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2011

In this thesis we present a new algebraic formulation to compute edge connectivities in a

directed graph, using the ideas developed in network coding. This reduces the problem of

computing edge connectivities to solving systems of linear equations, thus allowing us to

use tools in linear algebra to design new algorithms. Using the algebraic formulation we

obtain faster algorithms for computing single source edge connectivities and all pairs edge

connectivities, in some settings the amortized time to compute the edge connectivity for

one pair is sublinear. Through this connection, we have also found an interesting use of

expanders and superconcentrators to design fast algorithms for some graph connectivity

problems.



摘要

Graph Connectivity and Network Coding

圖的連通度與網絡編碼

梁啟文

香港中文大學

計算機科學與工程學系

哲學碩士

二零一一

運用從網絡編碼中衍生的概念，我們在本論文提出一種新的代數公式來求算有向圖的

邊連通度。此公式能把求算邊連通度的問題歸約為求解多組線性方程，因而容許我們

利用線性代數的工具來設計新的算法。我們運用此代數公式來獲得求算單源邊連通度

及所有點對邊連通度的快速算法，其中在一些條件下計算一對頂點的邊連通度，其攤

分時間複雜度為次線性。透過當中的關係，我們亦發現有關擴展圖及超集中器的一些

有趣應用，並用以設計一些有關解決圖的連通度問題的快速算法。
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Chapter 1

Introduction

Graph connectivity is a basic concept that measures the reliability and efficiency of a

graph. The edge connectivity of two vertices is the maximum number of edge disjoint

paths from one vertex to another. Computing edge connectivities is a classical and well-

studied problem in combinatorial optimization. Most known algorithms to solve this

problem are based on network flow techniques.

In this thesis we present a new algebraic formulation to compute edge connectivities

in a directed graph, using the ideas developed in network coding. Network coding is a

new technique developed to solve the multicasting problem, where the source needs to

send data to a set of receivers. The multicasting rate describes how much data can the

source send to the receivers simultanouesly. The objective of the multicasting problem

is to design a transmission scheme in order to maximize the multicasting rate. In the

traditional routing method, data can only be received and forwarded. It is not optimal

to use the traditional routing method for the multicasting problem. See Figure 1.1 for an

example, where the multicasting rate is only one, using the traditional routing method.

Network coding is an innovative idea to overcome the inefficiency of traditional routing

in the multicasting problem. The fundamental result of network coding [1] is the following:

if the edge connectivity between the source to each receiver is at least k, then one can

transmit k units of data to all receivers simultanouesly, by performing encoding and

decoding at the vertices. See Figure 1.2 for an illustration, where the multicasting rate is

two. Futhermore, it is shown that linear coding suffices for the multicasting problem [39]:

1



2 CHAPTER 1. INTRODUCTION

s

t1 t2

Figure 1.1: In the traditional routing method, when the source sends out data to both
receivers simultaneously, the multicasting rate is only one.

To encode, the data on an outgoing edge of a vertex is a linear combination of the data on

the incoming edges to the same vertex; to decode, any receiver can recover the original

data by solving linear equations. Polynomial time algorithms have been developed to

compute an optimal linear network coding scheme [39, 50, 45].

s

t1 t2

a b

a b

a+ b

a+ b a+ b

a b

Figure 1.2: In this figure, the source sends out data a and b to the receivers. Encoding is
done in the middle vertex, by performing addition of the incoming data. Each receiver
can obtain the original data back by performing subtraction of its incoming data.

Our new algebraic formulation for computing edge connectivities is inspired by the

random network coding algorithm [35] in constructing network codes. In the random

network coding algorithm, the data on an outgoint edge of a vertex is a random linear

combination of the data on the incoming edges to the same vertex. The advantage of

this method is that one does not need to know the topology of the graph to compute

an optimal linear coding scheme. It is previously known that in any directed acyclic

graph, the edge connectivity can be computed by the rank of the incoming data to the

receiver [38, 60]. An example is shown in Figure 1.3. We show that this algebraic
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Figure 1.3: In this figure, the source sends out two unit vectors. The middle vertex sends
out a random linear combination of its incoming data. The rank of the incoming data to
each receiver is two, which matches their edge connectivities.

formulation can be extended to all directed graphs.

With random network coding, the edge connectivity of the source and the

receiver in a directed graph is the rank of the incoming data to the receiver,

with high probability.

