

Proof: Let S havec children. As each child has at least one excess token by thection hypothesis, if
¢ > 6r then we havér tokens which is at leagtr + 4. Hence, we assume thak 6r.

LetO), denote the vertices IV, owned byS. Let B := 3 ., z(0(v)) = >_,c0, bo = >_yc0, 6.fmax =
6r fmax- INformally, vertices ini¥;, owned byS would have collected a total of at leaBttokens if the two
tokens at each edge were distributed evenly. However, bipitie token assignment scheme, some vertices
in O, may not get any token for the heavy edges incident on them.ré/gang to show that these vertices
can still “get back” the two tokens they need for the induetivgument.

ForachildR of S, z(d(R)) = f(R) < fmax and similarlyz(5(S)) < fmax. Thus

2((Uveo,0(v)) N (Urd(R) U 6(5))) < 2(Urd(R) Ud(S)) < (¢+ 1) fmaz-

Therefore,

Z Z Tup 2 B — (C+ l)fma:v > fmam(GT —C— 1)

veQy, u:u owned by S

Since there is no 1-edge, there are at Igast (6 — ¢ — 1) + 1 endpoints in the above sum where both the
endpoints are owned by. Lete = {u, v} be such an edge withe O,. If u € W, then bothu andv get one
token frome in the initial assignment. I ¢ W, thenu gets two tokens froma in the initial assignment, but
these two tokens are owned By So, the number of tokens owned Byplus the number of tokens left with
vertices inOy, is at leastfi.x (67 — ¢ — 1) + 1. FurthermoreS can also collect one excess token from each
child. So, the total number of tokersscan collect is at leasty.x (6 — c — 1) + ¢+ 1, which is a decreasing
function ofc. Asc < 67, the number of tokens is minimized@at= 6r — 1, which is at leasér > 2r + 4. O

In the base case, whehowns a vertex iV, S can collecr + 4 tokens by Claim 3.4. So, these tokens
can be reassigned so théithas four tokens and each vertexliry, owned byS has two tokens, which is
enough for the induction hypothesis. O

Proof of the induction step: The presence of heavy edges with > 1/2 introduces some difficulties in
carrying out the inductive argument in [9]. We need to prawae lemmas which work with the new notion
of co-requirement and the presence of heavy edges.

For any setS, let wdeg(d(5))

=H{ee€d(S):0<x.<1/2} +2|{e €(S) :x. > 1/2}|

21

be theweighted degreef S. This definition is keeping with the idea of thinking each edgth z, > 1/2 as
two parallel edges. Observe that for ang W, v receives exactlydeg(v) tokens in the initial assignment
as it gets one token for each edge and two tokens for all hedygseincident on itS can take all the tokens
for all the vertices it owns which are not Iiy. We call these theokens owned by. Let G’ = (V, E’) be the
graph formed by replacing each heavy edd®y two edges’ ande” such thatr,, = z.» = z./2. Observe
that

coredS) = 3 (1/2 — z,) + > (I—ze)= > (1/2—=),

e€d(S)NE, z<1/2 e€d(S)NE, z>1/2 ecH(S)NE’

andwdeg(d(S)) = [0'(S)| whered’'(S) = {e € E' : e € §(S)}. Observe that coré®) is integral orsemi-
integral (half-integral but not integral) depending on whethiS) is even or odd. We first prove the same
technical lemma as in Jain [9] with the new definitions of egtrirements and weighted degrees.

Claim 3.5 Let S be a set inC which ownsa tokens and hag children wheren 4+ 5 = 3 and does not own
any vertex of¥/. Furthermore, each child of, if any, has a co-requirement of2. Then the co-requirement
of Sis1/2.

Proof: Since each chil® of S has a co-requirement of half, this implies th&(R)| is odd. Note that we
assumeS does not own any vertex d¥/. Using these facts and that+ § = 3, the same argument as in
Exercise 23.3 of [22] can be used to show #44tS)| is odd. Hence, the co-requirement®fs semi-integral.
Now, we show that cord®) < 3/2, proving the claim. Clearly,

coredS) = Y (1/2—m) <) _coreqR) + > (1/2 —z.),
R e

e€d(S)

where the first sum is over all childreR of S and the second sum is over all edges for whitlbwns a
token. Sincex + 5 = 3, there are a total of three terms in the sum. Since any terimeirfitst sum isl /2
and in the second sum is strictly less thigf2, if o > 0 then we have coré®) < 3/2 which proves the
claim. So, assume = 0, i.e. S does not own any token. In this case, edges incident to emldf.S cannot
all be incident atS, since otherwise it will violate the linear independenceclofracteristic vectors if in
Lemma 2.1. Therefore, we have co(8q <), coreq R) = 3/2, proving the claim. O

We are now ready to prove that the induction step holds, irclvEihas at least one child. § owns a
vertex inWj, then Claim 3.4 shows that the induction hypothesis holdmadforth, we assume thétdoes
not own any vertices dil’,.

