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ABSTRACT
The Paulsen problem is a basic open problem in operator theory:

Given vectors u1, . . . ,un ∈ R
d
that are ϵ-nearly satisfying the

Parseval’s condition and the equal norm condition, is it close to

a set of vectors v1, . . . ,vn ∈ R
d
that exactly satisfy the Parse-

val’s condition and the equal norm condition? Given u1, . . . ,un ,
the squared distance (to the set of exact solutions) is defined as

infv
∑n
i=1 ∥ui −vi ∥

2

2
where the infimum is over the set of exact

solutions. Previous results show that the squared distance of any

ϵ-nearly solution is at most O (poly(d,n, ϵ )) and there are ϵ-nearly
solutions with squared distance at least Ω(dϵ ). The fundamental

open question is whether the squared distance can be independent

of the number of vectors n.
We answer this question affirmatively by proving that the squared

distance of any ϵ-nearly solution is O (d13/2ϵ ). Our approach is

based on a continuous version of the operator scaling algorithm

and consists of two parts. First, we define a dynamical system based

on operator scaling and use it to prove that the squared distance of

any ϵ-nearly solution is O (d2nϵ ). Then, we show that by randomly

perturbing the input vectors, the dynamical system will converge

faster and the squared distance of an ϵ-nearly solution is O (d5/2ϵ )
when n is large enough and ϵ is small enough. To analyze the con-

vergence of the dynamical system, we develop some new techniques

in lower bounding the operator capacity, a concept introduced by

Gurvits to analyzing the operator scaling algorithm.
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1 INTRODUCTION
A set of n vectors v1, . . . ,vn ∈ R

d
is called an equal norm Parseval

frame if it satisfies the Parseval’s condition and the equal norm

condition:

n∑
i=1

viv
T
i = Id and ∥vi ∥

2

2
=
d

n
for 1 ≤ i ≤ n,

where Id is the d ×d identity matrix. A set of n vectors u1, . . . ,un ∈

Rd is an ϵ-nearly equal norm Parseval frame if

(1 − ϵ )Id ⪯
n∑
i=1

uiu
T
i ⪯ (1 + ϵ )Id

and

(1 − ϵ )
d

n
≤ ∥ui ∥

2

2
≤ (1 + ϵ )

d

n
.

Let F be the set of equal norm Parseval frames. Given a set of

vectorsU = {ui }
n
i=1, the squared distance to the set of equal norm

Parseval frame is defined as

dist
2 (U ,F ) = inf

V ∈F
dist

2 (U ,V ) = inf

V ∈F

n∑
i=1
∥ui −vi ∥

2

2
.

The Paulsen problem asks how close is an ϵ-nearly equal norm

Parseval frame to an equal norm Parseval frame.

Definition 1.1 (the Paulsen problem). The Paulsen problem asks

what is the best function f (d,n, ϵ ) so that

dist
2 (U ,F ) ≤ f (d,n, ϵ )

for any set of d-dimensional vectors U = {u1, . . . ,un } that is ϵ-
nearly equal norm Parseval.

The fundamental open question of the Paulsen problem iswhether

f (d,n, ϵ ) can be independent of the number of vectors n and only

dependent on the dimension d and the error ϵ [11, 13].
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1.1 History and Motivations
The Paulsen problem has been open for over fifteen years despite

receiving quite a bit of attention [7, 11–13]. It has been listed as a

major open problem in frame theory in the literature (see e.g. [13,

16, 37]).

An equal norm Parseval frame (also known as an unit-norm

tight frame) is a natural generalization of an orthonormal basis.

It is used as an overcomplete basis (see the introductions in the

books [15, 17, 39]) and has various applications in signal process-

ing and communication theory, including noise and erasure re-

duction [8, 14, 30, 47], quantization robustness [5, 9, 25], and dig-

ital fingerprinting [38]. For some applications in signal process-

ing [30, 44] and quantum information theory [40, 45], equal norm

Parseval frames with additional properties such as Grassmannian

frames (which minimize the maximal inner product) and equiangu-

lar frames (in which the inner products are the same) are needed

to provide optimal performance.