We will use this result to compute single source edge connectivities. In directed

acyclic graph, we present a faster algorithm for computing edge connectivities by a

simple transformation using the superconcentrator, which is a directed graph with high

connectivities. To compute edge connectivities in some classes of graphs with constant

maximum degree, such as planar graphs, bounded genus graphs and fixed minor free

graphs, we can solve systems of linear equations by using a recent result of Alon and

Yuster [5] based on the nested dissection method.

We also use our algebraic formulation to obtain faster algorithms for computing all

pairs edge connectivities in general directed sparse graphs. Previously it is not known how

to compute the edge connectivities faster than computing for each pair separately, even

when the pairs share the source or the sink. We show that all pairs edge connectivities

can be computed in one matrix inverse time, instead of solving the linear equations for

each source vertex separately.

In the process we found an interesting use of superconcentrator and expander,
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which are graphs that have strong connectivity properties. We discovered that both

superconcentrator and expander can be used to design faster algorithms in other graph

connectivity problems. We will show how to use them to improve the algorithms

for finding edge splitting-off operations to preserve edge connectivities in directed and

undirected graphs.

The results in this thesis are based on joint work with Ho Yee Cheung and Lap Chi

Lau [15].



Chapter 2

Background

In this chapter we review some backgrounds on graph connectivity, network coding and

algebraic algorithms. We first present some previous algorithms for the graph connectivity

problems. Then we will introduce the history and the key ideas of network coding, which

will be used to obtain the main results in this thesis. After that we will discuss some

algebraic tools which help us to design faster algorithms.

2.1 Graph Connectivity

In this section we briefly describe the algorithms for the graph connectivity problems. We

first discuss the algorithms for the edge connectivity problem and the vertex connectivity

problem. Then we will present the main ideas for other graph connectivity problems,

namely the all pairs edge connectivities problem and the edge splitting-off problem. After

that we briefly introduce graph separators, the expanders, and the superconcentrators as

the tools for us to obtain fast algorithms.

2.1.1 Preliminaries

We will introduce basic definitions and notations for graphs.

A directed graph G = (V,E) consists of a set of vertices V and a set of edges E. An

edge in E is an ordered pair of vertices e = (u, v), and we say u is the tail of e and v is

the head of e. An undirected graph G = (V,E) is similar to directed graph, but we have

5
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pairs in E being unordered. In an undirected graph, we say u and v are the endpoints

of the edge e = (u, v), and e is incident to both u and v. Unless otherwise specified, we

assume, throughout the whole thesis, that |V | = n and |E| = m.

We introduce some special classes of graphs that we will use in this thesis. A graph is

simple if there are no parallel edges. An undirected graph is called a tree if m = n−1 and

for every pair of vertices u, v ∈ V there is exactly one path connecting u and v. A graph is

planar if it can be drawn in a two dimensional plane so that the edges only intersect at the

vertices. The bounded genus graph is a graph such that it can be embedded in a surface

of constant genus without any of its edges crossing one another. Informally, the genus is

an orientable surface, which can be obtained by attaching finitely many “handles” to the

sphere. For example, a planar graph has genus zero. A graph G′ is a minor of a graph

G if G′ can be obtained from a subgraph of G by contracting edges, deleting some edges

and deleting some isolated vertices. A graph G is fixed minor free if a fixed graph H is

not a minor of G. For example, a planar graph is K5-minor free and K3,3-minor free. The

line graph LG of a directed graph G is a directed graph with m vertices such that each

vertex in LG represents an edge in G, and an edge (u, v) is in LG if u and v correspond

to the edges eu and ev in G so that the head of eu is the tail of ev.

In this paragraph we shall define the vertex cuts of a graph. In a directed graph,

we define δin(v) = {(u, v) : (u, v) ∈ E} as the set of incoming edges of v; similarly we

define δout(v) = {(v, u) : (v, u) ∈ E} as the set of outgoing edges of v. In addition, we

define δin(S) = {(u, v) : u /∈ S, v ∈ S and (u, v) ∈ E} as the set of incoming edges of

S ⊆ V . Similarly we also have δout(S) = {(u, v) : u ∈ S, v /∈ S and (u, v) ∈ E}. The

indegree of a vertex v is defined as din(v) = |δin(v)|. Similarly we define the outdegree of

v as dout(v) = |δout(v)|. We have similar definitions of indegree and outdegree of a subset

S ⊆ V , which are defined as din(S) = |δin(S)| and dout(S) = |δout(S)|, respectively. In an

undirected graph G = (V,E), we define δ(v) = {(u, v) : (u, v) ∈ E}, d(v) = |δ(v)|, and

δ(S) = {(u, v) : (u, v) ∈ E, u ∈ S, v ∈ V − S} accordingly.
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2.1.2 Edge Connectivity

The notion of s-t edge connectivity is defined as a measure on how well two vertices s and

t are connected. We denote λs,t as the s-t edge connectivity. There are two definitions.

