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Abstract

Network design has been an extensively studied topic in combina-
torial optimization and approximation algorithms. In recent years, its
degree bounded variants have attracted lots of attentions as they cap-
ture natural requirements in practice. Exciting results about degree
bounded edge connectivity network design have been found. In con-
trast, only a few positive results for its vertex connectivity counterpart
are known.

In this thesis, we study the problem of finding a minimum cost k-
vertex-connected subgraph such that the degree at every vertex is as
small as possible. When k£ = 2, this specializes to the Travelling Sales-
man Problem. Our main result is a (24 (k—1)/n+1/k)-approximatin
algorithm for this problem when metric cost is assumed.

Our approach can be seen as an extension of Christofide’s 3/2-
approximation algorithm for the Travelling Salesman Problem. As
an intermediate step, we have proved a strengthening of a splitting-off
theorem due to [5].
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Chapter 1

Overview

1.1 Background

This section contains background discussion about the areas of network
design and degree bounded network design. We also introduce the
concepts of approximation algorithms and bicriteria approximation.
Specific problems where constant factor approximations are archiev-
able and hardness results related to the problem we considered are
highlighted.

1.1.1 Network Design

Network design is an important topic in combinatorial optimization
and approximation algorithms. The basic question in network design
is how we can build a reliable network to connect a given set of nodes in
a cost effective way. By “reliable”, we mean that the network should
remain functional even when multiple link or node failures happen.
Subject to such reliability requirement, we want to minimize the total
cost of the links and/or nodes used in building the network.
Naturally, network design problems can be modeled as the problem
of finding a minimum cost subgraph that satisfies certain edge/vertex-
connectivity requirements. (Please refer to Section 1.2.1 for the defi-
nitions of edge connectivity and vertex connectivity) One example is
the well known Minimum Spanning Tree problem. In this problem,
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we need to connect every nodes such that there is at least one path
between every pair of nodes. This can be modeled as the problem
of finding a minimum cost 1-connected spanning subgraph. Another
similar example is the Minimum Steiner Tree problem. In this prob-
lem, only a subset of the terminal nodes have to be connected, while
the remaining non-terminal nodes are not required to include in the
network. This can be modeled as the problem of finding a minimum
cost subgraph in which the edge connectivity between every pair of
terminal vertices is at least 1.

It is well known that the Minimum Spanning Tree problem is solv-
able in polynomial time. On the other hand, the Minimum Steiner
Tree problem is NP-complete [36]. It is widely believed that no effi-
cient algorithms exist for such problems. Similarly, many other net-
work design problems, such as the Travelling Salesperson Problem, the
Minimum Cost k-Edge-Connected Subgraph problem and etc, are also
NP-complete.

In order to compromise for the intractability of such NP-complete
problems, instead of insisting on finding the optimal solution, one may
aim to design polynomial time algorithms which return an approxi-
mately optimal solution that is provably good. This is the approach
we adopt in this thesis.

Approximation Algorithms

For an optimization (say minimization) problem, we say that an al-
gorithm A is an f(n)-approzimation algorithm if it returns a feasible
solution whose cost is at most f(n) times that of the optimal feasible
solution, where n is the size of the input and f(n) is some polynomial
time computable function of n. We say that f(n) is the approzimation
ratio of A. For example, it is not hard to see that, in metric graphs,
computing the minimum spanning tree that spans the terminal nodes
would give a 2-approximation to the Minimum Steiner Tree problem.

There is a long line of reaearch on approximation algorithms for NP-
complete edge connectivity network design problems. Some notable
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results include the 2-approximation algorithm for the Steiner Forest
problem using the primal-dual framwork of Goemans and Williamson
[29] and the 2-approximation algorithm for the Minimum Cost k-Edge-
Connected Subgraph problem in [38].

A common generalization of these results is the 2-approximation
of the Steiner Network problem by Jain using the iterative round-
ing technique [32]. In the Steiner Network problem, there is an edge
connectivity requirement r(u,v) between every pair of vertices u and
v, our goal is to find a minimum cost subgraph such that there are
at least r(u,v) edge-disjoint paths connecting v and v. This is the
most general edge connectivity network design problem that admits a
2-approximation.

Vertex connectivity network design problems are also long studied,
although most of them appear to be much harder to approximate than
their edge connectivity counterparts. In particular, the Vertex Con-
nectivity Steiner Network is proved to have no constant factor approx-
imation. Even for the much restricted special case, the Minimum Cost
k-Vertex-Connected Subgraph problem, it is open whether it admits a
constant factor approximation.

1.1.2 Degree Bounded Network Design

In addition to reliability, one may want to impose other types of con-
straints to obtain other desired qualities of the network. For example,
it may be desired that the network has a low diameter, so packets
only need to travel short distances to reach their destinations. An-
other desired quality may be that every node in the network only has
bounded number of connections to other nodes. This constraint may
model hardware restrictions or load balancing requirement in practice.
In this thesis, we focus on the latter degree constraint.

The earliest studied problem in degree bounded network design is
the Minimum Degree Spanning Tree problem, which asks for the span-
ning tree with the smallest maximum degree. This problem is NP-hard
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as it generalizes the Hamiltonian Path problem. Using local search tec-
nhique, Furer and Raghavachari [26] shows that in polynmoial time,
one can find a spanning tree of maximum degree at most d+ 1 or decide
that there is no spanning tree with maximum degree below d.

This result has attracted lots of interest in degree bounded net-
work design since then. Among them, the most studied is the Degree
Bounded Minimum Spanning Tree problem, which is a weighted gen-
eralization of the Minimum Degree Spanning Tree problem. In this
problem, we are given a weighted graph and a degree bound B, (upper
and /or lower bounds) on every vertex v. The task is to find a spanning
tree of minimum cost that satisfides all the degree bounds.

In some special cases, for instance when the cost is induced by Eu-
clidean distance [7] or a metric [20], there are constant factor approx-
imation algorithms for this problem. However, when arbitrary costs
are allowed, there can be no approximation if we insist that all de-

gree bounds are satisfided, since deciding whether such a tree exists is
already NP-hard.

Bicriteria Approximation

To cope with this inapproximability of the Degree Bounded Minimum
Spanning Tree problem, one may further relax the strict degree bound
and view the Degree Bounded Minimum Spanning Tree problem as
a bicriteria optimization problem. Quite often, the two objectives of
a bicriteria optimization conflict with each other and there exists no
solution that is optimal with respect to both objectives. To handle
this issue, we follow the approach of other previous works, namely
we treat the second objective as a given budget, and try to optimize
(minimize) the first objective under this budget constraint. We say
that an algorithm is a (¢, f(B))-bicriteria-approximation algorithm if
it returns a feasible solution whose first objective value is within a
factor of ¢ of any solution that has its second objective below B and
the second objective value of the soluton it returns is at most f(B)
where f is some function of B.
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(An alternative approach is to incoporate the two objectives into
one, say, by taking some linear combinatoion of the two functions.
However, as shown in [50], oue approach is more general.)

In the case of Degree Bounded Minimum Spanning Tree problem,
the two objectives are the cost and the degree of each vertex. (here
we abuse the notation a little bit even though different vertex may
have different degree bound) An algorithm is a (¢, f(B,))-bicriteria-
approximation algorithm if it returns a solution in which every vertex
v has degree at most f(B,) where B, is its degree upper bound and
the cost of the solution is at most ¢ times that of any solution that
satisfy all the degree bounds.

Utilizing Lagrangian relaxation techniques, as developed in a series
of papers [40], [41] Konemann and Ravi show that there are (O(1), O(B,+
log n))-bicriteria-approximation algorithms for this problem and the
more general Degree Bounded Minimum Steiner Tree problem (for uni-
form degree bound). Independently, based on the Push-Relabel idea in
Goldberg and Tarjan’s maximum flow algorithm [30], Chaudhuri et al
[34], [35] have developed a (1, O(B, + logn))-bicriteria-approximation
algorithm for the Degree Bounded Minimum Spanning Tree problem.
Note that their algorithm actually returns a solution that is optimal
in cost.

A breakthrough in the research of this problem is Goeman’s O(1, B,+
2)-approximation result [27]. His algorithm uses techniques from poly-
hedral characterization and matroid intersection and depends crucially
on the analysis of a basic solution to the natural linear programming
relaxation for this problem.

Inspired by this result and Jain’s iterative rounding algorithm for
the Steiner Network problem, in [45], Lau and Singh have devised
a (2,2B,)-bicriteria-approximation algorithm for the Degree Bounded
Steiner Network problem using the iterative relaxation technique. The
same technique is then used in [56] to obtain a (1, B, 4+ 1)-bicriteria-
approximation algorithm For arbitrary cost, this is the best possible
result for this problem. Since then, the same technique has been ex-
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tended to other degree bounded network design problems. It is shown
that (O(1),O(B,))-bicritereia approximation is possible for the Min-
imum Cost Degree Bounded Arborescence problem [3] and additive
approximation (in degree boundf) is possible for the Degree Bounded
Steiner Network problem [46] and the Degree Bounded Submodular
Flow problem [39].

1.1.3 Degree Bounded Vertex Connectivity Network Design

Unlike the edge connectivity counterparts, very few positive results
about degree bounded vertex connectivity network design problems
are known. In fact, it is proved that similar bicriteria approximations
are impossible for degree bounded vertex connectivity network design.
As shown in [45], even when cost is not considered, the degree bound
for the must restricted Degree Bounded Subset k-Vertex-Connected
Subgraph problem is still 2log" “n_hard to approximate. In this prob-
lem, the vertex connectiviy requirement between a pair of vertices x
and y is k if both z and y are in a given terminal vertex set R, and
zero otherwise.

Nevertheless, in some interesting special cases, constant factor ap-
proximation is possible. One important special case is when the costs
are assumed to form a metric, that is, when the triangle inequality
w(uv) + w(vw) > w(uw) is satisfied for every three vertices u, v, w.
One notable example is the Minimum Degree k-Vertex-Connected Sub-
graph problem. In this problem, we are required to find a minimum
cost spanning k-vertex-connected subgraph such that the degree at ev-
ery vertex is as small as possible. Since a metric graph is complete, it
must contain a k-vertex-connected subgraph whose maximum degree
is at most k£ + 1. In fact, we can further require all vertices to have
degree k. Except when both |V | and k are odd, in such case, one vertex
must be allowed to have degree k£ + 1. We say that such a graph is
almost k-reqular.

For simplicity, in this thesis, we will assume that not both of |V
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and k are odd and focus on the equivalent Minimum Cost k-Regular k-
Vertex-Connected Subgraph problem. This is the problem that asks us
to find a minimum cost spanning k-vertex-connected subgraph in which
every vertex has degree exactly k. A minor change to our algorithm
can be made to find an almost k-regular solution in case both |V| and
k are odd. The modification is covered in Section 3.4.

When k£ = 2, the Minimum Cost k-Regular k-Vertex-Connected
Subgraph problem specializes to the famous Travelling Salesperson
Problem. Christofide [15] shows that there is a 3/2-approximation
algorithm for this problem. When k > 2, it is implied by the results in
[5] and [42] that this problem admits a (24 (k —1)/n, k+ 1)-bicriteria-
approximation.

In this thesis, we will prove that there is a (2 + (k — 1)/n + 1/k)-
approximation algorithm for this problem. Our approach is inspired
by both of the results we just mentioned.

1.2 Our Results

As discussed in the last section, degree bounded vertex connectivity
network design problems are often harder to approximate than their
edge connectivity counterparts. There are very few positive results
known about them. The main result in this thesis is a (2 + (k —
1)/n+1/k)-approximation algorithm for the Minimum Cost k-Regular
k-Vertex-Connected Subgraph problem when the edge costs satisfy the
triangle inequality. Below we give a formal definition of the problem
and state our result.

1.2.1 Problem Definition

Let G = (V, E) be a graph. G is k-regular if every vertex has exactly
k edges incident to it, and G is k-vertez-connected (k-edge-connected)
if we need to remove at least k vertices (k edges) to disconnect G. For
the definition of k-vertex-connectivity to make sense, we also require
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|V | > k for a k-vertex-connected graph. By removing a set of vertices
X, we mean deleting X and all edges incident to some vertex in X
from V and E. An example of a 2-regular 2-vertex-connected graph is
a Hamiltonian cycle.

In a network design problem, G is associated with a cost function
w: E — R*. The cost of a subgraph H = (U, F') of G is defined as
w(H) = 3, pwle).

We can now define The Minimum Cost k-Regular k-Vertex-Connected
Subgraph Problem.

