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ABSTRACT
We study a general network design problem with additional degree
constraints. Given connectivity requirements ruv for all pairs of
vertices, a Steiner network is a graph in which there are at least
ruv edge-disjoint paths between u and v for all pairs of vertices
u, v. In the MINIMUM BOUNDED-DEGREE STEINER NETWORK

problem, we are given an undirected graph G with an edge cost for
each edge, a connectivity requirement ruv for each pair of vertices
u and v, and a degree upper bound for each vertex v. The task is to
find a minimum cost Steiner network which satisfies all the degree
upper bounds.

The aim of this paper is to design approximation algorithms that
minimize the total cost and the degree violation simultaneously.
Our main results are the following:

• There is a polynomial time algorithm which returns a Steiner
forest of cost at most 2OPT and the degree violation at each
vertex is at most 3, where OPT is the cost of an optimal solu-
tion which satisfies all the degree bounds.

• There is a polynomial time algorithm which returns a Steiner
network of cost at most 2OPT and the degree violation at each
vertex is at most 6rmax + 3, where OPT is the cost of an
optimal solution which satisfies all the degree bounds, and
rmax := maxu,v{ruv}.

These results achieve the best known guarantees for both the to-
tal cost and the degree violation simultaneously. As corollaries,
these results provide the first additive approximation algorithms
for finding low degree subgraphs including Steiner forests, k-edge-
connected subgraphs, and Steiner networks. The algorithms de-
velop on the iterative relaxation method applied to a natural linear
programming relaxation as in [10, 16, 22]. The new algorithms
avoid paying a multiplicative factor of two on the degree bounds
even though the algorithm can only pick edges with fractional value
1/2. This is based on a stronger characterization of the basic so-
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lutions of the linear programming relaxation. The analysis of the
algorithm is nearly tight.
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Numerical Algorithms and Problems—Computations on discrete
structures; G.2.2 [Discrete Mathematics]: Graph Theory—Net-
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1. INTRODUCTION
Network design plays a central role in combinatorial optimiza-

tion and approximation algorithms. Developments in this area have
led to general algorithmic techniques, and also provide useful mod-
els for practical applications. In recent years, much effort has been
put on designing approximation algorithms for network design prob-
lems with additional degree constraints. These problems generalize
key problems in combinatorial optimization, and also have applica-
tions in various areas including VLSI design, vehicle routing and
communication networks [3, 6, 18, 20, 24]. In these applications,
degree constraints occur as a natural modelling tool for workload
of nodes. For example, in typical applications of network design
problems to multicasting, the degree constraints on switches corre-
spond to a bound on the multicast copies a switch can make in the
network [3].

In this paper we study a general network design problem with
additional degree constraints. Given connectivity requirements ruv

for all pairs of vertices, a Steiner network is a graph in which there
are at least ruv edge-disjoint paths between u and v for all pairs
u, v. In the MINIMUM BOUNDED-DEGREE STEINER NETWORK

problem, we are given an undirected graph G with an edge cost
for each edge, a connectivity requirement for each pair of vertices,
and a degree upper bound Bv for each vertex v. The task is to find
a minimum cost Steiner network H of G satisfying all the degree
bounds, that is, degH(v) ≤ Bv for all v. This problem captures
many well-studied network design problems as special cases; for
instance, a Steiner forest is a Steiner network with ruv ∈ {0, 1}
for all pairs. Even the feasibility problem of finding a Steiner net-
work satisfying all the degree bounds is already NP-hard. Hence
the MINIMUM BOUNDED-DEGREE STEINER NETWORK problem



has two optimization objectives: to minimize the total cost and to
minimize the degree violation. The aim of this paper is to design
approximation algorithms that optimizes both objectives simulta-
neously. Our main results are the following.

THEOREM 1.1. There exists a polynomial time algorithm for
the MINIMUM BOUNDED-DEGREE STEINER FOREST problem which
returns a Steiner forest F of cost at most 2OPT with degree viola-
tion at most 3 (i.e. dF (v) ≤ Bv +3 ∀v ∈ F ). Here OPT is the cost
of an optimal solution which satisfies all the degree bounds.

In this extended abstract, we prove a weaker version of Theo-
rem 1.1 where the degree violation is at most 4. The above result
can be extended to the MINIMUM BOUNDED DEGREE STEINER

NETWORK problem.

THEOREM 1.2. There exists a polynomial time algorithm for
the MINIMUM BOUNDED-DEGREE STEINER NETWORK problem
which returns a Steiner network H of cost at most 2OPT with de-
gree violation at most 6rmax + 3. Here OPT is the cost of an op-
timal solution which satisfies all the degree bounds, and rmax :=
maxu,v{ruv}.

Previously the best known guarantees on the degree for both
Steiner forest and Steiner network are 2Bv + 3 in [16], even when
there are no costs on the edges. Theorem 1.1 and 1.2 provide the
first additive approximation algorithms that violate the degrees by
at most a constant for a class of problems, including Steiner forests
(+3), k-edge-connected subgraphs (+O(k)), and Steiner networks
(+O(rmax)). Moreover, these results can be achieved while simul-
taneously matching the best known guarantees for the minimum
cost Steiner forest and Steiner network problems [1, 10], and thus
provide a unifying algorithmic framework for many well-studied
network design problems. We note that Theorem 1.2 can further
be generalized to element connectivity - the most general model
where a 2-approximation algorithm for the minimum cost Steiner
network problem is known.

The algorithms develop on the iterative relaxation method ap-
plied to a linear programming relaxation as in [10, 16, 22]. The
analysis on the linear programming relaxation is nearly tight. There
are examples in which the optimal fractional solution has maximal
degree B but any integer solution would have maximal degree at
least B + 2 for Steiner forests [16], and at least B + Ω(rmax) for
Steiner networks as shown at the end of Section 3.

1.1 Techniques
The algorithms develop on the iterative relaxation method first

used in [16, 22], which adapts Jain’s iterative rounding method [10]
to the MINIMUM BOUNDED-DEGREE STEINER NETWORK prob-
lem. The approach in [16] relies on the following lemma about
the basic solutions of the linear program for Steiner networks: “If
every vertex with a degree constraint has degree at least 5, then in
any basic solution there is an edge e with xe ≥ 1

2
.” This lemma

leads to a new relaxation step to Jain’s iterative rounding frame-
work to deal with degree bounds: If there is a vertex with degree at
most 4, then the degree constraint for that vertex is removed. This
relaxation step only incurs an additive constant +3 on the degree
bounds. After this step, we can always pick an edge with xe ≥ 1

2
as in Jain’s approach, and hence the cost and the degrees are vio-
lated by at most a multiplicative factor of 2. As illustrated in the
example in Figure 1, the algorithm in [16] may actually violate the
degree bounds by a multiplicative factor of 2.