These applications motivate the “frame design” questions of

constructing equal norm Parseval frames. It is known that equal

norm Parseval frames exist for any d ≤ n. However, it is difficult to

construct equal norm Parseval frames, with only a few algebraic

constructions known (e.g. truncation of Discrete Fourier transform

matrices, vertices of the Platonic solids, constructions from groups;

see the survey [49]). On the other hand, it is known that the set

of equal norm Parseval frames contains manifold of nontrivial

dimensions [20], and so the algebraic methods only produce a few

examples from the continuum of the set of all equal norm Parseval

frames [12].

Besides algebraic constructions, researchers have also used nu-

merical methods to construct equal norm Parseval frames. It is

much easier to construct “nearly” equal norm Parseval frames as

a set of random equal-norm vectors is nearly Parseval with high

probability. Tropp et al. [46] proposed alternating projection algo-

rithms to construct equal norm Parseval frames and equiangular

frames from these nearly equal norm Parseval frames. They show

positive experimental results and some partial convergence anal-

ysis. Holmes and Paulsen [30] studied the optimal parameters for

Grassmannian frames which are even harder to construct. They

construct some nearly equal norm Parseval frames with small max-

imal inner product, and ask the question whether these are good

estimates of the optimal parameters for Grassmannian frames. This

work led Paulsen to ask a number of people whether a nearly equal

norm Parseval frame is always close to an equal norm Parseval

frame (if so then their estimates are accurate), and eventually it is

known as the Paulsen problem first formally stated in [7].

Proving a good upper bound for the Paulsen problem would

give us a firm foundation to work with nearly equal norm Parseval

frames, both in theory and in applications. Indeed, our method

can be seen as a continuous version of the alternating projection

algorithm of Tropp et al. [46], and our results can be viewed as a

rigorous justification of the numerical approach for constructing

equal norm Parseval frames. We hope that our techniques will be

useful to the difficult open question of constructing equiangular

equal norm Parseval frames, as Tropp et al. [46] also proposed an

alternating projection algorithm for constructing these frames.

1.2 Previous Work on the Paulsen Problem
A compactness argument shows that the function f in the Paulsen

problem must exist [13]. There are simple examples showing that

f (d,n, ϵ ) ≥ dϵ [11].

Bodmann and Casazza [7] proved that f (d,n, ϵ ) ≤ O (d4n18ϵ2)
when d and n are relatively prime. Their approach is to analyze a

dynamical system that improves the closeness to the equal norm

condition while ensuring that the Parseval’s condition is satis-

fied. Casazza, Fickus, and Mixon [12] proved that f (d,n, ϵ ) ≤
O (d42n18ϵ2) when d and n are relatively prime, and they extended

this result to the general case and proved that f (d,n, ϵ ) ≤

O (d20/7n2/7ϵ2/7). Their approach is to analyze a gradient descent

algorithm that improves the closeness to the Parseval’s condition

while ensuring that the equal norm condition is satisfied.

Cahill and Casazza [11] showed that the Paulsen problem is

equivalent to another fundamental problem in operator theory

called the projection problem: Find the best function д(d,n, ϵ ) such
that the following holds. Given an n-dimensional orthonormal basis

e1, . . . , en ∈ R
n
and a projection P of rank d that satisfies

(1 − ϵ )
d

n
≤ ∥Pei ∥

2

2
≤ (1 + ϵ )

d

n
for 1 ≤ i ≤ n,

there is a projection Q with ∥Qei ∥
2

2
= d

n for 1 ≤ i ≤ n and

n∑
i=1
∥Pei −Qei ∥

2

2
≤ д(d,n, ϵ ).

Cahill and Casazza [11] proved that f (d,n, ϵ ) and д(d,n, ϵ ) are
within a factor 2 of each other.

1.3 Results and Techniques
Our main result is a proof that the function in the Paulsen problem

is independent of the number of vectors.

Theorem 1.2. For any set U of d-dimensional vectors that is an
ϵ-nearly equal norm Parseval frame,

dist
2 (U ,F ) ≤ O (d13/2ϵ ).

There is a very natural approach towards solving the Paulsen

problem. Given an ϵ-nearly equal norm Parseval frameu1, . . . ,un ∈

Rd , we alternately fix the Parseval condition (by setting ui ←

(
∑n
i=1 uiu

T
i )
− 1

2ui ) and the equal norm condition (by scaling ui so

that ∥ui ∥
2

2
= d

n ), until both conditions are satisfied exactly and we

keep track of the sum of the movement of these operations. We

observe that this natural alternating algorithm is a special case of

the operator scaling algorithm studied in [23, 26]. So, this alternat-

ing algorithm will converge under some mild condition [23, 26],

and also there are closed-form formulas for the movement of each

operation [13]. But the problem of this approach is that the sum of

the movement could be very large, as the path to an exact solution

could zig-zag between the alternating operations.