Problem: Minimum Cost k-Regular k-Vertex-Connected Subgraph
Input: A graph G = (V, E) that has a k-vertex-connected subgraph,
a cost function w : F — R™, and an positive integer k > 2 such that k
or |V] is even

Objective: Find a minimum cost k-regular k-vertex-connected sub-
graph of G.

1.2.2 Main Result

The main result in this thesis is the following theorem. The require-
ment on size of the vertex set is due to some technical reason.

Theorem 1.2.1. If the edge cost satisfies the triangle inequality and
\V| > 2k there is a polynomial time (2+(k—1)/n+1/k)-approzimation
algorithm for the Minimum Cost k-Reqular k-Vertex-Connected Sub-
graph problem.

For the slightly more general Minimum Degree k-Vertex-Connected
Subgraph problem, our algrotihm can find a solution with minimum
possible degrees, namely, at most one vertex has degree above k and
when it does, its degree is k 4 1. This shows that when metric cost is
assumed, pure non-bicriteria approximation can be achieved with only
a small extra cost. This is in great contrast to the case of general cost,
where even bicriteria approximation is not known to be possible.
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We remark that the result in this thesis is based on [8], where some
of the proof has been omitted due to lack of space. In that paper,
some other degree bounded network design problems with metric cost
assumption are also considered.

1.2.3 Organization of This Thesis

In the remaining of this chapter, an outline of our algorithm is given
in Section 1.3. We will first look at an algorithm that solves the case
for k = 2, then we discuss how it can be extended to the general case.

Chapter 2 reviews previous work related to our results. The first
three sections introduce basic concepts in the study of connectivity
problems. The next three sections focus on the splitting-off operation,
which is an important component of our algorithm. The last two sec-
tions cover results in vertex connectivity network design and metric
cost network design.

Technical contents including the proofs of our splitting-off theorems
and the complete description of our algorithm is presented in Chapter
3.

The last chapter concludes this thesis with a few remark on possible
direction for future work.

1.3 Algorithm Outline

In this section, we give a sketch of our algorithm and a quick overview
of the technical tools we used. As we mentioned in Section 1.1.3, our
approach is inspired by [15] and [5]. Therefore, it will be illuminative
to take a look at their results first.

1.3.1 Christofide’s Algorithm for TSP

We begin by examining the special case of the Minimum Cost k-
Regular k-Vertex-Connected Subgraph problem when k& = 2. Notice
that a 2-edge-connected graph is also 2-vertex-connected when it is
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2-regular, therefore this is same as the Minimum Cost 2-Regular 2-
Edge-Connected Subgraph problem.

As we mentioned before, this special case is equivalent to the Trav-
elling Salesperson Problem. Recall that the Travelling Salesperson
Problem asks for a minimum cost Hamiltonian cycle, a simple cycle
tha spans all vertices, in a given graph. Christofide [15] has derived
a 3/2-approximation algorithm for this problem. Central to his algo-
rithm is the shortcutting procedure.

Shortcutting Eulerian Cycle

A graph is Eulerian if every vertex has even number of incident edges.
It is well known that a connected Eulerian graph must contain an Eu-
lerian cycle, where an Eulerian cycle is a spanning cycle that traverses
every edge in E by exactly once.

Christofide observe that, when the triangle inequality is satisfided,
an FEulerian cycle can be transformed into a Hamiltonian cycle without
any increase in cost by shortcutting: just follow the Eulerian cycle and
skip any visited vertex. (See (b) and (c) of Figure 1.1) Therefore, the
Travelling Salesperson Problem with metric costs can be reduced to
the problem of finding a low cost 2-edge-connected Eulerian graph.

To find a low cost 2-edge-connected Eulerian graph, Christodie
makes use of two lower bounds.

Combine MST with Matching to Get Eulerian Subgraph

The first one is a minimum spanning tree of the graph. This is a lower
bound of the cost of a a minimum cost Hamiltonian cycle as it is 1-
connected. However, a MST is not Eulerian and not 2-edge-connected.

A natural idea to make it become Eulerian is to add a perfect match-
ing on the odd degree vertices. A perfect matching on a set of vertices
U is a set of edges M such that each vertex in U is incident to exactly

one edge of M. In fact, this procedure also makes it 2-edge-connected.
Indeed, for every proper subset X of V', we have d(X) =) _y d(v)—
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2|E(X)], where d(X) (d(v)) is the number of edges with exactly one
endpoint in X (v) and F(X) is the set of edges with both endpoints
in X. Since G is Eulerain, d(X) is even and therefore at least 2.

Figure 1.1: (a) A spanning tree 7" (b) Dashed lines form a matching M on the odd
vertices (c¢) Result after shortcutting

Moreover, the cost of a minimum cost perfect matching M on the
odd degree vertices U is at most one half of that of a minimum cost
simple cycle C' spanning U, since C' can be decomposed into two match-
ings. But the cost of C' is no more than that of the optimal solution by
the same shortcutting argument. So the cost of M can be bounded.

It is well known that the problem of finding M can be solved in
polynomial time. Therefore, a 3/2-approximation of the TSP problem
is as follows: find a MST T, compute the minimum cost matching M,
and shortcut the Eulerian cycle to get a Hamiltonian cycle.

1.3.2 Extending Christofide’s Algorithm to & > 2

Naturally, we would like to extend Christofide’s Algorithm to the gen-
eral case for k > 2. Therefore, we need to generalize the shortcutting
procedure used in the algorithm.

Shortcutting and Splitting-Off

Let G = (V, E) be a k-edge-connected graph, and uv, vw be two edges
sharing a common vertex v. The splitting-off of uv and vw is the op-
eration of shortcutting uv and vw, that is, the operation that removes
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wv,vw and adds uw to E (see Figure 1.2). Let G’ be the resulting
graph after the splitting-off operation is performed. We say that uv
and vw is an admissable pair on v (with respect to k-edge-connectivity)
if G' is still k-edge-connected.

v v
/’ X
/ \
! \\
4 \
u W u : C W
(i) (ii)

Figure 1.2: (i) Before splitting off uv and vw (ii) After splitting off (dashed lines
represent removed edges)

Suppose G is a k-edge-connected graph such that d(v) has the same
parity as k for every vertex v. Omne of our observation is that the
shortcutting procedure in Christofide’s algorithm can be interpreted as
a sequence of splitting-offs of admissable pairs. Note that the splitting-
off operation has several useful properties:

1. The degree parity of G remains unchanged after shortcutting.

2. When the cost function satisfides the triangle inequality, the cost
of the graph never increases.

Therefore, assuming that there is always an admissable pair on a vertex
with degree at least k42, then we can transform G to become k-regular
without increasing the cost.

Indeed, for edge connectivity, such assumption is valid by a splitting-
off theorem that we are going to prove in Section 2.4. Moreover, a
k-edge-connected graph of low cost, with all vertices k-even (a vertex
v is k-even if d(v) has the same parity as k, otherwise it is k-odd), can
be found in an approach similar to Christofide’s: by adding a perfect
matching on the set of k-odd vertices of a low cost k-edge-connected
subgraph.
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However, unlike the case when k£ = 2, this does not immediately give
us an algorithm for the Minimum Cost k-Regular k-Vertex-Connected
Subgraph problem, because for £ > 2, a k-regular k-edge-connected is
not necessarily k-vertex-connected.

1.3.3 Bienstock et al’s Splitting-Off Theorem

Nevertheless, same approach should be extensible to handle vertex
connectivity if, it can be shown that an admissable pair (with respect
to k-vertex-connectivity) always exists on a vertex with degree at least
k + 2 in a k-vertex-connected graph G.

Unfortunately, in [5] and [55], examples were shown, where no ad-
missable pair exists for a vertex with degree at least k + 2.

Figure 1.3: Example 1 for k£ =4

Example 1: The graph in Figure 1.3 is created by taking a copy of
the complete bipartite graph Kj 1,1 (K > 4). and creating a new
vertex v that is adjacent to every vertex in the bipartite graph. This
graph is k-vertex-connected. However, if any pair of edges uv and vw
incident to v are split off, k(u,w) will decrease to k — 1 as their node
degree become k — 1.

Example 2: Another example is the complete bipartite graph Kj
where p > k+2. It can be checked that this graph is k-vertex-connected
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I

Figure 1.4: Example 2 for £k =2 and p =4

y

but splitting off any pair of edges incident to a vertex v in the smaller
side S will make S — v become a cutset of size k — 1. This example can
be generalized by replacing a vertex v in the larger side by a k-vertex-
connected subgraph and attach the edges incident to v to k£ distinct
vertices in the subgraph.

Therefore, we may get stucked if we just naively split-off vertices
with high degree. The surprising result of Bienstock et al [5] is that
under mild conditions, when there is no admissable pair on a ver-
tex x there will be two jointly admissable pairs. Two pairs of edges
are jointly admissable if splitting off both simultaneouslty preserve k-
vertex-connectivity.

Theorem 1.3.1 (Bienstock, Brickell, Monma [5]). Let G = (V| E) be
a minimally k-vertex-connected graph with |V| > 2k. If x € V has
node degree at least k + 2, then either:

1. there 1s a splitting-off on x that maintains k-connectivity;
2. there are two jointly admissable pairs.

An egde is critical if its removal decreases the vertex connectivity
of a graph, otherwise it is redundant. A graph is minimally k-vertex-
connected if every edge of it is critical.
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An example of jointly admissable pair is shown in Figure 1.5. The
graph in example 1 shows that the assumption on the size of V is
necessary.

Figure 1.5: Example 2 after splitting off zx1, xxo and yxs, yxs

Bicriteria Approximation by Splitting-Off

Using Theorem 1.3.1 alone, Bienstock et al proved the following prop-
erty of a minimum cost k-vertex-connected subgraph of a metric graph.

Theorem 1.3.2. When the cost function satisfies the triangle inequal-
ity, there is a minimum cost k-vertex-connected subgraph in which ev-
ery vertex has degree at most k + 1.

Since there is a (24 (k—1)/n)-approximation algorithm [42] for the
Minimum Cost k-Vertex-Connected Subgraph problem when metric
cost is assumed, we can obtain the following bicriteria approximation
result.

Theorem 1.3.3. When the cost function satisfides the triangle in-
equality and |V| > 2k, there is a (2 + (k — 1)/n,k + 1)-bicriteria-
approximation algorithm for the Minimum Cost k-Regular k-Vertex-
Connected Subgraph problem.

Adapting Bienstock at al’s Splitting-Off Theorem
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One may expect that combining Christofide’s ideas and Bienstock at
al’s splitting-off theorem would immediately yield the desired result
for the case of exact degree bound. However, a closer inspection will
reveal some non-trivial details that still need to be handled.

Problem 1 (Parallel Edges): First of all, notice that adding the
matching may produce new parallel edges. (If we require the matching
to be simple, the cost of the matching will be much higher. Also, it is
unclear how the simplicity can be maintained during splitting-offs.)
In some applications, we can freely remove any parallel edges as
k-vertex-connectivity will still be preserved. However, in our case,
throwing redundant parallel edges away is not acceptable as it would
violate the edge degree parity invariant. Therefore, we need to develop
a splitting-off theorem that allows parallel edges. Effectively, what we
need is the following theorem, which is to be proved in Section 3.2.

Theorem 1.3.4. Let G = (V, E) be a simple k-connected graph. Sup-
pose u,v € V are adjacent, d(u) > k + 1 and uwv is non-redundant,
then there is a u-neighbor u; such that removing uu; and adding vu;
preserve k-connectivity.

Problem 2 (Redundant Edges): Secondly, recall that the Bien-
stock et al’s splitting off theorem has a prerequisite that the graph
must be minimally k-vertex-connected. However, in our graph there
may be redundant edges resulted from adding the matching or previ-
ous splitting-offs. Therefore, we cannot apply it directly. We prove
a strengthened version of their splitting-off theorem that allows the
existence of redundant edges, which is the content of Section 3.3.

Theorem 1.3.5. Let G = (V, E) be a simple k-vertez-connected graph
with |V| > 2k. If v € V' has edge degree at least k + 2, then either:

1. there 1s a splitting-off on x that maintains k-connectivity;

2. there are two jointly admissable pairs.

O End of chapter.



Chapter 2

Basics

This chapter covers basic knowledge on vertex connectivity network
design and splitting-off theorems that are necessary for understanding
our work.