To achieve additive approximation on the degree bounds, the
challenge is to avoid paying a multiplicative factor of 2 on the

degree bounds when picking edges with value 1
2

. Note that such
edges are inevitable as a factor of 2 on the cost is best possible
using the linear program relaxation for Steiner networks. In our
algorithm for Steiner forests, we first generalize the relaxation step
to remove the degree constraint of every vertex with degree at most
Bv + 3, which is possible since the degree bounds would only be
violated by at most 3. The main technical contribution of this paper
is the following lemma about the basic solutions: “If every vertex
with degree constraint has degree at least Bv + 4, then in any ba-
sic solution there is an edge with xe ≥ 1

2
between two vertices

without degree constraints.” This leads us to a modified iterative
algorithm that only selects edges with xe ≥ 1

2
between two ver-

tices without degree constraints, which is a key difference from ex-
isting iterative rounding algorithms that pick edges depending only
on the fractional values. For example, in Figure 1, the algorithm
will only choose edges from {xi, yi} and return the solution in (c).
By only choosing those edges, degree constraints would not be vi-
olated when they are present, and are only violated by at most an
additive constant 3 when they are removed.

This approach can be extended to Steiner networks, by proving
that there are edges with xe ≥ 1

2
between two low degree vertices

in any basic solution. Selecting these edges only results in an ad-
ditive violation which depends only on the parameter rmax. The
proofs of these characterizations of the basic solutions require new
ideas on the counting argument (which has become more involved
since edges with xe ≥ 1

2
are not allowed to be picked if there is an

endpoint with degree constraint present), and also crucially exploit
the parameter rmax.

1.2 Related Work
For the MINIMUM STEINER NETWORK problem, Jain [10] in-

troduced the iterative rounding method to obtain a 2 approxima-
tion algorithm, improving on a long line of earlier research that ap-
plied primal-dual methods to these problems. For degree-bounded
Steiner trees, Fürer and Raghavachari [8] gave an approximation al-
gorithm with degree violation at most 1. This result has generated
much interest in obtaining approximation algorithms for network
design problems with degree constraints [14, 15, 12, 16, 7, 19, 4,
5, 20, 21, 9, 22].

A highlight of this line of research is an (1, Bv + 2)- approxi-
mation algorithm1 for the MINIMUM BOUNDED-DEGREE SPAN-
NING TREE problem by Goemans [9]. Recently, the iterative re-
laxation method is used to obtain the best possible (1, Bv + 1)-
approximation algorithm for spanning trees [22], and the first con-
stant factor (2, 2Bv+3)-approximation algorithm for arborescence,
Steiner forests and Steiner networks [16].

In independent work, Bansal, Khandekar and Nagarajan [2] ob-
tained an ( 1

ε
, Bv

1−ε
+4)-approximation algorithm for the MINIMUM

BOUNDED DEGREE ARBORESCENCE problem for 0 < ε ≤ 1
2

.
Moreover, they obtain the first additive approximation algorithm
for the bounded-degree arborescence problem with degree viola-
tion at most 2. In order to obtain additive guarantees on the de-
gree bounds, however, the cost of the arborescence becomes un-
bounded. They show that this cost-degree tradeoff in their result
is actually best possible using the natural linear programming re-
laxation [2], which is an exact formulation when degree constraints
are not present. In contrast, our results show that it is possible to
achieve additive approximation on the degree bounds for the min-

1An (α, f(Bv))-approximation algorithm for the MINIMUM
BOUNDED-DEGREE STEINER NETWORK problem is a polynomial
time algorithm which returns a solution of cost at most α · OPT and
deg(v) ≤ f(Bv) for all v, where OPT is the optimal cost of a
Steiner Network with deg(v) ≤ Bv for all v.
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Figure 1: The original graph is shown in (a). There are degree constraints on x and y, both are �k/2�. The connectivity requirements
are 1 for all pair of vertices. The fractional solution with all edges having value 1/2 is a basic solution. The algorithm insolution in
(b) where the degrees bounds are violated by a factor of 2, although there is an integer solution as shown in (c) where the degrees
bounds are violated by at most 1.

imum bounded-degree Steiner network problem, while matching
the best known approximation on the cost. Finally, we remark
that both results develop on the iterative relaxation method in [10,
16, 22], which provides a unifying framework to obtain (nearly)
tight analysis for linear programming relaxations of network de-
sign problems.

2. MINIMUM BOUNDED DEGREE
STEINER FOREST

2.1 Background
Our algorithm develops on the previous work in [10, 16, 22]; we

first review some necessary background. We begin by formulating
a linear program for the problem. Set f(S) = maxu∈S,v/∈S ruv

for each subset S ⊆ V . For the BOUNDED DEGREE STEINER

FOREST problem f(S) is {0, 1}-valued since ruv ∈ {0, 1} for
all u, v ∈ V . It is known that f is a weakly supermodular func-
tion [10], that is, for every two subsets X and Y , either

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y )

or f(X) + f(Y ) ≤ f(X − Y ) + f(Y −X).

For a subset U ⊆ E, we denote x(U) :=
∑

e∈U xe; for a subset
S ⊆ V , δ(S) denotes the set of edges with exactly one end-point in
S, and d(S) := |δ(S)|. The following is a linear programming for-
mulation for the MINIMUM BOUNDED DEGREE STEINER FOR-
EST problem, in which the degree constraints are on a subset of
vertices W ⊆ V .

