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Abstract

We study the problem of sampling a graph colouring using Glauber Dynamics. This

is an interesting problem as Jerrum showed that we can approximate the number of

proper colouring if we can sample a colouring nearly uniformly. Therefore we want a

sampler with polynomial running time. Glauber Dynamics is one natural Markov Chain

for sampling a graph colouring and it has been studied extensively. The state space

of it is the set of proper colourings. In each step, we sample a colour c and a node u

randomly. Then we update u to colour c if the new colouring is still proper, otherwise we

stay at the current colouring. For a graph with maximum degree d, let q be the number

of colours. One important goal on this problem is proving polynomial mixing time if

q ≥ d + 2. For general graphs, the best result is polynomial mixing time if q ≥ 11d/6

by Vigoda. For some classes of graphs, we can sample a colouring for fewer number of

colours. One example are graphs with large girth and large maximum degree and there

are many results for this kinds of graphs.

In the thesis, we focus on the mixing time of Glauber Dynamics for sampling an edge

colouring of a d-regular tree. This is equivalent to sampling a proper vertex colouring of

the line graph of the tree. We consider this special case as the line graph has small girth

so previous results and techniques does not apply directly. The best previous result is

polynomial mixing time if q ≥ 11d/3 by Vigoda. Our main result is polynomial mixing

time if q ≥ 2d. Our proof is based on the multicommodity flow argument by Sinclair.



摘要 

我們研究用 Glauber Dynamics 隨機抽出圖頂點著色的問題。這是個有趣的問題因為

Jerrum 證明如果能隨機抽出頂點著色，則可以找出圖形著色數目的近似值。我們希望有

多項式時間內的取樣器。Glauber Dynamics 用馬可夫鏈抽出圖形著色並被大量研究。它

的狀態空間是頂點著色的集合。每一步我們隨機抽出一種顏色 c 和頂點 u，並嘗試把 u 的

顏色改成 c。如果有衝突則停留在現在的顏色。假設圖的最大度是 d，顏色數目是 q。這

問題其中一個目標是証明當 q不少於 d + 2 時，混合時間是多項式時間。現在最好的成果

是 Vigoda 提出的對於所有圖，混合時間是多項式時間如果 q 不少於 11d/6。對於某一種

類的圖，我們可以用更少的顏色。其中一個例子是有大周長和大的最大度的圖。 

在這篇論文，我們集中在用 Glauber Dynamics 隨機抽出正則樹邊著色的問題。這相當於

用 Glauber Dynamics 隨機抽出正則樹的線圖的頂點著色。我們研究這特殊例子因為線圖

的周長小因此不能直接應用之前的結果。目前最好的結果是 vigoda 的多項式混合時間如

果 q不少於 11d/3。我們的主要成果是多項式混合時間如果 q不少於 2d。 
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Chapter 1

Introduction

1.1 Background

For a graph G = (V,E), a (proper) vertex colouring of G is a colouring of vertex of G

such that no pair of adjacent vertices share the same colour. It is known that counting

the number of vertex colourings of general graphs is #-P complete. A related question

of interest is to approximately count the number of colourings. Jerrum [11] shows that

if we can construct a sampler that return a proper colouring nearly uniformly, then we

can approximately count the number of colourings.

One approach for constructing the sampler is using Markov Chain Monte Carlo. The

idea is to define an ergodic Markov Chain with uniform stationary distribution. Then we

run the chain until it is close to stationary distribution. For sampling a graph colouring,

there is a simple Markov Chain called Glauber Dynamics. The state space of it is the

set of proper colourings. In each step, we sample a colour c and a node u randomly and

independently. Then we change the colour of u to c if the new colouring is still proper.

Otherwise we stay at the current colouring.

The running time of the counting algorithm and sampler depends on the mixing time of

the Glauber Dynamics. Therefore, it is important to bound the mixing time. There is

a natural conjecture[11] about the mixing time of the Glauber Dynamics.

Conjecture 1.1. Let G = (V,E) be a graph with maximum degree d. Let Ω be the set

of q-colourings of G. For q ≥ d+ 2, the Glauber Dynamics for sampling a q-colouring of

G has mixing time in O(|V |log|V |).

The conjecture is still unproven but steady progress on it has been made throughout

the years. Our work focus on a special case of the conjecture.

1
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For background knowledge, this book [13] and this survey [8]provide an introduction to

the theory of Markov Chain and Mixing time. This survey [6] summarizes results on the

mixing time of the Glauber Dynamics.

1.2 Previous results

We first list the results for general graphs. Let d be the maximum degree of the

graph and q be the number of colours. Jerrum [11] used the coupling method to prove

O(q|V | log |V |) mixing time for q > 2d and O(|V | log |V |) mixing time for q > 3d. His

coupling method was simplified using path coupling proposed by Bubley and Dyer [3].

Then Vigoda [19] introduced another Markov Chain and proved O(q|V | log |V |) mixing

time of that chain for q > 11d/6. His result also implies O(q|V |2 log |V |) mixing time of

Glauber Dynamics for q > 11d/6. However, 11d/6 is still the best bound for the number

of colours. We do not know whether the chain has polynomial mixing time or not if we

use fewer colours.

The mixing time of the Glauber Dynamics in some restricted classes of graphs are also

studied. One common restriction is that the graph has large girth and large maximum

degree. Under this restriction, we can sample a colouring for a much smaller number

of colours. Dyer and Frieze [4] proved that for graph with d = Ω(log n) and girth

g = Ω(log d), the Glauber Dynamics has O(n log n) mixing time if q > αd for a constant

α ≈ 1.763. Then there are many results to reduce the number of colours, lower the girth

requirement and lower the degree requirement and we will list some of them. Hayes and

Vigoda [10] proved O(n log n) mixing time for q > (1 + ε)d for all ε > 0 if girth is at

least 11 and d = Ω(log n). Dyer, Frieze, Hayes and Vigoda [5] proved O(n log n) mixing

time if q > (1 + ε)βd for a constant β ≈ 1.489 for graphs with girth at least 7 and d

at least a constant that grows with 1/ε.

The other kind of graphs people studied are planar graphs and trees. A notable result are

from Hayes, Vera and Vigoda [9], they reduce the number of colours to d/ log d for planar

graphs. They proved polynomial mixing time for planar graphs with q = Ω(d/ log d).

Then two more results [7, 14]studied the mixing time for trees if we use even fewer

colours.

1.3 Our work

Our work focus on the Glauber Dynamics for sampling an edge colouring of a d-regular

tree T . It is equivalent to Glauber Dynamics for sampling a vertex colouring of the
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line graph of T . Let q be the number of colours. We prove that if 2d ≤ q ≤ 4d, then

the Glauber Dynamics will have polynomial mixing time. Our proof is based on the

multicommodity flow argument.

Previous results on edge colouring of regular tree

There are not many previous results on this kind of graphs. The only relevant results

are the results on general graphs. Let |T | denote the number of edge of T . For q ≥ 4d,

Jerrum’s result [11] show that the mixing time is O(q|T | log |T |). For q ≥ 11d/3, Vigoda’s

result [19] show that the mixing time is O(|T |2).

Motivation

The first motivation of our work is studying the use of multicommodity flow [18] on

bounding the mixing time of Glauber Dynamics. Both multicommodity flow and cou-

pling are powerful methods for bounding mixing time of Markov Chains. However,

many previous results are based on coupling and we want to see what we can get with

multicommodity flow. Also, many previous results based on coupling seems to be weak

against locally dense graph. The line graph of a regular tree is a simple example of

locally dense graph so we start with it. We also want to give a better bound on the

number of colours. We want to show polynomial mixing time if we only have 2d colours.

Note that the line graph has maximum degree 2d − 2, 2d is the number mentioned in

the conjecture.

Our main result is the following theorem.

Theorem 1.2. Let q be the number of colours. Let M be the Glauber Dynamics for

sampling an edge colouring of a d-regular tree T . Let h be the height of T . If 4d ≥ q ≥ 2d,

then

τmix ≤ 221hq|T |8 ln2h(2q) ln(2|T |)

We remark that the mixing is in polynomial of |T | since |T | = dh and q ≤ 4d.

1.4 Future work

It would be interesting to extend the results in the following directions. We bound the

mixing time of Glauber Dynamics for sampling an edge colouring of regular trees. It

would be nice if we can extend the results to edge colouring of general trees. One part

of our analysis use induction by decomposing the tree into several subtrees and treat

the subtrees as smaller instances. So we decompose the tree recursively and the mixing
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time is of the form cl where the l is the depth of recursion. Currently we decompose the

tree by removing the root, so the result can be exponential if the tree is not balance. If

we use a better way to decompose the tree then we may be able to extend the results

to general trees.

Another possible work is improving the results. For example, can we prove the mixing

time is still polynomial if we use fewer colours? If we use fewer colours, then we may

be unable to update some edges for some colouring. And we need to prove the chain is

still ergodic. Also, we did not try to minimize the mixing time, so one possible work is

to find a better upper bound on the mixing time. It is also nice to find the lower bound

of mixing time.

1.5 Organization

In Chapter 2 we give background material for this thesis. We define Markov Chain

and present some methods for bounding the mixing time of a Markov Chain. We also

introduce the problem of sampling a graph colouring and give background knowledge.

In Chapter 3 we present our main work. We study the Glauber Dynamics for sampling

an edge colouring of regular tree. We give an upper bound on the mixing time of the

Glauber Dynamics.