In Sections 2.1 and 2.2, we define notations and concepts that are
used in our proofs and discussion. In Sections 2.3 and 2.4, we introduce
the fundamental notion of submodular function and demonstrate its
use in proving splitting-off theorems through an example. In Sections
2.5 and 2.6, we survey previous works on splitting-off theorems and
sketch some of their applications. In Section 2.7, we consider rooted
connectivity problem, an important special case in vertex connectivity
network design, which is used as a subroutine in our problem as well
as many other problems. In Section 2.8, we focus on two examples and
explain how the metric cost assumption can be used to design better
approximation algorithms.

2.1 Notations and Terminology

In this Section, we define some notations and terminology that are
used in our proofs and discussion.

An undirected graph G is defined by an ordered pair (V) E), where
V' is the set of vertices and FE is the set of edges. An edge is a two-
element subset of V. The elements of an edge are called its endpoints.

17
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An edge with endpoints u,v € V' will be denoted by uv (vu is same as
uv).

For a subset X of V, §(X) denotes the set of edges with exactly
one endpoint in X. An edge e € F is incident to a vertex v € V if
e € 6(v). Two vertices u and v are adjacent if uv is an edge in E. The
neighbors of X is the set of vertices Y C V — X that are adjacent to
some vertex in X. The edge degree of X is defined as d(X) = [6(X)]
and the node degree of X is defined as I'(X) = | N(X)|. For simplicity,
we often identify a vertex v € V' with the singleton set {v}, thus we
use notation like d(v) to refer to d({v}). G is k-regular if d(v) = k for
every vertex v € V. A neighbor u of a vertex v is called a v-neighbor.

We say that G is disconnected if there are two vertices v and v such
that there is no path between them. Recall that in Section 1.2.1, we
define a graph G to be k-vertez-connected (k-edge-connected) if we need
to remove at least k vertices (k edges) to disconnect GG. By removing
a set of vertices X, we mean deleting X and all edges incident to some
vertex in X from V and E. Therefore, a graph G with |[V| >k + 1 is
k-vertex-connected if

['X)>k (2.1)

holds for every X C V such that | X| < |[V| — k.

An edge uv is a parallel edge if there are more than one copies of
uv in E. G is simple if there are no parallel edges and no self loops,
otherwise, G is a multigraph. We remark that if G is k-vertex-connected
then there is a simple subgraph of G that is also k-vertex-connected.
Also, if G is k-vertex-connected and k-regular, then I'(v) = d(v) = k
for all v € V and G must be simple.

2.2 Menger’s Theorem

In Section 1.2.1, we define the edge (vertex) connectivity of a graph to
be the minimum number of edges (vertices) that must be removed to
disconnect two vertices. In this section, we give an alternative defini-
tion of k-edge(vertex)-connectivity.
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Let G = (V, E) be a graph and u,v be two vertices in V. A path
p between u and v is an alternating sequence of vertices and edges
(vg, Vo1, V1, V1V, ..., V11, Vj_10], U;) Where vy = u and v; = v. The ver-
tices vg # v; # v are called the internal vertices of p. Two paths
p1 and py between u and v are said to be edge disjoint (internally
disjoint) if p; and py don’t share any edges (internal vertices respec-
tively). The edge connectivity between u and v, denoted as A(u,v), is
the maximum number of pairwise edge disjoint paths between v and v.
Similarly, the vertez connectivity between u and v, denoted as k(u,v),
is the maximum number of pairwise internally disjoint paths between
uw and v.

Clearly, if k(u,v) > k for every pair of non-adjacent vertices u
and v, then G is k-vertex-connected. A vertex set S whose removal
disconnects G is called a cutset. A cutset is minimal if no propert
subset of it is a cutset. The maximal connected components in G — S
are called the S-components. A simple but useful fact about a minimal
cutset S is that for every vertex x in S, every S-component must
contain at least one z-neighbor. The well known Menger’s theorem
states that the “cut” and “path” notions of connectivity are equivalent.
k(u,v) < k if and only if there is a cutset of size < k.

Theorem 2.2.1. Let G = (V, E) be a graph and u,v be two non-
adjacent vertices in V.

= i (X 2.2
i, v) ngglel%,vgx (X) (2:2)
Similarly, for edge connectivity, there is another version of Menger’s
theorem.

Theorem 2.2.2. Let G = (V, E) be a graph and u,v be two distinct
vertices in V.

AMu,v) = ngglelgl(7v¢X d(X) (2.3)
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2.3 Submodular Functions

Let V be a ground set. A set function f : 2V — R is submodular if the
inequality
F(X)+ F(Y) > [(XNY) + f(XUY) (2.4)

is satisfied for all X, Y C V.

Submodular functions play a crucial role in combinatorial optimiza-
tion. They are especially important for connectivity problems. For
instance, we can give a proof of the Menger’s theorem based on sub-
modular function argument without resorting to network flow theory.
One example of submodular functions is the edge degree d function.
Its submodularity follows from the following equation.

proposition  For any nonempty X,Y C V,
dX)+dY)=dXNY)+dXUY)+2d(X,Y)

where d(X,Y') is the number of edges between X —Y and Y — X,

Similarly, it can be checked that the node degree function I is also
submodular.

A set function f is said to be supermodular if the reverse of the
inequality 2.4 holds. One simple but important example of supermod-
ular function is the constant function f(X) = k > 0 for some integer k.
Such supermodular function (and its variants) usually arises in connec-
tivity problems as an alternative form of the connectivity requirement
function. For instance, by the Menger’s theorem, finding a k-edge-
connected subgraph is same as finding a subgraph such that d(X) > k
for every non-empty proper subset of V.

In this thesis, since we are mainly concerned with uniform connec-
tivity requirement, the only supermodular function that we will consier
is the constant function.
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2.4 Use of Submodularity
in Proofs of Splitting-Off Theorems

Usually, the content of a splitting-off theorem is to estabilish some kind
of sufficient condition for the existence of an admissable pair. Note that
even in the case when a vertex has high degree, it is not entirely trivial
that there must exist an admissable pair. In this section, we will prove
a simple sufficient condition for the existence of an admissable pair.

By the Menger’s theorem, the connectivity of a graph is not pre-
served after performing a splitting-off operaton precisely when the edge
degree of some set has decreased below k. Therefore, if we can find
a pair of edges such that, after splitting off them, the edge degree of
every set remains at least k, this pair of edges will form an admissable
pair.

This leads us to consider the so called tight sets and dangerous sets.
A set X C Vis tight if d(X) =k and it is dangerous if d(X) < k+ 1.
Since a spitting-off decreases the edge degree of a set by at most two,
these tight and dangerous sets are the ones whose edge degree may
potentially fall below k.

In the following, we demonstrate how to use submodularty argu-
ment to prove a weaker version of the Lovasz’s splitting off theorem
concerning edge connectivity. For simplicity, we add the extra require-
ment that d(s) > k + 2.

Theorem 2.4.1. Let G = (V, E) be a k-edge-connected graphs and x
be a verter in V with edge degree at least k + 2 and k > 2. There
is a pair of edge incident to x such that splitting off them preserves
k-edge-connnectivity.

Recall that G is k-edge-connected if d(X) > k for all non-empty
proper subset X of V. We can characterize a non-admissable pair on
x as follows.

Claim 2.4.2. Two edges xu and xv are non-admissable if and only if
there is a dangerous set X such that v ¢ X and u,v € X.



CHAPTER 2. BASICS 22

Proof. For any non-empty subset Y of V| d(Y') either stays the same
or decreases by exactly 2 after a splitting off (see Figure 2.1). The
later case happens exactly when z ¢ Y and u,v € Y or x € Y and
u,v € Y. Without loss of generality, we can choose X to be the side
that contains u,v. ]

(2) (b) (©

Figure 2.1: In (a) and (b), splitting off doesn’t change d(X). In (c), d(X) decreases
by exactly 2

Since d is symmetric, i.e. d(X) = d(X) for any ) # X C X, a set
X is dangerous if and only if its complement is also dangerous, but for
convenience, we will assume that a dangerous set X does not contain
x.

We also need the following equations which imply the submodularity
of d. It can be easily verified by checking that the contributions of an
edge to both sides of the equation are the same.

Proposition 2.4.3. For any nonempty X,Y C V,
dX)+dY)=dXNY)+dXUY)+2d(X,Y)
where d(X,Y) is the number of edges between X —Y and Y — X.
Proposition 2.4.4. For any nonempty X,Y C V,
AdX)+dY)=d(X —=Y)+dY - X)+2d(XNY,XUY).
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Proof. (of Theorem 2.4.1) For the sake of contradiction, assume that
every pair of edges incident to x is non-admissable. In particular,
consider two edges xx1 and zxy for some s-neighbors x1 and xs.

By Claim 2.4.2, there is a maximal dangerous set X{; oy, abbreviated
as Xj2, such that € Xj9 and x1, 29 € Xjo. (A set is maximal with
respect to certain property if no proper superset of it has the same
property)

By assumption, d(x) > k + 2 but Xy, is dangerous, so there is
a x-neighbor x3 not contained in Xi5. Since xxs and xx; are non-
admissable, there is another maximal dangerous set X3 containing
and x3. Notice that X9 — X;3 is non-empty, otherwise X3 contradicts
the maximality of X15. By Proposition 2.4.4, we have

k+1+k+1
> d(Xi2) + d(X13)
= d(X19 — Xi3) + d(X13 — X19) + 2d(X12 N X13, X12 U X13)
> k+k+2.

Therefore, equality holds everywhere. Also, d(X12 N X33, X120 U X33) =
1 implies that xz; is the only edge between X5 N X153 and X5 U X3,
SO X9 is not in Xi9 N Xi3. By symmetry, there is also a maximal
dangerous set Xo3 that contains xo and x3 but not x1. Also, xz; is the
only edge between X; and X;; U X;;) where X; = X;; N X;; for distinct
i,7,0 € {1,2,3}.

We claim that X; is tight for all 7. As if otherwise, by Proposition
2.4.3,

k+1+k+1
> d(Xi5) + d(Xq)
— d(X) + d(Xy; U Xy) + 2d(Xi, Xa)
> k414 d(X5; U Xa).

Xi;UX; would be dangerous, which contradicts the maximality of X;.
Moreover, we have d(X;;, X;;) = 0 for distinct 4, 5,1 € {1,2,3}.
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Now, we consider the dangerous set Xio and the tight set X3. Sup-
pose that Xi5 N X3 is non-empty. By Proposition 2.4.3, we have

k+14k > d(X12)+d(X3) > d(X12NX3)+d(X12UX3) > k+d(X1pUX3).

So X1o U X3 is dangerous. But this contradicts the maximality of Xis.
Therefore, X5 N X3 = X715 N X3 N X9z must be empty.

Figure 2.2: Wiy, Woz and W3

The structure of X759, X3 and Xo3 is displayed in Figure 2.2. One
can check that

k+k+k
=d(X1) + d(Xsy) + d(X3)
= d(X12) + d(Xlg) + d(ng) —a—b—c—3
<3k+3—-a—-b—c—3
. Therefore, a = b = ¢ = 0, which means zx1, xxo, xx3 are the only
edges that leave X15UX;3UX93. However, by assumption, £ > 2. If & >
3, then d( X715 U X73U Xo3) = 3 contradicts that G is k-edge-connected.

Otherwise, k € {2,3}, but X5 U X33 U Xy3 would be dangerous and
this contradicts the maximality of X;5. This completes the proof. [
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A Typical Proof of Splitting-Off Theorem

As we have seen in the example above, a typical proof of a splitting-off
theorem involves several components.

(i) First, we characterize the condition under which the operation fails
to preserve the connectivity requirement. Usaually, this condition can
be stated in terms of the existence of some tight or dangerous sets with
certain properties.

(ii) Then, we try to argue that the tight (or dangerous) sets must
form some special configuration due to the submodularity constraints.
In the example above, the special configuration is the three properly
intersecting maximal dangerous sets.

(iii) The proof is then concluded by showing that the existence of such
special configuration would lead to a contradiction, so there is always
an admissable pair. In some other cases, the special configuration
itself may already be the desired conclusion. We then show that some
operations can be performed when such special configuration exists.

The proofs of our splitting-off theorems in Chapter 2 will have a
similar flavor.

2.5 Splitting-Off Concerning Edge Connectivity

In this section, we survey previous work on splitting-off theorems,
which has a broad literature of its own. We also present sample appli-
cations of some edge connectivity splitting-off theorems.