(LP) minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

x(δ(v)) ≤ Bv ∀ v ∈ W

xe ≥ 0 ∀ e ∈ E

For a subset S ⊆ V , the corresponding constraint x(δ(S)) ≥
f(S) defines a vector in R

|E|: the vector has an 1 correspond-
ing to each edge e ∈ δ(S), and a 0 otherwise. We call this vec-
tor the characteristic vector of δ(S), and denote it by χδ(S). Let
F = {S | x(δ(S)) = f(S)} be the set of tight constraints from

the connectivity requirement constraints. Two sets X, Y are inter-
secting if X ∩ Y , X − Y and Y − X are nonempty. A family of
sets is laminar if no two sets are intersecting. Since

x(δ(X)) + x(δ(Y )) ≥ x(δ(X ∩ Y )) + x(δ(X ∪ Y )) and

x(δ(X)) + x(δ(Y )) ≥ x(δ(X − Y )) + x(δ(Y −X))

for any two subsets X and Y and f is weakly supermodular, it
follows from standard uncrossing arguments (see e.g. [10, 16]) that
a basic solution of the above linear program is characterized by a
laminar family of tight constraints. The following Lemma 2.1 is
proved in [16].

LEMMA 2.1. Let the requirement function f of (LP) be weakly
supermodular, and let x be a basic solution of (LP) such that 0 <
xe < 1 for all edges e ∈ E. Then, there exists a laminar family L
of tight sets and a set T ⊆W such that:

1. x is the unique solution to: {x(δ(v)) = Bv ,∀v ∈ T} ⋃

{x(δ(S)) = f(S),∀S ∈ L}.
2. The vectors χ

δ(S) for S ∈ L and χ
δ(v) for v ∈ T are linearly

independent.

3. |E| = |L|+ |T |.
4. For any set S ∈ L, χ

δ(S) �= χ
δ(v) for any v ∈ W .

The laminar family L obtained in Lemma 2.1 defines a directed
forest L in which nodes correspond to sets in L and there exists an
edge from set R to set S if R is the smallest set containing S. We
call R the parent of S and S the child of R. A parent-less node is
called a root and a childless node is called a leaf. Given a node R,
the subtree rooted at R consists of R and all its descendants. We
say a vertex v is owned by a set S if v ∈ S and S is the smallest
set in L containing v.

2.2 Iterative Algorithm
In this extended abstract, we present an algorithm proving the

relaxed version of Theorem 1.1 which returns a Steiner Forest of
cost at most 2OPT with degF (v) ≤ Bv + 4 for each v ∈ V . The
proof of Theorem 1.1 goes along similar lines but has more case
analysis.

Our algorithm is an iterative relaxation algorithm as shown in
Figure 2. The main difference from the previous iterative rounding



algorithms is in Step 2d, where a heavy edge is picked only if both
endpoints do not have degree constraints. This is the key step to
avoid a multiplicative factor of 2 on the degree bounds. Also, by
only picking edges with no degree constraints, there is no need to
update the degree bounds fractionally as in [16]. Note also that the
relaxation step has been generalized to remove a degree constraint
when a vertex has degree at most Bv + 4.

Minimum Bounded Degree Steiner Forest

1. Initialization F ← ∅, f ′(S)← f(S) ∀S ⊆ V .

2. While F is not a Steiner forest do

(a) Computing a basic optimal solution:
Find a basic optimal solution x satisfying f ′ and
remove every edge e with xe = 0.

(b) Removing a degree constraint:
For every v ∈ W with degree at most Bv + 4,
remove v from W .

(c) Picking an 1-edge:
For each edge e = {u, v} with xe = 1, add e to
F , remove e from G, and decrease Bu, Bv by 1.

(d) Picking a heavy edge with no degree constraints:
For each edge e = {u, v} with xe ≥ 1

2
and

u, v /∈ W , add e to F and remove e from G.

(e) Updating the connectivity requirements:
Set f ′(S)← f(S)− δF (S).

3. Return F .

Figure 2: An iterative algorithm for the MINIMUM BOUNDED

DEGREE STEINER FOREST problem.

The following lemma is at the heart of the algorithm, which
shows that the algorithm will always terminate successfully.

LEMMA 2.2. Every basic solution x of (LP) must satisfy one of
the following:

1. There is an edge e with xe = 0 or xe = 1.

2. There is an edge e = {u, v} with xe ≥ 1
2

and u, v /∈ W .

3. There is a vertex v ∈W with deg(v) ≤ Bv + 4.

Note that the updated connectivity requirement function f ′ is
also a weakly supermodular function. With Lemma 2.2, using a
simple inductive argument as in [16], it can be shown that the algo-
rithm returns a Steiner forest of cost at most twice the optimal cost
and the degree of each vertex is at most Bv + 4. The rest of this
section is devoted to the proof of Lemma 2.2.

2.3 A New Counting Argument
The proof of Lemma 2.2 is by contradiction. Let L be the lam-

inar family and T ⊆ W be the set of tight vertices defining the
basic optimal solution x as in Lemma 2.1. The contradiction is ob-
tained by a counting argument. Each edge in E is assigned two
tokens. Then the tokens will be redistributed such that each mem-
ber of L and each vertex in T get at least two tokens, and there
are still some extra tokens left. This will give us a contradiction to
Lemma 2.1 that |E| = |L|+ |T |.

We say an edge is heavy if xe ≥ 1
2

. If all conditions of Lemma 2.2
do not hold, we must have that there is no 0-edge and no 1-edge,

v
u

+1

+1

S

Figure 3: Rule (2) of the token assignment scheme. This is a new
rule which is useful in collecting extra token for S. Here, the degree
constraint for vertex u has been removed but the degree constraint for
vertex v is present.

every heavy edge has an endpoint in W , and each vertex v ∈ W
has at least Bv + 5 edges incident at it.

Token assignment scheme: The two tokens for an edge e = {u, v}
are assigned by the following rules.

1. One token of e is assigned to u and the other token of e is
assigned to v.

2. If e = (u, v) is a heavy edge with v ∈ W and u is not
contained in the smallest set inL containing v, then the token
of e for v is reassigned to the smallest set S ∈ L containing
both u and v.

Classes: Let R be a set in L. An edge e = {u, v} is an out-heavy
edge of R if u ∈ R\W and v ∈W \R and xe ≥ 1

2
. The following

definition is important to the analysis. For a set R ∈ L, we call R
is of:

• Class Ia: if |δ(R)| = 2 and R has one out-heavy edge e with
xe > 1

2
.

• Class Ib: if R has two out-heavy edges.

• Class IIa: if |δ(R)| = 3 and xe < 1
2

for each edge e ∈ δ(R).

• Class IIb: if R has one out-heavy edge.

• Class III: otherwise.