SupposeS owns some vertices i\ W),. Each such vertex gets at least five tokens in the initialrioke
assignment. It needs only two tokens and hence can give¢koess tokens t§. As S has at least one child
R, R can give at least one excess tokerbt@and hences gets at least four tokens as required.

Therefore, for the rest of the cases, we assumedhdtes not own any vertex d¥’. We note that the
remaining case analysis is very similar to that of Jain, Withrefined definition of co-requirement.

e S has at least four children. Thehcan take one excess token from each child.

e S has exactly three children. If any chile has two excess tokens or$f owns a vertex thery can
get four tokens. Otherwise, each of the three childrel§ dfas a co-requirement of half arfdowns
no vertices. Then, by Lemma 3.5, we have tRdtas co-requirement daf/2 and it only needs three
tokens.

22

e S has exactly two childrer?; and Rs. If both of them have two excess tokens from the induction
hypothesis then we are done. Otherwise Hghave exactly one token and hence it has co-requirement
of 1/2 by the induction hypothesis. We claim thg&tmust own an endpoint. Suppose to the contrary
that S does not own any endpoint. Then, if there aredges betweer, and R, in E’ (where we
replace each heavy edge by two parallel edges), we have

10"(S)| = |6'(Ry)| + |0 (R)| — 2a.

As R; has a co-requirement of half, we hg¥g R,)| is odd and hencé (S) andd’(R;) have different
parity and hence different co-requirements. The co-requiénts ofS and R, can differ by at most the
co-requirement of?; which is exactly half. Sinceys sy # Xs51(ry) + Xo7(Rro)» there must be an edge
betweenf?; and R and therefore cordd) < cored Rq) + 1/2. Similarly, x5 (r,) # Xo'(s) + Xo'(R1)
and therefore there is an edgejiiS) N’ (R) which implies that coregR2) < coredS)+1/2. Thus,
their co-requirements are equal which is a contradictidius owns at least one endpoint.

If S owns at least two endpoints &% has two excess tokens, then we have four tokenS§ f@therwise,
by Lemma 3.5, we have that co-requirementsa$ half and it needs only three tokens.

e S has exactly one child?. Since both set$ and R are tight we have that(4(S)) = f/(S) and
z(6(R)) = f'(R). Sincex;s) andx;g) are linearly independent, subtracting the two equations we
have thatz(4(S)Ad(R)) (A denotes symmetric difference) is a positive integer. Atbere are no
1-edges present and $&(S)AJ(R)| > 2, and each edge in the symmetric difference gives one token
to S. Thus.S owns at least two endpoints. H owns three endpoints dR has two excess tokens
then S can get four tokens. Otherwis#, has exactly two endpoints and exactly one child which has
co-requirement ofl /2. Then, by Lemma 3.55 has a co-requirement df/2 and only needs three
tokens.

This completes the proof of the induction step. O

This completes the proof of Lemma 3.3, which assigns twortske each set in the laminar famil,
and each vertex iff’ which is contained in some s8tc L. For vertices iril” which are not contained in any
setS € L, we also have enough tokens. Observe that each verteXV \ 1, receives at least five tokens.
For vertices inl¥;, not contained in any s&t € £, an argument identical to Claim 3.4 wih= V will give
at least two tokens to each vertexliry,. There is at least one extra token in any rooLofThus we have that
2|E| > 2|L£| +2|T|, which contradicts Lemma 2.1. Therefore, one of the comaftin Lemma 3.2 holds, and
hence we have Theorem 1.2.

3.3 Integrality Gap Example
In Figure 13 we show that the linear program (LP) has an iatégrgap of B + Q(rmax)-

Z1 i)

Y1 Y2 Y3 Yk

Figure 13: An integrality example of (LP).

23

In this example, we have a complete bipartite grafihY’; F) whereX = {z1, 22} andY = {y1,...,yx}.
We set the connectivity requirements betwggandy; to be 1 for alli, j, between:; andz, to bek/2, and 0
otherwise. The fractional solution where all edges havetifvaal valuel /2 is the optimal solution, in which
the degree of:; andz, is equal tok/2 = A}. On the other hand, it can be seen that in any integer sojution
the degree o, andx, must be at Ieasik: = %A} This example also shows that the integrality gap is at

least(2, b, + 27max)-

Concluding Remarks

An interesting open question is to close the gap for the mininbounded degree Steiner forest problem, i.e.
to determine whether the integrality gap of the linear paogming relaxation i$3,, + 2 or B, + 3. Another
interesting open question is to determine whether it is lhardpproximate the minimum bounded degree
Steiner network problem with degree violatiofr;,x).

