Glauber Dynamics for Sampling an Edge
Colouring of Regular Trees

POON, Chun Yeung

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Philosophy

n

Computer Science and Engineering

THE CHINESE UNIVERSITY OF HONG KONG

September 2016



Abstract

We study the problem of sampling a graph colouring using Glauber Dynamics. This
is an interesting problem as Jerrum showed that we can approximate the number of
proper colouring if we can sample a colouring nearly uniformly. Therefore we want a
sampler with polynomial running time. Glauber Dynamics is one natural Markov Chain
for sampling a graph colouring and it has been studied extensively. The state space
of it is the set of proper colourings. In each step, we sample a colour ¢ and a node u
randomly. Then we update u to colour c if the new colouring is still proper, otherwise we
stay at the current colouring. For a graph with maximum degree d, let ¢ be the number
of colours. One important goal on this problem is proving polynomial mixing time if
g > d+ 2. For general graphs, the best result is polynomial mixing time if ¢ > 11d/6
by Vigoda. For some classes of graphs, we can sample a colouring for fewer number of
colours. One example are graphs with large girth and large maximum degree and there

are many results for this kinds of graphs.

In the thesis, we focus on the mixing time of Glauber Dynamics for sampling an edge
colouring of a d-regular tree. This is equivalent to sampling a proper vertex colouring of
the line graph of the tree. We consider this special case as the line graph has small girth
so previous results and techniques does not apply directly. The best previous result is
polynomial mixing time if ¢ > 11d/3 by Vigoda. Our main result is polynomial mixing

time if ¢ > 2d. Our proof is based on the multicommodity flow argument by Sinclair.
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Chapter 1

Introduction

1.1 Background

For a graph G = (V, E), a (proper) vertex colouring of G is a colouring of vertex of G
such that no pair of adjacent vertices share the same colour. It is known that counting
the number of vertex colourings of general graphs is #-P complete. A related question
of interest is to approximately count the number of colourings. Jerrum [11] shows that
if we can construct a sampler that return a proper colouring nearly uniformly, then we

can approximately count the number of colourings.

One approach for constructing the sampler is using Markov Chain Monte Carlo. The
idea is to define an ergodic Markov Chain with uniform stationary distribution. Then we
run the chain until it is close to stationary distribution. For sampling a graph colouring,
there is a simple Markov Chain called Glauber Dynamics. The state space of it is the
set of proper colourings. In each step, we sample a colour ¢ and a node u randomly and
independently. Then we change the colour of u to ¢ if the new colouring is still proper.

Otherwise we stay at the current colouring.

The running time of the counting algorithm and sampler depends on the mixing time of
the Glauber Dynamics. Therefore, it is important to bound the mixing time. There is

a natural conjecture[11] about the mixing time of the Glauber Dynamics.

Congecture 1.1. Let G = (V, E) be a graph with maximum degree d. Let 2 be the set
of g-colourings of G. For ¢ > d+ 2, the Glauber Dynamics for sampling a g-colouring of
G has mixing time in O(|V |log|V|).

The conjecture is still unproven but steady progress on it has been made throughout

the years. Our work focus on a special case of the conjecture.
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For background knowledge, this book [13] and this survey [8]provide an introduction to
the theory of Markov Chain and Mixing time. This survey [6] summarizes results on the

mixing time of the Glauber Dynamics.

1.2 Previous results

We first list the results for general graphs. Let d be the maximum degree of the
graph and ¢ be the number of colours. Jerrum [11] used the coupling method to prove
O(q|V'|log|V|) mixing time for ¢ > 2d and O(|V|log |V|) mixing time for ¢ > 3d. His
coupling method was simplified using path coupling proposed by Bubley and Dyer [3].
Then Vigoda [19] introduced another Markov Chain and proved O(gq|V'|log|V|) mixing
time of that chain for ¢ > 11d/6. His result also implies O(q|V|? log |V'|) mixing time of
Glauber Dynamics for ¢ > 11d/6. However, 11d/6 is still the best bound for the number
of colours. We do not know whether the chain has polynomial mixing time or not if we

use fewer colours.

The mixing time of the Glauber Dynamics in some restricted classes of graphs are also
studied. One common restriction is that the graph has large girth and large maximum
degree. Under this restriction, we can sample a colouring for a much smaller number
of colours. Dyer and Frieze [4] proved that for graph with d = Q(logn) and girth
g = Q(log d), the Glauber Dynamics has O(nlogn) mixing time if ¢ > ad for a constant
« =~ 1.763. Then there are many results to reduce the number of colours, lower the girth
requirement and lower the degree requirement and we will list some of them. Hayes and
Vigoda [10] proved O(nlogn) mixing time for ¢ > (1 4 €)d for all ¢ > 0 if girth is at
least 11 and d = Q(logn). Dyer, Frieze, Hayes and Vigoda [5] proved O(nlogn) mixing
time if ¢ > (1+¢)Bd for a constant § =~ 1.489 for graphs with girth at least 7 and d

at least a constant that grows with 1/e.

The other kind of graphs people studied are planar graphs and trees. A notable result are
from Hayes, Vera and Vigoda [9], they reduce the number of colours to d/logd for planar
graphs. They proved polynomial mixing time for planar graphs with ¢ = Q(d/logd).
Then two more results [7, 14]studied the mixing time for trees if we use even fewer

colours.

1.3 Our work

Our work focus on the Glauber Dynamics for sampling an edge colouring of a d-regular

tree T. It is equivalent to Glauber Dynamics for sampling a vertex colouring of the



Chapter 1. Introduction 3

line graph of T. Let ¢ be the number of colours. We prove that if 2d < ¢ < 4d, then
the Glauber Dynamics will have polynomial mixing time. Our proof is based on the

multicommodity flow argument.
Previous results on edge colouring of regular tree

There are not many previous results on this kind of graphs. The only relevant results
are the results on general graphs. Let |T'| denote the number of edge of T'. For ¢ > 4d,
Jerrum’s result [11] show that the mixing time is O(q|T'|log |T'|). For ¢ > 11d/3, Vigoda’s
result [19] show that the mixing time is O(|T'|?).

Motivation

The first motivation of our work is studying the use of multicommodity flow [18] on
bounding the mixing time of Glauber Dynamics. Both multicommodity flow and cou-
pling are powerful methods for bounding mixing time of Markov Chains. However,
many previous results are based on coupling and we want to see what we can get with
multicommodity flow. Also, many previous results based on coupling seems to be weak
against locally dense graph. The line graph of a regular tree is a simple example of
locally dense graph so we start with it. We also want to give a better bound on the
number of colours. We want to show polynomial mixing time if we only have 2d colours.
Note that the line graph has maximum degree 2d — 2, 2d is the number mentioned in

the conjecture.
Our main result is the following theorem.

Theorem 1.2. Let q be the number of colours. Let M be the Glauber Dynamics for
sampling an edge colouring of a d-reqular tree T'. Let h be the height of T'. If 4d > q > 2d,
then

iz < 22| T* In*"(2¢) In(2|T)

We remark that the mixing is in polynomial of |T| since |T'| = d* and ¢ < 4d.

1.4 Future work

It would be interesting to extend the results in the following directions. We bound the
mixing time of Glauber Dynamics for sampling an edge colouring of regular trees. It
would be nice if we can extend the results to edge colouring of general trees. One part
of our analysis use induction by decomposing the tree into several subtrees and treat

the subtrees as smaller instances. So we decompose the tree recursively and the mixing
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time is of the form ¢ where the [ is the depth of recursion. Currently we decompose the
tree by removing the root, so the result can be exponential if the tree is not balance. If
we use a better way to decompose the tree then we may be able to extend the results

to general trees.

Another possible work is improving the results. For example, can we prove the mixing
time is still polynomial if we use fewer colours? If we use fewer colours, then we may
be unable to update some edges for some colouring. And we need to prove the chain is
still ergodic. Also, we did not try to minimize the mixing time, so one possible work is
to find a better upper bound on the mixing time. It is also nice to find the lower bound

of mixing time.

1.5 Organization

In Chapter 2 we give background material for this thesis. We define Markov Chain
and present some methods for bounding the mixing time of a Markov Chain. We also

introduce the problem of sampling a graph colouring and give background knowledge.