The following lemma shows that the tokens can be redistributed
so that each member of L and each vertex in W gets at least two
tokens. The proof is by induction on the laminar family.

LEMMA 2.3. For any subtree of the laminar family L rooted at
S, we can redistribute tokens in S such that

1. Every vertex in T ∩ S gets at least two tokens.

2. Class I sets in the subtree get at least two tokens.

3. Class II sets in the subtree get at least three tokens.

4. Class III sets in the subtree get at least four tokens.

PROOF. Here is a brief outline of the proof. First we show in
Claim 2.4 that a set owning at least two vertices in W can collect
enough tokens; this uses the fact that f is a 0-1 function. Then
Claim 2.5 and Claim 2.6 are used to show that a set owning exactly
one vertex in W can collect enough tokens. Then the remaining
cases consider sets which do not own any vertex in W , which rely
crucially on Claim 2.7. We remark that Rule (2) of the token as-
signment scheme and the asymmetry in the definition of out-heavy
edges are used in Claim 2.7. Now we start the proof by proving
Claim 2.4.
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CLAIM 2.4. For each S in L, we can assume that S owns at
most one vertex in W .

PROOF. Let S owns w1, . . . , wl ∈ W . Since Bv ≥ 1 for all
v ∈ W , by Step 2b of the algorithm, each vertex wi is of degree
at least 6. Since f(S) = 1, δ(S) can have at most two heavy
edges. Hence, by the token assignment scheme, there are at least
6r−2 tokens assigned to w1, . . . , wl which have not be reassigned
by Rule (2). Since each vertex in W ∩ S needs only two tokens,
there are still 4r − 2 extra tokens left. If r ≥ 2, then S can collect
at least 4 tokens, as required.

Hence suppose w is the only vertex in W owned by S.

CLAIM 2.5. Let S be the set that owns w ∈ W . Then w is
assigned at least five tokens, and is assigned exactly five tokens
only if:

1. deg(w) = 6, Bw = 1, and there is one heavy edge of δ(S)
in δ(w).

2. deg(w) = 7, Bw = 2, and there are two heavy edges of
δ(S) in δ(w). In this case, δ(S) = δ(S) ∩ δ(w).

PROOF. Since f(S) = 1, δ(S) can have at most two heavy
edges. So w receives one token for each edge incident at w except
for the heavy edges in δ(w) ∩ δ(S). By Step 2b of the algorithm,
w is of degree at least six. Hence, if there is no heavy edge in
δ(S)∩δ(w), then w receives six tokens. Suppose that δ(S)∩δ(w)
has only one heavy edge. Thus w receives deg(w)− 1 ≥ 5 tokens
and exactly five tokens only if deg(w) = 6 and Bw = 1.

Suppose δ(w)∩δ(S) has two heavy edges, then Bw = x(δ(w)) ≥
2 as there are no 0-edges. So deg(w) ≥ 7 by Step 2b of the algo-
rithm. Thus, w receives at least deg(w)−2 ≥ 5 tokens and exactly
five tokens only if deg(w) = 7, Bw = 2 and δ(S) = δ(w)∩ δ(S)
contains two heavy edges.

We now show that when S owns exactly one vertex in W , there
are enough tokens for S and the vertices in W it owns.

CLAIM 2.6. If S owns one vertex in W , then there are enough
tokens for w and S.

PROOF. Let w be the vertex in W that S owns. By Claim 2.5
w receives at least five tokens. Note that w needs only two tokens
if w ∈ T , and S only needs 4 − h tokens where h is number of
out-heavy edges in δ(S). Thus, if w /∈ T or w has at least six
tokens, then there are enough tokens. Also, if δ(S) has an out-
heavy edge or S owns an endpoint, then there are enough tokens.
Furthermore, if S has a Class II or Class III child, then S can take
one excess token from it. Now we show that the remaining cases
cannot happen.

In the remaining cases, all children of S, if any, must be of Class
I. If there is no child of S, since S does not own an endpoint, this
implies that χδ(S) = χδ(w) contradicting Lemma 2.1 (2). So as-
sume S has a Class I child, say R. Since δ(S) does not contain
any out-heavy edges and by definition there is no heavy edge with
endpoints in distinct Class I children of S, this implies that every
out-heavy edge in δ(R) must have w as an endpoint. By Claim 2.5,
w has exactly five tokens only if Bw ≤ 2. There are two cases:

1. Bw = 1. In this case, we have an heavy edge in δ(w)∩δ(S)
and also deg(w) = 6 by Claim 2.5. Also, there is another
heavy edge incident at δ(w) from δ(R). But since there are
no 0-edges, Bw = x(δ(w)) = 1 implies that deg(w) = 2, a
contradiction.

2. Bw = 2. In this case, we have two heavy edges in δ(S) =
δ(S)∩δ(w) by Claim 2.5. Since S does not own an endpoint,
this implies that δ(R) ⊂ δ(w). But then x(δ(R)) = 1,
|δ(R)| = 2, and so Bw = x(δ(w)) = 2 implies deg(w) =
|δ(S)|+ |δ(R)| = 4, a contradiction.

This completes the proof of Claim 2.6.

We now show that the induction hypothesis holds when S does
not own a vertex of W .

Base Case of Lemma 2.3: S ∈ L is a leaf node in the laminar
family. S gets one token for each edge in δ(S) since S does not
own a vertex in W . Therefore, it gets two tokens only if S is of
Class I, three tokens only if it is of Class II, and at least four tokens
in any other case, as required.

Induction step of Lemma 2.3: The proof is by induction on num-
ber of children of S. Let h be the number of out-heavy edges in S,
and let t be the number of tokens that S can collect. In the follow-
ing we say a child R is of Type A if R is of Class Ia or of Class IIa.
Note that we need h + t ≥ 4 if S is not of Type A, and h + t ≥ 3
if S is of Type A. The following Claim 2.7 is crucial and needs the
definition of out-heavy edges and Rule (2) of the token assignment
scheme.

CLAIM 2.7. Each Class Ib, Class IIb, or Class III child R of
S can contribute at least 2 to h + t. And each Class Ia, Class IIa
child can contribute at least 1 to h + t.