Our approach is based on a continuous version of the operator

scaling algorithm [23, 26]. There are two main parts. To avoid the

zig-zag movement, we define a dynamical system based on the

(discrete) operator scaling algorithm, so that the two alternating

operations are combined into one and the movement is continuous.

The dynamical system satisfies some very nice identities. Using

these identities and the concept of operator capacity defined by
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Gurvits [26] in analyzing the convergence of the operator scaling

algorithm, we can bound the total movement of our dynamical

system given a nearly equal norm Parseval frame.

Theorem 1.3 (informal). Given a set of d-dimensional vectors
U = {u1, . . . ,un } that forms an ϵ-nearly equal norm Parseval frame,
there is a dynamical system that transformsU intoV = {v1, . . . ,vn }
that forms an equal-norm Parseval frame and dist2 (U ,V ) ≤ O (d2nϵ ).

We prove Theorem 1.3 in the more general operator setting

instead of just the frame setting as in the Paulsen problem. We

believe that the operator setting is of independent interest, e.g.

it is closely related to the Brascamp-Lieb constants that will be

discussed in Subsection 1.4.

Using the dynamical system for an arbitrary ϵ-nearly equal norm
Parseval frame, the analysis in Theorem 1.3 is tight and the depen-

dency on n is unavoidable. Our intuition is that the set of ϵ-nearly
equal norm Parseval frames with large total movement in our dy-

namical system is small. The second part in our approach is a

smoothed analysis [43] of continuous operator scaling. We prove

that if we randomly perturb an arbitrary ϵ-nearly equal norm Parse-

val frame appropriately (in a dependentmanner), then the perturbed

frame is simultaneously close to the original frame and an equal

norm Parseval frame with high probability, by showing that its

total movement in our dynamical system is independent of n.

Theorem 1.4 (informal). Given a set of d-dimensional vectors
U = {u1, . . . ,un } that forms an ϵ-nearly equal norm Parseval frame
withn ≫ d4 and ϵ ≪ 1/d11/2, we can perturbU to obtain Ũ such that
dist

2 (U , Ũ ) ≤ O (d5/2ϵ ) and furthermore dist2 (Ũ ,F ) ≤ O (
√
dϵ ) by

using the dynamical system in Theorem 1.3.

This solves the problem when n is large enough. Together with

Theorem 1.3, we obtain Threom 1.2 by using Theorem 1.3 when n
is small. To prove Theorem 1.4, we develop some new techniques to

analyze the convergence of the dynamical system in the perturbed

frame. Gurvits [26] defined a notion called the operator capacity

to analyze the operator scaling algorithm. Recently, the operator

scaling algorithm is used to design a polynomial time algorithm

to solve the non-commutative rank problem [22], while the key is

a new lower bound on the operator capacity. We find an interest-

ing connection between our dynamical system and the operator

capacity. We use it to prove a better lower bound on the operator

capacity in the perturbed instance, which implies a faster conver-

gence rate in the perturbed instance. We discuss some implications

of our results to related work on operator scaling in the following

subsection.

1.4 Related Work on Frame Scaling, Operator
Scaling, and Matrix Scaling

Scaling a frame into an equal norm Parseval frame, and more gen-

erally, scaling an operator into a doubly stochastic operator has

various applications in theoretical computer science. Sometimes

they go under different names such as radial isotropic positions in

machine learning [29], and geometric conditions in Brascamp-Lieb

inequalities [3, 4, 24].

An early application of frame scaling is discovered by Forster [21],

who showed that a set of n vectors v1, . . . ,vn ∈ R
d
can always

be scaled to an equal norm Parseval frame if every subset of d
vectors is linearly independent, and he used this result to derive

a lower bound on the sign rank of the Hadamard matrix with ap-

plications in proving communication complexity lower bounds.

We note that Forster’s scaling result was proved earlier in a more

general setting by Gurvits and Samorodnitsky [27] in their work

of approximating mixed discriminants, and is also implicit in the

work of Barthe [4] in proving Brascamp-Lieb inequalities. A recent

application of frame scaling is found by Hardt and Moitra [29] in

robust subspace discovery.