In Chapter 3 we present our main work. We study the Glauber Dynamics for sampling
an edge colouring of regular tree. We give an upper bound on the mixing time of the

Glauber Dynamics.
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Background

In this chapter, we present background knowledge for this thesis. We first introduce
the Markov Chain, a famous tool for Monte Carlo simulation. Then we present some
methods for bounding the mixing time of a Markov Chain. We talk about bounding
mixing time using eigenvalue gap of transition matrix, multicommodity flow, and also

coupling. Finally, we introduce the problem of approximate counting of graph colouring.

2.1 Markov Chain

In this section we introduce Markov Chain.

Definition 2.1. Let M be a discrete stochastic process on a state space 2. Let X; be
the state of M at time t. M is called a Markov Chain if it has the following property
for all time ¢ and x,y € Q.

Pr( X1 =yl Xt =2, X401 = x4-1..., Xo = x09) = Pr(Xpqp1 = y| Xy = )

The above property is also called Markov property.

Let Q be the state space, we can write down a || x|Q| matrix P where P, , = Pr(X;y1 =
y| Xy = x). We call P a probability transition matrix. A probability distribution 7 on
Q2 is a stationary distribution if and only if 7P = 7. A chain is irreducible if for every
x,y, there is a time ¢ such that P;y > 0. A chain is irreducible means that no matter
which state we start from, we can go to every other states. A chain is aperiodic if for
every x, ged{t : P;f.’x > 0} = 1. We called a chain is ergodic if it is both aperiodic and
irreducible. One of the most important property of an ergodic chain is that it has an

unique stationary distribution.
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Lemma 2.2. If a Markov Chain is irreducible and aperiodic, then there exists an unique

stationary distribution .

Proof. Let P be the transition matrix of the Markov Chain. Since the chain is irreducible
and aperiodic, then there exists a time ¢ such that P? is a positive matrix. Let P’ = P?,

We will argue that P’ has a unique stationary distribution.

Suppose there are two stationary distribution u,v. Then there is a state x such that

Zgg = min, % Then

u(z) =

Y

Since P’ is positive and both sides are equal, the inequality is actually an equality. We

will have % = %Vy. Since v and v are probability distributions, we must have
u = v. So P’ has a unique stationary distribution, it implies P also must has a unique

stationary distribution.

O]

In the remaining part, we will only consider finite ergodic chain with symmetric transi-

tion matrix. However, many results can also be extended to non-symmetric case.

2.1.1 Mixing time

An important measure of a Markov Chain is its convergence rate. It tells us how fast the
Markov Chain will converge to stationary distribution. We first introduce the metric for
probability distribution. Then we prove a Markov Chain will converge to its stationary

distribution and introduce mixing time.

Definition 2.3. Let p, ¢ be two probability distributions on state space ). The total

variation distance is defined by

Ip—allyy = 5 3 Ip(a) — a(a)]

e
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The total variation distance also equals to [;-norm of p — ¢ divided by two.

Consider an ergodic Markov Chain M with symmetric transition matrix P. Let 7 be
the stationary distribution. Let P! be the distribution after ¢ steps if we start at state
x. We will show that for any starting state z, P! converges to stationary distribution m

when ¢ tends to infinity.

We first make a claim that tells us that P! converges to 7 if P is a positive matrix. We
will prove it later in 2.5.

Claim 2.4. For any finite ergodic chain with transition matrix P, let 6; = min; P(i, j)
be the smallest entry of j** column. Let § = >, 0;, then for any starting position = and
time ¢,

1Py = 7llrv < (1—0)"

If P is a positive matrix, it is easy to see that § will be positive and P. converges to 7.
Now we will show that the probability distribution of any finite ergodic chain converges

to .

Lemma 2.5. For any finite ergodic Markov Chain M with probability transition matrix

P. Let 7 be the stationary distribution. Then for any state x,
. t _
Jim [[P{ 7 =0

Proof. Since the chain is ergodic, from definition, there exists a time N such that for
t > N, P'(z,y) > 0 for every x,y € Q. Therefore PV is a positive matrix and define
an ergodic chain. Then by the previous claim, there exists 0 < ¢ < 1 such that ||[PNt —

7|7y < (1 —6)! for any state x. So when ¢ tends to infinity, P! will converge to m. [

In the end of this section we define mixing time and fast mixing.

Definition 2.6. The mixing time of a Markov Chain is defined by
— ; . t
T(e) = mgxmln{t || P 7THTV <e}

which is time needed to guarantee the distance between the distribution and 7 is at

most € no matter which state we started at. Also, we define

1 1
Tmiz = T(Z) = mgxmin{t : HPJQe - 7THTV < 1}

A chain is fast mixing or rapidly mixing if 7. is in polynomial in In(n) and In(e~1).
Alternatively, showing that 7,,;, is in polynomial in In(n) is also enough for fast mixing

by the following lemma.
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Lemma 2.7. 7(¢) < [logy(e™)| Tmix

We have introduced the terms and definitions for convergence rate. We will introduce

techniques for bounding mixing time of a Markov Chain.

2.2 Spectral theory

The first technique is about spectral theory. Note that 77 P = 7 implies 7 is a left
eigenvector of P with eigenvalue 1. It is natural that we study the eigenvalues and
eigenvectors to learn more about the chain. In fact, we get information about the

mixing time.
We need the Perron-Frobenius Theorem [17] for the prove in this part.

Theorem 2.8 (Perron-Frobenius). For any finite ergodic Markov Chain with transition

matrixz P.

o The first eigenvalue A\ of P has multiplicity 1.

e The other eigenvalues of P satisfies |\;| < A\

Let {\;}?_, be eigenvalue of P with corresponding eigenvector {v;}*,. We first show

some properties of them.

Lemma 2.9. P has n real eigenvalue 1 = Ay > A9 > .. A, > —1.

Proof. We first prove all eigenvalues are real using contradiction. Suppose P has a
complex eigenvalue \ with eigenvector v. Since P is symmetric, v*' () = vTPv =
(Pv)Tv. Then by property of inner product, (Pv)Yv = vT Pv = XvTv. Since v # 0, we

have A = X. Therefore the eigenvalue must be a real number.

Now we give bound to the eigenvalue. It is easy to check that the stationary distribution
7 is an eigenvector of P with eigenvalue 1. Consider an eigenvalue A with eigenvector
v. Let k be the index with largest absolute entry such that |v(k)| > |v(i)|Vi. Then
(k)] = [(Po)(R)| = 32, Pk, )o()| < lo(k)| S, POk, ) = [u(k)]. Therefore |\;| < 1
with Ay = 1.

Finally, the multiplicity of A; is 1 and A, > —1 by the Perron-Frobenius theorem.
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Let Aoz = max{|Aa|, |\n|}. Define the spectral gap g = 1 — Ajpqz to be the gap between
largest eigenvalue and second largest eigenvalue. Now we will show the relationship
between mixing time and spectral gap. Roughly speaking, mixing time is bounded by

inverse of spectral gap. So large spectral gap implies fast mixing.

Lemma 2.10. 7(¢) < < In

%3\3

1
9

Proof. Let u be the starting distribution. We can decompose it to u = ), ¢;v; where

¢; = ulv;. In particular, ¢; = 1/4/n, so cjv1 = .

After t step, the distribution we have is u” Pt = > cidv;. The square of I3 norm

between uniform distribution and u? P? is

Ir—a P} = [ et
i>2

§ : t
= )\icivi

1>2

2

= E /\?tuTUiviTu

1>2

< My TZvl —vol)
1>1
= )\gt(uTPu—l)
n
1

< M- ﬁ)

Using lo norm, we can get an upper bound of /1 norm,

1
lm = u Pl = 5 [lm =P,
1
< 3ole- P,
_ 7>\t( )1/2

To upper bound the distance by ¢, we get

1
5)\%(71— 1)1/2 S 3
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Solving it and we will get

1. n
t> —Iln—
g 2¢

O]

Therefore we can also prove a chain is rapid mixing by showing the spectral gap is large.

Usually, we can ignore \,, by considering the lazy chain P’ = %(I + P). All eigenvalue of
P’ is non-negative so spectral gap is 1 — Ag. Also the mixing time of lazy chain is only

twice of original chain. This allows us to focus on bounding Ay from 1.

2.2.1 Characterization of )\,

We will show two characterizations of the second largest eigenvalue of symmetric tran-

sition matrix.

Lemma 2.11. For any real symmetric probability transition matriz P, let 1 = Ay >

Ao > ... > A\, be the eigenvalues of P with orthonormal eigenvectors 1 = vy,v1, ..., Un.

zT Px

Then A = max__ 3“7

Proof. For any x L vi, we can write z as ) <, ¢v;.