Chapter 2

Background

In this chapter, we present background knowledge for this thesis. We first introduce

the Markov Chain, a famous tool for Monte Carlo simulation. Then we present some

methods for bounding the mixing time of a Markov Chain. We talk about bounding

mixing time using eigenvalue gap of transition matrix, multicommodity flow, and also

coupling. Finally, we introduce the problem of approximate counting of graph colouring.

2.1 Markov Chain

In this section we introduce Markov Chain.

Definition 2.1. Let M be a discrete stochastic process on a state space Ω. Let Xt be

the state of M at time t. M is called a Markov Chain if it has the following property

for all time t and x, y ∈ Ω.

Pr(Xt+1 = y|Xt = x,Xt−1 = xt−1..., X0 = x0) = Pr(Xt+1 = y|Xt = x)

The above property is also called Markov property.

Let Ω be the state space, we can write down a |Ω|×|Ω|matrix P where Px,y = Pr(Xt+1 =

y|Xt = x). We call P a probability transition matrix. A probability distribution π on

Ω is a stationary distribution if and only if πP = π. A chain is irreducible if for every

x, y, there is a time t such that P tx,y > 0. A chain is irreducible means that no matter

which state we start from, we can go to every other states. A chain is aperiodic if for

every x, gcd{t : P tx,x > 0} = 1. We called a chain is ergodic if it is both aperiodic and

irreducible. One of the most important property of an ergodic chain is that it has an

unique stationary distribution.

5
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Lemma 2.2. If a Markov Chain is irreducible and aperiodic, then there exists an unique

stationary distribution π.

Proof. Let P be the transition matrix of the Markov Chain. Since the chain is irreducible

and aperiodic, then there exists a time t such that P t is a positive matrix. Let P ′ = P t,

We will argue that P ′ has a unique stationary distribution.

Suppose there are two stationary distribution u, v. Then there is a state x such that
u(x)
v(x) = miny

u(y)
v(y) . Then

u(x) =
∑
y

u(y)P ′(y, x)

=
∑
y

u(y)

v(y)
v(y)P ′(y, x)

≥ u(x)

v(x)

∑
y

v(y)P ′(y, x)

=
u(x)

v(x)
v(x)

= u(x)

Since P ′ is positive and both sides are equal, the inequality is actually an equality. We

will have u(x)
v(x) = u(y)

v(y)∀y. Since u and v are probability distributions, we must have

u = v. So P ′ has a unique stationary distribution, it implies P also must has a unique

stationary distribution.

In the remaining part, we will only consider finite ergodic chain with symmetric transi-

tion matrix. However, many results can also be extended to non-symmetric case.

2.1.1 Mixing time

An important measure of a Markov Chain is its convergence rate. It tells us how fast the

Markov Chain will converge to stationary distribution. We first introduce the metric for

probability distribution. Then we prove a Markov Chain will converge to its stationary

distribution and introduce mixing time.

Definition 2.3. Let p, q be two probability distributions on state space Ω. The total

variation distance is defined by

‖p− q‖TV =
1

2

∑
x∈Ω

|p(x)− q(x)|
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The total variation distance also equals to l1-norm of p− q divided by two.

Consider an ergodic Markov Chain M with symmetric transition matrix P . Let π be

the stationary distribution. Let P tx be the distribution after t steps if we start at state

x. We will show that for any starting state x, P tx converges to stationary distribution π

when t tends to infinity.

We first make a claim that tells us that P tx converges to π if P is a positive matrix. We

will prove it later in 2.5.

Claim 2.4. For any finite ergodic chain with transition matrix P , let δj = mini P (i, j)

be the smallest entry of jth column. Let δ =
∑

i δi, then for any starting position x and

time t,

‖P tx − π‖TV ≤ (1− δ)t

If P is a positive matrix, it is easy to see that δ will be positive and P tx converges to π.

Now we will show that the probability distribution of any finite ergodic chain converges

to π.

Lemma 2.5. For any finite ergodic Markov Chain M with probability transition matrix

P . Let π be the stationary distribution. Then for any state x,

lim
t→∞
‖P tx − π‖ = 0

Proof. Since the chain is ergodic, from definition, there exists a time N such that for

t > N , P t(x, y) > 0 for every x, y ∈ Ω. Therefore PN is a positive matrix and define

an ergodic chain. Then by the previous claim, there exists 0 < δ < 1 such that ‖PNtx −
π‖TV ≤ (1− δ)t for any state x. So when t tends to infinity, P tx will converge to π.

In the end of this section we define mixing time and fast mixing.

Definition 2.6. The mixing time of a Markov Chain is defined by

τ(ε) = max
x

min{t :
∥∥P tx − π∥∥TV < ε}

which is time needed to guarantee the distance between the distribution and π is at

most ε no matter which state we started at. Also, we define

τmix = τ(
1

4
) = max

x
min{t :

∥∥P tx − π∥∥TV <
1

4
}

A chain is fast mixing or rapidly mixing if τε is in polynomial in ln(n) and ln(ε−1).

Alternatively, showing that τmix is in polynomial in ln(n) is also enough for fast mixing

by the following lemma.
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Lemma 2.7. τ(ε) ≤
⌈
log2(ε−1)

⌉
τmix

We have introduced the terms and definitions for convergence rate. We will introduce

techniques for bounding mixing time of a Markov Chain.

2.2 Spectral theory

The first technique is about spectral theory. Note that πTP = π implies π is a left

eigenvector of P with eigenvalue 1. It is natural that we study the eigenvalues and

eigenvectors to learn more about the chain. In fact, we get information about the

mixing time.

We need the Perron-Frobenius Theorem [17] for the prove in this part.

Theorem 2.8 (Perron-Frobenius). For any finite ergodic Markov Chain with transition

matrix P .

• The first eigenvalue λ1 of P has multiplicity 1.

• The other eigenvalues of P satisfies |λi| < λ1

Let {λi}ni=1 be eigenvalue of P with corresponding eigenvector {vi}ni=1. We first show

some properties of them.

Lemma 2.9. P has n real eigenvalue 1 = λ1 > λ2 ≥ ...λn > −1.

Proof. We first prove all eigenvalues are real using contradiction. Suppose P has a

complex eigenvalue λ with eigenvector v. Since P is symmetric, vT (λv) = vTPv =

(Pv)T v. Then by property of inner product, (Pv)T v = vTPv = λvT v. Since v 6= 0, we

have λ = λ. Therefore the eigenvalue must be a real number.

Now we give bound to the eigenvalue. It is easy to check that the stationary distribution

π is an eigenvector of P with eigenvalue 1. Consider an eigenvalue λ with eigenvector

v. Let k be the index with largest absolute entry such that |v(k)| ≥ |v(i)|∀i. Then

|λv(k)| = |(Pv)(k)| =
∑

j P (k, j)|v(j)| ≤ |v(k)|
∑

j P (k, j) = |v(k)|. Therefore |λi| ≤ 1

with λ1 = 1.

Finally, the multiplicity of λ1 is 1 and λn > −1 by the Perron-Frobenius theorem.
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Let λmax = max{|λ2|, |λn|}. Define the spectral gap g = 1−λmax to be the gap between

largest eigenvalue and second largest eigenvalue. Now we will show the relationship

between mixing time and spectral gap. Roughly speaking, mixing time is bounded by

inverse of spectral gap. So large spectral gap implies fast mixing.

Lemma 2.10. τ(ε) ≤ 1
g ln n

2ε

Proof. Let u be the starting distribution. We can decompose it to u =
∑

i civi where

ci = uT vi. In particular, c1 = 1/
√
n, so c1v1 = π.

After t step, the distribution we have is uTP t =
∑

i ciλ
t
ivi. The square of l2 norm

between uniform distribution and uTP t is

∥∥π − uTP t∥∥2

2
=

∥∥∥∥∥∥
∑
i≥2

ciλ
t
ivi

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
i≥2

λticivi

∥∥∥∥∥∥
2

2

=
∑
i≥2

λ2t
i u

T viv
T
i u

≤ λ2t
2 u

T (
∑
i≥1

viv
T
i − v1v

T
1 )u

= λ2t
2 (uTPu− 1

n
)

≤ λ2t
2 (1− 1

n
)

Using l2 norm, we can get an upper bound of l1 norm,

∥∥π − uTP t∥∥
TV

=
1

2

∥∥π − uTP t∥∥
1

≤ 1

2
n1/2

∥∥π − uTP t∥∥
2

=
1

2
λt2(n− 1)1/2

To upper bound the distance by ε, we get

1

2
λt2(n− 1)1/2 ≤ ε
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Solving it and we will get

t ≥ 1

g
ln
n

2ε

Therefore we can also prove a chain is rapid mixing by showing the spectral gap is large.

Usually, we can ignore λn by considering the lazy chain P ′ = 1
2(I+P ). All eigenvalue of

P ′ is non-negative so spectral gap is 1− λ2. Also the mixing time of lazy chain is only

twice of original chain. This allows us to focus on bounding λ2 from 1.

2.2.1 Characterization of λ2

We will show two characterizations of the second largest eigenvalue of symmetric tran-

sition matrix.

Lemma 2.11. For any real symmetric probability transition matrix P , let 1 = λ1 ≥
λ2 ≥ ... ≥ λn be the eigenvalues of P with orthonormal eigenvectors

−→
1 = v1, v1, ..., vn.