• Edge-disjoint path: We define the edge connectivity between s and t, or the s-t edge

connectivity in short, as the maximum number of edge disjoint paths from s to t.

• Cut size: A subset of edges δout(U) ⊆ E is called a cut for some subset of vertices

U ⊆ V . If s ∈ U and t 6∈ U , then δout(U) is called an s-t cut. The s-t edge

connectivity can also be defined as the smallest size of an s-t cut, which is the

minimum cardinality of δout(U) ⊆ E for some U ⊆ V such that s ∈ U and t 6∈ U .

Menger’s Theorem states that the above definitions are equivalent. See Figure 2.1 for

an example.

Theorem 2.1 (Menger’s Theorem [54]). Let G = (V,E) be a directed graph, and s, t ∈ V .

Then the maximum number of edge-disjoint s-t paths is equal to the minimum size of an

s-t cut.

s

t

(a)

s

t

(b)

Figure 2.1: Figure 2.1a shows the maximum of two edge-disjoint paths, which are
indicated by thick edges. Figure 2.1b shows a minimum s-t cut with two edges. In this
example, the maximum number of edge-disjoint paths equals to the minimum number of
s-t cut.

2.1.3 Vertex Connectivity

In this section, we will first define the s-t vertex connectivity in directed graphs, and show

that determining the s-t vertex connectivity can be reduced to the bipartite matching

problem.
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The s-t vertex connectivity is the maximum number of s-t vertex disjoint paths,

which are s-t paths that do not share vertices except s and t. The s-t vertex connectivity

problem can be reduced to the s-t edge connectivity problem. Given a directed graph

G and two distinct vertices s and t, we split every vertex v ∈ V − s − t to v′ and v′′,

and add an edge (v′, v′′). Every incoming edge of v is connected to v′ and every outgoing

edge of v is connected from v′′. Let G′ be the transformed graph as described, then the

s-t vertex connectivity in G is equal to the s-t edge connectivity in G′. An example is

illustrated in Figure 2.2.

s

u

v

w

x

y

t

(a)

s

u′ u′′

v′ v′′

w′ w′′

x′ x′′

y′ y′′

t

(b)

Figure 2.2: An example graph G is shown in Figure 2.2a. Figure 2.2b shows the resulting
graph G′ after the transformation. It can be seen that s-t vertex connectivity in G equals
to s-t edge connectivity in G′.

The s-t vertex connectivity problem can also be reduced to the bipartite matching

problem. An undirected graph G = (L,R,E) is a bipartite graph with two disjoint

sets of vertices L and R such that every edge connects a vertex in L to a vertex in R.

A subset M ⊆ E of edges is a matching if the edges in M are vertex disjoint. The

bipartite matching problem is to find a maximum cardinality matching in a bipartite

graph. Figure 2.3 shows an example bipartite graph with maximum matching of size

three. The main idea of the reduction is presented in [58](Section 16.7c), and we briefly

describe it here. We assume that s and t have no common neighbors, otherwise we can

safely remove such vertices and this will decrease the vertex connectivity exactly by one.
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L R

Figure 2.3: An example bipartite graph with three vertices on both left and right hand
sides. The maximum matching is shown by thick edges.

Let S be the set of neighbors from s, and T be the set of neighbors to t. We construct

the bipartite graph G′ = (L′, R′, E ′) as follows. First we split each vertex v ∈ V − S − T

in G to two vertices vin and vout, place them in L′ and R′ respectively, and add an edge

(vout, vin). For every vertex v ∈ S, we place a vertex vout in L′. For every vertex v ∈ T ,

we place a vertex vin in R′. An edge (uout, vin) is added if u is in V −T and v is in V −S.