So
2T Px Zi22 sz)\i 2122 sz
T, 7 S A2 7 = A2
T 22 € 22 €
And the equality holds when z = wv9, so the lemma is true. O

Lemma 2.12. For any real symmetric probability transition matriz P, let 1 = Ay >
Ao > ... > A\, be the eigenvalues of P with orthonormal eigenvectors 1 = vy, v1,...,Un.

Let 7 be the stationary distribution of P. Then Ao satisfies

2,4 (@(i) = 2(j))*m (1) P(i, 5)
) — )

1— Xy = min

el T 2o (@() — 2(4))*m (D)7 (j
Proof. By 2.11, we have Ay = max__ xxTTZx. So, 1 =X =min__ 5 J”T(IIT;;DM
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We first look at denominator. Let X be the random variable that takes value x(7) with

probability 7(i) = 1/n, then

lz = nE(X?)
. -
= nVar(X) Since x L 1

_ g > ((i) — z(§))w (i) (5)
(2]
For nominator,

2"(I- Pz = Z ZP (i, )= (i) (4)
ZZ ))*P(i, 5)

i g>1

- Z 1)) P(i, §)

So

2T (I — P)x min >y (@(d) — 2(4))*m (i) P(i, )
( )

x::cj_? Ty B x:xj_? Ez,j(x(l) - ]))QW(Z)F(j

2.3 Conductance

The second technique is about viewing the Markov Chain as a graph and use Cheeger’s
inequality [1] to bound the spectral gap. For any Markov Chain M with finite state
space and symmetric transition matrix, we can construct a weighted undirected graph
G = (Q,E). The vertex set of G is the state space © and edge set is E = {(u,v) :
P(u,v) > 0}. The weight of edge (u,v) is P,..

First we define the term expansion.

Definition 2.13. The expansion of a set S C € is defined as

Z(u,v)ESXg P(u’ ’U)
5]

¢(5) =
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And the expansion of graph G is defined by

p=¢(G)=___ m

= in S 2.2

SCQ,O<|S\§1/2¢( ) ( )
It is natural to consider expansion when bounding mixing time. If the expansion is
small, then there is a set S such that we have high probability to stay at S once we
enter S. Hence the mixing time may be large. If the expansion is large, we leave S with
high probability for any set S so we may appear at any state after few steps. Therefore

the mixing time may be small.
Cheeger’s inequality tells us the relationship between expansion and As.

Lemma 2.14. )

1—2¢§)\2§1—% (2.3)

By considering lazy chain, we know that spectral gap is 1 — Ag. Cheeger’s inequality
allows us to bound spectral gap using expansion. Therefore we can obtain an upper

bound of mixing time with expansion.

Lemma 2.15. 7, (M) < 211;(22”)
Proof. By lemma 2.10,
Tmiz (M) < In(2n)
— A2
Then applying lemma 2.14,
2
1—-X > 5
So,
21n(2n

2.4 Multicommodity flow

In this section we will introduce the multicommodity flow argument by Sinclair [18] for
bounding the mixing time of Markov Chain. This is another technique that bounds

mixing time by giving a lower bound on spectral gap.
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Definition

Let M be a ergodic Markov Chain on state space {2 with symmetric transition matrix
P. Suppose the stationary distribution 7 is uniform. Let £ = {(X,Y) : P(X,Y) > 0}
be the set of transitions of M. For any pair of distinct states X,Y, let Pxy be the
set of simple paths from X to Y using only transitions in £. Let P = UxxyPxy. A
multicommodity flow of M is a fractional flow that send 1 unit of flow from X to Y for
every pair of distinct X,Y. We define the flow by a function f : P — RT U {0}. The
input is a path p and f returns a non negative real number which is the size of the flow
on p. For every distinct pair of states X, Y, the demand of f is D(X,Y) = 1. In other

word, f must satisfy the constraint for every distinct X, Y,

> flp)=1

PEPx Y

The “quality” of a flow f can be measured by its congestion p(f)
(f) = max oo > o)
= max ————
P = e [QP(X,Y) P
peP:(X,Y)eED

And we define the elongated congestion by considering the length.

D = max ;
pf) = max AP0 p;pf(p)\pl (2.4)

The following lemma relates second largest eigenvalue and congestion.

Lemma 2.16. For any ergodic Markov Chain with symmetric transition matriz P, and

any multicommodity flow f, the second largest eigenvalue satisfies Ao < 1 — ﬁ

Proof. Note that the stationary distribution will be uniform since the transition matrix

is symmetric.a

By lemma 2.12, Ay satisfies

1— )Xo = min

Zz;(l’(z) —z(j))
cxlT Zz,j(x(l) - (

2 (i)P(i, )
7)) )

() (]

For any flow f and x, we can rewrite the denominator as,

Y (@) =) a@ir(G) = D w@n() Y fo) (i) - 2(5))

.3 4,7 pE'Pi,j
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Let e™ and e~ denotes the start and end of a directed edge e respectively, We can write

the equation as

2
Y (@) —z())Pr(@)n(G) = Y wli)nli) Y f@) (Zw(ff*)—x(e_))

2 (2] pEP; j eep
< Y ow(iwG) Yo f@)pl D (w(eh) —ale))?
5 peP: e€p
= Z(m(e"‘) —z(e7))? Z Z m(&)m(5)f (p)lpl
e 1,j PEP; j:e€p

= > (x(e?) —x(e7))’m (i) P(i, j)p(e)

e

p(f) Y _(a(e™) —a(en))*m(i) P, )

e

IN

where the first inequality comes from Cauchy-Schwartz inequality. So we have

>y (@(@) —2(5)* () PG,5) 1
225 (@(@) = x(5))*m (1) (5)

and the lemma follows. O

Let I(f) = max,. ¢()>0 |p| be the longest path length in f. We can have the following

corollary.

Corollary 2.17. For any Markov Chain with symmetric transition matriz, and any
1

multicommodity flow f, the second largest eigenvalue of P satisfies Ay < 1 — FGIGE

where l(f) is the length of the longest path p with f(p) > 0.

Now we will introduce the relation between congestion and mixing time. We have
obtained an upper bound of second largest eigenvalue, if we apply lemma 2.10, we can

bound the mixing time of M using p(f).

Theorem 2.18. For any Markov Chain M with symmetric transition matriz, and any
multicommodity flow f of M. Let n be the number of states, the mixing time of M is
bounded by

2.5 Coupling

The last technique we introduce is coupling. It is a simple but powerful technique for

bounding mixing time.
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Let M be a Markov Chain on a state space (). Let P be the probability transition
matrix. A coupling is a Markov Chain Z; = (X4, Y;) on the state space £ x Q such that

Pr(Xi1 = 241|Z = (2, 9)) = Plag, 241)
Pr(Yiv1 = yit1|Ze = (26, 9:)) = Pye, ye+1)

So a coupling is a joint process of two copies of the original chain such that if we look
at only one chain, it behaves exactly as the original chain. However, they do not need

to be independent. The following lemma tells us the power of coupling.

Lemma 2.19 (Coupling Lemma). Let M be a finite ergodic Markov Chain on a state
space Q). Let Z; = (X4,Y:) be a coupling of M. If Pr(Xy # YiZo = (x0,y0)) <
e Yxo,yo € 2, then 7(e) < t.

Proof. Suppose initially, Xg = x and Yj is chosen according to stationary distribution.
Let P! be the probability distribution of chain X at time t. We are going to bound

max, HP; For any set S € 2, the probability that X; € S is

_7THTV'
Pr(X;€S) > Pr(X;eSandY;eds)

Pi(Y; € S) - Pr(X; £ i)
= w(S)—¢

v

Similarly, we can obtain the bound Pr(X; € S) > w(S) —e. So maxscq |Pr(X; €

S) — m(S)| < e, which implies max, || P, — ’R’HTV <eand 7(g) <t

O

For any integer-value metric d on §2. For € > 0, we say a chain is € distance decreasing

if there exists a coupling such that for every z,y, E(d(X1,Y1|Xo = 2,Y) = y)) <

We can obtain a bound on mixing time by showing that the chain is € distance decreasing.