Then λ2 = max
x:x⊥−→1

xTPx
xT x

Proof. For any x ⊥ v1, we can write x as
∑

i≥2 civi.

So

xTPx

xTx
=

∑
i≥2 c

2
iλi∑

i≥2 c
2
i

≤ λ2

∑
i≥2 c

2
i∑

i≥2 c
2
i

= λ2

And the equality holds when x = v2, so the lemma is true.

Lemma 2.12. For any real symmetric probability transition matrix P , let 1 = λ1 ≥
λ2 ≥ ... ≥ λn be the eigenvalues of P with orthonormal eigenvectors

−→
1 = v1, v1, ..., vn.

Let π be the stationary distribution of P . Then λ2 satisfies

1− λ2 = min
x:x⊥−→1

∑
i,j(x(i)− x(j))2π(i)P (i, j)∑
i,j(x(i)− x(j))2π(i)π(j)

Proof. By 2.11, we have λ2 = max
x:x⊥−→1

xTPx
xT x

. So, 1− λ2 = min
x:x⊥−→1

xT (I−P )x
xT x
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We first look at denominator. Let X be the random variable that takes value x(i) with

probability π(i) = 1/n, then

xTx = nE(X2)

= nVar(X) Since x ⊥ −→1

=
n

2

∑
i,j

(x(i)− x(j))π(i)π(j)

For nominator,

xT (I − P )x =
∑
i

x(i)2 −
∑
i,j

P (i, j)x(i)x(j)

=
∑
i

∑
j>i

(x(i)− x(j))2P (i, j)

=
1

2

∑
i,j

(x(i)− x(j))2P (i, j)

So

1− λ2 = min
x:x⊥−→1

xT (I − P )x

xTx
= min

x:x⊥−→1

∑
i,j(x(i)− x(j))2π(i)P (i, j)∑
i,j(x(i)− x(j))2π(i)π(j)

2.3 Conductance

The second technique is about viewing the Markov Chain as a graph and use Cheeger’s

inequality [1] to bound the spectral gap. For any Markov Chain M with finite state

space and symmetric transition matrix, we can construct a weighted undirected graph

G = (Ω, E). The vertex set of G is the state space Ω and edge set is E = {(u, v) :

P (u, v) > 0}. The weight of edge (u, v) is Pu,v.

First we define the term expansion.

Definition 2.13. The expansion of a set S ⊂ Ω is defined as

φ(S) =

∑
(u,v)∈S×S P (u, v)

|S|
(2.1)
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And the expansion of graph G is defined by

φ = φ(G) = min
S⊂Ω,0<|S|≤1/2

φ(S) (2.2)

It is natural to consider expansion when bounding mixing time. If the expansion is

small, then there is a set S such that we have high probability to stay at S once we

enter S. Hence the mixing time may be large. If the expansion is large, we leave S with

high probability for any set S so we may appear at any state after few steps. Therefore

the mixing time may be small.

Cheeger’s inequality tells us the relationship between expansion and λ2.

Lemma 2.14.

1− 2φ ≤ λ2 ≤ 1− φ2

2
(2.3)

By considering lazy chain, we know that spectral gap is 1 − λ2. Cheeger’s inequality

allows us to bound spectral gap using expansion. Therefore we can obtain an upper

bound of mixing time with expansion.

Lemma 2.15. τmix(M) ≤ 2 ln(2n)
φ2

Proof. By lemma 2.10,

τmix(M) ≤ 1

1− λ2
ln(2n)

Then applying lemma 2.14,

1− λ2 ≥
φ2

2

So,

τmix(M) ≤ 2 ln(2n)

φ2

2.4 Multicommodity flow

In this section we will introduce the multicommodity flow argument by Sinclair [18] for

bounding the mixing time of Markov Chain. This is another technique that bounds

mixing time by giving a lower bound on spectral gap.
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Definition

Let M be a ergodic Markov Chain on state space Ω with symmetric transition matrix

P . Suppose the stationary distribution π is uniform. Let E = {(X,Y ) : P (X,Y ) > 0}
be the set of transitions of M . For any pair of distinct states X,Y , let PX,Y be the

set of simple paths from X to Y using only transitions in E. Let P = ∪X 6=Y PX,Y . A

multicommodity flow of M is a fractional flow that send 1 unit of flow from X to Y for

every pair of distinct X,Y . We define the flow by a function f : P → R+ ∪ {0}. The

input is a path p and f returns a non negative real number which is the size of the flow

on p. For every distinct pair of states X,Y , the demand of f is D(X,Y ) = 1. In other

word, f must satisfy the constraint for every distinct X,Y ,

∑
p∈PX,Y

f(p) = 1

The “quality” of a flow f can be measured by its congestion ρ(f)

ρ(f) = max
(X,Y )∈E

1

|Ω|P (X,Y )

∑
p∈P:(X,Y )∈p

f(p)

And we define the elongated congestion by considering the length.

ρ(f) = max
e(x,y)∈E

1

|Ω|P (e)

∑
p:e∈p

f(p)|p| (2.4)

The following lemma relates second largest eigenvalue and congestion.

Lemma 2.16. For any ergodic Markov Chain with symmetric transition matrix P , and

any multicommodity flow f , the second largest eigenvalue satisfies λ2 ≤ 1− 1
ρ(f)

Proof. Note that the stationary distribution will be uniform since the transition matrix

is symmetric.a

By lemma 2.12, λ2 satisfies

1− λ2 = min
x:x⊥−→1

∑
i,j(x(i)− x(j))2π(i)P (i, j)∑
i,j(x(i)− x(j))2π(i)π(j)

For any flow f and x, we can rewrite the denominator as,

∑
i,j

(x(i)− x(j))2π(i)π(j) =
∑
i,j

π(i)π(j)
∑
p∈Pi,j

f(p)(x(i)− x(j))2
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Let e+ and e− denotes the start and end of a directed edge e respectively, We can write

the equation as

∑
i,j

(x(i)− x(j))2π(i)π(j) =
∑
i,j

π(i)π(j)
∑
p∈Pi,j

f(p)

(∑
e∈p

x(e+)− x(e−)

)2

≤
∑
i,j

π(i)π(j)
∑
p∈Pi,j

f(p)|p|
∑
e∈p

(x(e+)− x(e−))2

=
∑
e

(x(e+)− x(e−))2
∑
i,j

∑
p∈Pi,j :e∈p

π(i)π(j)f(p)|p|

=
∑
e

(x(e+)− x(e−))2π(i)P (i, j)ρ(e)

≤ ρ(f)
∑
e

(x(e+)− x(e−))2π(i)P (i, j)

where the first inequality comes from Cauchy-Schwartz inequality. So we have∑
i,j(x(i)− x(j))2π(i)P (i, j)∑
i,j(x(i)− x(j))2π(i)π(j)

≥ 1

ρ(f)

and the lemma follows.

Let l(f) = maxp:f(p)>0 |p| be the longest path length in f . We can have the following

corollary.

Corollary 2.17. For any Markov Chain with symmetric transition matrix, and any

multicommodity flow f , the second largest eigenvalue of P satisfies λ2 ≤ 1 − 1
ρ(f)l(f) ,

where l(f) is the length of the longest path p with f(p) > 0.

Now we will introduce the relation between congestion and mixing time. We have

obtained an upper bound of second largest eigenvalue, if we apply lemma 2.10, we can

bound the mixing time of M using ρ(f).

Theorem 2.18. For any Markov Chain M with symmetric transition matrix, and any

multicommodity flow f of M . Let n be the number of states, the mixing time of M is

bounded by

τmix(M) ≤ ρ(f)l(f) ln(2n)

2.5 Coupling

The last technique we introduce is coupling. It is a simple but powerful technique for

bounding mixing time.
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Let M be a Markov Chain on a state space Ω. Let P be the probability transition

matrix. A coupling is a Markov Chain Zt = (Xt, Yt) on the state space Ω×Ω such that

Pr(Xt+1 = xt+1|Zt = (xt, yt)) = P (xt, xt+1)

Pr(Yt+1 = yt+1|Zt = (xt, yt)) = P (yt, yt+1)

So a coupling is a joint process of two copies of the original chain such that if we look

at only one chain, it behaves exactly as the original chain. However, they do not need

to be independent. The following lemma tells us the power of coupling.

Lemma 2.19 (Coupling Lemma). Let M be a finite ergodic Markov Chain on a state

space Ω. Let Zt = (Xt, Yt) be a coupling of M . If Pr(Xt 6= Yt|Z0 = (x0, y0)) <

ε ∀x0, y0 ∈ Ω, then τ(ε) ≤ t.

Proof. Suppose initially, X0 = x and Y0 is chosen according to stationary distribution.

Let P tx be the probability distribution of chain X at time t. We are going to bound

maxx
∥∥P tx − π∥∥TV . For any set S ∈ Ω, the probability that Xt ∈ S is

Pr(Xt ∈ S) ≥ Pr(Xt ∈ S and Yt ∈ S)

≥ Pr(Yt ∈ S)− Pr(Xt 6= Yt)

= π(S)− ε

Similarly, we can obtain the bound Pr(Xt ∈ S) ≥ π(S) − ε. So maxS⊆Ω |Pr(Xt ∈
S)− π(S)| ≤ ε, which implies maxx

∥∥P tx − π∥∥TV ≤ ε and τ(ε) ≤ t.