The iterative relaxation method has been successfullyieppb network design problems with degree
constraints [14, 21, 2], and recently it has also been appii®ther combinatorial optimization problems and
also give simple proofs of existing results [10]. We hope this method will find further applications.

Acknowledgement

We are very grateful to two anonymous reviewers for givingiynaseful suggestions that greatly improved
the presentation of this paper.

References

[1] A. Agrawal, P. Klein and R. Raviywhen trees collide: an approximation algorithm for the gafired
Steiner problem on network®roceedings of the twenty-third annual ACM symposium orori of
computing, pages: 134-144, 1991.

[2] N. Bansal, R. Khandekar and V. Nagaraj&dditive guarantees for degree bounded directed network
design SIAM Journal on Computing, 29, 1413-1431, 2009.

[3] F. Bauer and A. VarmabDegree-constrained multicasting in point-to-point netk#& Proceedings of
the Fourteenth Annual Joint Conference of the IEEE ComparidrCommunication Societies (Vol. 1),
INFOCOM ’95.

[4] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talw&hat would Edmonds do? Augmenting paths and
witnesses for degree-bounded M3hsProceedings of APPROX 2005, pp. 26-39.

[5] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talvirarsh relabel and an improved approximation algo-
rithm for the bounded-degree mst problein Proceedings of ICALP 2006.

[6] T. Feder, R. Motwani, and A. Zhu;-Connected spanning subgraphs of low degie€CC report 41,
2006.

[7] M. Furer and B. RaghavachaApproximating the minimum-degree Steiner tree to withie @ioptima)
J. of Algorithms 17(3):409-423, 1994.

[8] M.X. GoemansMinimum Bounded-Degree Spanning Trdaimceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, 2006, pp. 223-28

24

[9] K. Jain, A factor 2-approximation algorithm for the generalized Steiner ratproblem Combinator-
ica, 21:39-60, 2001.

[10] T. Kiraly, L.C. Lau, M. Singh,Degree Bounded Matroids and Submodular Flp®eoceedings of the
13th International Conference on Integer Programming amahl@natorial Optimization (IPCO), 259-
272, 2008.

[11] P. Klein, R. Krishan, B. Raghavachari, and R. Rapproximation algorithms for finding low-degree
subgraphsNetworks, 44(3): 203-215, (2004).

[12] J. Kbnemann and R. Rav, matter of degree: Improved approximation algorithms fegigte bounded
minimum spanning treeSIAM J. on Computing, 31:1783-1793, 2002.

[13] J. Kbnemann and R. RavRrimal-Dual meets local search: approximating MSTs wittumaiform
degree boundsSIAM J. on Computing, 34(3):763-773, 2005.

[14] L.C. Lau, S. Naor, M. Salavatipour and M. SingBurvivable network design with degree or order
constraints SIAM Journal on Computing 39(3), 1062—-1087, 2009.

[15] L.C. Lau, R. Ravi, M. Singhiterative Methods in Combinatorial Optimizatip@ambridge University
Press, 2011.

[16] A. Louis, N.K. Vishnoi, Improved algorithm for degree bounded survivable netwa&igh problem
in Proceedings of the 12th Scandinavian Symposium and Wopsson Algorithm Theory, 408-419,
2010.

[17] Z.Nutov,Degree-constrained node-connectiyity Proceedings of the 10th Latin American Symposium
on Theoretical Informatics (LATIN), 582-593, 2012.

[18] B. RaghavachariAlgorithms for Finding Low Degree Structureisi Approximation algorithms, Dorit
Hochbaum (ed.), PWS Publishers Inc., pages 266-295, 1996.

[19] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosankr, Harry B. Hunt, Il , Approximation
Algorithms for Degree-Constrained Minimum-Cost NetwbDisign ProblemsAlgorithmica 2001.

[20] R. Ravi and M. SinghDelegate and conquer: An LP-based approximation algorifiemminimum
degree MST4dn Proceedings of ICALP 2006.

[21] M. Singh and L.C. LauApproximating Minimum Bounded Degree Spanning Trees toirwdne of
Optimal In Proceedings of the 39th ACM Symposium on Theory of Conmgu2007.

[22] V. Vazirani, Approximation Algorithms, Springer, 200

25