Lemma 2.20. Let dypap = maxy yeq d(x,y). If a Markov Chain is € distance decreasing
fore > 0. Then 7(1/4) < e~ In(4dnaz)
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Proof. If we apply the strategy t times, probability that X and Y is different at time ¢

1S

Pr(X; # Yi|Xo,Yo) < E(d(Xt,Y:)|Xo,Yo) (2.5)
< (1-¢)E(d(Xi-1,Yi-1)|Xo, Y0) (2.6)
< (1 —€)'dimas (2.7)
< exp(—¢t)dmaz (2.8)

When ¢t > e ' In(4dnae), we have exp(—et)dmaz < 1/4. S0 Tmie < €' In(4dmas) by

previous lemma. ]
Using coupling, we can prove claim 2.4.

Proof. Consider two copies of the Markov Chain M. By definition ¢ = min; ; P(z, j).
Therefore we can construct a coupling that the copies of the chain move to the same
state with probability at least §. So the probability they are at some different states is
at most (1 — d)! after ¢ steps. Then we have the claim by the coupling lemma. O

2.5.1 Path coupling

Although coupling is a powerful tool, sometimes it is hard to find a coupling strategy
for every pair of states. Bubley and Dyer [3] introduced an idea called “path coupling”.
In path coupling, we only need to define coupling strategy for adjacent states. Consider
a connected graph G = (Q, E) where E C Q x Q. Let d(X,Y) be the shortest distance
between X and Y in G.

Lemma 2.21. If there exists a coupling such that E(d(X1,Y7)|Xo = z, Yy = y) <
(1 —e)d(z,y)V(z,y) € E, then the chain is € distance decreasing.

Proof. The idea is to construct a coupling for all pair x,y by using coupling on states

of edges of the shortest path. Let [ = d(z,y). Let the z,y shortest path be x =

20, 215 .-y 21 = y. Our goal will be finding a way to sample 2’ and y’ such that Pr(X; =
2’| Xo =2,Yp =y)) = P(x,2"), Pr(Y1 = /| Xo = 2, Yo = y)) = P(y,y') and E(d(2", )|z, y) <
(1 —e)d(z,y).

We already have a coupling strategy for [ = 1. The coupling can be defined as a

stochastic process C; on Q x Q. And for Cy(z,y) € E, let C1 = (2/,y') be the next state,
we expect d(2',y') < (1 —e)d(z,y).
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For | > 1, we will sample 2’ = 2, 2, ..., 2] = ¢ using the follow way. We first sample
z(, and 2z} by applying the coupling C' on (zp, 21). We can do this because (zp,21) € E.
Then for i > 1, we sample 2, by applying coupling C' on (Xo,Yy) = (2, zi+1) and

condition on X; = z;.

Then we prove that Pr(z, = v|z;) = P(z,v) by induction. It is true for z{, 2] as we

sample them from valid coupling. Assume it is true for 2}, consider z;, ,,

Pr(z,; = v|zip1) = Z [Pr(zg = u|z) Pr(Cy = (2},0)|Co = (2, 2i+1), 21 = u)]

= Z [P(Zi, )PI‘(Cl = (ZZ{,U)‘C() = (Zi7zi+1)7zg — u)]

B . Pr(Cy = (u,v)|Co = (i, 2i11)))
ZP U Z Pr(Cy = (u,v")|Co = (2, 2i41))

B Pr (C1 = (u,v)|Co = (2, zi+1)))
o ZP P(zl,u)

= ZPr (C1 = (u,v)|Co = (2, zi+1)))

u
= P(zit1,v)

So we can see that the coupling is valid and well defined. If we apply this coupling, then
the expected distance at 1 step is

E(d(X1,Y1)|[Xo=2,Yo=y) = E(d(2),2))
= Z E(d(zl, Zerl))
0<i<l—1
< (1 —e)d(z, zi+1)
0<i<l—1
= (1—-¢)d(z,y)
Therefore the chain is ¢ distance decreasing. O

We will have the following corollary on mixing time if we apply lemma 2.20 directly.

Corollary 2.22. If there exists a coupling such that E(d(X1,Y1)|Xo = z,Yy = y) <
(1 —e)d(z,y)V(x,y) € E, then the mizing time of the chain is at most ¢! In(4dnaz).

2.6 Approximate sampling proper colouring

In this section we introduce the problem of approximate counting and sampling of graph

colouring. To begin, we first give some definitions about approximate counting and
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sampling. We will use the definition from this book[16].

2.6.1 Approximate sampling and approximate counting

Definition 2.23. A randomized algorithm gives an e-approximate for a value V' if the

output X of the algorithm satisfies

Pr(| X —V|<eV) >

o

Definition 2.24. A fully polynomial randomized approximation scheme (FPRAS) for
a function f is a randomized algorithm for which, given an input x and any parameters
e with 0 < e < 1, the algorithm outputs an e-approximation to f(z) with probability at

least 3/4 and runs in time that is polynomial in 1/e and the size of input x.

Definition 2.25. Let ) be the state space. Let 7 be the uniform distribution on 2. An
algorithm generate an e-uniform sample of Q if it returns a state x from a distribution

wand ||lu— 7|, <e.

Definition 2.26. A fully polynomial almost uniform sampler (FPAUS) for a problem is
an algorithm for which, given an input  and a parameter € > 0, it returns an e-uniform
sample from Q(z) and runs in time that is polynomial in In(1/e) and size of the input

x.

Now we will introduce the problem of counting the number of proper colourings.

Let G = (V, E) be a simple graph. Let [¢q] = {0,1,...,¢ — 1} be the set of ¢ colours.
A (proper) vertex g-colouring of G is a colouring of vertex of G such that no pair of
adjacent vertices share the same colour. Let d be the maximum degree of G. It is not
hard to see that we can get a colouring if ¢ > d + 2. A natural problem is how many

g-colourings does G has.

However counting the number of g-colourings is #P-complete. Hence we focus on ap-
proximate count the number. Jerrum [11] showed that if we can sample a colouring near

uniformly, then we can approximate the number of colourings.

Lemma 2.27. For any graph G with maximum degree d. There is a FPRAS for counting
the number of q-colourings of a graph G if there exists a FPAUS for sampling a q proper
colouring for ¢ > d + 2.

Proof.

Constructing an approximate scheme
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We first show how we get an approximate scheme. Let n be the number of nodes in G.
Let m be the number of the edges in G. Let d be the maximum degree of G. To avoid
trivialities, we assume n > 3 and d > 2. Then we can construct a sequence of graph
G = Gn,Gn-1,...,G1,Go = (V,0)) where G; are obtained by removing a single edge
from Gjit1. Let Q(G;) denote the set of g-colourings of G;. Then we can write down the

number of colourings as a product of ratios.

m—1 )
@)= 2o [] [(Gi)]

Clearly, |[2(Go)| = ¢"™. Therefore, our goal will be finding a good estimate of the ratio

_ [UGin)
QG|

i

for 0 <4 < m in polynomial time.

Suppose that we remove edge(u,v) from G;i; to have G;. It is not hard to see that
Q(Gi+1) C Q(G;). By assumption, we have a FPAUS to generate a e-uniform colouring
of G;, with run time p(n, €) for some polynomial p. Therefore we can get an estimation

r; using the following way.

We sample s = [37¢7?m] independent (¢/6m)-uniform copies of colouring of G;. Let
ZF be the random variable that Z¥ = 1 if the k" sample is also a colouring of G;41 and
Zj, = 0 otherwise. Finally, we return the ratio

DY Y/

Ty =
S

In other word, we return the experimental probability of having a colouring of G;1.

Once we have all 7;, we return ¢" H?;_Ol 7; as an approximation of |Q(G)|.

We have constructed the scheme, the remaining work will be bounding the total run

time and proving the scheme will return a good approximation.
Bounding error

We will bound the error in 7; to bound the error in our approximation. Suppose G; and
Giy1 only differ on edge(u,v). Note that every colouring in Q(G;) \ 2(Giy1) has the
same colouring for u and v, and can become a colouring in (G;+1) by giving u a colour
that its neighbours don’t use. There are at least ¢ — d > 2 possible colours. So we can

lower bound r;,

<
&3
v
ol o
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Since we sample a (¢/6m)-uniform colouring for Z¥, So,

€ €
‘E<sz)_7“i’§67m§%7“i
Then we can bound the expected value of 7;
~ €
|E(rg) —ri| < %Ti (2.9)

For variance of 7;,
Var(r;) = s E(7)(1 - E(7))

Since 1 > E(r;) > %(1 — 1) > 1/2, we have

Var(7;) _ 1 B
B = Gy VS
So,
V(T 7)) p g Ve
[T E(ri)? L Em)?
< (I4+sHm-1
52
= 35

—1 m—1 —1
a-pIlem<[Ir<a+y [[E®
=0 1=0 =0

-1 m—1 —1
(1-%) []r< HE(ﬁ)g(lJr%) IT
=0 1=0 1=

Combining the above two inequalities, we can have an approximate of (G) with mul-

tiplicative error of ¢ and probability at least 3/4.
Bounding running time

Finally we bound the total run time. Every time we estimate r;, we call the sampler
s times. In each time the sample run in time p(n,6me=!). To estimate all 7;, we
call the sampler ms times. The total run time of our approximate scheme will be
O(msp(n,6me~1)) which is polynomial of size of G and 1/e. So the scheme also satisfies

the run time requirement. O
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Therefore, we need to find a way to sample a colouring nearly uniformly. However, this

is still an open problem.