For any integer-value metric d on Ω. For ε > 0, we say a chain is ε distance decreasing

if there exists a coupling such that for every x, y, E(d(X1, Y1|X0 = x, Y0 = y)) <

(1− ε)d(x, y).

We can obtain a bound on mixing time by showing that the chain is ε distance decreasing.

Lemma 2.20. Let dmax = maxx,y∈Ω d(x, y). If a Markov Chain is ε distance decreasing

for ε > 0. Then τ(1/4) ≤ ε−1 ln(4dmax)
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Proof. If we apply the strategy t times, probability that X and Y is different at time t

is

Pr(Xt 6= Yt|X0, Y0) ≤ E(d(Xt, Yt)|X0, Y0) (2.5)

≤ (1− ε) E(d(Xt−1, Yt−1)|X0, Y0) (2.6)

≤ (1− ε)tdmax (2.7)

≤ exp(−εt)dmax (2.8)

When t ≥ ε−1 ln(4dmax), we have exp(−εt)dmax ≤ 1/4. So τmix ≤ ε−1 ln(4dmax) by

previous lemma.

Using coupling, we can prove claim 2.4.

Proof. Consider two copies of the Markov Chain M . By definition δ = mini,j P (i, j).

Therefore we can construct a coupling that the copies of the chain move to the same

state with probability at least δ. So the probability they are at some different states is

at most (1− δ)t after t steps. Then we have the claim by the coupling lemma.

2.5.1 Path coupling

Although coupling is a powerful tool, sometimes it is hard to find a coupling strategy

for every pair of states. Bubley and Dyer [3] introduced an idea called “path coupling”.

In path coupling, we only need to define coupling strategy for adjacent states. Consider

a connected graph G = (Ω, E) where E ⊆ Ω× Ω. Let d(X,Y ) be the shortest distance

between X and Y in G.

Lemma 2.21. If there exists a coupling such that E(d(X1, Y1)|X0 = x, Y0 = y) <

(1− ε)d(x, y)∀(x, y) ∈ E, then the chain is ε distance decreasing.

Proof. The idea is to construct a coupling for all pair x, y by using coupling on states

of edges of the shortest path. Let l = d(x, y). Let the x, y shortest path be x =

z0, z1, ..., zl = y. Our goal will be finding a way to sample x′ and y′ such that Pr(X1 =

x′|X0 = x, Y0 = y)) = P (x, x′), Pr(Y1 = y′|X0 = x, Y0 = y)) = P (y, y′) and E(d(x′, y′)|x, y) <

(1− ε)d(x, y).

We already have a coupling strategy for l = 1. The coupling can be defined as a

stochastic process Ct on Ω×Ω. And for C0(x, y) ∈ E, let C1 = (x′, y′) be the next state,

we expect d(x′, y′) < (1− ε)d(x, y).
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For l > 1, we will sample x′ = z′0, z
′
1, ..., z

′
l = y′ using the follow way. We first sample

z′0 and z′1 by applying the coupling C on (z0, z1). We can do this because (z0, z1) ∈ E.

Then for i ≥ 1, we sample z′i+1 by applying coupling C on (X0, Y0) = (zi, zi+1) and

condition on X1 = zi.

Then we prove that Pr(z′i = v|zi) = P (zi, v) by induction. It is true for z′0, z
′
1 as we

sample them from valid coupling. Assume it is true for z′i, consider z′i+1,

Pr(z′i+1 = v|zi+1) =
∑
u

[
Pr(z′i = u|zi) Pr(C1 = (z′i, v)|C0 = (zi, zi+1), z′i = u)

]
=

∑
u

[
P (zi, u) Pr(C1 = (z′i, v)|C0 = (zi, zi+1), z′i = u)

]
=

∑
u

P (zi, u)
Pr(C1 = (u, v)|C0 = (zi, zi+1)))∑
v′ Pr(C1 = (u, v′)|C0 = (zi, zi+1))

=
∑
u

P (zi, u)
Pr(C1 = (u, v)|C0 = (zi, zi+1)))

P (zi, u)

=
∑
u

Pr(C1 = (u, v)|C0 = (zi, zi+1)))

= P (zi+1, v)

So we can see that the coupling is valid and well defined. If we apply this coupling, then

the expected distance at 1 step is

E(d(X1, Y1)|X0 = x, Y0 = y) = E(d(z′0, z
′
l))

=
∑

0≤i≤l−1

E(d(z′i, z
′
i+1))

<
∑

0≤i≤l−1

(1− ε)d(zi, zi+1)

= (1− ε)d(x, y)

Therefore the chain is ε distance decreasing.

We will have the following corollary on mixing time if we apply lemma 2.20 directly.

Corollary 2.22. If there exists a coupling such that E(d(X1, Y1)|X0 = x, Y0 = y) <

(1− ε)d(x, y)∀(x, y) ∈ E, then the mixing time of the chain is at most ε−1 ln(4dmax).

2.6 Approximate sampling proper colouring

In this section we introduce the problem of approximate counting and sampling of graph

colouring. To begin, we first give some definitions about approximate counting and
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sampling. We will use the definition from this book[16].

2.6.1 Approximate sampling and approximate counting

Definition 2.23. A randomized algorithm gives an ε-approximate for a value V if the

output X of the algorithm satisfies

Pr(|X − V | ≤ εV ) ≥ 3

4

Definition 2.24. A fully polynomial randomized approximation scheme (FPRAS) for

a function f is a randomized algorithm for which, given an input x and any parameters

ε with 0 < ε < 1, the algorithm outputs an ε-approximation to f(x) with probability at

least 3/4 and runs in time that is polynomial in 1/ε and the size of input x.

Definition 2.25. Let Ω be the state space. Let π be the uniform distribution on Ω. An

algorithm generate an ε-uniform sample of Ω if it returns a state x from a distribution

u and ‖u− π‖TV ≤ ε.

Definition 2.26. A fully polynomial almost uniform sampler (FPAUS) for a problem is

an algorithm for which, given an input x and a parameter ε > 0, it returns an ε-uniform

sample from Ω(x) and runs in time that is polynomial in ln(1/ε) and size of the input

x.

Now we will introduce the problem of counting the number of proper colourings.

Let G = (V,E) be a simple graph. Let [q] = {0, 1, ..., q − 1} be the set of q colours.

A (proper) vertex q-colouring of G is a colouring of vertex of G such that no pair of

adjacent vertices share the same colour. Let d be the maximum degree of G. It is not

hard to see that we can get a colouring if q ≥ d + 2. A natural problem is how many

q-colourings does G has.

However counting the number of q-colourings is #P-complete. Hence we focus on ap-

proximate count the number. Jerrum [11] showed that if we can sample a colouring near

uniformly, then we can approximate the number of colourings.

Lemma 2.27. For any graph G with maximum degree d. There is a FPRAS for counting

the number of q-colourings of a graph G if there exists a FPAUS for sampling a q proper

colouring for q ≥ d+ 2.

Proof.

Constructing an approximate scheme
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We first show how we get an approximate scheme. Let n be the number of nodes in G.

Let m be the number of the edges in G. Let d be the maximum degree of G. To avoid

trivialities, we assume n ≥ 3 and d ≥ 2. Then we can construct a sequence of graph

G = Gm, Gm−1, ..., G1, G0 = (V, ∅) where Gi are obtained by removing a single edge

from Gi+1. Let Ω(Gi) denote the set of q-colourings of Gi. Then we can write down the

number of colourings as a product of ratios.

|Ω(G)| = |Ω(G0)|
m−1∏
i=0

|Ω(Gi+1)|
|Ω(Gi)|

Clearly, |Ω(G0)| = qn. Therefore, our goal will be finding a good estimate of the ratio

ri =
|Ω(Gi+1)|
|Ω(Gi)|

for 0 ≤ i < m in polynomial time.

Suppose that we remove edge(u, v) from Gi+1 to have Gi. It is not hard to see that

Ω(Gi+1) ⊆ Ω(Gi). By assumption, we have a FPAUS to generate a ε-uniform colouring

of Gi, with run time p(n, ε) for some polynomial p. Therefore we can get an estimation

r̃i using the following way.

We sample s = d37ε−2me independent (ε/6m)-uniform copies of colouring of Gi. Let

Zki be the random variable that Zki = 1 if the kth sample is also a colouring of Gi+1 and

Zk = 0 otherwise. Finally, we return the ratio

r̃i =

∑s
k=1 Z

k
i

s

In other word, we return the experimental probability of having a colouring of Gi+1.

Once we have all r̃i, we return qn
∏m−1
i=0 r̃i as an approximation of |Ω(G)|.

We have constructed the scheme, the remaining work will be bounding the total run

time and proving the scheme will return a good approximation.