Lovasz’s and Mader’s Splitting-Off Theorems

The splitting-off operation is initially introduced for solving edge con-
nectivity problems. The first general splitting-off theorem is proved by
Lovasz [47].
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Theorem 2.5.1. (Lovasz’s Splitting-Off Theorem,)
Let G = (V + s, E) be a graph such that

dX)>k WAXCV (2.5)

where k > 2. Suppose d(s) is even. Then for any edge su incident on s,
there is another edge sv such that condition 2.5 holds after splitting-off
su and sv.

Another theorem by Mader states that in a minimally k-edge-connected
graph, there is always a vertex with degree exactly k. These two the-
orems together imply a constructive characterization of the class of
k-edge-connected graphs when £ is even.

Later, Mader [49] proved a much stronger extension of Theorem
2.5.1.

Theorem 2.5.2. (Mader’s Splitting-Off Theorem [49])

Let G = (V,E) be a graph and s be a vertex such that d(s) # 3
and there is no cut edge incident to s. Then there is a pair of edge
incident to s such that Mu,v) = N(u,v) for every pair of vertices
u,v # s, where N (u,v) is the edge connectivity between u and v after
the splitting-off 1s performed.

These splitting-off theorems and other variants have many appli-
cations in edge connectivity orientation and augmentation problems.
One typical application is to use the splitting-off operation as an re-
duction step in an inductive proof for certain property of the class of
k-edge-connected graphs.

Robins’ Orientation Theorem: An orientation theorem of Robins
[54] states that a graph G = (V| F) has a strongly 1-edge-connected
orientation if and only if it is 2-edge-connected, where a strongly k-
edge-connected orientation of G is an assignment of directions to edges
in GG such that there are k edge disjoint directed paths from every vertex
to any other vertex.

We can prove this by induction on the size of |V|. Our proof follows
that of Lovasz. It can be shown that there is always an even degree
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vertex in a minimally 2-edge-connected graph. Therefore, we can apply
splitting-off on a even vertex until it is isolated from the rest of G. A
strongly connected orientation of the remaining graph can be found
by induction. This orientation can then be extended to a strongly
connected orientation of G in the natural way.

o

o

(1) 2

o

0

3) “4)

Figure 2.3: Orientation by Splitting-Off

In fact, Lovasz’s original proof was used to prove a stronger theorem
by Nash-Williams [51], which generalizes Robin’s orietation theorem.

Theorem 2.5.3. (Nash-Williams’ Weak Orientation Theorem [51])
An undirected graph G is 2k-edge-connected if and only if G has an
strongly k-edge-connected orientation.

Edge Connectivity Augmentation Problem: Another beautiful
application of splitting-off thereom can be found in edge connectivity
augmentation problem. Suppose G = (V, F) is a k-edge-connected
graph and we want to add minimum number of edges to G to make it
k + 1-edge-connected. Frank [22] proves that the following algorithm
is optimal.

Add a new vertex s to GG such that it is adjacent to every vertex in V.
This new graph will be k + 1-edge-connected. Now remove redundant



CHAPTER 2. BASICS 28

edges incident to s until it becomes minimally k£ + 1-edge-connected.
Without loss of generallity, it can be assumed that s has even degree.
Perform splitting-offs on s until s is isolated and the resulting graph
will be k + 1-edge-connected.

(1
Figure 2.4: Augmentation by Splitting-Off when k& = 3

Some variants of splitting-off theorems may need to preserve addi-
tional constraints. For example, the splitting-off may have to preserve
simplicity [2] or bipartiteness [1] of the graph. Such variants have been
developed for solving constrained augmentation problems. Splitting-
off thereoms have also found application in various other problems,
auch as tree (or more generally Steiner tree) packing problems [44], [9]
or analysis of fractional solution in polyhedral combinatorics [28], to
name a few.

2.6 Splitting-Off Concerning Vertex Connectivity

In this section, we discuss several variants or extension of Bienstock
et al’s vertex connectivity splitting-off theorem and explain why they
cannot be applied in our scenario.

Unlike the case for edge connectivity, there are not as many splitting-
off theorems for vertex connectivity. Possibly this is due to their lim-
ited number of applications as compared to those of edge connectivity
splitting-off theorems. In many applications of edge connectivity split-
ting off theorems, a complete splitting off is required to isolate a vertex
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(a complete splitting off is a sequence of splitting-offs of all the edges
incident to the same vertex that preserves the connectivity for the rest
of the graph), however this is not possible for vertex connectivity. Also,
because of the transitive nature of edge connectivity, the reverse op-
eration of splitting-off: subdivide an edge and hook them to a vertex,
can preserve the global edge connectivity of the whole graph, but this
is not true for vertex connectivity, as the hooking operation may glue
together two vertex disjoint paths.

Variants of Bienstock et al’s Splitting-Off Theorem

The earliest splitting-off theorem concerning vertex connectivity is Bi-
enstock et al’s splitting-off theorem that we have already mentioned.
Jordan [33] has proved a related theorem that asserts the existence of
a “saturating edge” in augmentation problem.

Recall that, for a k-vertex-connected graph G, a tight set is a set
with exactly k neighbors. In order to increase the vertex connectivity
of G from k to kK + 1, a new edge must be added between X and
V — (X UN(X)) for every tight set X. Roughly speaking, a saturating
edge uv is a new edge whose addition eliminates two disjoint minimal
tight sets such that no tight set cover u and v. Actually, the theorem
of Jordan can be seen as a variant of Bienstock et al’s splitting-off
theorem in a different context. It suffers from the same problems as
Bienstock et al’s splitting-off theorem does and therefore cannot be
applied in our scenario.

Another vertex connectivity splitting-off theorem is proved by Cheriyan
and Thurimella [11]. It also characterizes condition under which ad-
missable pair exists but it is weaker than Bienstock et al’s splitting-off
theorem as it requires the assumption that the degree of the vertex to
split on must be at least 2k insteasd of k + 2. Therefore, it is also not
applicable in our case.

Extension to Rooted Connectivity
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A graph G = (V, E) is said to be k-vertex-connected from s for a
specific root vertex s € V' if there are k internally disjoint paths from
s to v for every v € V', v # s.

An extension of Bienstock et al’s splitting-off theorem to rooted
connectivity is proved by Cheriyan, Jordan and Nutov[10]. We need
the definition of Property(T) for stating their results.

Definition. Let G = (V, E) be a simple k-vertex-connected graph and
x €V is a vertex with d(x) > k = 2. We say that G has Property(T)
on x if there is a size k cutset S such that x € S and each S-component
contains exactly one x-neighbor.

A sample graph with Property(T) on z is Example 2 in Section
1.3.3.

Theorem 2.6.1. (Cheriyan et al’s Splitting-Off Theorem, Theorem 3
of [10])

Let G = (V. E), with |V| > 2k, be a k-vertex-connected from x graph
for a specific root vertex x € V. If x has node degree at least k+2 and
every edge incident to x 1s critical with respect to k-vertex-connectivity
from x , then either:

1. there is a splitting-off on x that maintains k-connectivity;
2. G has property(T) on x.

With a simple proof, Theorem 2.6.1 can be shown to imply Bien-
stock et al’s splitting-off theorem, though it has the same problem of
Bienstock et al’s splitting-off theorem. It requires the assumption that
every edge incident to x must be critical. So it cannot be applied in
our algorithm.

In fact, Cheriyan et al have proved a version of Theorem 2.6.1 (The-
orem 18 of [10]) that permits redundant edges incident on x. However,
in this version, they require that d(x) to be at least k + 3. This slight
difference makes it inapplicable in our case as there may be degree
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k + 2 vertex with redundant incident edge when executing our algo-
rithm. Their theorem is not sufficient for reducing the degree of such
vertex.

2.7 Vertex Connectivity Network Design

In Section 1.1, we have briefly mentioned some of the results in vertex
connectivity network design. In this section, we will go into some more
details.

We start by defining the most general model. In a vertex connectiv-
ity network design problem, we are typically given a undirected graph
G = (V, F) and a cost function w on E and our task is to find a sub-
graph H of G such that between every pair of vertices v and v in V,
there are at least r(u, v) internally disjoint paths, where r is a specific
connectivity requirement function. The case for directed graph can be
similarly defined.

There are numerous special cases that are of special interests. Among
them, the most widely studied cases are (i) rooted connectivity, (ii)
global connectivity and (iii) generalized Steiner network, where they
are classified according to their connectivity requirement, starting from
the most restricted to the most general. As expected, the most general
is also the most difficult.

On the other hand, we may also classify these problems according
to the edge cost function. Some popular models include:

1. G is the complete graph, w(e) € {0,1,00} for all e € E, this is
also called the minimum size augmentation problem:;

2. the unweighted case, where w(e) € {1} for all e € FE;

3. the metric cost, where GG is the complete graph, and w is assumed
to satisfy the triangle inequality; and

4. the general cost, where w can be arbitrary.
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Since the focus of this thesis is on metric cost, we will only briefly cover
the results on other cases.

In the following three sections, we will survey previous works on
three major special cases: (i) rooted connectivity, (ii) global connec-
tivity and (iii) generalized Steiner network.

2.7.1 Rooted Connectivity

In rooted connectivity problem, the connectivity requirement r(u,v)
is positive only when u or v is the root vertex s. In this section, we
further restrict ourselves to the case where r(s,v) = k for all v € V for
some constant k. The more general rooted Steiner network problem is
discussed in Section 2.7.3.

A digraph D = (V, A) is k-vertex-connected from s for a specific
root vertex s € V if there are k internally disjoint directed paths from
s to v for every v € V', v # s.

The problem of finding a minimum cost k-vertex-connected from
s subgraph plays an important role in vertex connectivity network
design since it is oftened used as a subroutine in solving other vertex
connectivity network design problems.

Even for the unweighted case, the undirected version of this prob-
lem is NP-complete as it generalizes the Hamiltonian cycle problem.
Surprisingly in contrast, as shown by Frank and Tardo [25], the di-
rected version is polynomial time solvable for arbitrary weight using
submodular flow technique. Later this result is extended by Frank
(23], who showed that a common generalization of this problem and
the k-arborescence problem can be reduced to matroid intersection.

This algorithm can be used to get a 2-approximation algorithm for
the undirected version [37]. Given an undirected graph and a root
vertex, we just have to replace every undirected edge uv by two arcs
between u and v with opposite directions and run Frank and Tardos’s
algorithm. The underlying undirected graph of the returned solution
would be k-vertex-connected from s.
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Minimum Cost k-Vertex-Connected Subgraph Problem

One application of Frank and Tardos’s algorithm is the Minimum Cost
k-Vertex-Connected Subgraph problem.

Let G* be a minimum cost k-vertex-connected subgraph and G7 be
a minimum cost k-vertex-connected from s subgraph. Clearly, w(GY)
is a lower bound of w(G*) as G* is k-vertex-connected from every
vertex. On the other hand, if G} is not k-vertex-connected, then every
separator of size < k£ must contain s. Therefore, we can get a simple
2k-approximation by running the 2-approximation algorithm for the
Minimum Cost k-Vertex-Connected from s Subgraph problem on k&
arbitrary root vertices.

In case the cost function satisfides the triangle inequality, a better
approximation ratio can be achieved with some more observation. It
is discussed in the next section.

Minimum Cost Vertex Connectivity Augmentation

Frank and Tardos’s algorithm can also be used in finding an minimum
cost set of edges that augments a k-vertex-connected graph to be k4 1-
vertex-connected [13].

Let G be a k-vertex-connected graph. A vertex subset T is called a
tight set cover if every tight set in GG contains at least one vertex in 7.
Mader [48] proved that when n, the size of the vertex set, is sufficiently
large with respect to k, namely n = O(k?) there is a tight set cover of
size 3.

Suppose 1" is a minimum size tight set cover in this case. A 6
approximation to the Connectivity Augmentation By One problem can
be obtained by taking the union of the solutions returned from running
Frank and Tardos’s algorithm on each vertex in 7.

We remark that a O(logk) approximation [13] to the Minimum Cost
k-Vertex-Connected Subgraph problem can be obtained by incremen-
tally finding a ¢-vertex-connected subgraph for each = 1,2, ..., k using
the augmentation algorithm with re-setting of the costs of the alraedy
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brought edges to zero.

2.7.2 Global Connectivity

In global connectivity problem, the connectivity requirement between
all pairs of vertices is a constant k. This is the Minimum Cost k-
Vertex-Connected Subgraph problem.