See Figure 2.4 for an example. Using the edges (vout, vin), there is a bipartite matching

of size n− |S| − |T |. Observe that each s-t vertex disjoint path increases the size of this

bipartite matching in G′ by one. Thus there are k vertex disjoint paths from s to t in G

if and only if there is a bipartite matching of size n− |S| − |T |+ k in G′.

s

v1

v2

v3

v4

v5

t

G

sin

sout

tin

tout

vin3 vin4 vin5

vout1 vout2 vout4

G′

Figure 2.4: An example of reducing the s-t vertex connectivity problem to the bipartite
matching problem.

2.1.4 Algorithms for Graph Connectivities

Most known algorithms to compute the s-t edge connectivity are based on network flow

techniques. In the case G is a simple and uncapacitated graph, the fastest known

algorithm that computes λs,t is given by Even and Tarjan [19]. Their algorithm runs

in O(min{
√
m,n2/3} · m) time. In Section 2.1.3, it is discussed that the s-t vertex
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connectivity problem can be reduced to the s-t edge connectivity problem. Therefore

vertex connectivity can also be solved in the same running time. In the worst case the

algorithm runs in O(n
8
3 ) time. For the bipartite matching problem, the fastest known

combinatorial algorithm is given by Hopcroft and Karp [37]. Their algorithm computes

a maximum bipartite matching in O(m
√
n) time. When m = O(n2), their algorithm

runs in O(n2.5) time. The fastest known algebraic algorithm runs in O(nω) time [32, 55],

which is faster than combinatorial algorithm since ω ≈ 2.376 [11]. As mentioned in

Section 2.1.3, the s-t vertex connectivity can also be computed in the same running time.

The s-t edge connectivity problem can also be reduced to the s-t vertex connectivity

problem, but it is less efficient. The known reduction is based on the line graph LG

(see Section 2.1.3 for the definition). Let X = δout(s) and Y = δin(t). Add two new

vertices s′ and t′ in LG. First connect s′ to each vertex in LG which corresponds to an

edge in X. Then connect each vertex in LG that corresponds to an edge in Y to t′. The

s′-t′ vertex connectivity in LG is equal to s-t edge connectivity in G. Recall that the s-t

vertex connectivity problem can be solved by bipartite matching (see Section 2.1.3 for the

reduction). So we can reduce the s-t edge connectivity problem to the bipartite matching

problem. However we need to find a maximum bipartite matching in a graph with O(m)

vertices, and the resulting algorithm is slower than the fastest known algorithm.

2.1.5 All Pairs Edge Connectivities

To compute all pairs edge connectivities in directed graph, no previous known result is

faster than O(n2) computations of single pair edge connectivity. In undirected graph

there is an efficient method to compute all pairs edge connectivities by constructing a

Gomory-Hu tree, which is a succint data structure to obtain all pairs edge connectivities

for any undirected graph.

A Gomory-Hu tree is a tree T = (V, F ). Every edge in F has a value. For every pair

of vertices s and t, there is a unique s-t path in T . The minimum value among the edges

in the s-t path is the s-t edge connectivity. Hence T is a compact representation of all

pairs edge connectivities in G. See Figure 2.5 for an example.

Gomory and Hu [30] showed that a Gomory-Hu tree can be constructed by n−1 edge
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0

1

2

3

4

5

G

(a)

0

1

2

3

4

5
2

3

3

3

2

T

(b)

Figure 2.5: An undirected graph G is shown in Figure 2.5a. Its Gomory-Hu tree T is
shown in Figure 2.5b. T represents all pairs edge connectivities of G. For example, the
edge connectivity between vertex 0 and vertex 3 in G is two, which is shown by thick
edges. The path connecting them in T is shown by thick edges. We can obtain the edge
connectivity by the edge with smallest value along the path, which is shown in bold.

connectivity computations. Recently Bhalgat, Hariharan, Kavitha and Panigrahi [8] gave

the fastest Õ(mn) Gomory-Hu tree construction algorithm, where Õ(f) = O(f polylog f).

This algorithm can be used in Section 2.1.6 to obtain fast algorithms in the edge splitting-

off problem in undirected graphs.

2.1.6 Edge Splitting-off

In this section, we will introduce the edge splitting-off problem. Then we will mention

its applications, and present previous results on the problem.