Bounding error

We will bound the error in r̃i to bound the error in our approximation. Suppose Gi and

Gi+1 only differ on edge(u, v). Note that every colouring in Ω(Gi) \ Ω(Gi+1) has the

same colouring for u and v, and can become a colouring in Ω(Gi+1) by giving u a colour

that its neighbours don’t use. There are at least q − d ≥ 2 possible colours. So we can

lower bound ri,

ri ≥
2

3
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Since we sample a (ε/6m)-uniform colouring for Zki , So,

|E(Zki )− ri| ≤
ε

6m
≤ ε

4m
ri

Then we can bound the expected value of r̃i

|E(r̃i)− ri| ≤
ε

4m
ri (2.9)

For variance of r̃i,

Var(r̃i) = s−1 E(r̃i)(1− E(r̃i))

Since 1 ≥ E(r̃i) ≥ 2
3(1− ε

4m) ≥ 1/2, we have

Var(r̃i)

E(r̃i)2
≤ s−1(

1

E(r̃i)
− 1) ≤ s−1

So,

Var(
∏m−1
i=0 r̃i))∏m−1

i=0 E(r̃i)2
=

m−1∏
i=0

(1 +
Var(r̃i)

E(r̃i)2
)− 1

≤ (1 + s−1)m − 1

≤ ε2

36

Then by Chebyshev’s inequality, with probability at least 3/4, we have

(1− ε

3
)

m−1∏
i=0

E(r̃i) ≤
m−1∏
i=0

r̃i ≤ (1 +
ε

3
)

m−1∏
i=0

E(r̃i)

Also by inequality 2.9, we have

(1− ε

2
)
m−1∏
i=0

ri ≤
m−1∏
i=0

E(r̃i) ≤ (1 +
ε

2
)
m−1∏
i=0

ri

Combining the above two inequalities, we can have an approximate of Ω(G) with mul-

tiplicative error of ε and probability at least 3/4.

Bounding running time

Finally we bound the total run time. Every time we estimate r̃i, we call the sampler

s times. In each time the sample run in time p(n, 6mε−1). To estimate all ri, we

call the sampler ms times. The total run time of our approximate scheme will be

O(msp(n, 6mε−1)) which is polynomial of size of G and 1/ε. So the scheme also satisfies

the run time requirement.
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Therefore, we need to find a way to sample a colouring nearly uniformly. However, this

is still an open problem.

2.6.2 Glauber Dynamics

One attempt of constructing a sampler is using the Markov Chain Monte Carlo method.

The idea of this method is to construct a Markov Chain with the desired stationary

distribution and fast mixing time. Then we run the chain until it mixed and return the

current state. The following is a natural Markov Chain for sampling a graph colouring.

For any graph G, let q be the number of colours. Consider a Markov Chain M with

state space Ω is the set of proper colourings of G. Let Xt be the state of M at time t.

Xt+1 are found by the following procedure

1. Sample a vertex v and a colour c out of q colours both uniformly and independently.

2. Recolour Xt(v) to c to obtain a new colouring X ′.

3. If X ′ is proper, let Xt+1 = X ′. Otherwise let Xt+1 = Xt.

This chain is called “Glauber Dynamics” in the field of statistical physics.

Stationary distribution of Glauber Dynamics

It is not difficult to see the unique stationary distribution ofM is the uniform distribution

for q ≥ d + 2. It is aperiodic because there is non-zero probability to stay at current

state in each step. For q ≥ d+ 2, we can construct a path from X to Y for every pair of

colourings X,Y using the following strategy. For every node u such that X(u) 6= Y (u),

we first recolour the neighbour of u such that none of them use colour Y (u). This step

is always possible because q ≥ d + 2. Then we can safely recolour X(u) to Y (u). So

M is also irreducible and it has a unique stationary distribution. Since the transition

matrix is symmetric, the stationary distribution must be uniform.

Conjecture on mixing time

Using Glauber Dynamics, we can construct a sampler for a graph colouring by running

the chain for a long enough time. One important question is the mixing time of the

Glauber Dynamics. For q < d+ 2, the chain might be frozen at some colourings because

we can’t change the colour of any node. For example, it happens for q = |V | and G is

a complete graph. Therefore we want to find the mixing time for q ≥ d+ 2. There is a

conjecture[11] that the chain mixes in polynomial time in this case.
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Conjecture 2.28. Let G = (V,E) be a graph with maximum degree d. Let Ω be the set

of q-colourings of G. For q ≥ d+ 2, the Glauber Dynamics for sampling a q-colouring of

G has mixing time in O(|V | log |V |)

2.6.3 Jerrum Coupling

In the end of this chapter, we present the path coupling version of Jerrum’s coupling

[11]. Although our proof does not use the coupling method, we present it as many results

on the Glauber Dynamics is based on a very careful study of it.

Theorem 2.29. Let G = (V,E) be a graph with maximum degree d. Let d be the

maximum degree of G. Let q be the number of colours. The Glauber Dynamics for

sampling a proper q-colouring of G has mixing time in O(nk log n) if q > 2d.

Proof. Let Ω be the set of proper colourings. We first define an integer-value metric d

on Ω. For any pair of colourings X,Y , we let d(X,Y ) = |{u ∈ V : X(u) 6= Y (u)}| be

the number of nodes where they have different colour in X and Y .

Now we will define the coupling strategy. Let Xt, Yt be two copies of the Glauber

Dynamics at time t. Suppose d(Xt, Yt) = 1. Let cx = Xt(u) and cy = Yt(u). We first

sample a node v and a colour c both uniformly and independently. Then we update

both chains using the following strategy.

• If v is a neighbour of u and c = cx, we update X(v) to cx and Y (v) to cy.

• If v is a neighbour of u and c = cy, we update X(v) to cy and Y (v) to cx.

• Otherwise, we update both X(v) and Y (v) to c.

The updates that will increase distance are the updates in the second case. In this case,

we will update v to different colours in both chains. The updates that will decrease dis-

tance are the successful update of u. Since there are at most d colours in the neighbours

of v, we can update u if we sample the other q − d colours.

So the expected change of distance after one step is

E(d(Xt+1, Yt+1)− d(Xt, Yt)) ≤
1

q|V |
(d− (q − d))

≤ − 1

q|V |

Using the path coupling 2.22, the mixing time is O(q|V | log |V |).
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Glauber Dynamics for sampling

an edge colouring of regular trees

3.1 Introduction

In this chapter, we study the use of Glauber Dynamics for sampling an edge colouring

of a d-regular tree. It is equivalent to sampling a vertex colouring of the line graph of

the tree. We show that the chain mixes in polynomial time for q ≥ 2d.

We use the multicommodity flow argument proposed by Sinclair. To apply the argument

we need to construct a flow that send 1 unit of flow between every pair of distinct

colourings using Glauber Dynamics transitions. We construct the flow by induction on

the tree height. The base case is a special case where the tree is a single edge. The

construction of the flow is trivial in this case. Then for a tree with height h, the height of

the subtrees of the root is h− 1. By induction assumption, we know how to send a flow

between two colourings if they only disagree at one subtree. We show that is enough to

construct the flow by studying another type of Markov Chain called Block Dynamics.

3.2 Preliminary

3.2.1 Edge colouring on tree

Let T = (V,E) be an undirected rooted tree with edge set E. Let d be the maximum

degree of T . Let [q] = {0, ..., q−1} denote a set of q > d colours where we use an integer

to label a colour.

23
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A proper edge q-colouring of a tree is a colouring of edges with element of [q] such that

edges sharing same node as an endpoint do not receive the same colour. We will define it

as a function f : E → [q] that maps edges to colours such that if edges e1 and e2 shares

an endpoint, f(e1) 6= f(e2). In the remaining part, we may omit the word “proper”, so

an edge colouring actually means a proper edge colouring.

3.2.2 Planted tree

In this chapter, we will also study edge colouring on regular planted trees. A planted

tree is a rooted tree and the root has degree 1. We use the root-edge to denote the only

edge connecting the root of a planted tree.

A d-regular planted tree is a planted tree with the following two property,

• Every non-root and non-leaf vertex has the same degree d.

• The distance from the root to any leaf vertices are the same.

We study the planted tree because we will consider the Glauber Dynamics on subtrees

of the root. Then the subtrees is exactly a planted tree with a forbidden set of colours of

size d− 1 for the root-edge. The set of forbidden colours is formed by the set of colours

occupied by other edges connecting the root.

3.2.3 Glauber Dynamics for edge colouring

Usually, people use the Glauber Dynamics for sampling a proper vertex colouring of a

graph. In this chapter we use Glauber Dynamics for sampling an edge q-colouring for

the following two types of trees

• d-regular trees

• d-regular planted trees with a forbidden set of colours of size d−1 for the root-edge

Let T be any tree of the above types. Let Ω be the set of edge colourings. The Glauber

Dynamics for T is a Markov Chain M with state space Ω. Let Xt be the state of M at

time t, the chain does the following transition to find Xt+1.

1. Let Y = Xt.
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2. Sample an edge e uniformly, and a colour c out of the q colours uniformly and

independently.

3. Set Y (e) = c.

4. If Y is proper, set Xt+1 = Y . Otherwise, set Xt+1 = Xt.

In other words, in each step we sample an edge e and colour c uniformly at random.

Then we update the colour of e to c if the resulting colouring is still proper. Otherwise

we stay at the current colouring.

3.2.4 Multicommodity flow

The multicommodity flow argument [18] will be our main tool for bounding the mixing

time of Glauber Dynamics.

Definition

Let M be a reversible Markov Chain on a state space Ω with a transition matrix P .