For directed graphs, the minimum size augmentation problem (the
special case where w(e) € {0,1,00}) is proved to be polynomial time
solvable by Frank and Jordan [24]. The result of [24] uses the ellipsoid
method. Later, more efficient combinatorial algorithms are obtained in
[4]. For undirected graphs, it is a major open problem that whether the
minimum size augmentation problem is solvable in polynomial time,
though it is known to be true for every fixed k [31].

The Minimum Cost k-Vertex-Connected Subgraph problem becomes
NP-hard when the input graph is no longer a complete graph, even in
the unweighted case where every edge has the same cost, as it gen-
eralizes the Hamiltonian Cycle problem. In this case, Cheriyan and
Thurimella [12] gives a (1 + 1/k)-approximation algorithm.

For metric cost, the Minimum Cost k-Vertex-Connected Subgraph
problem admits constant factor approximation. One of such algorithm
is used as a black box in our algorithm. We will talk more about this
in Section 2.8, where the topic is metric cost network design.

In case of general cost, it is another major open problem that
whether it has a constant factor approximation as the case for edge con-
nectivity does. For small k (k = O(y/n)), Cheriyan et al [13] has given a
O(log k) approximation algorithm for this problem. Buiding on a long
line of work [43], [19], Nutov [52] extends the O(log k)-approximation
to all cases except when k = n — o(n).

2.7.3 Generalized Steiner Network

In the generalized vertex connectivity Steiner network problem, the
connectivity requirement between all pairs of vertices can be arbitraray.
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Two special cases of particular interests are

(1) Rooted Steiner Network, where the connectivity requirement r(s, v)
is a constant k£ when s is the root vertex and v is in a specific set of ter-
minal vertices and zero otherwise, this generalizes the Minimum Cost
k-Vertex-Connected From s Subgraph problem; and

(ii) Minimum Cost Subset k-Vertex-Connected-Subgraph problem, where
the connectivity requirement r(u,v) is a constant k£ when both u and

v are in a specific set of terminal vertices and zero otherwise, this gen-
eralizes the Minimum Cost k-Vertex-Connected Subgraph problem.

For metric cost, there is a constant factor approximation algorithm
for the Minimum Cost Subset k-Vertex-Connected-Subgraph problem
by Cheriyan and Adrian [14]. Built on this, they also show that there is
a log r,a-approximaiton algorithm for the general vertex connectivity
Steiner network problem, where 7,4, is the maximum value of 7(u, v).
However, for general cost, in [6], Chakraborty et al has shown that the
generalized vertex connectivity Steiner network problem is £*M-hard
to approximate even when r(u,v) only take values in {0, k}.

Recently, the generalized vertex connectivity Steiner network prob-
lem has attracted much attention [6] and [16], in attempts to close the
gap between its approximation ratio and the hardness result. In par-
ticular, Chuzjoy and Khanna [17] has shown a randomized 73, logn-
approximation algrotihm using a simple reduction to the Element Con-
nectivity Steiner Network problem, which can be approximated to
within a factor of 2 [21] by generalizing Jain’s iterative rounding tech-
nique [32]. Recently, Nutov [53] has obtained k? approximation for the
Rooted Steiner Network problem and k?logk approximation for the
Minimum Cost Subset k-Vertex-Connected-Subgraph problem.
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2.8 Network Design with Metric Cost

As we have mentioned in Section 1.1.3, many network design problems
or degree bounded network design problems are hard to approximate
when arbitrary edge cost is allowed. For example, the Minimum Cost
k-Vertex-Connected Subgraph problem is not known to admit constant
factor approximaton that is independent of k, while both the Travel-
ling Salesperson Problem and the Degree Bounded Minimum Spanning
Tree problem are not even approximable within f(n) for any polyno-
mial time computable function f.

However, the situation changes drastically if the cost function must
obey the triangle inequality. Much better approximation is achievable
in this case. One example we have already seen in Section 1.3.1 is the
Metric Travelling Salesperson Problem which has a 3/2-approximation
algorithm. In this section, we will see two more problems which allow
much better approximation when metric cost is assumed.

2.8.1 Minimum Cost k-Vertex-Connected Subgraph

The first problem we considered is the Minimum Cost k-Vertex-Connected
Subgraph problem. We shows that there is a (24-2(k—1)/n)-approximation
algorithm for this problem. This result is due to [37]. A similar al-
gorithm with a slightly improved approximation ratio 2 + (k — 1)/n
is obtained by [42]. It is used as a black box in our algorithm. We
include the proof of [37] here for completeness.

Let G = (V, E) be a graph (or digraph) and R be a sepecific set of
k root vertices in V. G is called k-vertex-connected from R if there are
k — |R N {v}| paths from R — v to v that are vertices disjoint except
at v for any v € V.

Khuller et al’s algorithm uses the following observation.

Lemma 2.8.1. Let H be a graph and R be a set of k root vertices.
If H is k-vertex-connected from R, then H + K 1is k-vertex-connected,
where K is a clique (a complete subgraph) on R.
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Proof. Assume to the contrary that H + K is not k-vertex-connected,
so there must be a minimal cutset S of size < k in H + K. Let X, be
the i-th S-components. Since all vertices in R are adjacent in H+ K, R
cannot intersect two different S-components. Therefore, R is contained
in S U X; for some 7. Consider a vertex v in X; where j # 4. Since
H is k-vertex-connected from R, there are k paths from R to v that
are pairwise vertex disjoint except at v. This contradicts that S is a
cutset of size < k. H

Based on this observation, it suffices for us to find a low cost k-
vertex-connected from R subgraph H for some k root vertices R such
that there is a low cost clique on R. Here we make use of the assump-
tion that the cost function satisfies the triangle inequality.

A d-star, denoted as K 4 is a bipartite subgraph with exactly one
vertex on one side and d vertices on the other.

Lemma 2.8.2. Let G be a weighted graph with a cost function w that
satifies the triangle inequality. Suppose S is a d-star and K 1is the
d + 1-clique on the vertices of S. Then, w(K) < (k — 1)w(S5).

Proof. Let x be the center of S (the vertex on the smaller side of 5).
For any two vertices y,z # x in S, by triangle inequality, we have
w(yz) < w(xry) +w(xz). Therefore, we can charge the cost of an edge
in K to the corresponding pair of edges in S. Each edge zy in S is
charged by exactly k — 1 edges (including itself) that are incidnet to y
in K. [

Let S be the minimum cost (k — 1)-star in the input graph G and
G* be the minimum cost k-vertex-connected subgraph of GG. Since two
copies of G* can be obtained by taking the union of all stars centered
at each vertex in G*, the cost of S is at most 2/n times that of G*

It remains to find a low cost k-vertex-connected from S subgraph.
We use an algorithm of Frank and Tardos for the Minimum Cost Di-
rected k-Vertex-Connected from s Subgraph problem as subroutine.

We create a new digraph D by replacing each directed edge uv in
G by two arcs uv and vu of opposite directions (with cost unchanged),
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and adding to G a new vertex s and k zero-cost arcs from s to S. Next,
we run Frank and Tardos’s algorithm with this new graph and the root
vertex s as input. The returned solution D* is then converted back to
a k-vertex-connected from S subgraph G’ by taking the undirected
version of each arc picked in D*.

The cost of G’ is at most 2w(G*) since picking both arcs for each
edge in G* and the k edges leaving s makes a directed k-vertex-connected
from s subgraph in D. Finally, the union of G’ and the clique K
on S gives us a k-vertex-connected subgraph whose cost is at most

2+ (k—1)/n)w(G*).

2.8.2 Degree Bounded Minimum Spanning Tree

In this section, we consider another problem that admits much bet-
ter approximation when restricted to the special case of metric cost,
which is the Degree Bounded Minimum Spanning Tree problem. Re-
call that for general cost, this problem is NP-hard to approximate as
it generalizes the Hamiltonian Path problem.

However, as shown by Fekete et al [20], when the cost satisfides the
triangle inequality, there is a polynomial time algorithm that trans-
forms any given tree T to a tree T that satisfides the degree upper
bound at every vertex such that w(7") < (2 —min{(b(v)—2)/(dr(v) —
2) : dp(vv) > 2} w(T), where b(v) is the degree upper bound at the
vertex v and dr(v) is the degree of v in T. We now give a sketch of
their algorithm.

Their algorithm is based on an operation called the adoption. For
an edge xy in T, an adoption of a x-neighbor z by v is the operation
of removing from T the edge xz and adding a new edge yz to T'. By
the triangle inequality, the increase in cost caused by this operation is
at most w(xy). Alternatively, we might also view it as duplicating xy
and then splitting off xy and zz.

Clearly, a main effect of adoption is that the degree of x has been
reduced by one while that of y is increased by one. Therefore, for two
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Figure 2.5: Adoption of a z-neighbor z by y

adjacent vertices x and y, if x has a higher degree than b(x) while y
has a lower degree than b(y), we can shift the load of x to y. In case
the two vertices are not adjacent, we can repeat the adoption process.
The increase in cost is at most the cost of the path between them, but
by triangle inequality, this is no more than the cost of zy.

The only problem that remains is to match vertex with too high
degree to vertex with low enough degree such that the total cost of
the adoption sequence is minimized. Fekete et al shows that this can
be formulated as a network flow problem and the cost of the adoption

sequence can be bounded by (2—min{(b(v)—2)/(dr(v)—2) : dp(vv) >
2Hw(T).

O End of chapter.
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Technical Contents

In this thesis, we study a special case of the degree bounded vertex
connectivity network design problem.

Problem: Minimum Cost k-Regular k-Vertex-Connected Subgraph
Input: A graph G = (V, E) that has a k-vertex-connected subgraph,
a cost function w : E — R™, and an positive integer k > 2 such that k
or |V] is even

Objective: Find a minimum cost k-regular k-vertex-connected sub-
graph of G.

Our main result is an approximation algorithm for this problem.

Theorem 1.2.1 If the edge cost satisfies the triangle inequality and
\V| > 2k there is a polynomial time (2+(k—1)/n+1/k)-approximation
algorithm for the Minimum Cost k-Regular k-Vertex-Connected Sub-
graph problem.

We will present the algorithm in this chapter. According to our
outline in Section 1.3, our algorithm consists of four main phases. A
chart showing these main phases is given in Figure 3.1.

The procedure for finding the initial k-connected subgraph in Step
1 has been discussed in Section 2.8.1. Steps 2 and 3 are for converting
the vertices to be k-even. By Bienstock et al’s splitting-off theorem,
admissable pairs or jointly admissable pairs exist if some vertex have

40
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Input: An integer £k > 2, a graph G = (V, E) with |V| > 2k, a cost function
w : E — RT that satisfies triangle inequality

Output: A spanning k-regular k-connected subgraph of G

Begin

1. Find a k-connected subgraph using the algorithm in [42].

2. Split-off until all vertices have node degrees k or k + 1.
(No need to keep parallel edges)

3. Add a minimum cost matching on the set of k-odd vertices.
4. Split-off until all vertices have node degrees k.
End

Figure 3.1: Simplified Main Algorithm

node degree > k + 2, so Step 2 is feasible whereas Step 3 can be done
by using a standard minimum cost matching algorithm. Therefore,
after Step 3, all vertices either have edge degree k or k + 2. Step 4 is
for getting rid of the remaining degree k 4 2 vertices. This is the most
technical part of our work.

As we have mentioned at the end of Section 1.3.3, Bienstock et
al’s splitting-off theorem can no longer be applied in Step 4, since
parallel edges and redundant edges may have been created in Step 3.
Therefore, we have to extend Bienstock et al’s splitting-off theorem to
handle such cases. As we will see, we can handle parallel edges and
redundant edges separately. We will apply Theorem 1.3.4 for splitting-
off in case parallel edges exist, and Theorem 1.3.5 in case redundant
edges exist.

Since the proof for Theorem 1.3.4 is easier. It will be presented in
Section 3.2 first. Then in Section 3.3, we will prove Theorem 1.3.5.
Some common arguments used in both proofs are described in Section
3.1.1. The complete description and proof of correctness of our main
algorithm is given in Section 3.4.



CHAPTER 3. TECHNICAL CONTENTS 42

3.1 Preliminary

3.1.1 Tight Sets

Recall the example that we used in Section 2.4 to illustrate a typical
proof of a splitting off theorem. In that example, tight and dangerous
sets play an important role. They are the obstacles that prohibit ad-
missable splitting-offs. In this section, we are going to develop some
preliminary properties of tight sets that are needed in our proofs.