2.6.2 Glauber Dynamics

One attempt of constructing a sampler is using the Markov Chain Monte Carlo method.
The idea of this method is to construct a Markov Chain with the desired stationary
distribution and fast mixing time. Then we run the chain until it mixed and return the

current state. The following is a natural Markov Chain for sampling a graph colouring.

For any graph G, let ¢ be the number of colours. Consider a Markov Chain M with
state space (2 is the set of proper colourings of G. Let X; be the state of M at time ¢.

X1 are found by the following procedure

1. Sample a vertex v and a colour ¢ out of ¢ colours both uniformly and independently.
2. Recolour X;(v) to ¢ to obtain a new colouring X'.

3. If X’ is proper, let X;,1 = X’. Otherwise let X;,1 = X;.

This chain is called “Glauber Dynamics” in the field of statistical physics.
Stationary distribution of Glauber Dynamics

It is not difficult to see the unique stationary distribution of M is the uniform distribution
for ¢ > d + 2. It is aperiodic because there is non-zero probability to stay at current
state in each step. For ¢ > d+ 2, we can construct a path from X to Y for every pair of
colourings X, Y using the following strategy. For every node u such that X (u) # Y (u),
we first recolour the neighbour of u such that none of them use colour Y (u). This step
is always possible because ¢ > d + 2. Then we can safely recolour X (u) to Y (u). So
M is also irreducible and it has a unique stationary distribution. Since the transition

matrix is symmetric, the stationary distribution must be uniform.
Conjecture on mixing time

Using Glauber Dynamics, we can construct a sampler for a graph colouring by running
the chain for a long enough time. One important question is the mixing time of the
Glauber Dynamics. For ¢ < d+ 2, the chain might be frozen at some colourings because
we can’t change the colour of any node. For example, it happens for ¢ = |V| and G is
a complete graph. Therefore we want to find the mixing time for ¢ > d + 2. There is a

conjecture[11] that the chain mixes in polynomial time in this case.
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Conjecture 2.28. Let G = (V, E) be a graph with maximum degree d. Let € be the set
of g-colourings of G. For ¢ > d+ 2, the Glauber Dynamics for sampling a ¢g-colouring of
G has mixing time in O(|V|log|V])

2.6.3 Jerrum Coupling

In the end of this chapter, we present the path coupling version of Jerrum’s coupling
[11]. Although our proof does not use the coupling method, we present it as many results

on the Glauber Dynamics is based on a very careful study of it.

Theorem 2.29. Let G = (V, E) be a graph with mazimum degree d. Let d be the
mazximum degree of G. Let q be the number of colours. The Glauber Dynamics for

sampling a proper g-colouring of G has mixing time in O(nklogn) if ¢ > 2d.
pitng a proper q g g g q

Proof. Let Q be the set of proper colourings. We first define an integer-value metric d
on . For any pair of colourings X,Y, we let d(X,Y) = [{u € V : X(u) # Y(u)}| be

the number of nodes where they have different colour in X and Y.

Now we will define the coupling strategy. Let X, Y; be two copies of the Glauber
Dynamics at time ¢. Suppose d(X;,Y;) = 1. Let cx = X¢(u) and cy = Yi(u). We first
sample a node v and a colour ¢ both uniformly and independently. Then we update

both chains using the following strategy.

e If v is a neighbour of u and ¢ = cz, we update X (v) to cx and Y (v) to cy.

e If v is a neighbour of w and ¢ = ¢y, we update X (v) to cy and Y (v) to cz.

e Otherwise, we update both X (v) and Y (v) to c.
The updates that will increase distance are the updates in the second case. In this case,
we will update v to different colours in both chains. The updates that will decrease dis-

tance are the successful update of u. Since there are at most d colours in the neighbours

of v, we can update u if we sample the other ¢ — d colours.

So the expected change of distance after one step is

E(d(Xei1, Yiu1) — d(Xn Yy) < qﬁv,u (- )
1
< =
- qV]

Using the path coupling 2.22, the mixing time is O(q|V|log |V]). O
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Glauber Dynamics for sampling

an edge colouring of regular trees

3.1 Introduction

In this chapter, we study the use of Glauber Dynamics for sampling an edge colouring
of a d-regular tree. It is equivalent to sampling a vertex colouring of the line graph of

the tree. We show that the chain mixes in polynomial time for ¢ > 2d.

We use the multicommodity flow argument proposed by Sinclair. To apply the argument
we need to construct a flow that send 1 unit of flow between every pair of distinct
colourings using Glauber Dynamics transitions. We construct the flow by induction on
the tree height. The base case is a special case where the tree is a single edge. The
construction of the flow is trivial in this case. Then for a tree with height A, the height of
the subtrees of the root is h — 1. By induction assumption, we know how to send a flow
between two colourings if they only disagree at one subtree. We show that is enough to

construct the flow by studying another type of Markov Chain called Block Dynamics.

3.2 Preliminary

3.2.1 Edge colouring on tree

Let T'= (V, E) be an undirected rooted tree with edge set F. Let d be the maximum
degree of T'. Let [¢] = {0, ...,q— 1} denote a set of ¢ > d colours where we use an integer

to label a colour.

23
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A proper edge g-colouring of a tree is a colouring of edges with element of [g] such that
edges sharing same node as an endpoint do not receive the same colour. We will define it
as a function f : E' — [¢] that maps edges to colours such that if edges e; and ey shares
an endpoint, f(e;) # f(ez). In the remaining part, we may omit the word “proper”, so

an edge colouring actually means a proper edge colouring.

3.2.2 Planted tree

In this chapter, we will also study edge colouring on regular planted trees. A planted
tree is a rooted tree and the root has degree 1. We use the root-edge to denote the only

edge connecting the root of a planted tree.

A d-regular planted tree is a planted tree with the following two property,

e Every non-root and non-leaf vertex has the same degree d.

e The distance from the root to any leaf vertices are the same.
We study the planted tree because we will consider the Glauber Dynamics on subtrees
of the root. Then the subtrees is exactly a planted tree with a forbidden set of colours of

size d — 1 for the root-edge. The set of forbidden colours is formed by the set of colours

occupied by other edges connecting the root.

3.2.3 Glauber Dynamics for edge colouring

Usually, people use the Glauber Dynamics for sampling a proper vertex colouring of a
graph. In this chapter we use Glauber Dynamics for sampling an edge g-colouring for
the following two types of trees

e d-regular trees

e d-regular planted trees with a forbidden set of colours of size d—1 for the root-edge
Let T be any tree of the above types. Let 2 be the set of edge colourings. The Glauber

Dynamics for T is a Markov Chain M with state space €. Let X; be the state of M at

time ¢, the chain does the following transition to find X;1.

1. Let Y = X,.
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2. Sample an edge e uniformly, and a colour ¢ out of the ¢ colours uniformly and

independently.
3. Set Y(e) =c.

4. If Y is proper, set X;11 =Y. Otherwise, set X;11 = Xj.

In other words, in each step we sample an edge e and colour ¢ uniformly at random.
Then we update the colour of e to c if the resulting colouring is still proper. Otherwise

we stay at the current colouring.