Suppose the stationary distribution π is uniform. Let E = {(X,Y ) : P (X,Y ) > 0}
be the set of transitions of M . For any pair of distinct states X,Y , let PX,Y be the

set of simple paths from X to Y using only transitions in E. Let P = ∪X 6=Y PX,Y . A

multicommodity flow of M is a fractional flow that send 1 unit of flow from X to Y for

every pair of distinct X,Y . We denote the flow by a function f : P → R+ ∪ {0}. And

for X 6= Y, f needs to satisfy the constraint

∑
p∈PX,Y

f(p) = 1

The congestion of f is defined as

ρ(f) = max
(X,Y )∈E

1

|Ω|P (X,Y )

∑
p∈P:(X,Y )∈p

f(p)

And the congestion of M is the minimum value over all flow f .

ρ(M) = min
f
ρ(f)

Let l(f) = maxp:f(p)>0 |p| be the longest path length in f .

The congestion and mixing time of M are related. The following two propositions are

proven by Sinclair. Firstly, having a multicommodity flow with low congestion implies

small mixing time.
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Proposition 3.1. Suppose M is a reversible ergodic Markov Chain on a state space

Ω with a transition matrix P and an uniform stationary distribution π. Let f be a

multicommodity flow of M . Let τmix = τ1/4(M). Then,

τmix(M) ≤ ρ(f)l(f) ln(2|Ω|)

Secondly, small mixing time implies the existence of a multicommodity flow with low

congestion.

Proposition 3.2. Suppose M is a reversible ergodic Markov Chain on a state space Ω

with a transition matrix P and uniform stationary distribution π. Let τmix = τ1/4(M).

Then there exists a flow f with ρ(f) ≤ 16τmix and l(f) ≤ 2τmix.

3.3 Problem

Now we state the main problem and our result. Consider a d-regular tree T . Let |T | be

the number of edges of T . Let [q] be the set of colours. We want to know the mixing

time if we use the Glauber Dynamics M to sampling a proper edge q-colouring for T .

Previous results

Let L(T ) be the line graph of T , then M is actually the Glauber Dynamics for sampling

a vertex colouring of L(T ). Note that maximum degree of L(T ) is 2d − 2. There is

a folklore conjecture [11] that the mixing time of M is O(|T | log |T |) if q ≥ 2d. Using

Jerrum coupling [11], Jerrum proved the mixing time of M is O(q|T | log |T |) if q ≥ 4d.

If we use Vigoda’s result [19], the mixing time of M is O(q|T |2 log |T |) if q ≥ 11d/3. We

are not aware of any previous result that can be applied on this special class of graph.

Our results

We show that the mixing time of M is polynomial in |T | if 2d ≤ q ≤ 4d. Our result is

as follows.

Theorem 3.3. Let q be the number of colours. Let M be the Glauber Dynamics for

sampling an edge colouring of a d-regular tree T . Let h be the height of T . If 4d ≥ q ≥ 2d,

then

τmix ≤ 221hq|T |8 ln2h(2q) ln(2|T |)

Note that 221h = O(poly(|T |)) since |T | = dh. Our results shows that the Glauber

Dynamics for sample an edge colouring of a d-regular tree will mix in polynomial time
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if the number of colours q ≥ 2d. The number of colours needed to guarantee polynomial

mixing time matches the number mention in the conjecture. However, the mixing time

is much larger than the time in the conjecture. It may be possible to get a better time

because we did not try to minimize the mixing time.

3.4 Special case

A special case is the tree height h = 1. We will first study the Markov Chain for

this special case. The result of this special case gives bound on mixing time of Block

Dynamics which we will consider in later part. In the special case, we will consider using

Glauber Dynamics for sampling an edge colouring for the following two types of trees:

• regular tree with height 1

• regular planted tree with height 2 and a forbidden set of colours of size d − 1 for

the root-edge

We remark that the tree is a star graph in both cases. The only difference is the colour

constraint in the second case.

We will prove the following for this special case.

Theorem 3.4. Let q be the number of colours. Let M be the Glauber Dynamics for

sampling an edge colouring of a tree T of height 1. Let d be the number of edges of T .

If q ≥ 2d and at most one edge of T has a forbidden set of colours of size d − 1, then

τmix ≤ 4d2q2ln(2q)

Notations

We will use the following notations. Let T be the d-regular tree or planted tree that we

consider in this section. Let {ei}di=1 be the set of edges of T . If one edge of T has a

forbidden set of colours of size d− 1, we let e1 to denote that edge. For other edges, we

label the edges arbitrarily. Let M be the Glauber Dynamics for sampling a q colouring

of T . We use P qd to denote q!
(q−d)! .

Number of colouring

First we lower bound the number of proper edge colourings.

Lemma 3.5. The number of edge q-colourings for T is at least q−d+1
q P qd .
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Proof. There will be 2 cases.

Case 1: e1 can choose any colours. In this case, the number of colourings is P qd .

Case 2: There is a set C where e1 cannot choose colour from C, and |C| = d−1. We would

choose colour for ei from i = 1 to d one by one. There are d− 1 colours that e1 cannot

choose from. The number of choices for e1 is q−d+1. And for i > 1, the number of choice

for ei is q−i+1. The total number of colourings is (q−d+1)
∏d
i=2(q−i+1) = q−d+1

q P qd .

Combining both cases, the number of colourings is at least q−d+1
q P qd .

Proof technique

We use the canonical path argument to bound the mixing time. Canonical path argu-

ment is a special case of multicommodity flow where we send the flow from X to Y on

a single path only.

For every pair of colourings X,Y , we will construct a path PX,Y from X to Y using

transition of M . Then we can construct a multicommodity flow f where f send 1 unit

of flow from X to Y on path PX,Y for every pair of distinct colourings X,Y .

We will upper bound ρ(f) and l(f) to our desired quantity in the lemma 3.6 which we

will prove later.

Lemma 3.6. There exists a multicommodity flow f of M such that ρ(f) ≤ 2dq2

q−d+1 and

l(f) ≤ 2d.

Then we will apply the proposition 3.1 to obtain an upper bound on mixing time.

Proof of Theorem 3.4. By lemma 3.6, We can construct a multicommodity flow f on

the state space of the Glauber Dynamics. The congestion ρ(f) is bounded by 2dq2

q−d+1

and l(f) is bounded by 2d. Then by proposition 3.1, τmix ≤ 4d2q2

q−d+1 ln(4|Ω|) . Note that

|Ω| ≤ qd and q − d+ 1 > d since q ≥ 2d, we have τmix ≤ 4d2q2ln(2q) .

3.4.1 Canonical Path

In this section, we will define a path from X to Y for any pair of colourings X,Y

The path consists of d rounds. The goal of round i is to recolour ei to Y (ei). There will

be two possible cases in round i. The first case is that no other ej is using the colour

Y (ei). The second case is that some ej is using the colour Y (ei).
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For the first case, the path recolour ei to Y (ei) directly, or do nothing if ei already have

colour Y (ei).

For the second case, the path first choose a colour c and change the colour of ej to c.

Then the path change the colour of ei to Y (ei). c is chosen using the following way. Let

X ′ be the colouring at beginning of this round. Let S be the set of unused colour in X ′.

The path choose the largest c such that c ∈ S and c < X ′(ei). If every colour in S is

larger than X ′(ei), the path choose the largest colour in S to be c.

The following is the pseudo code.

for i = 1 to d do
if there is ej has colour Y (ei) then

let S be the set of unused colour
if there is a ∈ S and a < X(ei) then

let c = max({a ∈ S : a < X(ei)})
end
else

let c = max(S)
end
update X(ej) to c

end
update X(ei) to Y (ei)

end
Algorithm 1: Recolour(X, Y)

Example

We will show one example of the path here. Suppose we have 6 colours.

Let X =

v1

r

v3v2

(e2, 3) (e3, 2)

(e1, 0)

, Y =

v1

r

v3v2

(e2, 5) (e3, 4)

(e1, 2)

For each edge, we label it with (edge id, edge colour). For example, (e2, 3) means edge

e2 has colour 3 in X. We will show an example that go from X to Y .

Round 1

In this round we want to change colour of e1 to 2. However, e3 is blocking it. We need

to recolour e3 to a colour that is the largest unused colour and smaller than current

colour of e1, which is 0. Since all unused colour is larger than 0, we change to recolour

e3 to largest unused colour, which is 5. Then we can recolour e1 to 2.
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v1

r

v3v2

(e2, 3) (e3, 2)

(e1, 0)
colour 5 → e3−−−−−−−−−→

v1

r

v3v2

(e2, 3) (e3, 5)

(e1, 0)
colour 2 → e1−−−−−−−−−→

v1

r

v3v2

(e2, 3) (e3, 5)

(e1, 2)

Round 2

Again we need to free the colour from e3. The largest unused colour that is smaller than

colour of e2 is 1. So we first change colour of e3 to 1. Then change colour of e2 to 5.

v1

r

v3v2

(e2, 3) (e3, 5)

(e1, 2)
colour 1 → e3−−−−−−−−−→

v1

r

v3v2

(e2, 3) (e3, 1)

(e1, 2)
colour 5 → e2−−−−−−−−−→

v1

r

v3v2

(e2, 5) (e3, 1)

(e1, 2)

Round 3

Finally, we change colour of e3 to 4.

v1

r

v3v2

(e2, 5) (e3, 1)

(e1, 2)
colour 4 → e3−−−−−−−−−→

v1

r

v3v2

(e2, 5) (e3, 4)

(e1, 2)

3.4.2 Analysis of canonical path

In this section, we analyse the canonical path to bound the congestion in lemma 3.6.