Operator scaling was introduced by Gurvits [26] in an attempt

to design a deterministic polynomial time algorithm for polyno-

mial identity testing, and he used it to solve the special case when

the commutative rank of a symbolic matrix is equal to its non-

commutative rank (e.g. this includes the linear matroid intersection

problem over reals). Recently, Garg, Gurvits, Oliveira, and Wigder-

son [23] improved Gurvits’ analysis to prove that the alternating

algorithm for operator scaling can be used to compute the non-

commutative rank of a symbolic matrix in polynomial time. Subse-

quently, the alternating algorithm for operator scaling is used by

the same group [24] to obtain a polynomial time algorithm to com-

pute the optimal constants in Brascamp-Lieb inequalities, which

we will elaborate more below as it is related to our work.

The Brascamp-Lieb inequalities [10] and their reversed form

established by Barthe [4] are general classes of inequalities with

important applications in functional analysis and convex geome-

try (e.g. including Nelson’s hypercontractivity inequality and the

Brunn-Minkowski inequality as special cases). The optimal con-

stants for thses inequalities are determined by Ball [3] assuming the

geometric condition (which is a condition similar to that in John’s el-

lipsoid theorem). Garg, Gurvits, Oliveira and Wigderson [24] show

that the Brascamp-Lieb constants are equivalent to the capacity of

an operator by a simple transformation, in which the geometric

condition corresponds exactly to the doubly stochastic condition.

Therefore, the algorithm in [23] can be employed to scale the input

to satisfying the geometric condition so as to compute the optimal

constant. For our smoothed analysis, we develop a new technique to

proving a lower bound on the operator capacity and thus an upper

bound on the Brascamp-Lieb constant. In particular, this implies

improved bounds on the Brascamp-Lieb constants for perturbed

instances in the rank-one case (which is the case that Brascamp and

Lieb proved in [10]). See [24] and the references therein for appli-

cations of these bounds to non-linear Brascamp-Lieb inequalities.

Matrix scaling [41] is a well-studied special case of operator

scaling. It has applications in numerical analysis, in approximating

permanents [35] and in combinatorial geometry [19]. Very recently,

much faster algorithms are developed for matrix scaling by two

independent research groups [2, 18]. Cohen, Madry, Tsipras and

Vladu [18] obtain an algorithm for matrix scaling with running

time Õ (m logκ log2 (1/ϵ )), wherem is the number of nonzeros in

the input matrix, κ is the ratio between the largest and the smallest

entries in the optimal scaling solution, and ϵ is the error parameter

of the output. Note that the algorithm is near linear time when

κ is bounded by a polynomial in m, but in general it could be

exponentially large. Not much is known about upper bounding

κ for specific instances, except when the input matrix is strictly
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positive [33]. Our techniques for smoothed analysis provides a new

way to bound κ; see Remark 4.3.6. In particular, this implies that the

algorithm in [18] is near linear time in a pseudorandom instance

as defined in Definition 4.3.2 (not necessarily strictly positive).

To summarize, our techniques developed in solving the Paulsen

problem provides new tools in bounding the mathematical quan-

tities involved in scaling problems such as the operator capacity

and κ about optimal scaling solutions. See the second half of Sub-

section 4.1 for an overview of these techniques. These provide a

new perspective to look at those quantities using the parameters in

our dynamical system. Currently, our smoothed analysis is tailored

for the Paulsen problem, but we believe that it can be extended to

the more general operator setting and also to more natural condi-

tions to prove useful results about other problems solved by scaling

techniques.

Very recently, our result for the operator Paulsen problem was

used in designing a deterministic polynomial time algorithm for the

orbit intersection problem of the left-right group action in invariant

theory [1].

1.5 Organization and Overview
In this overview, all references refer to the full version attached.

We first review the background of operator scaling and see that

the Paulsen problem is a special case in the operator framework

in Section 2. We will also introduce the matrix scaling problem

in Section 2 as this is a key intermediate problem in our proof of

the second part. We omit Section 2 about the background in this

ten-page version.

We divide the proof of Theorem 1.2 into two sections. In Section 3,

we define our dynamical system based on operator scaling and

prove Theorem 1.3. The results in this section works in the more

general operator setting. We discover some nice formulas for the

dynamical system to analyze its convergence. And we establish a

close connection between the operator capacity lower bound and

the squared distance bound for the Paulsen problem.