3.2.4 Multicommodity flow

The multicommodity flow argument [18] will be our main tool for bounding the mixing

time of Glauber Dynamics.
Definition

Let M be a reversible Markov Chain on a state space {2 with a transition matrix P.
Suppose the stationary distribution 7 is uniform. Let £ = {(X,Y) : P(X,Y) > 0}
be the set of transitions of M. For any pair of distinct states X,Y, let Pxy be the
set of simple paths from X to Y using only transitions in E. Let P = UxxyPxy. A
multicommodity flow of M is a fractional flow that send 1 unit of flow from X to Y for
every pair of distinct X,Y. We denote the flow by a function f : P — R* U {0}. And
for X £ Y, f needs to satisfy the constraint

> flp) =1

PEPx Y

The congestion of f is defined as
(f) = max oo > )
= X _—
P (AV)er [QIP(X,Y) P
And the congestion of M is the minimum value over all flow f.
p(M) = min ()

Let I(f) = max, t(,)>0 || be the longest path length in f.

The congestion and mixing time of M are related. The following two propositions are
proven by Sinclair. Firstly, having a multicommodity flow with low congestion implies

small mixing time.
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Proposition 3.1. Suppose M is a reversible ergodic Markov Chain on a state space
Q with a transition matriz P and an uniform stationary distribution w. Let f be a
multicommodity flow of M. Let Tyix = 71 /4(M). Then,

Tmia (M) < p(f)I(f) In(2]€2])

Secondly, small mixing time implies the existence of a multicommodity flow with low

congestion.

Proposition 3.2. Suppose M is a reversible ergodic Markov Chain on a state space )
with a transition matrix P and uniform stationary distribution w. Let Ty, = 71/4(M).
Then there exists a flow f with p(f) < 167Tpmip and I(f) < 2Tz

3.3 Problem

Now we state the main problem and our result. Consider a d-regular tree T'. Let |T'| be
the number of edges of T'. Let [¢] be the set of colours. We want to know the mixing

time if we use the Glauber Dynamics M to sampling a proper edge g-colouring for 7.
Previous results

Let L(T') be the line graph of T, then M is actually the Glauber Dynamics for sampling
a vertex colouring of L(T). Note that maximum degree of L(T) is 2d — 2. There is
a folklore conjecture [11] that the mixing time of M is O(|T|log |T|) if ¢ > 2d. Using
Jerrum coupling [11], Jerrum proved the mixing time of M is O(q|T|log |T|) if ¢ > 4d.
If we use Vigoda’s result [19], the mixing time of M is O(q|T|?log|T|) if ¢ > 11d/3. We

are not aware of any previous result that can be applied on this special class of graph.
Our results

We show that the mixing time of M is polynomial in |T'| if 2d < ¢ < 4d. Our result is

as follows.

Theorem 3.3. Let q be the number of colours. Let M be the Glauber Dynamics for
sampling an edge colouring of a d-regular tree T'. Let h be the height of T'. If4d > q > 2d,
then

Tmiz < 22q|T[* In** (2q) In(2|T)

Note that 22" = O(poly(|T|)) since |T| = d". Our results shows that the Glauber

Dynamics for sample an edge colouring of a d-regular tree will mix in polynomial time
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if the number of colours ¢ > 2d. The number of colours needed to guarantee polynomial
mixing time matches the number mention in the conjecture. However, the mixing time
is much larger than the time in the conjecture. It may be possible to get a better time

because we did not try to minimize the mixing time.

3.4 Special case

A special case is the tree height h = 1. We will first study the Markov Chain for
this special case. The result of this special case gives bound on mixing time of Block
Dynamics which we will consider in later part. In the special case, we will consider using

Glauber Dynamics for sampling an edge colouring for the following two types of trees:

e regular tree with height 1

e regular planted tree with height 2 and a forbidden set of colours of size d — 1 for

the root-edge

We remark that the tree is a star graph in both cases. The only difference is the colour

constraint in the second case.
We will prove the following for this special case.

Theorem 3.4. Let q be the number of colours. Let M be the Glauber Dynamics for
sampling an edge colouring of a tree T of height 1. Let d be the number of edges of T'.
If ¢ > 2d and at most one edge of T has a forbidden set of colours of size d — 1, then
Tmiz < 4d?q%In(2q)

Notations

We will use the following notations. Let T be the d-regular tree or planted tree that we
consider in this section. Let {ei}?zl be the set of edges of T. If one edge of T has a
forbidden set of colours of size d — 1, we let e to denote that edge. For other edges, we
label the edges arbitrarily. Let M be the Glauber Dynamics for sampling a ¢ colouring
q !
of T. We use Pj to denote (qﬁ—d)!.
Number of colouring

First we lower bound the number of proper edge colourings.

Lemma 3.5. The number of edge q-colourings for T is at least q_%jﬂ Pg.
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Proof. There will be 2 cases.
Case 1: e can choose any colours. In this case, the number of colourings is Pg.

Case 2: There is a set C where e; cannot choose colour from C, and |C| = d—1. We would
choose colour for e; from ¢ = 1 to d one by one. There are d — 1 colours that e; cannot
choose from. The number of choices for e; is g—d+1. And for i > 1, the number of choice

for e; is ¢—i+1. The total number of colourings is (¢—d+1) Hf:2(q—i—|—1) = q_ZH Pi.

Combining both cases, the number of colourings is at least % Pl. O

Proof technique

We use the canonical path argument to bound the mixing time. Canonical path argu-
ment is a special case of multicommodity flow where we send the flow from X to Y on

a single path only.

For every pair of colourings X,Y, we will construct a path Pxy from X to Y using
transition of M. Then we can construct a multicommodity flow f where f send 1 unit

of flow from X to Y on path Px y for every pair of distinct colourings X, Y.

We will upper bound p(f) and I(f) to our desired quantity in the lemma 3.6 which we

will prove later.

2dg?

q—d+1 and

Lemma 3.6. There exists a multicommodity flow f of M such that p(f) <
I(f) <2d.

Then we will apply the proposition 3.1 to obtain an upper bound on mixing time.

Proof of Theorem 3.4. By lemma 3.6, We can construct a multicommodity flow f on

the state space of the Glauber Dynamics. The congestion p(f) is bounded by qchfjl
and [(f) is bounded by 2d. Then by proposition 3.1, Tz < % In(4/€?|) . Note that
Q| < ¢? and ¢ — d + 1 > d since ¢ > 2d, we have Ty < 4d?¢%In(2q) .

O

3.4.1 Canonical Path

In this section, we will define a path from X to Y for any pair of colourings X,Y

The path consists of d rounds. The goal of round i is to recolour e; to Y (e;). There will
be two possible cases in round i. The first case is that no other e; is using the colour

Y (e;). The second case is that some e; is using the colour Y (e;).
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For the first case, the path recolour e; to Y (e;) directly, or do nothing if e; already have

colour Y'(e;).

For the second case, the path first choose a colour ¢ and change the colour of e; to c.
Then the path change the colour of e; to Y'(¢;). ¢ is chosen using the following way. Let
X’ be the colouring at beginning of this round. Let S be the set of unused colour in X’.
The path choose the largest ¢ such that ¢ € S and ¢ < X'(e;). If every colour in S is
larger than X’(e;), the path choose the largest colour in S to be c.

The following is the pseudo code.

for i = 1 to d do

if there is e; has colour Y (e;) then
let S be the set of unused colour
if there is a € S and a < X (e;) then
| let c=max({a € S:a< X(e)})
end
else
| let ¢ = max(S)
end
update X (e;) to ¢
end
update X (e;) to Y(e;)
end
Algorithm 1: Recolour(X, Y)
Example

We will show one example of the path here. Suppose we have 6 colours.

For each edge, we label it with (edge id, edge colour). For example, (e2,3) means edge

eg has colour 3 in X. We will show an example that go from X to Y.
Round 1

In this round we want to change colour of e; to 2. However, e3 is blocking it. We need
to recolour e3 to a colour that is the largest unused colour and smaller than current
colour of e, which is 0. Since all unused colour is larger than 0, we change to recolour

e3 to largest unused colour, which is 5. Then we can recolour e; to 2.
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colour 5 — e3 colour 2 — ey
_— _—

Again we need to free the colour from e3. The largest unused colour that is smaller than

colour of ey is 1. So we first change colour of ez to 1. Then change colour of es to 5.

colour 1 — e3 colour 5 — e

Round 3

Finally, we change colour of ez to 4.

colour 4 — e3

3.4.2 Analysis of canonical path

In this section, we analyse the canonical path to bound the congestion in lemma 3.6.
For any colourings X, Y, let Px y denote the path generated by Recolour(X,Y). Let
Px y (i) denote the colouring after round i. Also let Px y (0) denote the start colouring
X. So the path is like the following

round 1 round 1%

round i+1 round d

X =Px,y(0) Pxy(1)... Pxy (i) Pxy(d) =Y

We need the following lemma to prove lemma 3.6.