For any colourings X,Y , let PX,Y denote the path generated by Recolour(X,Y ). Let

PX,Y (i) denote the colouring after round i. Also let PX,Y (0) denote the start colouring

X. So the path is like the following

X = PX,Y (0)
round 1−−−−−→ PX,Y (1)...

round i−−−−→ PX,Y (i)
round i+1−−−−−−→ ...

round d−−−−−→ PX,Y (d) = Y

We need the following lemma to prove lemma 3.6.

Lemma 3.7. For any transition t, the number of pairs X,Y such that t ∈ PX,Y is at

most 2 P qd .
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Proof of lemma 3.6. We construct the multicommodity flow f by sending 1 unit of flow

along PX,Y for every distinct X,Y . For any X,Y , the length of PX,Y is at most 2d, so

l(f) ≤ 2d.

By definition,

ρ(f) = max
(A,B)∈E

1

|Ω|P (A,B)

∑
(X,Y ):(A,B)∈PX,Y

1

Since Ω ≥ q−d+1
q P qd and P (A,B) = 1/dq,

≤ dq2

(q − d+ 1) P qd
max
A,B
|{(X,Y ) : (A,B) ∈ PX,Y }|

≤ dq2

(q − d+ 1) P qd
(2 P qd ) by lemma 3.7

≤ 2dq2

q − d+ 1

To proof lemma 3.7, we will need the following two lemma.

Lemma 3.8. Suppose t is a transition that change colour of edge ej, the number of X

such that there exists Y and PX,Y use t in round k is at most

{
P qk−1 if j > k

(d− k + 1) P qk−1 if j = k

Lemma 3.9. Suppose t is a transition that change colour of edge ej, the number of Y

such that there exists X and PX,Y use t in round k is at most P q−kd−k

Proof of Lemma 3.7. Suppose t is a transition that change colour of edge ej , then it can

only appear in first j rounds.

By multiplying the results in lemma 3.8 and lemma 3.9, the number of colourings X,Y

such that PX,Y use t in round k is at most

{
1

q−k+1 P
q
d if j > k

d−k+1
q−k+1 P

q
d if j = k

So,

number of X,Y s.t. t ∈ PX,Y =
∑

1≤i≤j
number of X,Y s.t. PX,Y use t in round i

≤
∑

1≤i<j

1

q − k + 1
P qd +

d− k + 1

q − k + 1
P qd

≤ P qd + P qd

≤ 2 P qd
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For the remaining lemma 3.8 and 3.9, we will prove lemma 3.9 first since it is easier.

Proof of Lemma 3.9. For any X,Y such that PX,Y use t in round k, we know what

Y (ei) is for i ≤ k. For the remaining d − k edges, there are q − k colours for them. So

the number of Y is at most P q−kd−k .

To prove lemma 3.8, we need the following lemma.

Lemma 3.10. For any colouring B, if B = PX,Y (i) for some unknown X,Y and i > 0,

then the number of possible PX,Y (i− 1) is at most q − i+ 1.

Proof of Lemma 3.10. For any path PX,Y , in round i it recolour at most 2 edges. So

there will be three cases.

If it didn’t recolour any edges, then PX,Y (i− 1) = PX,Y (i). In this case, the number of

PX,Y (i− 1) is 1.

If it recolour only 1 edge, then this edge must be ei. In this case, the old colour of ei

must be in the unused colour of PX,Y (i), which has q − d possibilities. So the number

of possible PX,Y (i− 1) is q − d.

If it recolour 2 edges, the first edge must be ej for some j > i and the second edge

must be ei. Suppose we know what j and PX,Y (i) are, we can recover PX,Y (i − 1).

It is because PX,Y (i − 1)(ej) = PX,Y (i)(ei). For PX,Y (i − 1)(ei), let S be the set of

unused colour of PX,Y (i). If every colour in S is smaller than PX,Y (i)(ej), PX,Y (ei) is

the smallest in S. Otherwise PX,Y (i − 1)(ei) is the smallest colour in S that is greater

than PX,Y (i)(ej). So the number of possible PX,Y (i− 1) = d− i.

Summing for three cases, the number of possible PX,Y (i− 1) is at most q − i+ 1.

Finally we prove lemma 3.8.

Proof of Lemma 3.8. Let t = (tstart, tend) be any transition that change colour of ej . We

first count the size of set S = {A : ∃X,Y, t ∈ PX,Y and PX,Y (k − 1) = A}.

If j > k, then in round k the path will take 2 transitions and t is the first transition.

Since t is the first transition, PX,Y (k − 1) = tstart and |S| = 1.

If j = k, there are 2 possibilities, then t is either the first transition or the second

transition. Again, if t is the first transition, then |S| = 1. If t is the second transition,
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the first transition is freeing colour Y (ek) from some ei and t is the transition that

recolour ek to Y (ek). If we know what ei is, then we can recover PX,Y (k − 1) by giving

back ei the colour Y (ek). So |S| = d− k which is the number of possible ei.

By repeatedly applying lemma 3.10, for any colouring A, the number of X such that

there exists Y and PX,Y (k) = A is at most P qk . So the number of X such that there exists

Y and PX,Y use t in round k is at most P qk |S| =

{
P qk−1 if j > k

(d− k + 1) P qk−1 if j = k
.

3.5 General case

Now we will consider the general cases where the tree can have any height. We first

introduce some notations.

Notation of tree

We will use the following notation for the d-regular tree / planted tree we considered.

Let T be the tree.

d-regular tree

If T is a d-regular tree, we use ei for 1 ≤ i ≤ d to denote the d edges connecting the

root. We don’t label other edges. We use Ti to label the planted tree with the same root

of T and ei begin the root edge. We put a number near every edge to denote the colour

of the edge. The following is an example of a 3-regular tree of height 2. The right side

is T2 in this example.

r

1 34 01 3

(e1, 5)
(e2, 2)

(e3, 4)
r

4 0

(e2, 2)

T T2

d-regular planted tree

If T is a d-regular planted tree, we use e1 to denote the root-edge. For the d− 1 edges

that share an endpoint with e1, we use ei for 2 ≤ i ≤ d to label them. Let v be the only

child of the root. We use Ti to denote the planted tree rooted at v with ei being the

rooted edge. The following is an example of a 3-regular planted tree T and T1, T2, T3 of

T .
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r

v

2 01 3

(e2, 5) (e3, 4)

(e1, 2)

v

r

(e1, 2)

v

1 3

(e2, 5)

v

2 0

(e3, 4)

T T1 T2 T3

3.5.1 Block Dynamics

In this section we introduce and analyse another type of Markov Chain which we call it

Block Dynamics. It is another Markov Chain for sampling a colouring. Two previous

results [2, 14] about mixing time of Glauber Dynamics for sampling a vertex colouring

of a tree also use Block Dynamics in their analysis. In our setting of sampling an edge

colouring, each Block Dynamics transition (X,Y ) is a pair of colourings where X and

Y disagree at one subtree only.

Our main objective is not about the mixing time of Block Dynamics. However we study

them because it tells us how to construct a flow for Glauber Dynamics. Recall that fast

mixing implies a flow with good congestion. It tells us how to send the flow between

distinct pair of colourings if we know how to send a flow between two colourings that

only disagree at one subtree.

Definition

Let T be tree rooted at some node r. Let q be the number of colours. Let Ω be the set

of edge q-colourings of T . A Block Dynamics is a Markov Chain with state space Ω.

In each step the chain does the following to obtain the next state. The chain first samples

a colour c and a planted tree Tk from {Ti}di=1 randomly and independently. Then the

chain samples a random edge colouring X for Tk with restriction that ek must use colour

c. If there is no conflict, the chain updates the colouring of Tk to X. Otherwise it stays

at current colouring.

Clearly, the transition matrix of M is symmetric. So the stationary distribution is also

uniform.

3.5.2 Mixing time of Block Dynamics

In this section we analyse the mixing time of Block Dynamics.
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Lemma 3.11. Let q be the number of colours. Let M be the Block Dynamics for

sampling an edge q-colouring of a tree T . If T is a d-regular tree or d-regular planted

tree, then τmix(M) ≤ 16d2q2 ln(2q).

Proof. Let S denote the set of d edges {ei}di=1. For any colourings X, let X(S) denotes

the colouring of S. Let Xt, Yt be two copies of the Block Dynamics.

Our proof is based on coupling, we first couple the colouring on S. Once both chains

have the same colouring on S, we can couple the colouring of the other parts easily.

We first make the following two claims and we will prove it later.

Claim 3.12. There exists a coupling strategy such that Pr[Xt(S) = Yt(S)] ≥ 4/5 for

t ≥ 14d2q2 ln(2q).

Claim 3.13. If X0(S) = Y0(S), there exists a coupling strategy such that Pr[Xt = Yt] ≥
31/32 for t ≥ 2d2q2 ln(2q).

Let t1 = 14d2q2 ln(2q), t2 = 2d2q2 ln(2q). We first apply the coupling in claim 3.12 for t1

steps. If it succeeds, which means the colourings on S are same for both chains, then we

apply the coupling in claim 3.13 for t2 steps. By the two claims, Pr(Xt1+t2 = Yt1+t2) ≥
4
5 ·

31
32 ≥ 3/4. Then this lemma is true by the coupling lemma.