In Section 4, we analyze the perturbation step to prove Theo-

rem 1.4. Using a known reduction that we will discuss in Section 2

and see the proof in Subsection 3.5, we reduce the operator capacity

lower bound to a matrix capacity lower bound. Using some prob-

abilistic arguments, we will show that by perturbing the vectors,

the corresponding matrix will have some pseudorandom property.

Then we use a combinatorial argument to show that the pseudo-

random property will imply a fast convergence of our dynamical

system for matrix scaling. Interestingly, we show that the fast con-

vergence of our dynamical system will imply a stronger matrix

capacity lower bound, and this leads to a bound on Paulsen prob-

lem without any dependency on the number of vectors. We remark

that the perturbation step only applies in the frame setting.

The proof ideas described so far are of high level. We will give a

more concrete technical overview in each section after the appro-

priate background is covered; see Subsection 3.3 and Subsection 4.1.

2 OPERATOR PAULSEN PROBLEM AND
CONTINUOUS OPERATOR SCALING

We consider the following generalization of the Paulsen problem

to the operator setting. We refer to a set of of matrices U =

{U1, . . . ,Uk } as an operator.

Definition 2.1 (doubly balanced and doubly stochastic operator).
An operator V = {V1, . . . ,Vk } where Vi ∈ R

m×n
for 1 ≤ i ≤ k is

called doubly balanced if

k∑
i=1

ViV
T
i = cnIm

and

k∑
i=1

VT
i Vi = cmIn

for some scalar c ≥ 0, and it is called doubly stochastic in the case

when c = 1/n.

Definition 2.2 (ϵ-nearly doubly stochastic operator). An operator

U = {U1, . . . ,Uk }whereUi ∈ R
m×n

for 1 ≤ i ≤ k is called ϵ-nearly
doubly stochastic if

(1 − ϵ )Im ⪯
k∑
i=1

UiU
T
i ⪯ (1 + ϵ )Im

and

(1 − ϵ )
m

n
In ⪯

k∑
i=1

UT
i Ui ⪯ (1 + ϵ )

m

n
In .

Definition 2.3 (distance and squared distance). GivenU =
{U1, . . . ,Uk } and V = {V1, . . . ,Vk } where Ui ,Vi ∈ R

m×n
for 1 ≤

i ≤ k , the squared distance and the distance betweenU andV are

defined as

dist
2 (U ,V ) :=

k∑
i=1
∥Ui −Vi ∥

2

F

and

dist(U ,V ) :=

√
dist

2 (U ,V ),

where ∥.∥F is the Frobenius norm of the matrix.

Definition 2.4 (the operator Paulsen problem). GivenU =
{U1, . . . ,Uk } where Ui ∈ R

m×n
for 1 ≤ i ≤ k that is ϵ-nearly

doubly stochastic, the operator Paulsen problem asks what is the

best function h(k,n,m, ϵ ) so that

inf

V
dist

2 (U ,V ) ≤ h(k,n,m, ϵ ),

where the infimumV is over the sets of matrices which are doubly

stochastic.

The main theorem in this section is that h(k,n,m, ϵ ) ≤ O (m2nϵ ).
This will imply Theorem 1.3, using a reduction from frame scaling

to operator scaling.

Organization and Overview: We first define a dynamical sys-

tem based on the operator scaling algorithm. Then, we present

our main technical result that givenU (0)
that is ϵ-nearly doubly

stochastic, the dynamical system will produce U (∞)
that is dou-

bly balanced with dist
2 (U (0) ,U (∞) ) ≤ O (m2nϵ ), assuming some
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formulas for the dynamical system and a lower bound on the oper-

ator capacity. The formulas and the capacity are in Subsection 3.4

and 3.5 in the full version attached. The details about the operator

Paulsen problem and the Paulsen problem are in Subsection 3.6 and

3.7 in the full verison.

2.1 Continuous Operator Scaling
Our idea is to define a continuous version of the operator scaling al-

gorithm so that the two alternating steps are combined into one step

and the movement is continuous, and we will bound the distance

dist(U (0) ,U (T ) ) by the total movement

∫ T
0

√∑n
i=1






d
dtU

(t )
i






2

2

dt .