Lemma 3.7. For any transition t, the number of pairs X,Y such thatt € Pxy 1is at

most 2 PJ.
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Proof of lemma 3.6. We construct the multicommodity flow f by sending 1 unit of flow
along Px y for every distinct X,Y. For any X,Y’, the length of Px y is at most 2d, so
I(f) <2d.

By definition,

1
p(f) = max Z 1
(A,B)eE |QP(A, B) (X,Y):(A,B)ePx.y

Since Q > %Pg and P(A, B) = 1/dq,

dq?
ma}ajg’{(}(a Y): (A, B) € Pxy}
d y

dq?
2dq>
q—d+1

To proof lemma 3.7, we will need the following two lemma.

Lemma 3.8. Suppose t is a transition that change colour of edge e;, the number of X
P! if j >k

such that there exists Y and Pxy uset in round k is at most
(d—k+1) P,g_l ifj =k

Lemma 3.9. Suppose t is a transition that change colour of edge ej, the number of Y

such that there exists X and Pxy use t in round k is at most Pg__,f

Proof of Lemma 3.7. Suppose t is a transition that change colour of edge ¢;, then it can

only appear in first j rounds.

By multiplying the results in lemma 3.8 and lemma 3.9, the number of colourings X,Y
1 q e
P if 1>k

such that Pxy use t in round k is at most { q—k+1 " d J

d—k+1 pg e
i P, itj=k

So,

number of X,Y s.t. t € Pxy = Z number of X,Y s.t. Pxy use t in round ?
1<i<y
1 d—k+1
Pq Pq
Zq—k—l—l d+q—k—|—1 d

1<i<j
< P}+ P}
< 2P}
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For the remaining lemma 3.8 and 3.9, we will prove lemma 3.9 first since it is easier.

Proof of Lemma 3.9. For any X,Y such that Pxy use t in round k, we know what
Y (e;) is for ¢ < k. For the remaining d — k edges, there are ¢ — k colours for them. So

the number of Y is at most Pg:,f . O

To prove lemma 3.8, we need the following lemma.

Lemma 3.10. For any colouring B, if B = Px y (i) for some unknown X,Y and i > 0,
then the number of possible Px y (i — 1) is at most ¢ — i+ 1.

Proof of Lemma 3.10. For any path Pxy, in round ¢ it recolour at most 2 edges. So

there will be three cases.

If it didn’t recolour any edges, then Px y (i — 1) = Px y(i). In this case, the number of
Pxyli—1)is 1.

If it recolour only 1 edge, then this edge must be e;. In this case, the old colour of e;
must be in the unused colour of Px y(¢), which has ¢ — d possibilities. So the number

of possible Pxy (i — 1) is ¢ — d.

If it recolour 2 edges, the first edge must be e; for some j > ¢ and the second edge
must be e;. Suppose we know what j and Px y (i) are, we can recover Pxy (i — 1).
It is because Pxy (i — 1)(e;) = Px,y(i)(e;). For Pxy(i —1)(e;), let S be the set of
unused colour of Px y (i). If every colour in S is smaller than Px y(i)(e;), Px,y(e;) is
the smallest in S. Otherwise Px y (i — 1)(e;) is the smallest colour in S that is greater
than Px y(i)(ej). So the number of possible Pxy (i —1) =d — 1.

Summing for three cases, the number of possible Px y (i — 1) is at most ¢ —i+1. [
Finally we prove lemma 3.8.

Proof of Lemma 3.8. Let t = (tstart, tend) be any transition that change colour of e;. We
first count the size of set S = {A:3X,Y,t € Pxy and Pxy(k —1) = A}

If j > Kk, then in round k the path will take 2 transitions and ¢ is the first transition.
Since ¢ is the first transition, Py y (k — 1) = tstqre and |S| = 1.

If j = k, there are 2 possibilities, then t is either the first transition or the second

transition. Again, if ¢ is the first transition, then |S| = 1. If ¢ is the second transition,
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the first transition is freeing colour Y (e) from some e; and ¢ is the transition that
recolour ey to Y(e). If we know what e; is, then we can recover Px y (k — 1) by giving

back e; the colour Y (eg). So |S| = d — k which is the number of possible e;.

By repeatedly applying lemma 3.10, for any colouring A, the number of X such that
there exists Y and Py y (k) = A is at most P;. So the number of X such that there exists
Pl itj>k

Y and Px,y use ¢ in round k is at most P/|S| = .
(d—k+1) P, ifj=k

3.5 General case

Now we will consider the general cases where the tree can have any height. We first

introduce some notations.
Notation of tree

We will use the following notation for the d-regular tree / planted tree we considered.

Let T be the tree.
d-regular tree

If T is a d-regular tree, we use e; for 1 < 7 < d to denote the d edges connecting the
root. We don’t label other edges. We use T; to label the planted tree with the same root
of T" and e; begin the root edge. We put a number near every edge to denote the colour
of the edge. The following is an example of a 3-regular tree of height 2. The right side

is T3 in this example.

(627 2)

d-regular planted tree

If T is a d-regular planted tree, we use e; to denote the root-edge. For the d — 1 edges
that share an endpoint with e;, we use e; for 2 < i < d to label them. Let v be the only
child of the root. We use T; to denote the planted tree rooted at v with e; being the
rooted edge. The following is an example of a 3-regular planted tree T and T4, 715,15 of
T.
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(627 5) (637 4)
(617 2)

Ty b T3

3.5.1 Block Dynamics

In this section we introduce and analyse another type of Markov Chain which we call it
Block Dynamics. It is another Markov Chain for sampling a colouring. Two previous
results [2, 14] about mixing time of Glauber Dynamics for sampling a vertex colouring
of a tree also use Block Dynamics in their analysis. In our setting of sampling an edge
colouring, each Block Dynamics transition (X,Y) is a pair of colourings where X and

Y disagree at one subtree only.

Our main objective is not about the mixing time of Block Dynamics. However we study
them because it tells us how to construct a flow for Glauber Dynamics. Recall that fast
mixing implies a flow with good congestion. It tells us how to send the flow between
distinct pair of colourings if we know how to send a flow between two colourings that

only disagree at one subtree.
Definition

Let T be tree rooted at some node r. Let ¢ be the number of colours. Let 2 be the set

of edge g-colourings of T'. A Block Dynamics is a Markov Chain with state space 2.

In each step the chain does the following to obtain the next state. The chain first samples
a colour ¢ and a planted tree T}, from {7;}%_, randomly and independently. Then the
chain samples a random edge colouring X for T}, with restriction that e; must use colour
c. If there is no conflict, the chain updates the colouring of T} to X. Otherwise it stays

at current colouring.

Clearly, the transition matrix of M is symmetric. So the stationary distribution is also

uniform.

3.5.2 Mixing time of Block Dynamics

In this section we analyse the mixing time of Block Dynamics.
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Lemma 3.11. Let q be the number of colours. Let M be the Block Dynamics for
sampling an edge q-colouring of a tree T'. If T is a d-reqular tree or d-reqular planted
tree, then Tmiz(M) < 16d%¢* In(2q).

Proof. Let S denote the set of d edges {e;}¢_,. For any colourings X, let X (S) denotes
the colouring of S. Let X;,Y; be two copies of the Block Dynamics.

Our proof is based on coupling, we first couple the colouring on S. Once both chains

have the same colouring on S, we can couple the colouring of the other parts easily.

We first make the following two claims and we will prove it later.

Claim 3.12. There exists a coupling strategy such that Pr[X;(S) = Yi(S)] > 4/5 for
t > 14d%q* In(2q).

Claim 3.13. If Xo(S) = Y(95), there exists a coupling strategy such that Pr[X; = Y;] >
31/32 for t > 2d?¢* In(2q).

Let t; = 14d%¢® In(2q), t2 = 2d*q* In(2q). We first apply the coupling in claim 3.12 for ¢;
steps. If it succeeds, which means the colourings on S are same for both chains, then we
apply the coupling in claim 3.13 for ¢9 steps. By the two claims, Pr(Xy, 14, = Y3, 44,) =
4.3

- 3—5 > 3/4. Then this lemma is true by the coupling lemma.

Now we prove claim 3.12. Let X} = X;(S) and Y/ = Y;(S). Then X/ and Y/ are the
Glauber Dynamics for sampling an edge colouring of the star graph formed by S. Let
T = 3.5Tpmiz(X]) = 14d*¢*In(2q). Let u,v be the probability distribution of X/ and Y.