Now we prove claim 3.12. Let X ′t = Xt(S) and Y ′t = Yt(S). Then X ′t and Y ′t are the

Glauber Dynamics for sampling an edge colouring of the star graph formed by S. Let

T = 3.5τmix(X ′t) = 14d2q2 ln(2q). Let u, v be the probability distribution of X ′T and Y ′T .

By 2.7, ‖u− π‖TV ≤
1
10 and ‖v − π‖TV ≤

1
10 . So ‖u− v‖TV ≤

1
5 .

Then we sample Z = (ZX , ZY ) such that ZX and ZY are distributed according to u and

v and Pr(ZX 6= ZY ) = ‖u− v‖TV ≤
1
5 . Then our goal will be constructing a path of

length T from X0 to ZX and a path of length T from Y0 to ZY .

We first show how to move from X0 to ZX . Let X0 = p0, p1, ..., pT = ZX denote a path

of length T from X0 to ZX . We will move from X0 to ZX using path p with probability∏T−1
i=0 P (pi, pi+1)

P T (X0, ZX)
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To see that the chain Xt still behaves like the original chain, let P be the transition

matrix of the Block Dynamics Xt.

Pr(Xi+1 = B|Xi = A) =
Pr(Xi = A,Xi+1 = B)

Pr(Xi = A)

=

∑
Z′∈Ω Pr(ZX = Z ′) Pr(Xi = A,Xi+1 = B|ZX = Z ′)∑

Z′∈Ω Pr(ZX = Z ′) Pr(Xi = A|ZX = Z ′)

=

∑
Z′∈Ω P

T (X0, Z
′)P

i(X0,A)P (A,B)PT−i−1(B,Z′)
PT (X0,Z′)∑

Z′∈Ω P
T (X0, Z ′)

P i(X0,A)PT−i(A,Z′)
PT (X0,Z′)

=

∑
Z′∈Ω P

i(X0, A)P (A,B)P T−i−1(B,Z ′)∑
Z′∈Ω P

i(X0, A)P T−i(A,Z ′)

= P (A,B)

Similarly we move from Y0 to ZY . And Pr(XT = YT ) = Pr(ZX = ZY ) ≥ 4/5.

Finally we prove claim 3.13. If X0(S) = Y0(S) and we apply the same update to Xt and

Yt, they will succeed together or fail together. If an update on Ti succeed on both Xt

and Yt, both chains will have the same colouring on Ti. Therefore we let both chains

receive the same update until all Ti are updated at least once.

Probability of sampling and updating Ti successfully in one step is at least q−d+1
dq . After

t steps, probability of some Ti is not updated is at most

d(1− q − d+ 1

dq
)t ≤ d exp(

−t(q − d+ 1)

dq
)

After q ln(32d) steps, all Ti are updated with probability at least 31/32. Then the claim

is true since 2d2q2 ln(2q) ≥ q ln(32d).

We have bounded the mixing time of Block Dynamics. Then we can get the following

corollary if we apply proposition 3.2 directly.

Corollary 3.14. Let q be the number of colours. Let M be the Block Dynamics for

sampling an edge q-colouring of a d-regular tree T . There exists a multicommodity flow

f of M with ρ(f) ≤ 256d2q2 ln(2q) and l(f) ≤ 32d2q2 ln(2q).

Which equals to following corollary.

Corollary 3.15. Let q be the number of colours. Let M be the Block Dynamics for

sampling an edge q-colouring of a d-regular tree T . Let P be transition matrix of M .

Let Ω be the set of q colourings. Let E be the set of transitions of M . For every distinct

colourings X,Y , we can construct a set of paths ΓX,Y such that every path consists of
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transition of E. Let Γ = ∪X,Y :X 6=Y ΓX,Y . And we can construct a flow f : Γ→ R+∪{0}
so the following constraints are satisfies.

1. For all pair of distinct colourings X,Y ,
∑

γ∈ΓX,Y
f(γ) = 1

2. ∀(A,B) ∈ E,
∑

p:(A,B)∈p f(p) ≤ 256d2q2|Ω|P (A,B) ln(2q)

3. maxγ∈Γ:f(γ)>0 |γ| ≤ 32d2q2 ln(2q)

3.5.3 Mixing time of general case

Finally we bound the mixing time of the Glauber Dynamics for sampling an edge q-

colouring of d-regular tree T of height h.

Proof technique

We use the multicommodity flow argument to bound the mixing time.

We will construct a flow f that send 1 unit of flow from X to Y for every pair of distinct

colourings X,Y . Suppose the following lemma is true.

Lemma 3.16. There exists a multicommodity flow f that send 1 unit of flow from X

to Y for every distinct X,Y . And f satisfies the following constraints,

1. The amount of flow that a transition transfer is at most 256hd2hq2h |Ω|
q|T | ln

h(2q) and

2. The longest path length is at most 32hd2hq2h lnh(2q).

Then we can prove theorem 3.3 by applying proposition 3.1 on lemma 3.16 directly.

Proof of theorem 3.3. Let q be the number of colours. Let M be the Glauber Dynamics

for sampling an edge colouring for a d-regular tree T . Let E be the transition of M .

By lemma 3.16, we can construct a multicommodity flow f that satisfies following

ρ(f) = max
t∈E

q|T |
|Ω|

∑
p:t∈p

f(p) ≤ 256hd2hq2h ln(2q) (3.1)

and

l(f) ≤ 32hd2hq2h ln(2q) (3.2)
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By proposition 3.1,

τmix(M) ≤ ρ(f)l(f) ln(2|T |q)

≤ 213hd4hq4h ln2h(2q)(q ln(2|T |)) By 3.1 and 3.2

≤ 221hq|T |8 ln2h(2q) ln(2|T |) Since |T | ≤ dh and q ≤ 4d

In the remaining part, we prove lemma 3.16.

Proof of lemma 3.16. We will proof the lemma by induction on the tree height h.

The base case is h = 0 where the tree is a single edge. In this case, for every distinct

colourings X,Y , (X,Y ) is a Glauber Dynamics transition. So we send the flow from X

to Y directly. Then, l(f) = 1 and ρ(f) = 1 so the lemma is true in this case.

For any h > 0, suppose the lemma is true if the tree height is at most h − 1. Consider

the case where the height is h.

We first give some notations.

Notation Let q be the number of colours. Let M be the Glauber Dynamics for sampling

an edge colouring for T with transition P . Let MB be the Block Dynamics for sampling

an edge colouring for T with transition PB. Note that both M and MB have the same

state space Ω and uniform stationary distribution π. Let EB be the set of transitions

of MB. Let EiB be the set of transitions of MB that change colouring of Ti. Similarly

let E be the set of transitions of M and Ei be the set of transitions of M that change

colour of some edge in Ti. For any Ti, let Ni be the number of colourings of Ti if we fix

the colour of ei.

We will construct the flow in two steps.

Constructing the flow using Block Dynamics transition

By corollary 3.15, we can construct a flow fB that send 1 unit of flow from X to Y for

every distinct X,Y . fB will send the flow using Block Dynamics transition. And fB

satisfies the following constraints

∀i ∀(A,B) ∈ EiB ,
∑

p:(A,B)∈p

fB(p) ≤ 256d2q2|Ω|PB(A,B) ln(2q) (3.3)
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where

PB(A,B) =
1

qdNi
if (A,B) ∈ EiB

and

l(fB) ≤ 32d2q2 ln(2q) (3.4)

The first inequality tells us the maximum amount of flow a Block Dynamics transition

will transfer. The second inequality tells us the maximum length of fB.

Constructing Block Dynamics transitions using Glauber Dynamics transi-

tions

Then we construct a flow that send 1 unit of flow from A to B for every (A,B) ∈ EB.

By definition, every Block Dynamics transition change the colouring of Ti for some i.

Note that Ti is either a d-regular planted tree or d-regular tree of height at most h− 1.

So by induction assumption, we can construct a flow f ′ that 1 unit of flow from A to

B for every (A,B) ∈ EB using only Glauber Dynamics transition. And f ′ satisfies the

following constraints.

∀i ∀(C,D) ∈ Ei,
∑

p:(C,D)∈p

f(p) ≤ 256h−1d2h−2q2h−2 qNi

q|Ti|
lnh−1(2q) (3.5)

and

l(f ′) ≤ 32h−1d2h−2q2h−2 lnh−1(2q) (3.6)

Again, the first one bounds the amount of flow that a Block Dynamics transition will

transfer and the second one bounds the length.

Then for every Block Dynamics transition (A,B) in fB, we send the flow from A to B

using the flow f ′. So we have a new flow f that send 1 unit of flow from X to Y for

distinct colourings X,Y using Glauber Dynamics transition.

In f , for any t ∈ E, the maximum amount of flow t will transfer is the amount of flow

a Block Dynamics transition will transfer in fB multiplies the flow t will transfer when

we use t to construct Block Dynamics transition. For any any Ti,

max
t∈Ei

∑
p:t∈p

f(p) ≤

 max
(A,B)∈Ei

B

∑
p:(A,B)∈p

fB(p)

 max
(C,D)∈Ei

∑
p:(C,D)∈p

f ′(p)


≤ 256hd2hq2h |Ω|

q|T |
ln(2q) By 3.3 and 3.5
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By 3.4 and 3.6, we can bound the length of f ,

l(f) ≤ l(fB)l(f ′) ≤ 32hd2hq2h ln(2q)

So the lemma is true in this case. By induction the lemma is true.
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