We define our dynamical system in the more general operator

setting. There is a time t in the evolution of the matrices, but we

will drop the superscript to ease our notation whenever it is clear

from the context.

Definition 2.5 (size of an operator). GivenU = (U1, . . . ,Un ), let

s (U ) :=
k∑
i=1
∥Ui ∥

2

F = tr(
k∑
i=1

UiU
T
i ) = tr(

k∑
i=1

UT
i Ui )

be the size of the operator. We use the shorthand s when the system

U is clear from the context.

Our dynamical system is defined by the following differential

equation.

Definition 2.6 (dynamical system from operator scaling). The fol-
lowing differential equation describes howU (t ) = {U

(t )
1
, . . . ,U

(t )
k }

changes over time:

d

dt
Ui := (sIm −m

k∑
j=1

UjUj
T )Ui +Ui (sIn − n

k∑
j=1

Uj
TUj )

for 1 ≤ i ≤ k .

The following definition is the key parameter in our analysis. We

can think of ϵ as an ℓ∞-error bound of the input, and the following

∆ as an ℓ2-error bound. Indeed, we will work with ∆ as the error

measure in all our proofs, and only use the relation that ∆ ≤ 2m2ϵ2

to draw the conclusion.

Definition 2.7 (∆ of an operator). We measure the progress of our

dynamical system by:

∆(U ) =
1

m
tr[(sIm −m

k∑
i=1

UiU
T
i )2] +

1

n
tr[(sIn − n

k∑
i=1

UT
i Ui )

2
],

which is zero if and only ifU is doubly balanced. The two conditions

are scaled appropriately so thatm and n are symmetric. We use the

shorthand ∆(t )
for ∆(U (t ) ) when it is clear.

Another motivation for our dynamical system is that it moves

in the direction that minimizes ∆(U ).

2.2 Total Movement of Dynamical System
We present our main technical result of this section in this sub-

section. Assuming some formulas for the dynamical system and

a lower bound on the operator capacity, we will show that given

U (0)
that is ϵ-nearly stochastic, the dynamical system will produce

U (∞)
that is doubly balanced with dist

2 (U (0) ,U (∞) ) ≤ O (m2nϵ ).
First, using triangle inequality, we will bound the squared distance

ofU to the set of doubly balanced operators by the total movement

in our dynamical system.

Lemma 2.8. LetU (0) be the input operator to the dynamical system
andU (T ) be the operator in the dynamical system at timeT , we have

dist(U (T ) ,U (0) ) ≤

∫ T

0

√√√ k∑
i=1







d

dt
U

(t )
i








2

F
dt .

To analyze the convergence of the dynamical system, the opera-

tor capacity is important.

Definition 2.9 (operator capacity [23, 26]). Given an operatorU =
{U1, . . . ,Uk } where eachUi ∈ R

m×n
, we define the capacity ofU

as

cap(U ) = inf

X ⪰0

m det(
∑k
i=1UiXU

T
i )1/m

det(X )1/n
.

In the following, we state the facts that we need for our proof.

Proof Steps: It turns out that there are very nice formulas of our

dynamical system which can be used to bound the total movement.

We will prove

(i) in Lemma 3.4.2 of the full version that

d

dt
s (t ) = −2∆(t ) ,

which in particular implies that the size of the operator is

decreasing over time;

(ii) in Lemma 3.4.3 of the full version that

d

dt
∆(t ) = −4(

k∑
i=1







d

dt
Ui








2

F
),

which in particular implies that ∆(t )
is decreasing over time;

(iii) in Lemma 3.4.5 of the full version that cap(U (t ) ) is unchanged
over time;

(iv) and in Lemma 3.3.3 and Theorem 3.5.16 of the full version

that s (U ) ≥ cap(U ) ≥ s (U ) − mn
√
∆(U ), which implies

that s (T ) ≥ cap(U (T ) ) = cap(U (t ) ) ≥ s (t ) −mn
√
∆(t )

for

T ≥ t ≥ 0.

With these, we can analyze the total movement of the dynamical

system before ∆(T ) ≤ ∆(0)/2.

Proposition 2.10. For t ≥ 0 with ∆(t ) > 0, let T be the first time
that ∆(T ) = ∆(t )/2. Then

T ≤ t +
mn
√
∆(t )

and dist
2 (U (T ) ,U (t ) ) ≤ 2mn

√
∆(t ) .