In the example in Section 2.4, tightness is defined with respect to
the edge degree function d and the uniform edge connectivity function
g = k. In this chapter, we study tight sets for vertex connectivity.
Recall the definition of k-vertex-connected graph: a graph G = (V, F)
with [V| > k + 1 is k-vertex-connected if removing less than k& — 1
vertices does not disconnect G. More formally, G is k-veretx-connected
if

['X)>k (3.1)
holds for all non-empty subset X of V' such that |V — X| > k. In the
following, a set X C V is said to be tight if ['(X) = k.

As mentioned in Section 2.3, the node degree function I' is submodu-
lar. The following two propositions are results from the submodularity
of I". Intuitively, they state that tight sets are closed under intersec-
tion, union and set difference if they are properly intersecting.

Two sets Wp and Wy are said to be interscting if Wi\ Wo, Wo \ W;
and W1;NWjs are all non-empty. Suppose W7 C V and Wy C V are tight
and intersecting. Let S1 = N(Wy), So = N(Wy), Uy =V \ (W1 U Sy)
and Uy = V' \ (WU .Sy). (Note that, by definition, W; U S; U U; is a
partition of V for i € {1,2}.)

Proposition 3.1.1. If [W, UW,| < |V| =k, then W1 N Wy and Wy U
WQ are tight, N(W1 M WQ) - (Sl N WQ) U (Sl N SQ) U (SQ N Wl) and
N(Wl U WQ) = (Sl N UQ) U (Sl N SQ) U (SQ N Ul)

Proof. Tt is easy to check that [N (Wy)|+ [N(Wo)| = |[N(Wy N Ws)| +
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Figure 3.2: Neighbors of Wy, Wy, W7 N Wy and W, U Wy partitioned according to
their contribution to each term in Inequality 2.4 when f =T

’N(Wl U W2)| + ‘A| + ‘B‘ + ’O| where A = (Sl N SQ) \ N(Wl N WQ),
B = (Sl N WQ) \N(Wl N WQ) and C = (SQ N Wl) \ N(W1 N WQ) (See
figure 3.2) So by the definition of tight set and condition 3.1, we have,

k+k
= [N(W)[ + [N (W)]
= IN(W1 N W) + [N(Wr UW2)| + |A] + |B| + |C]
>k+k

which implies |[N(W; N Wy)| = [N(Wy UW,)| = k and |A| = |B| =
IC| = 0.

And by definition of S; and Sy, N(W7; N Wsy) C (S1NWs) U (51N
Sg) U (SQﬂWl). Conversely, we have (SlﬂWQ)U(SlﬂSQ)U (SQﬂWl) Q
N(W1 N Wsy) because |A| = |B| = |C] = 0. We can also check that
NWiUW,) = (S1NU;) U(S1NSe) U (SyNUL). O

Proposition 3.1.2. If |[Wy U Wy < |V| =k, Wi N Uy and Wy N Uy
are non-empty, then they are tight, N(Wy N Us) = (Sy N Uy) U (S1 N
52) U (SQ N Wl), N(W2 N Ul) = (SQ N Ul) U (SQ N Sl) U (Sl N Wg) and
ST NUs| = |Se NUL| = [W1 NSy = [Wen Sy
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Figure 3.3: Partition of V' by intersections of Wy, Sy, Uy, Ws, Sy and Us

Proof. Parition V' according to figure 3.3. Observe that N(W;NUs,) C
JUMUO and N (WoNU;) € KUMUP. As WiNUsy and W,NU; are non-
empty, by condition 3.1, |J| 4+ |M|+|O| > k and | K|+ |M|+ |P| > k.
But |J|+ | M|+ |O|+ | K|+ |M|+|P| = |S1| + |52 = k+k, so W1 N Uy
and Wy N Uy are tight.

Moreover |Si| = |J| + |M| + |O| implies |O] = |P|, |S1| = |K| +
| M|+ |P| implies |J| = |K| and |Si| = |O|+|M|+ |P| (by Prop. 3.1.1)
implies |J| = |O|. Therefore |J| = |K| = |O| = |P|. O

3.1.2 (zx;)-Critical Sets

Recall that for a k-vertex-connected graph GG, an egde in G is critical
if its removal decreases the vertex connectivity to k — 1, otherwise it is
redundant. A graph is minimally k-vertex-connected if every edge of
it is critical.

Intuitively, if an edge is redundant, it is easier to form an admissable
pair with another. In fact, we can show that when there are two
redundant edges, there is always an admissable pair.

It will be convenient to characterize a redundant edge using a special
type of tight set. Let x be a vertex and xz; be a z-neighbor. We say
that a tight set X is (xx;)-critical if {z;} = X N N(x) and z € N(X).
Clearly, the edge zz; is critical if there is a (zx;)-critical set. The
reverse is also true, since removing zx; decerases I'(X) for any set
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X C V by at most one and I'(X) decreases by one, exactly when
x (or x;) is in N(X) and x (respectively x;) is adjacent only to x;
(respectively z) but no other in X.

Suppose G = (V, F) is a simple k-vertex-connected graph, = is a
vertex with degree at least £+ 1 and z; and x; are two z-neighbors.

Claim 3.1.3. If there exists a (xx;)-critical set, then there exists an
unique maximal (xx;)-critical set.

Proof. Suppose there are two distinct maximal (xx;)-critical sets W)
and Ws. By definition of (zz;)-critical set, |N(x) \ (W U Wy)| >
|IN(x) \ {x;}| which is at least k as d(x) > k + 1. So by Proposition
3.1.1, Wy U Wy is tight. It is easy to check Wy U Ws is a (zz;)-critical
set. This contradicts the maximality of W; and W5s. []

For a critical edge xz;, we use W, to denote the unique maximal
(xx;)-critical set. We also set S; = N(W;) and U; =V \ (W, U S;).

Claim 3.1.4. W; and W; are disjoint if they exist.

Proof. Suppose that W; and WW; are non-disjoint. Note that x € 5;N.S;
and |[N(z)\ (W; UW;)| = |[N(x) \ {xi,x;}| > k. So by Proposition
3.1.1, z € N(W; nW;). However, by definition z; ¢ W; and x; ¢ W},
so there is some other z-neighbour z; in W; N W}, which contradicts
the definition of (xx;)-critical set. O

These two properties of (xx;)-critical sets will be frequently used in
the proofs of Theorems 1.3.5 and 1.3.4.

3.2 Splitting-Off with Parallel Edges

As mentioned in the outline of our main algorithm, parallel edges may
form when adding the matching or performing splitting-offs. Therefore,
we need to allow splitting-off involving parallel edges. Suppose uv
and uw are two parallel edges. Note that splitting-off uv and ww is
just same as adding vw (in terms of vertex connectivity). So wv and
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uw must be admissable when both of them are parallel. Therefore,
we may assume the pair of edges to split involves only one parallel
edge. But splitting-off a parallel edge uv and a non-parallel edge uw
is same as removing uw and adding a new edge vw (in terms of vertex
connectivity). In fact, it suffices for our purpose to prove the following.

Theorem 1.3.4 Let G = (V,FE) be a simple k-connected graph.
Suppose u,v € V are adjacent, d(u) > k+ 1 and uv is non-redundant,
then there is a u-neighbor u; such that removing uu; and adding vu;
preserve k-connectivity:.

Proof of Theorem 1.3.4

In the following, we prove Theorem 1.3.4. Let u; be the i-th u-neighbor
distinct from v and v; be the i-th v-neighbor distinct from u. For the
sake of contradiction, assume that Theorem 1.3.4 is false, then every
uu; must be critical. So every w-neighbor u; # v is contained in a
maximal (uu;)-critical set, denoted as W,,.. Also by assumption, the u-
neighbor v is contained in a maximal (uwv)-critical set which we denote
as Wy,. By Proposition 3.1.4, these maximal tight sets are all disjoint.

3.2.1 When Does Replacement Fail?

For each u-neighbor u; # v, let W, be the unique maximal tight set
W such that W N N(u) = {u;}, {u,v} C N(W).

Claim 3.2.1. [f there exists a tight set W such that W NN (u) = {u;},
{u,v} € N(W), then the maximal such tight set is unique.

Proof. The proof is similar to that of Claim 3.1.3. Suppose there are
two distinct maximal (zz;)-critical sets Wi and Ws. By definition of
Wy and Wa, |N(u) \ (Wy U Wy)| > |N(u) \ {u;}| which is at least k as
d(u) > k 4+ 1. So by Proposition 3.1.1, Wi U W5 is tight. It is easy
to check W7 U W5 satisfides the definition of WW. This contradicts the
maximality of W7 and W. ]
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Also note that since W,,, is tight and v € W,.,,, W,,, would con-
tain some v-neighbor v; (possibly v; = w;) if W, exists, otherwise
N(W,,») — v is a cutset of size < k.

We may characterize the condition under which replacement fails
as follows.

Claim 3.2.2. Removing uu; and adding vu; destroy k-connectivity if
and only if Wy, exists.

Proof. The "if” direction is obvious. We consider the "only if” di-
rection. Assume to the contrary that the resulting graph G’ is not
k-connected. Then there is a size-(k — 1) cutset S in G' whose removal

creates two connected components W and U with v; € W, v € U and
W N N(u) ={u;}. (See Figure 3.4.)

Figure 3.4: After replacement, S — u separates W and U + u

Notice that v € W as u; is the only u-neighbour in W but v and wu;
are adjacent after addition of vu;, so v must be in S, otherwise v is a
new neighbor of W. W, is the unique maximal such W. ]

Therefore, assuming that replacement destroys k-vertex-connectivity
for all u-neighbor wu;, then W, , exists and is well defined. We now show
that all these W,,,,’s and W, are pairwise disjoint and this would lead
to a contradiction.

3.2.2 Deriving a Special Structure
Claim 3.2.3. W, = W, for each u-neighbor w; # v.
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Proof. First, we show that W,, € W,,. Suppose W,, — W, , is non-
empty. By definition of W,,., and W,,. |N(u) \ (W, UWy..)| > [N (u) \
{u;}| which is at least k as d(u) > k+1. So by Proposition 3.1.1, W,,. U
W, is tight. We can check that W, UW,,, satisfides the definition of
W..v, which contradicts the maximality of W, .

However, W,., is also a (uu;)-critical set. Therefore, by the maxi-
mality of Wy, Wy, = W,,. ]

3.2.3 Such Structure Is Impossible

Recall that each W, , contains at least one v-neighbor but all W, s
are pairwise disjoint, so the v-neighbors contained in different W, ,’s
are distinct. By assumption, (u) > k + 1, so there are at least k such
W.'s. However, W, is also disjoint from them, which implies W, has
at least k + 1 neighbors, namely v and the > £ distinct v-neighbors in
the W, ’s. The structure of W, ’s and W, is shown in Figure 3.5. This
contradicts the tightness of W, and completes the proof.

Wu3

Figure 3.5: The structure when k& = 3, W, has > 3 neighbors
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3.3 Splitting-Off with Redundant Edges

In this section, we are going to prove Theorem 1.3.5. For convenience,
it is recapped here.

Theorem 1.3.5 Let G = (V,E) be a simplpe k-vertex-connected
graph with |V| > 2k. If x € V has edge degree at least k + 2, then
either:

1. there is a splitting-off on x that maintains k-connectivity;

2. there are two jointly admissable pairs.

This is a strengthening of Bienstock et al’s Splitting-Off Theorem,
which additionally requires G to be minimally k-vertex-connected (ac-
tually, it suffices to assume that all edges incident to x are critical).
We will remove their minimality assumption. Our proof closely follows
that of Bienstock et al while some additional observations are added.
It will be benefitial to first take a look at their proof. After that, we
will highlight the differences between the proofs of ours and theirs.

3.3.1 Proof Outline

Bienstock et al’s proof follows the general strategy outlined in Section
2.4. The most technical part lies in the derivation of the structure
of the graph when no admissable pair exists. Recall that in Section
1.3.3, two minimally k-vertex-connected graphs (Examples 1 and 2) are
shown, where each of them contains a vertex that has no admissable
pairs. Example 1 is eliminated by the condition |[V| > 2k in Theorem
1.3.1.

Definition. Let G = (V, E) be a simple k-vertex-connected graph and
x €V is a vertex with d(z) > k+2. We say that G has Property(T) on
x if there is a size k cutset S such that x € S and each S-component
contains exactly one x-neighbor.
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Figure 3.6: Property(T) on z

Note that Example 2 in Section 1.3.3 is a sample graph with Prop-
erty(T) on z. In fact, Bienstock et al show that no admissable pair
on x exists if and only if G has Proporty T on z for a minimally k-
vertex-connected graph G. Moreover, the S-components are exactly
the maximal (xx;)-critical sets W;’s.