Splitting-off a pair of edges (ux, xv) means deleting these two edges and adding a

new edge (u, v) if u 6= v. Note that the above definition works for both undirected and

directed graphs. The content of the edge splitting off theorems is to prove the existence

of one pair of edges (ux, xv) so that its splitting-off preserves the edge connectivities for

all pairs of vertices. An example is described in Figure 2.6.

In undirected graph, Mader [53] proved that there is a “good” pair of edges in almost

all situations.

Theorem 2.2 (Mader [53]). Let G = (V,E) be an undirected graph and x ∈ V . If there

is no cut edge incident to x and d(x) 6= 3, then there exists an edge pair (yx, xz) so that

its splitting-off preserves the edge connectivity for every pair of vertices a, b ∈ V − x.

There is a similar theorem for Eulerian directed graphs where for every vertex its
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x

(a)

x

(b)

(c)

Figure 2.6: An undirected graph G is shown in Figure 2.6a. Splitting-off the pair of thick
edges results in Figure 2.6b. Figure 2.6c shows the result when x is completely split-off.

indegree is equal to its outdegree.

Theorem 2.3 (Bang-Jensen, Frank and Jackson [6]). Let G = (V,E) be an Eulerian

directed graph and x ∈ V . Then there exists an edge pair (yx, xz) so that its splitting-off

preserves the edge connectivity for every ordered pair of vertices a, b ∈ V − x.

These results are a powerful tool for proving theorems and developing algorithms for

many graph connectivity problems, including connectivity augmentation problems [20,

13, 7], network design problems [28, 42, 12], tree packing problems [6, 47, 9] and graph

orientation problems [21].

In undirected graphs, when d(x) is even, Mader’s theorem can be repeatedly applied

until x is of degree zero. In directed graphs, Theorem 2.3 can also be repeatedly applied

until x is of degree zero. We call this a complete splitting-off at x. See Figure 2.6c for an

example. In the remaining of the section we will discuss previous results on completely

splitting-off vertices in undirected and directed graph respectively.

In undirected graph, to completely split-off a vertex x, the simplest way is to try

all O(d(x)2) pairs, and then check whether the edge connectivities are preserved. We

can construct a Gomory-Hu tree (as discussed in Section 2.1.5) to efficiently do the

checking. Lau and Yung [48] proved that O(d(x)) attempts suffices to completely split-
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off x, using structural theorems of mincuts. They also obtained faster algorithms to

check whether connectivities are preserved, using the fast Gomory-Hu tree algorithm by

Bhalgat, Hariharan, Kavitha and Panigrahi [8]. We note that there is an earlier algorithm

proposed by Gabow [23] for the complete splitting-off problem in undirected graphs.

In directed graph, there are no known results that can completely split-off a vertex x

faster than the straightforward algorithm.

2.1.7 Graph Separator

In this section, we will describe the concept of graph separators, whose removal breaks

an undirected graph into components such that all components are not too large. Then

we shall present previous results of graph separators on planar graphs and other classes

of graphs. In Section 2.3.2 we will discuss an application of graph separators to solve

systems of linear equations.

Definition. Let G = (V,E) be an undirected graph, and f : N → R be a function,

α ∈ (0, 1). Then Z ⊆ V is a (f(n), α)-separator if |Z| ≤ f(n) and V − Z can be further

partitioned into two parts X and Y such that |X ∪Z| ≤ αn, |Y ∪Z| ≤ αn, and no edges

have endpoints in both X and Y . We also say that G has a (f(n), α)-separation.

For example, if G is a tree, then G has (1, 1/2)-separation, which can be found in O(n)

time [41]. A class of graphs is hereditary if it is closed under taking subgraphs, meaning

that for any graph G in the class, any subgraph G′ of G also belongs to the same class.

For example, the classes of planar graphs, bounded genus graphs and fixed minor free

graphs are hereditary. If every graph in a hereditary class has a (f(n), α)-separation,

then we can recursively apply the same argument to the subgraphs induced by X and Y

respectively, until X and Y are of constant size. We can represent such process by a tree

structure called a weak separator tree. For completeness, we present the formal definition

in [5].

Definition. For any undirected graph G = (V,E) such that it belongs to a hereditary class

of graphs and has a (f(n), α)-separation, a tree T = (V ′, F ) is called a weak separator

tree if the following properties are satisfied:
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• Every vertex u ∈ V ′ of T is associated with a vertex subset Vu ⊂ V of G.