Proof. The assumption implies that ∆(τ ) > ∆(t )/2 for t ≤ τ <
T , and thus it follows from point (i) that

d

dτ
s (τ ) = −2∆(τ ) < −∆(t )

for t ≤ τ < T .
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The capacity lower bound thus allows us to conclude that T ≤
t + mn√

∆(t )
, as otherwise

s (T ) = s (t ) +

∫ T

t

d

dτ
s (τ )dτ

< s (t ) − (T − t )∆(t )

< s (t ) −mn
√
∆(t ) ,

contradicting point (iv). Therefore,

dist(U (T ) ,U (t ) ) ≤

∫ T

t

√√√ k∑
i=1







d

dτ
U

(τ )
i








2

F
dτ

= 2

∫ T

t

√
−
d

dτ
∆(τ )dτ

≤ 2

√∫ T

t
(−

d

dτ
∆(τ ) )dτ ·

∫ T

t
1dτ

= 2

√
−(∆(T ) − ∆(t ) ) (T − t )

≤

√
2mn
√
∆(t ) ,

where the first inequality is by Lemma 2.8, the first equality is by

point (ii), the second inequality is by Cauchy-Schwarz, and the last

inequality is by the bound on T above and the assumption that

∆(T ) = ∆(t )/2. Squaring both sides proves the lemma. □

Using this argument repeatedly will give us a decreasing geo-

metric sequence and we obtain the main technical result in this

section.

Theorem 2.11. Given any operatorU (0) = {U
(0)
1
, . . . ,U

(0)
k }where

Ui ∈ R
m×n for 1 ≤ i ≤ k , the dynamical system in Definition 2.6

will moveU (0) toU (∞) such that

∆(U (∞) ) = 0 and dist
2 (U (∞) ,U (0) ) ≤ O (mn

√
∆(0) ).

3 IMPROVED BOUND THROUGH
SMOOTHED ANALYSIS

We can understand what was done in the previous section as a

reduction from the Paulsen problem to proving capacity lower

bound: If cap(U (t ) ) ≥ s (U (t ) ) − p (d,n)
√
∆(U (t ) ) for all t , then

dist
2 (U ,V ) ≤ O (p (d,n)

√
∆(U (0) ) ≤ O (p (d,n) · dϵ ). We discuss in

the full version that the worst case analysis of p (d,n) = O (dn) in
the previous section cannot be improved.

Smoothed Analysis: Our intuition is that the instances with

cap(U ) ≈ s (U ) − dn
√
∆(U ) are rare. So our idea is to perturb the

input instance and to prove a stronger capacity lower bound on the

perturbed instance. Using some probabilistic arguments, we will

prove that with high probability a perturbationW of U satisfies

∆(W ) ≈ ∆(U ) and cap(W ) ≫ cap(U ). To prove the lower bound

of the capacity in the perturbed instanceW , we have developed an

interesting method to prove matrix capacity lower bound using the

results in our dynamical system.

3.1 Overview of the Smoothed Analysis
Perturbation: The perturbation is informally described as follows.

For each 1 ≤ i ≤ n, let дi be a d-dimensional vector where each

entry is an independent Gaussian random variable N (0,σ 2) with
mean zero and variance σ 2

. We let yi = PL (дi ) and wi = ui + yi
for 1 ≤ i ≤ n, where L is a subspace of co-dimension d2 + n and

PL is the orthogonal projection acting on Rd×n to the subspace L.
For technical reasons, we will normalize the vectors so that they

have equal norm. We will choose σ 2 ≈

√
d∆(U )
n . We will explain

the choice of σ 2
later in this subsection.

Analysis of Perturbed Instances: We will prove that the per-

turbed instanceW = {w1, . . . ,wn } has the following properties

with high probability.

(i) The squared distance between U andW is small in Propo-

sition 4.8.6 of the full version: dist
2 (U ,W ) ≤ O (dnσ 2) ≤

O (d3/2
√
∆(U )), where the second inequality is by our choice

of σ 2
.

(ii) Assuming n is large enough and ∆ is small enough, we bound

the increase of ∆ in Proposition 4.8.7 of the full version that

∆(W ) ≤ O (∆(U )). This is the place where we need to use the

subspace L in the perturbation process to ensure that ∆(W ) is
bounded, and is also the bottleneck of the current proof that

requires the assumptions on n and ∆.
(iii) Assumingn is large enough, we establish an improved capacity

lower bound in Theorem 4.8.8 of the full version that cap(W ) ≥

s (W ) −O (
√

∆(W )
d ). This is the heart of the smoothed analysis,

where we have removed the dependency on n in the capacity

lower bound.