Then they concluded by a counting argument that if G has Prop-
erty(T), G would have two jointly admissable pairs such that simulta-
neously splitting off both of them would preserve k-vertex-connectivity.
An example has been shown in Figure 1.5.

Our Observations

We remove the minimality assumption in Theorem 1.3.1 in two steps.

An x-neighbor xz; is called a slack neighbor it xz; is redundant.
First, we show that when there are two redundant edges incident to =,
there is always an admissable pair of edges. Therefore, we may assume
that there is at most one slack neighbor. When it exists, we name this
unique slack neighbor z4. It can also be shown that z, if it exists,
must reside in N(W;) for any non-slack z-neighbor x;.

Using this property, it can be proved that if a redundant edge is
incident to x and no admissable pair exists on x, then GG has a structure
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similar to Property(T), which we call the Property(T*).

Definition. Let G = (V| E) be a simple k-vertex-connected graph and
x €V is a verter with d(x) > k+ 2. We say that G has Property(T¥)
on x if there is a size k cutset S such that S contains x and exactly one
x-neighbor xs, and each S-component contains exactly one x-neighbor.

Figure 3.7: Property(T*) on x

This step is similar to the derivation of Property(T) in Bienstock
et al’s proof with some more careful analysis. After Property(T*) is
established, we can show that there is always two jointly admissable
pairs of edges.

3.3.2 When Does Splitting-Off Fail?

Throughout this section and Sections 3.3.3 and 3.3.4, we assume that
G = (V, F) is a simple (not necessarily minimally) k-vertex-connected
graph, x is a vertex in V with d(x) > k+2 and x; is the i-th z-neighbor.

In this section, we characterize the condition under which splitting
off would destroy k-vertex-connectivity. Again, this is stated in terms

of the existence of some tight sets. A tight set X is (vx;, xx;)-critical
ifr; e X, 2, e XUN(X),z € N(X) and X N N(x) C {z;,z,}.
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Proposition 3.3.1. xx; and zx; form an non-admissable pair if and
only if at least one of the following is true:

i. there is a (xx;, vx;)-critical set containing both x; and x;,

i. there is a (xx;, xxj)-critical set W that contains x; and x; is in
N(W),

iii. there is a (xx;, vx;)-critical set W that contains x; and x; is in
N(W).

Proof. If one of the three cases is true, then after splitting off, S — x
becomes a cutset of size k — 1. This proves the "if” direction.

Now we prove the converse. Let Gj; be the graph resulted from
splitting-off xz; and zx;. As k-connectivity is not preserved, there
is a cutset S with |S| < k and each S-component W must have at
least one of {x,z;,z;} but not all of them, otherwise its neighbor set
is unchanged.

Since S is a cutset, there are at least two S-components. But as
x; and x; are adjacent in Gy;, x; and x; must not be in two different
S-components. So there are exactly two S-components, one contains
x and the other contains z; or z; or both. Without loss of generality,
let W be the S-component that does not contain .

In all cases, x; € W for [ # i,j otherwise S is not a cutset. And
|S| =k — 1 or else G is not k-connected, so S U {z} is a size-k cutset
in G’ which means W is (xx;, xx;)-critical or (xz;, za;)-critical in G.

[]

We remark that the second and third cases are not necessarily ex-
clusive.

Claim 3.3.2. If there exists a (xx;, xx;)-critical set, then there exists
an unique maximal (xx;, xx;)-critical set.

Proof. Suppose there are two distinct maximal (xz;, xx;)-critical sets
Wi and Wy. By definiton, |N(x)\ (W1 UW2)| > [N (2)\ {x;, z;}|, which
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@) U+x

(ii) U+x

Figure 3.8: 3 cases in which zz; and zz; are non-admissable

is at least k£ by assumption, so by Proposition 3.1.1, W U W, is tight.
It is easy to check Wy U W5 is a (xw;, xa;)-critical set. This contradicts
the maximality of W7 and Ws. []

From now on, for two xz-neighbors x; and x;, we use W;; to denote
the maximal (zz;, zx;)-critical set if one exists . Moreover, we set
Sz" = N(WZ]) and Uij =V \ (VVZJ U SZJ) Combining Claim 3.3.2 and
Proposition 3.3.1, we can characterize non-admissable pairs in terms
of WZ]

Proposition 3.3.3. A pair of edges xx; and xx; is non-admissable if
and only if at least one of the following s true:
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. VVZJ 75 0 and T; € Sz‘j,
1. Wji 7£ 0 and x; € Sﬂ
The concept of (xx;)-critical sets we introduced in the Preliminary
is also needed here. Recall that, a tight set X is (zz;)-critical if {x;} =
XNN(x)and x € N(X). For a critical edge zx;, W; denotes the unique
maximal (xx;)-critical set and S; = N(W;) and U; =V \ (W; U S;).
Some useful relations between W;’s and W;’s are listed below.

Claim 3.3.4. If W;; # 0, then W; C Wj;.

Proof. Suppose that Wi\ Wiy £ 0. [N(z) \ (W; UWy)| > N(z) \
{x;, xi;} > k implies W; U W; is tight. Checking the definition reveals
that W; UW;; is (xx;, vxj)-critical. This contradicts the maximality of
Wi;. O
Claim 3.3.5. In case (ii) of Proposition 3.3.3, W; = Wi;. In case (iii)
of Proposition 3.53.8, W; = Wj;.

Proof. As the proofs for both cases are symmetric, we just prove the
former. By Claim 3.3.4, W; C W;;. It is easy to verify that W;; is
(xx;)-critical. So by the maximality of W;, W; = W;;. N

Claim 3.3.6. If W;; # Wy, then W; N.S; # 0, i.e. Wi and W; are
adjacent.

Proof. The assumption that W;; # Wj; implies case (ii) or (iii) of
Proposition 3.3.3 For case (ii), by Claim 3.3.5, W; = W;; and z; € W
is clearly in S;. Similarly, for case (iii), W; = Wj; and z; € W; is in
Sj. O

3.3.3 Admissable Pairs Exists
If Two Redundant Edges Are Present

In this section, we prove that an admissable pair always exists when-
ever there are two redundant edges incident to x. For the sake of
contradiction, hereafter we assume that no admissable pair on x ex-
ists.
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Claim 3.3.7. There can be at most one slack neighbor xy.

Proof. Suppose there are three slack neighbors z,,, z,, and z,,. Since
they do not form admissable pairs, by Proposition 3.3.3, one of the
three cases is true, but cases (ii) and (iii) are impossible, for otherwise,
say if Wy, # 0 and x,, € Ss,, Wis, Will be a (zxg,)-critical set,
contradicting the slackness of x4,. But then, by Proposition 3.1.1, the
intersection of W 4, and Wi, is tight and is a (xx,)-critical set.

Therefore, we may assume that there are exactly two slack neigh-
bors zs, and xg,. Following the previous discussion, x,, and z,, must
be contained in the same maximal (xx,,, xxs, )-critical set Wy, 5,. More-
over, Ty, cannot be in a (zx,,, xx;)-critical set for any other z-neighbor
x;, S0 Ty, is a neighbor of W; for each i # ss.

Since x4, € S; for each x;, there is at least one path p; from z,, to
x; which consists entirely of vertices in W, except for the end-vertex
zs. As |N(z)\ {zs,xs,}| > k, there are at least k such paths each
connecting z;, and one z; and since W,;’s are pairwise disjoint, these
paths are vertex disjoint. Notice that they must pass through S, s, as
x; € Ss,s,- However |Ss s, — x| = k — 1, so there cannot exist k such
paths. ]

Therefore, from now on, we assume that there is at most one slack
neighbor. Next, we show a property of the slack neighbor, which
makes most of the arguments in Bienstock et al’s original proof to
work through.

Claim 3.3.8. If x5 exists, then x4 € S; for all non-special x-neighbour
Zi.

Proof. Since x, and x; are non-admissible, by Proposition 3.3.3, one of
the three cases must be true.

Let xs be the x; in Proposition 3.3.3. By Claim 3.3.5, case (iii) is
impossible as otherwise there is a (zz;)-critical set. So we consider
cases (i) and (ii). For case (ii), clearly z; is in S;. For case (i), suppose
xs and x; are in the same maximal (xx;, zx4)-critical set W5 but = &
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Si. Since |S; — x| =k —1, d(z) > k+ 2 and W,’s are pairwise disjoint,
there exists x; such that W; N S; = @ which implies Wy, = W); # 0 by
Claim 3.3.6.

Notice that by the choice of x;, x; € W; N U;s and by assumption
xs € Wis MUy, i.e. Wy NU;s and W, N U; are non-empty, so we can
apply Proposition 3.1.2 and W;; N U; would be a tight set, however
this contradicts the specialness of x,. So x5 must be in .S;. ]

3.3.4 Proof of Property(T*)

Recall that when G has Property(T*) at a vertex z, there is a cutset
S that contains x and each S-component has exactly one x-neighbor.
One can check that all these S-components are (zz;)-critical sets. In
fact, they are exactly the collection of W,’s.

The proof of Property(T*) has three main steps, we will shows that

1. W; and W; share the same neighbor set if they are non-adjacent;

2. a maximal collection of pairwise non-adjacent W;’s and their com-
mon neighbor set S form a partition of V'; and

3. the common neighbor set S can contain at most one x-neighbor,
namely, the slack neighbor z;.

Non-Adjacent W; and W; Share Common Neighbor Set

In this section, we characterize when W; and W share the same neigh-
bor set.

Lemma 3.3.9. If x; and x; are non-special and W; N.S; = 0, i.e. W;
and W; are non-adjacent, then S; = S; = Sj;.

Proof. By Claim 3.3.6, W; N .S; = () implies W;; = W;; # (). And since
|S;—x| =k—1, () > k+2 and W;’s are pairwise disjoint, there exists
x; € N(z) such that [ # i,j and W; N S; = ). (Notice that x; must
be non-special because of the choice of x; and Claim 3.3.8.) Again by
Claim 3.3.6, W;; exists.
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Claim 3.3.10. I/VZ = Wz-jﬂWu and SZ = (SijﬂSu) U (SimWZ-j) U (Sijﬂ
Wi).

Proof. By Claim 3.3.4, W; C W;;, Wy. And we know that W;; and Wj
are tight and as d(x) > k42, [W;; UWy| < |V]|—k. So by Prop. 3.1.1,
Wi; N Wy is also tight. It is easy to check that W;; N Wy is a (xz;)-
critical set. Therefore by the maximality of W;, W; = W;; N W;; and by
Prop. 3.1.1, 5, = N(VVMQVVH) = (SijﬂSiZ)U(SilﬂVVij)U(Sijﬂml) []

By Claim 3.3.4, W; C W;; but by assumption, W; N S; = 0, so
W, C W;;NUy. Similarly, W; C W}, but by the choice of z;, W;NS; = 0,
so W, € Wy NU,;.

Therefore Wi; N Uy, Wy NU;; and Wy; N Wy are non-empty and by
applying Prop. 3.1.2, we have W;; N Uy, Wy N U;; are tight,

3.2)
3.3)
3.4)

Using similar argument as in Claim 3.3.10, we can prove that W; =
M/ijﬂUil and W, = I/VilﬂUij. Therefore SjﬂSl = SmSjﬂSl = SijﬂSil.
Now we have W, NS, = 0 for a,b € {i, k,l}. So by symmetry, we have
Sz' N Sj = Sij N Sil and Sz N Sl = Sij N Sil but this implies Sil N VVij = (Z)
Since (3) holds, S;; NUy, SuNUjj, SuNWij, and S;; "Wy, are all empty
and |SZ] N Szl‘ = k. []

N(VVZ] N Uil) = (S” N UZ‘[) U (SZ] N Szl) U (Szl N VVU), (
NWynWij) = (Sa N Ui;) U (Si; 0 Si) U (Si; 0 W), (
1S5 N U | = [Sa N Usj| = |Sa N Wij| = [Si; 0 Wil (

Therefore, W; and W; share the same neighbor set if and only if
they are non-adjacent. The following claim goes on to say that if W
and W; are adjacent, then W; contains x; and vice versa.

Claim 3.3.11. W; and W; are adjacent if and only if v; € S;.