By 2.7, |lu—7|lpy < 45 and [[v = 7|lpy < 15. So |Ju— v]lpy < 1.

Then we sample Z = (Zx, Zy) such that Zx and Zy are distributed according to u and
v and Pr(Zx # Zy) = |lu— |, < £. Then our goal will be constructing a path of
length T" from Xy to Zx and a path of length T from Y to Zy.

We first show how to move from Xy to Zx. Let X9 = pg, p1,...,pT = Zx denote a path
of length T" from X to Zx. We will move from Xy to Zx using path p with probability

Hz‘T;ol P (pivpi-&-l)
PT(X07 ZX)
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To see that the chain X; still behaves like the original chain, let P be the transition
matrix of the Block Dynamics Xj.

PI‘(XZ' = A,XH_l = B)
ZZ’GQ PI‘(ZX = Z/) PI‘()(Z = A7Xi+1 = B|ZX = Z/)
S peq Pr(Zx = Z')Pr(X; = A|Zx = Z')

Pi{(Xo,A)P(A,B)PT——Y(B,7'
Yzea P! (X0, 2) ) P(T(Xz,z’) S

Pi(Xg,A)PT—i(A,Z'
ZZ’EQ PT(X(]?Z/) ( OPT2X072/() )

> preq P (X0, A)P(A, B)PT=~Y(B, Z')
Yozeca Pi(Xo, A)PT=(A, Z")
= P(A,B)

PI‘(XZ'+1 = B’Xz = A) =

Similarly we move from Yj to Zy. And Pr(Xp =Yr) =Pr(Zx = Zy) > 4/5.

Finally we prove claim 3.13. If X((S) = Y5(S) and we apply the same update to X; and
Y;, they will succeed together or fail together. If an update on T; succeed on both X,
and Y;, both chains will have the same colouring on 7;. Therefore we let both chains

receive the same update until all T; are updated at least once.

Probability of sampling and updating T; successfully in one step is at least q_;f;'l. After

t steps, probability of some T; is not updated is at most

_g—d+1
dq

—t(qg—d+1)

d(1 W)

) < dexp(

After qIn(32d) steps, all T; are updated with probability at least 31/32. Then the claim
is true since 2d%¢? In(2q) > ¢1n(32d). O

We have bounded the mixing time of Block Dynamics. Then we can get the following

corollary if we apply proposition 3.2 directly.

Corollary 3.14. Let q be the number of colours. Let M be the Block Dynamics for
sampling an edge q-colouring of a d-reqular tree T'. There exists a multicommodity flow
f of M with p(f) < 256d?q*>In(2q) and I(f) < 32d%q*In(2q).

Which equals to following corollary.

Corollary 3.15. Let q be the number of colours. Let M be the Block Dynamics for
sampling an edge q-colouring of a d-reqular tree T'. Let P be transition matriz of M.
Let Q) be the set of q colourings. Let E be the set of transitions of M. For every distinct

colourings X,Y, we can construct a set of paths I'x y such that every path consists of
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transition of E. LetT = Ux y.x2yl'xy. And we can construct a flow f : T — RTU{0}
so the following constraints are satisfies.

1. For all pair of distinct colourings X,Y, Z’YGFXY fy)=1

2. V(Av B) € Ea Zp:(A,B)Ep f(p) S 256d2q2|Q’P(A5 B) 11'1(2(])

8. max.er. (>0 [7] < 32d*¢* In(2q)

3.5.3 Mixing time of general case

Finally we bound the mixing time of the Glauber Dynamics for sampling an edge ¢-

colouring of d-regular tree T of height h.
Proof technique
We use the multicommodity flow argument to bound the mixing time.

We will construct a flow f that send 1 unit of flow from X to Y for every pair of distinct

colourings X,Y. Suppose the following lemma is true.

Lemma 3.16. There exists a multicommodity flow f that send 1 unit of flow from X

to'Y for every distinct X,Y . And f satisfies the following constraints,

1. The amount of flow that a transition transfer is at most 256hd2hq2h% lnh(2q) and

2. The longest path length is at most 32"d*"¢*" In"(2q).
Then we can prove theorem 3.3 by applying proposition 3.1 on lemma 3.16 directly.

Proof of theorem 3.3. Let q be the number of colours. Let M be the Glauber Dynamics

for sampling an edge colouring for a d-regular tree T'. Let E be the transition of M.

By lemma 3.16, we can construct a multicommodity flow f that satisfies following
q|T
o(f) = max UL S 1) < 2560202 n(2g) (3.1)

and

1(f) < 32"d%hg*" In(2¢) (3.2)
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By proposition 3.1,

Tmiz(M) < p(£)I(f) In(2|T|%)
< 2B3hgAh A 102 (24) (¢ In(2|T)) By 3.1 and 3.2
< 22T 1n2"(2¢) In(2|T)) Since |T| < d" and q < 4d

In the remaining part, we prove lemma 3.16.

Proof of lemma 3.16. We will proof the lemma by induction on the tree height h.

The base case is h = 0 where the tree is a single edge. In this case, for every distinct
colourings X, Y, (X,Y) is a Glauber Dynamics transition. So we send the flow from X

to Y directly. Then, [(f) =1 and p(f) = 1 so the lemma is true in this case.

For any h > 0, suppose the lemma is true if the tree height is at most A — 1. Consider

the case where the height is h.
We first give some notations.

Notation Let ¢ be the number of colours. Let M be the Glauber Dynamics for sampling
an edge colouring for 7" with transition P. Let Mp be the Block Dynamics for sampling
an edge colouring for T" with transition Pg. Note that both M and Mp have the same
state space €2 and uniform stationary distribution 7. Let Ep be the set of transitions
of Mp. Let EY be the set of transitions of Mp that change colouring of 7;. Similarly
let E be the set of transitions of M and E° be the set of transitions of M that change
colour of some edge in T;. For any T;, let N; be the number of colourings of T; if we fix

the colour of ;.
We will construct the flow in two steps.
Constructing the flow using Block Dynamics transition

By corollary 3.15, we can construct a flow fp that send 1 unit of flow from X to Y for
every distinct X,Y. fp will send the flow using Block Dynamics transition. And fp

satisfies the following constraints

ViV(A,B)€EL, Y fslp) < 256d°¢°|QPp(A, B)In(2q) (3.3)
p:(A,B)eEp
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where
Pp(A,B) = L if (A, B) € E}
B 3 - quZ ) B
and
1(fB) < 32d°¢*1n(2q) (3.4)

The first inequality tells us the maximum amount of flow a Block Dynamics transition

will transfer. The second inequality tells us the maximum length of fp.

Constructing Block Dynamics transitions using Glauber Dynamics transi-

tions

Then we construct a flow that send 1 unit of flow from A to B for every (A, B) € Ep.
By definition, every Block Dynamics transition change the colouring of 7; for some 3.
Note that T; is either a d-regular planted tree or d-regular tree of height at most h — 1.
So by induction assumption, we can construct a flow f’ that 1 unit of flow from A to
B for every (A, B) € Ep using only Glauber Dynamics transition. And f’ satisfies the

following constraints.

Viv(C,D)e B, Y f(p) < 256" a2 2‘1]; In"=1(2¢) (3.5)
e q| T3]
and
l(f/) S 32h71d2h72q2h72 lnhfl(Qq) (36)

Again, the first one bounds the amount of flow that a Block Dynamics transition will

transfer and the second one bounds the length.

Then for every Block Dynamics transition (A, B) in fg, we send the flow from A to B
using the flow f’. So we have a new flow f that send 1 unit of flow from X to Y for

distinct colourings X, Y using Glauber Dynamics transition.

In f, for any t € E, the maximum amount of flow ¢ will transfer is the amount of flow
a Block Dynamics transition will transfer in fp multiplies the flow ¢ will transfer when

we use t to construct Block Dynamics transition. For any any 73,

N

s D 0w s | e D f0) )| mex, 3 S

te b A,B)eEY,
: (AB)EEL | (A B)ep p:(C,D)ep

IN

256" %" ||T|| In(2¢) By 3.3 and 3.5



Chapter 3. Glauber Dynamics for sampling an edge colouring of reqular trees

40

By 3.4 and 3.6, we can bound the length of f,

1(f) <UfB)Sf) < 32"d*"¢*" In(2g)

So the lemma is true in this case. By induction the lemma is true.
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