PROOF. If R is of Class III, then it has 2 excess tokens. If R
is of Class IIb, then it has 1 excess token and one out-heavy edge
e ∈ δ(R). If e ∈ δ(S), then it contributes 1 to h. Otherwise if both
endpoints of e are in S, then it contributes 1 to t by Rule (2) of the
token assignment scheme. Note that, by definition, an edge can be
an out-heavy edge of at most one child of S, and so its contribution
to t will not be double counted. If R is of Class Ib, then it has 2
out-heavy edges. By the same argument, these edges contributes 2
to h+ t. Similarly, if R is of Class Ia, then it has 1 out-heavy edge,
and thus contributes 1 to h + t. Finally, if R is of Class IIa, then it
has 1 excess token.

We now prove the following claim which helps us prove the var-
ious cases of the induction.



CLAIM 2.8. Suppose S is a set which does not own any ver-
tices in W , has α ≥ 1 children all of which are Type A, own β
endpoints and has no out-heavy edges in δ(S) for which one end-
point is owned by S. If α + β = 3 then S is of Type A.

PROOF. We prove the claim by a case analysis on different val-
ues of α.

1. α = 1. Thus β = 2. Let R be the child of S. Since χδ(R)

and χδ(S) are independent, there must exist edges e ∈ δ(R)\
δ(S) and f ∈ δ(S)\ δ(R) and S receives one token for both
these edges. Moreover there is no other edge in δ(S) \ δ(R)
or δ(R)\δ(S) since β = 2. Now, if R is of Class Ia then the
out-heavy edge in δ(R) must also be in δ(S) since S does not
own a vertex in W . In this case S is also of Class Ia. If R is
of Class IIa then xe = xf < 1

2
and δ(S) = δ(R)∪{f}\{e}

and S is also of Class IIa.

2. α = 2. Thus β = 1. Let R1 and R2 be the children of S. R1

and R2 cannot both be of Class Ia since the out-heavy edge
in δ(Ri) must be in δ(S) for i = 1, 2, but then x(δ(S)) > 1,
a contradiction. First suppose R1 is of Class Ia and therefore
R2 is of Class IIa. We cannot have |δ(R1, R2)| ≥ 2 since
|δ(R1)| = 2, and also cannot have |δ(R2) ∩ δ(S)| ≥ 2
since f(S) = x(δ(S)) = 1. So the only possibility is
|δ(R1, R2)| = |δ(v, R2)| = |δ(R2) ∩ δ(S)| = 1. Hence
|δ(S)| = 2 and thus S is of Class Ia, as required. Finally,
suppose both R1 and R2 are of Class IIa and δ(S) does not
contain any heavy edges, then by a similar argument as in
Jain [10] (see Claim 3.5), S is of Class IIa, as required.

3. α = 3. Let R1, R2 and R3 be the children of S. As previ-
ously argued in the case of α = 2, at most one of R1, R2, R3

can be of Class Ia. First suppose that S has exactly one
Class Ia child, say R1. Let δ(R1) = {e1, f1}, where e1

is the out-heavy edge of R1. Assume, without loss of gen-
erality, that f1 ∈ δ(R2). Since f(S) = 1, we must have
|δ(R2, R3)| = 2; otherwise |δ(R3) ∩ δ(S)| ≥ 2 and thus
x(δ(S)) = xe1 + x(δ(R3) ∩ δ(S)) > 1

2
+ 1

2
= 1, since

|δ(R3)| = 3 and each edge e in δ(R3) has xe < 1
2

by the
definition of a Class IIa child. Since |δ(R2, R3)| = 2, this
implies that d(S) = 2, and hence S is of Class Ia and there-
fore Type A. In the other case, we have that all three chil-
dren of S are of Class IIa. Then, using arguments similar to
Jain [10] (see Claim 3.5), it follows that S must also be of
Class IIa.

Thus the claim follows.

Now we complete the inductive argument based on the number
of children of S.

1. S has at least four children. Then each child can contribute
at least 1 to h + t, and so h + t ≥ 4.

2. S has exactly three children. If there is a child which is not of
Type A, then h+t ≥ 4 by Claim 2.7, as required. So assume
S has exactly three Type A children R1, R2, R3. If S owns
an endpoint then also h + t ≥ 4. So further assume that S
does not own an endpoint. Then S satisfies the conditions of
Claim 2.8 and must be of Type A. Thus h + t ≥ 3 suffices
for S.

3. S has exactly two children R1 and R2. If both R1 and R2

are not of Type A, since each can contribute 2 to h + t by
Claim 2.7, then we are done.

Suppose R1 is of Type A and R2 is not of Type A. If S owns
an endpoint then we are done. So further assume that S does
not own an endpoint. We shall prove that this would not
happen. In this case

x(δ(R1) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R1)) = 1,

x(δ(R1) ∩ δ(S)) + x(δ(R2) ∩ δ(S)) = x(δ(S)) = 1,

x(δ(R2) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R2)) = 1,

Thus we have,

x(δ(R1) ∩ δ(S)) = x(δ(R1, R2)) = x(δ(R2) ∩ δ(S)) =
1

2
.

R1 cannot be of Class Ia, since otherwise it has an edge with
xe > 1

2
. Also, R1 cannot be of Class IIa, since |δ(R1)| = 3,

either δ(R1, R2) or δ(R2) ∩ δ(S) is a single edge e with
xe = 1

2
, contradicting R2 is of Class IIa.

So suppose R1 and R2 are of Type A. If S owns two end-
points, then we are done. By the above argument, S must
owns at least one endpoint, and thus h + t ≥ 3. If S has
an out-heavy edge for which S owns one endpoint then we
have h + t ≥ 4 and we are done. Hence assume that S owns
exactly one endpoint v and each out-heavy edge in δ(S) is in
δ(Ri) for some i. Thus S satisfies the condition of Claim 2.8
and is of Type A. Thus t ≥ 3 suffices for S.

4. S has exactly one child R. By linear independence of χδ(S)

and χδ(R), S must own at least two endpoints, and thus h +
t ≥ 3. If R is not of Type A, then h + t ≥ 4, and we are
done. If δ(S) \ δ(R) has an out-heavy edge or S owns more
than two endpoints then also we have h + t ≥ 4 as required.
In the remaining case S satisfies conditions of Claim 2.8 and
S is of Type A. Therefore, h + t ≥ 3 suffices.

This completes the proof of Lemma 2.3. If some root S of the
laminar family is not of Class I, then there is some excess token
left at S by Lemma 2.3. If every root is of Class I, then there must
exist a vertex w ∈ W that is not contained in any root, and so there
is some excess token left at w. This completes the proof of the
relaxed version of Theorem 1.1.