Paulsen Problem: From point (iii) and the reduction of the

Paulsen problem to capacity lower bound discussed earlier, we ex-

pect that we can set p (d,n) = 1/
√
d and ∆(W ) = O (∆(U )) to bound

the squared distance after the perturbation to be O (
√
∆(U )/d ) =

O (
√
dϵ ), independent of n when n is large enough. This is eventu-

ally what we will prove. We discuss in the full version that there

is a subtlety that we need to do the perturbation step many times.

The precise step-by-step procedure to move from the initial frame

to an equal norm Parseval frame is described in Procedure 4.8.1 of

Subsection 4.8 of the full version.

Projection: A natural attempt for the perturbation is to add

independent noise to each coordinate for each vector. Unfortunately,

it does not work as ∆(W ) would become much bigger than ∆(U )
with high probability. The linear subspace L consists of d2+n linear

constraints which are added to enforce that the “cross terms/first

order terms” become zero to ensure that point (ii) holds. This comes

with the price of the additional assumption that n ≫ d2 for point
(iii) to hold as the linear subspace L has co-dimension d2 + n.

Matrix Capacity Lower Bound from Dynamical System. Most of

the work in Theorem 1.4 is to prove point (iii). There are two main

ingredients.

Pseudorandom Property: The first ingredient is to identify

a pseudorandom property for a frame to have a stronger capac-

ity lower bound. Instead of doing it directly, we follow a known

reduction as described in Proposition 3.5.8 in the full version to

consider the corresponding matrix A. The pseudorandom property
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that we will use of a d ×n matrixA is that every column has at least

one entry with value at least Ω(σ 2) and every row has almost all

entries with value at least Ω(σ 2). We will prove that after we do the

perturbation on the vectors as described, the corresponding matrix

A has the pseudorandom property with high probability. The proof

of this lemma is quite technical, and this is the step that we could

not prove in the operator setting, and also we need the assumption

that n ≫ d2 for the proof to go through.

Bounding Matrix Capacity using Dynamical System: The
second ingredient is a new method to prove matrix capacity lower

bound. In Subsection 2.2, we have seen that the capacity lower

bound provides an indirect way to argue that ∆(t )
will converge to

zero. We prove the reverse direction to establish matrix capacity

lower bound, that a fast convergence of ∆(t )
to zero implies a good

capacity lower bound.

To do this, we define a matrix version of the Paulsen problem,

and also a dynamical system from matrix scaling to solve this prob-

lem. We will show that the dynamical system will satisfy the same

formulas as outlined in Subsection 2.2. Assuming the pesudoran-

dom property of a matrix holds in the beginning, we will show in

Proposition 4.3.5 in the full version that it will hold during the exe-

cution of the dynamical system. Proposition 4.3.5 requires a lower

bound on σ 2
for the proof to go through, and this is the reason for

our choice of σ 2
, which is the bottleneck of the current proof as it

requires a large movement in the perturbation process.

A key step is a combinatorial argument in Subsection 4.4 of the

full version that proves that there exists an absolute constant κ
such that

−
d

dt
∆(t ) ≳ κσ 2n∆(t )

for all t ≥ 0

=⇒ ∆(t ) ≲ exp(κσ 2nt ) · ∆(0)
for all t ≥ 0,

assuming the pesudorandom property of the matrix holds through-

out the execution of the dynamical system. This can be used to

lower bound the matrix capacity using the following relations:

s (0) − cap(A) = s (0) − s (∞)

= −

∫ ∞
0

d

dt
s dt

=

∫ ∞
0

2∆(t )dt

≲ ∆(0)
∫ ∞
0

2 exp(−κσ 2nt )dt

=
∆(0)

κσ 2n
,

where the first equality uses the capacity bound in the previous

section and the third equality is by an identity analogous to that in

previous section. This implies that

cap(A) ≳ s (A) −
∆(A)

κσ 2n

=⇒ cap(W ) ≳ s (W ) −
∆(W )

κσ 2n
,

where the implication follows from the reduction. This completes

the outline of the new method in proving capacity lower bound

and the proof of point (iii).
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