Proof. The proof of the ”if” direction is by definition. So we only prove
the converse.
Assume to the contrary that W; and W, are adjacent but z; is not

in S;. Let A ={a|z, € N(z),W,NS; =0,a # i,s} (A is the index
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set of the xz-neighbors x, distinct from x;, x5 such that W, and W; are
non-adjacent). By Lemma 3.3.9, W; and W, share the same neighbour
set S; for all « € A. (If z, exists, x5 is in S; by Claim 3.3.8) By
definition of A, W), and W, are adjacent for all non-special x; where
bg AU{i,j}. Let B={blxy € N(x),b¢ A, b#1,j, s}

Since {zs}, W; and all W}, b € B, are disjoint, we have |S; —
x| > O e IWo N Si|) + [W; N Si| + 0 where 0 = 1 if x, exists and
o = 0 otherwise. To get a contradiction, notice that |S; — x| = k — 1,
Al + |B|+0+2=d(x) > k+2and |[W,NS;| is at least one for all
b € B, so we just need to prove |W; N .S;| > |A.

Figure 3.9: There are |A| + 1 vertex disjoint paths from z; to a vertex y in W; N S;
and every W, N S;, a € A

Since G is k-connected, there are k vertex disjoint paths connecting
x; and every vertex y in S;, which consists entirely of vertices in W.
Notice that if y is in W; or W, for some a € A, the path from z; to
y must pass though S;. So each of these paths will have at least one
distinct vertex in S;. Recall that, by definition, W;NS; and all W,N.S;,
a € A, are non-empty. So we have |W; N S;| > |A| 4 1, thus reaching
a contradiction. ]
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Deriving Property(T*)

We conclude our proof of Property(T*) by Claim 3.3.12, which shows
that any maximal family of pairwise non-adjacent W;’s together with
their common neighbor set .S form a partition of V' and Claim 3.3.12,
which shows that S cannot contain any z-neighbor other than x,.

Claim 3.3.12. Suppose z; is a non-special x-neighbour and A = {a|z, &
Si}t. Then (U,cqa Wa) U S; is a partition of V.

Proof. By Claims 3.3.11 and 3.3.9, S; = S, for a € A. Clearly S,
and each W,c4 are disjoint. Suppose that there are some vertices not
contained in (|J,c4 Wo) U S;. As G is connected, among them there
must be one component Y that is adjacent to .5; or some W, c4. But
by definition of .5;, every neighbour of W,c4 is in S;. So Y is adjacent
to S; but not adjacent to any W,c4. But by definition of A, every
x-neighbour is either in S; or some W,c 4, which means that S; — x is
a size-(k — 1) cutset in G, contradicting the k-connectivity of G.  [J

Claim 3.3.13. Suppose that |V| > 2k. Let x; be a non-special x-
neighbour. Then S;NN () = 0 if x5 does not exists or else S;NN(x) =

{zs}

Proof. Suppose S; contains some x; € N(x) other than z,. Let A =
{alz, & Si}. By Claim 3.3.12, V = (U,cq Wa) U S;. Since W;’s are
pairwise disjoint, [,z 4 W C 5.

Now consider x;, the x-neighbor in S. Notice that S; N W, # 0
for @ € A. So by Claim 3.3.11, z, € S; for all @ € A. However
by applying Claim 3.3.12 again, we have V' = (Uyz4 W3) U S;, which
means |J,., W, C S;. This implies |V| < [S;| + [5;] — [{z}]| = 2k — 1,
contradicting that |[V| > 2k. O

Therefore, when no admissable pair exists, either G has Property(T)
on x and there is no special neighbor, or G' has Property(T*) on z.
This completes the derivation of Property(T*).
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To complete the proof of Theorem 1.3.5. It remains to show that
when G has Property(T*), there are two jointly admissable pairs. The
case when G has Property(T) is given in [5] and is omitted here.

3.3.5 Existence of Jointly Admissable Pairs

Claim 3.3.14. If G has Property(T*) on x, then there exists a pair
of x-neighbours x;, x; (possibly x; = xs) and a pair of xs-neighbours
vj, v such that splitting off xsv; and xsv; after splitting off xx;, vx;
preserves k-connectivity.

Call the original graph G and the graph after splitting off twice G'.

Claim 3.3.15. It suffices to show that there are k vertex disjoint paths
between each pair of (x,x;), (z,xz;), (xs,vj) and (xs,v;) in G'.

Proof. Suppose that G’ is not k-connected. There exists a pair of
vertices y; and ys which can be disconnected by removing a cutset S
of less than k vertices. But since G is k-connected, there is at least
one other path p in G that is not hit by any vertex in S. So S can
disconnect y; and y, in G’ only if at least one of zx;, zx;, z5v; and
xv; is on p and it is not k-connected in GG’, otherwise, replacing each
of these edges on p by one of the k vertex disjoint paths between the
pair gives a y;-y» path that is not disconnected by 5. ]

Proof. (of Claim 3.3.14)

Suppose G has Property(T*) on a vertex. For the case k = 2, if all
S-components are singleton sets, then there is a subgraph as shown in
the left-hand-side of Figure 3.10.

Note that st is the unique redundant edge incident to s. The result-
ing graph of splitting off the pair su and st and the pair tu and tw is
shown in Figure 3.10. The resulting graph of splitting off the pair su
and sw and the pair tu and tv is shown in Figure 3.11. Clearly, both
of them are 2-vertex-connected.
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Figure 3.10: G with Property(T*) on s for k£ = 2 and G after splitting off su, st and
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Figure 3.11: G with Property(T*) on s for k = 2 and G after splitting off su, sw and
tu, tv

In case the S-components are not singleton sets, then we can just
replace each singleton set by some vertex disjoint path in the corre-
sponding S-component.

For the case k = 3, again, if all S-components are singleton sets,
then there is a subgraph as shown in the left-hand-side of Figure 3.12.

The resulting graph of splitting off the pair ru and rt and the pair
tu and tx is shown in Figure 3.12. For each of the following pairs of
vertices, we can list three internally disjoint paths between them.
rand u: (r,w,t,u), (r,z,u) and (r,v, s, u)
rand t: (r,z,u,t), (r,w,t) and (r,v,t)

t and wu: (t,u), (t,w,r,z,u) and (t,v,s,u)
t and z: (t,u,x), (t,w,r,x) and (t,v, s, x)
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Figure 3.12: G with Property(T*) on r for k = 3 and G after splitting off ru, rt and
tu, tx

Figure 3.13: G with Property(T*) on r for k = 3 and G after splitting off ru, rv and
tu, tx

The resulting graph of splitting off the pair ru and rv and the pair
tu and tz is shown in Figure 3.13. We list three internally disjoint
paths between each of the following pairs of vertices.
rand u: (r,z,u), (r,t,v,u) and (r,w, s, u)

r and v: (r,t,v), (r,z,u,v) and (r,w,s,v)
t and u: (t,v,u), (t,r,x,u) and (¢, w, s, u)
t and z: (t,r,z), (t,v,u,z) and (¢, w, s, x)

Similarly, a singleton S-component can be replaced by some vertex
disjoint path in a distinct S-component.

For the case k > 3, if the splitting-off invloves the redundant edge,
we can duplicate k — 2 copies of the path thru v and s in Figures 3.12
and 3.13 by replacing v and s in each copy by respectively a path in
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some distinct S-component and a distinct vertex in S; if the splitting-
off does not invlove the redundant edge, we can duplicate k—2 copies of
the path thru w and s by replacing w and s in each copy by respectively
a path in a distinct S-component and a distinct vertex in .S.

]

3.4 Main Algorithm

With Theorems 1.3.5 and 1.3.4, we can now present our main algorithm
and prove its correctness. We say that a vertex is k-odd if d(v) — k is

odd.

Theorem 3.4.1. Approx_kRkCS returns a k-reqular k-connected span-
ning subgraph.

Proof. Since all operations in 4. never increase the edge degree of a
vertex and they all preserve edge degree parity, we may assume that
all vertices have edge degrees k or k + 2. Clearly, by definition, k-
connectivity is always preserved, moreover, when Approx kRkCS ter-
minates, the graph is k-regular. So we just need to prove one of the
operations is always feasible.

By operation 4.(a), we can assume that all parallel edges have ex-
actly two copies. By operation 4.(b), no vertex is incident to two
distinct parallel edges. Suppose there is a parallel edge uv. u,v must
have edge degree k 4+ 2. By previous assumption, u has node degree
k + 1. If operation 4.(c)(i) is infeasible, then by Theorem 1.3.4, oper-
ation 4.(c)(ii) is feasible. So suppose there is no parallel edge, then by
Theorem 1.3.5, operation 4.(d) must be feasible. O

Theorem 3.4.2. The cost of the solution returned by Approx_kPkCS
is at most 2 + (k — 1)/n + 1/k that of the minimum cost k-regular
k-connected subgraph.

Proof. Let G’ be the subgraph found in step 1. and M be the match-
ing found in step 3., G* be the minimum cost k-regular k-connected
subgraph, and G* be the minimum cost k-connected subgraph.
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Input: An integer £ > 2, a graph G = (V, E) with |V| > 2k, a cost function
w: E — RT that satisfies triangle inequality

Output: A spanning k-regular k-connected subgraph of G

Begin

1. Find a k-connected subgraph using the algorithm in [42].

2. Split-off until all vertices have node degrees k or k + 1.
(No need to keep parallel edges)

3. Add a minimum cost matching on the set of k-odd vertices.
4. While there is a vertex u with d(u) = k + 2,
(a) If there is an edge uv with more than two copies,

remove a pair of uw.

(b) Elseif u has two neighbors v, w s.t. uv, uw are parallel,
split-off uv and ww.

(c) Elseif there is an parallel edge uv with exactly two copies,

(i) remove both uv if k-connectivity is preserved,

(ii) otherwise, split-off one copy of uv and another edge uw
s.t. k-connectivity is preserved.

(d) Perform a splitting-off on u or perform two splitting-offs
s.t. k-connectivity is preserved.

End
Figure 3.14: Approx_ kRkCS
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Since all operations never increase the cost, the cost of the final
solution is at most w(G’)4+w(M). By the result of [42],we have w(G’) <
(2+ (k—1)/n)w(G*) and hence w(G') < (24 (k —1)/n)w(G*).

We claim that w(M) < w(G*)/k. Coincidentally, we can prove
this using splitting-off technique. To see this, let T" be the set of k-
odd vertices. We can get a 2k-regular 2k-edge-connected graph G~=
spanning only 7" such that w(G™) < 2w(G*) as follows: take two copies
of G* and then apply Theorem 2.5.2 (Mader’s Splitting-Off Theorem)
until every vertex has degree exactly 2k if it is in 7" and zero otherwise.
Clearly, by scaling down the incidence vector of G~ by a factor of 2k, we
get a feasible fractional solution to the perfect matching polytope. As
the perfect matching polytope is integral [18], this shows that w(M) <
w(G7)/2k < 2w(G*)/2k.

]

When |V| and k& Are Both Odd

In Section 1.1.3, we have introduced the Minimum Degree k-Vertex-
Connected Subgraph problem. We mentioned that this is the same as
the Minimum Cost k-Regular k-Vertex-Connected Subgraph problem
as long as not both |V| and k are odd, and for simplicity, we have
assumed that this is true in all previous sections. Here, we show how
a small modification can be made to Approx_kRkCS, so that it find an
almost k-regular solution in such case.

First, we pick an arbitrary vertex x. At the beginning of Step 3, x
has edge degree either k or k + 1. Let T be the set of vertices with
degree k4 1. Since every graph has even number of odd (edge) degree
vertices, |T'| is odd. If d(z) = k + 1, we remove x from 7', otherwise
we add x to T'. Then, we find a minimum cost matchingn on 7" + x.
In both cases, after adding the matching, v is the only vertex that has
edge degree k + 1.

Now we consider Step 4.. Notice that all operations either does
not change the edge degree of a vertex or decreases it by exactly two.
However, the later case happens only if k-vertex-connectivity can be
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preserved by the operation. Clearly, this is impossible for z as d(x) =
k 4+ 1. Therefore, the edge degree of x remains unchanged throughout
the algorithm. On the other hand, we can check that one of the cases
in Step 4. can still be applied as long as there is a vertex with edge
degree k + 2.

O End of chapter.



Chapter 4

Concluding Remarks

The splitting-off operation and the related adoption operation have
been useful tools for metric cost connectivity design. In this thesis, we
applied them in the design of a better approximaton algorithm for the
Minimum Cost k-Regular k-Vertex-Connected Subgraph problem.

It would be interesting to know whether our approach can be ex-
tended to other similar problems as well, such as the directed version
or the case of [-mixed k-connectivity, which is a common generalization
of edge connectivity and vertex connectivity.

O End of chapter.
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