Remarks: To prove Theorem 1.1, the same induction hypoth-
esis and token assignment scheme are used, but a more involved
counting argument is needed to show that a set owning exactly one
vertex in W can collect enough tokens. The details will appear in
the journal version of this paper.

3. MINIMUM BOUNDED DEGREE
STEINER NETWORK

In this section we prove Theorem 1.2. The linear programming
relaxation is exactly the same as in the previous section, except that
the function f is not necessarily a {0, 1}-valued function.

3.1 Algorithm
The iterative algorithm is given in Figure 5. The algorithm is

similar to the algorithm for the MINIMUM BOUNDED DEGREE

STEINER FOREST problem, with the following main difference.
In Step 2a we define a set of high degree vertices Wh = {v ∈
W |∑e∈δ(v) xe ≥ 6fmax}, where fmax := maxS f(S). This set
plays the same role as the set of vertices with degree constraints in
the Steiner forest algorithm. Then in Step 2d we only pick a heavy
edge when both of its endpoints are not high degree vertices. This
is the key step to ensure that the degree bounds are only violated by
an additive term.



Minimum Bounded Degree Steiner Network

1. Initialization F ← ∅, f ′(S)← f(S) ∀S ⊆ V .

2. While F is not a Steiner network do

(a) Computing a basic optimal solution:
Find a basic optimal solution x satisfying f ′ and
remove every edge e with xe = 0.
Set Wh = {v ∈ W |∑e∈δ(v) xe ≥ 6fmax} and
Bv =

∑
e∈δ(v) xe for v ∈W .

(b) Removing a degree constraint:
For every v ∈ W with degree at most 4, remove
v from W .

(c) Picking an 1-edge:
For each edge e = (u, v) with xe = 1, add e to
F , remove e from G, and decrease Bu, Bv by 1.

(d) Picking a heavy edge with both endpoints low:
For each edge e = (u, v) with xe ≥ 1/2 and
u, v /∈ Wh, add e to F , remove e from G,
and decrease Bu and Bv by 1/2.

(e) Updating the connectivity requirement function:
For every S ⊆ V : f ′(S)← f(S) − |δF (S)|.

3. Return F .

Figure 5: An iterative algorithm for the MINIMUM BOUNDED

DEGREE STEINER NETWORK problem.

First we show that the algorithm returns the solution with the
claimed guarantees for cost and degree in Theorem 1.2 assuming
that the algorithm always proceed in one of the iterations. Then we
show in Lemma 3.2 that for any basic feasible solution to the linear
program one of the conditions must be satisfied.

LEMMA 3.1. If in each iteration one of the conditions in Step 2b,
Step 2c or Step 2d is satisfied then the algorithm returns a Steiner
network with cost at most twice the optimal linear programming
solution and degree bound of each vertex is violated by at most
6rmax + 3.

PROOF. The proof is by a standard inductive argument. We give
a short explanation. Note that f ′ is a weakly supermodular func-
tion. Since we always pick an edge with xe ≥ 1

2
and the remaining

fractional solution is a feasible solution for the residual problem,
the cost of the solution returned is at most 2 times the cost of the
linear programming solution as claimed in Theorem 1.2.

For the guarantee on the degree bound, firstly observe that for
any vertex v, we pick at most Bv−6fmax edges in Step 2c incident
at v since the degree bound of v is reduced by one whenever such
an edge is picked. In Step 2d, we pick at most 12fmax − 1 edges
incident at v since the degree bound is reduced by 1

2
whenever we

include such an edge. Moreover, at most 4 edges can be picked
incident at v once the degree constraint for v is removed. Hence,
the number of edges picked which are incident at v is at most

Bv − 6fmax + 12fmax − 1 + 4 = Bv + 6fmax + 3,

as required.

For the correctness of the algorithm, we shall prove the follow-
ing key lemma in Section 3.2 which will ensure that the algo-
rithm terminates with a feasible solution and complete the proof

of Theorem 1.2. The rest of this section is devoted to the proof of
Lemma 3.2.

LEMMA 3.2. Let x be a basic feasible solution of (LP), and W
be the set of vertices with degree constraints, and Wh = {v ∈
W | ∑

e∈δ(v) xe ≥ 6fmax}. Then at least one of the following
holds.

1. There exists an edge e with xe = 1.

2. There exists an edge e = {u, v} with xe ≥ 1/2 and u, v /∈
Wh.

3. There exists a vertex v ∈ W such that degE(v) ≤ 4.

3.2 A Counting Argument
We shall prove Lemma 3.2 by a counting argument. Suppose,

by way of contradiction, that none of the conditions in the lemma
holds. Then each edge e has 0 < xe < 1, and each edge e with
1 > xe ≥ 1/2 (we call such an edge a heavy edge) must have at
least one endpoint in Wh, and each vertex in W must have degree
at least five. We shall also give two tokens for each edge (the token
assignment scheme is explained below) for a total of 2|E| tokens.
Then, the tokens will be reassigned so that each member of L gets
at least two tokens, each vertex in T gets at least two tokens and
we still have some excess token left. This will contradict |E| =
|L|+ |T | of Lemma 2.1, and thus completes the proof.

The main difference from Jain’s analysis is the existence of heavy
edges (with an endpoint in Wh) which our algorithm is not allowed
to pick. In the following, we say a vertex in Wh is a high vertex.
Since there are heavy edges, a set S ∈ L may only have two edges
in δ(S), and hence S may not be able to collect three tokens. To
overcome this, we use a different token assignment scheme so that
a similar induction hypothesis as Jain’s would work.

Token assignment scheme: If e = {u, v} is a heavy edge, u ∈
Wh and v /∈ W , then v gets two tokens from e and u gets zero to-
ken. For every other edge e, one token is assigned to each endpoint
of e.

Co-requirement: We also need to refine the definition of co-requirement
for the presence of heavy edges:

coreq(S) =
∑

e∈δ(S), xe<1/2

(1/2− xe) +
∑

e∈δ(S), xe≥1/2

(1− xe).

It is useful to note that this definition reduces to Jain’s definition
if every edge e with xe ≥ 1

2
is thought of as two parallel edges

aiming to each achieves a value of 1
2

and sharing the current xe

value equally (i.e. each gets xe
2

): summing 1
2
− xe

2
over the two

parallel edges gives 1− xe.
After this initial assignment, each vertex in V \ Wh receives

at least as many tokens as their degree. Moreover, each vertex in
W \Wh receive at least five tokens (as their degree is at least five).
Note that a vertex v ∈ Wh might not have any tokens if all the
edges incident at it are heavy edges. By exploiting the fact that
f(S) ≤ fmax, however, we shall show that vertices in Wh can get
back enough tokens during the inductive counting argument. Now
we prove the following lemma which shows that the tokens can be
reassigned as discussed previously.

LEMMA 3.3. For any subtree of L rooted at S, we can reassign
tokens such that each vertex in T ∩S gets at least two tokens, each
set in the subtree gets at least two tokens, and the root S gets at
least three tokens. Moreover, root S gets exactly three tokens only
if coreq(S) = 1

2
.



PROOF. We now proceed by induction on the height of the sub-
tree to prove Lemma 3.3. We first prove the base case of the in-
duction hypothesis where we also show a crucial Claim 3.4, which
handle all sets that own some vertices in W . We then use this claim
in the main induction proof to complete the proof of Lemma 3.3.

Base Case of Lemma 3.3: S is a leaf node. First suppose that
S ∩Wh = ∅. If there exists v ∈ S ∩ (W \Wh), then v has at
least five tokens. Since v only needs two tokens, it has three excess
tokens which it can give to S. If there are two such vertices or S
owns another endpoint, then S gets at least four tokens as required.
Otherwise, we have χδ(v) = χδ(S) which is a contradiction to the
linear independence of characteristic vectors in Lemma 2.1. Hence,
we assume S ∩W = ∅. Then S can get at least δ(S) tokens from
the vertices owned by S. Note that |δ(S)| ≥ 2, as x(δ(S)) is an
integer and there is no 1-edge. If |δ(S)| ≥ 4, then S gets four
tokens. If |δ(S)| = 3 and |δ(S)| contains a heavy edge, then S can
get four tokens from the vertices it owns, since an endpoint v /∈ W
of a heavy edge has 2 tokens by the token assignment scheme. If
it does not contain a heavy edge, then S receives three tokens and
coreq(S) = 1

2
. If |δ(S)| = 2, then at least one edge is a heavy

edge. If both edges are heavy then S can get four tokens, else if
only one edge is heavy then it gets three tokens and coreq(S) = 1

2
.

We now consider the case that S owns a vertex in Wh, and show
that S can collect enough tokens for the inductive argument. The
following claim is the key to deal with degree constraints, which
uses crucially the parameter fmax. This claim holds even when
S is not a leaf in the laminar family, and will also be used in the
induction step.

CLAIM 3.4. Suppose S owns r ≥ 1 vertices in Wh. Then the
number of excess tokens from the children of S, plus the number of
tokens owned by S, plus the number of tokens left with vertices in
Wh owned by S is at least 2r + 4.

PROOF. Let S have c children. As each child has at least one
excess token by the induction hypothesis, if c ≥ 6r then we have
6r tokens which is at least 2r + 4. Hence, we assume that c < 6r.

Let B :=
∑

v Bv ≥ ∑
v 6fmax = 6rfmax, where the sum

is over all vertices v ∈ Wh owned by S. Intuitively, vertices in
Wh owned by S would have collected a total of B tokens if the
two tokens at each edge is distributed evenly. But by the token
assignment scheme, vertices in Wh owned by S may not get any
token for heavy edges incident on them. We are going to show that
these vertices can still “get back” the two tokens they need for the
inductive argument.

For a child R of S, as x(δ(R)) = f(R) ≤ fmax, at most fmax

units of B come from the edges in δ(R). Similarly, at most fmax

units of B come from the edges in δ(S). Hence, there are at least
fmax(6r − c − 1) units of B coming from the edges with both
endpoints owned by S. Since there is no 1-edge, there are at least
fmax(6r − c− 1) + 1 such endpoints from those edges. Let e =
{u, v} be such an edge with v ∈ Wh owned by S. If u ∈ W ,
then both u and v get one token from e in the initial assignment. If
u /∈W , then u gets two tokens from e in the initial assignment, but
these two tokens are owned by S. So, the number of tokens owned
by S plus the number of tokens left with vertices in Wh owned
by S is at least fmax(6r − c − 1) + 1. Furthermore, S can also
collect one excess token from each child. So, the total number of
tokens S can collect is at least fmax(6r − c − 1) + c + 1, which
is a decreasing function of c. As c < 6r, the number of tokens is
minimized at c = 6r − 1, which is at least 6r ≥ 2r + 4.

In the base case when S owns a vertex in Wh, by Claim 3.4 S
can collect 2r + 4 tokens. So these tokens can be redistributed so

that S has 4 tokens and each vertex in Wh owned by S has 2 tokens,
which is enough for the induction hypothesis.

Induction Step: The presence of heavy edges with xe ≥ 1
2

introduces some difficulties in carrying out the inductive argument
in [10]. We need to prove some lemmas which work with the new
notion of co-requirement and the presence of heavy edges.

For any set S, let wdeg(δ(S))

= |{e ∈ δ(S) : 0 < xe <
1

2
}|+ 2|{e ∈ δ(S) : xe ≥ 1

2
}|

be the weighted degree of S. This definition is keeping with the
idea that each edge with xe ≥ 1

2
is thought of as two parallel edges.

Observe that for any v /∈ W , it receives exactly wdeg(v) tokens
in the initial assignment as it gets one token for each edge and two
tokens for all heavy edges incident at it. S can take all the tokens for
all the vertices it owns which are not in W . We call these the tokens
owned by S. Let G′ = (V, E′) be the graph formed by replacing
each heavy edge e by two edges e′ and e′′ such that xe′ = xe′′ =
xe
2

. Observe that

coreq(S) =
∑

e∈δ(S), xe<1/2

(1/2− xe) +
∑

e∈δ(S), xe≥1/2

(1− xe)

=
∑

e∈δ(S)∩E′
(1/2− xe),

and wdeg(δ(S)) = |δ′(S)| where δ′(S) = {e ∈ E′ : e ∈ δ(S)}.
Observe that coreq(S) is integral or semi-integral (half-integral but
not integral) depending on whether δ′(S) is even or odd. We first
prove the same technical lemma as in [10] with the new definitions
of co-requirements and weighted degrees.

CLAIM 3.5. Let S be a set in L which owns α tokens and has
β children where α + β = 3 and does not own any vertex of W .
Furthermore, each child of S, if any, has a co-requirement of 1

2
.

Then the co-requirement of S is 1
2

.

PROOF. Since each child R of S has a co-requirement of half,
this implies that |δ′(R)| is odd. Note that we assume S does not
own any vertex of W . Using these facts and that α + β = 3, the
same argument as in Exercise 23.3 of [23] can be used to show that
|δ′(S)| is odd. Hence, the co-requirement of S is semi-integral.
Now, we show that coreq(S) < 3

2
proving the claim. Clearly,

coreq(S) =
∑

e∈δ′(S)

(1/2−xe) ≤
∑

R

coreq(R)+
∑

e

(1/2−xe),

where the first sum is over all children R of S and second sum is
over all edges for which S owns a token. Since α + β = 3, there
are a total of three terms in the sum. Since, any term in the first sum
is 1

2
and in the second sum is strictly less than 1

2
, if α > 0, we then

have coreq(S) < 3
2

which proves the claim. So, assume α = 0, i.e.
S does not own any tokens. In this case, edges incident to children
of S cannot all be incident at S since otherwise it will violate the
linear independence of characteristic vectors in L in Lemma 2.1,
and therefore we have coreq(S) <

∑
R coreq(R) = 3

2
proving

the claim.

We are now ready to prove that the induction step holds, in which
S has at least one child. If S owns a vertex in Wh then Claim 3.4
shows that the induction hypothesis holds. Henceforth, we assume
that S does not own any vertices of Wh. Suppose S owns some
vertices in W \Wh. Each such vertex gets at least five tokens. It
needs only two tokens and hence can give three excess tokens to S.



As S has at least one child R, R can give at least one excess token
to S, and hence S gets at least four tokens as required.

For the rest of the cases, we assume that S does not own any
vertex of W , and hence the remaining case analysis is very similar
to that of Jain, with a different definition of co-requirement.

• S has at least four children. Then S can take one excess
token from each child.

• S has exactly three children. If any child S has two excess
tokens or if S owns a vertex then S can get four tokens. Else,
each of the three children of S has a co-requirement of half
and S owns no vertices. Then, by Lemma 3.5, we have that
S has co-requirement of 1

2
and it only needs three tokens.

• S has exactly two children R1 and R2. If both of them have
two excess tokens then we are done. Else, let R1 have exactly
one token and hence it has co-requirement of 1

2
by the induc-

tion hypothesis. We now claim that S owns an endpoint. For
sake of contradiction suppose S does not own any endpoint.
Then, if there are α edge between R1 and R2 in E′ (where
we replace each heavy edge by two parallel edges), we have

|δ′(S)| = |δ′(R1)|+ |δ′(R2)| − 2α

As R1 has a co-requirement of half, we have |δ′(R1)| is odd
and hence δ′(S) and δ′(R2) have different parity and hence
different co-requirements. The co-requirements of S and R2

can differ by at most the co-requirement of R1 which is ex-
actly half. Since, χδ′(S) �= χδ′(R1) + χd′(R2), there must
be an edge between R1 and R2 and therefore, coreq(S) <
coreq(R2) + 1

2
. Similarly, χδ′(R2) �= χδ′(S) + χδ′(R1)

and therefore there is an edge in δ′(S) ∩ δ′(R1) which im-
plies that coreq(R2) < coreq(S) + 1

2
. Thus, their co-

requirements are equal which is a contradiction. Thus S
owns at least one endpoint.

If S owns at least two endpoints or R2 has two excess tokens,
then we have four tokens for S. Otherwise, by Lemma 3.5,
we have that co-requirement of S is half and it needs only
three tokens.

• S has exactly one child R. Since both sets S and R are
tight we have that x(δ(S)) = f ′(S) and x(δ(R)) = f ′(R).
Since χδ(S) and χδ(R) are linearly independent, subtracting
the two equations we have that x(δ(S)Δδ(R)) (Δ denotes
symmetric difference) is an positive integer. Also, there are
no 1-edges present and so |δ(S)Δδ(R)| ≥ 2, and each edge
in the symmetric difference gives one token to S. Thus S
owns at least two endpoints. If S owns three endpoints or
R has two excess tokens then S can get four tokens. Oth-
erwise, S has exactly two endpoints and exactly one child
which has co-requirement of 1

2
. Then by Lemma 3.5, S has

a co-requirement of 1
2

.

This completes the proof of Lemma 3.3, which assigns two to-
kens to each set in the laminar family L and each vertex in T which
is contained in some set S ∈ L. For vertices in T which are not
contained in any set S ∈ L we also have enough tokens. Observe
that each vertex v ∈ W \ Wh receives at least five tokens. For
vertices in Wh not contained in any set S ∈ L, an argument iden-
tical to Claim 3.4 with S = V will give at least two tokens to each
vertex in Wh.

Thus we have that 2|E| > 2|L|+2|T |, which contradicts Lemma 2.1.
Therefore, one of the conditions in Lemma 3.2 holds, and hence we
have Theorem 1.2.

Integrality Gap Example. In Figure 6 we show that the linear
program (LP) has an integrality gap of B +Ω(rmax) and therefore
Theorem 1.2 is nearly tight.

x1 x2

y1 y2 yky3

Figure 6: In this example, we have a complete bipartite graph B =

(X, Y, E) where X = {x1, x2} and Y = {y1, . . . , yk}. We set the
connectivity requirements between yi and yj to be 1 for all i, j, between
x1 and x2 to be k

2
, and 0 otherwise. The fractional solution where

all edges have fractional value 1
2

is the optimal solution, in which the

degree of x1 and x2 is equal to k
2

= Δ∗
f . On the other hand, it can be

seen that in any integer solution, the degree of x1 and x2 must be at
least 3

4
k = 3

2
Δ∗

f . This example also shows that the integrality gap is at
least (2, Bv + rmax

2
).

Concluding Remarks
The iterative relaxation method has been successfully applied to
network design problems with degree constraints [16, 22, 2], and
recently it has also been applied to other combinatorial optimiza-
tion problems [11]. In fact, this method can also be used to give
simple proofs of classical results in combinatorial optimization and
approximation algorithms [17]. We hope this method will find fur-
ther applications.
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