•
⋃
u∈V ′

Vu = V . For every u, u′ ∈ V ′ such that u 6= u′, Vu ∩ Vu′ = ∅.

• Every vertex in T either has two children or itself is a leaf.

• |Vu| = O(1) for each leaf u in T . Otherwise, let u1 and u2 be its children. Then

Vu is the (f(n′), α)-separator of the subgraph of G induced by Vu ∪ Vu1 ∪ Vu2 where

|Vu ∪ Vu1 ∪ Vu2| = n′, and Vu1 and Vu2 are the separated components.

For planar graphs, there is a nice separator theorem proven by Lipton and Tarjan [52].

An example is illustrated in Figure 2.7.

Theorem 2.4 ([52]). Any undirected planar graph has a (O(
√
n), 2/3)-separation, which

can be found in O(n) time.

(a)

X Z

Y

(b)

Figure 2.7: Figure 2.7a shows an example undirected graph. Its separator Z, and its two
separated components X and Y are shown in Figure 2.7b.

There are other hereditary classes of graphs which also have a (O(
√
n), α)-separation.

For the class of bounded genus graph a (O(
√
n), α)-separator can be found in linear

time [26]. For the class of fixed minor free graph, there is an O(n1.5) algorithm [4] to find

a (O(
√
n), α)-separator.

The notion of a weak separator tree will be used in Section 2.3.2 to develop algorithms

in solving the system of linear equations.
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2.1.8 Expander Graphs

An expander graph G = (V,E) is a sparse undirected graph that exhibits strong

connectivity properties.

Definition. A graph G = (V,E) is called an (n, d, c)-expander if it has n vertices, the

maximum degree is d, and for all S ⊂ V with |S| ≤ |V |/2, we have d(S) ≥ c|S| and c is

called the edge expansion of G.

The abundance of expander graphs was discovered by Pinsker [56]. He proved by

probabilistic method that a sparse random graph is an expander, with high probability.

Theorem 2.5 ([56]). There exist a constant c0 > 0 such that for any constant d ≥ 3 and

any even integer n, there is an (n, d, c0)-expander.

Theorem 2.5 is not constructive, and in many applications a deterministic construction

algorithm is needed. We refer the readers to the excellent survey by Hoory, Linial and

Wigderson [36] about many known constructions in details.

We present a well known deterministic construction ([22] and [36], Section 2.2) of

regular expander graph H with n vertices for our application in Section 3.6. Let p be

the smallest prime number greater than n. It is known that p ≤ 2n. Then we construct

H = (V ′, E ′) with |V ′| = p and we label its vertices with {0, 1, · · · , p − 1}. For the i-th

vertex where i > 0, it has exactly three neighbors, namely (i + 1) mod p, (i − 1) mod p

and i−1 mod p, where i−1 mod p is the multiplicative inverse of i mod p. Note that it

is possible to have self loops. For the vertex labeled 0, its neighbors are 0, 1 and p − 1.

Figure 2.8 illustrates the result of H when p = 7.

H

Figure 2.8: An example expander H with 7 vertices.
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For our application in Section 3.6 we need a graph with d(S) ≥ |S| for all S with |S| ≤

|V |/2. We show that H8 will satisfy this property, by using the concept of conductance

and its relation to the second largest eigenvalue of the adjacency matrix.

Theorem 2.6 ([17, 3, 2], Theorem 2.4 of [36]). Let G = (V,E) be an n-vertex undirected

d-regular graph with its adjacency matrix A(G). Let λ1, λ2, · · · , λn be the eigenvalues of

the matrix 1
d
A(G) such that λ1 ≥ λ2 ≥ · · · ≥ λn. For S ⊆ V with |S| ≤ |V |/2, we define

h(S) =
d(S)

d · |S|
,

and we define

h(G) = min
0≤|S|≤ |V |

2

h(S).

Then

h(G) ≥ 1− λ2
2

.

To ensure that d(S) ≥ |S| for every |S| ≤ |V |/2, it suffices to show that h(G) ≥
|S|
d·|S| = 1

d
. By Theorem 2.6, if we can construct a d-regular expander graph H ′ such that

λ2 ≤ 1− 2

d
,(2.1)

then we can deduce that h(H ′) ≥ 1−λ2
2
≥ 1

d
. It is proved that H is a good expander.

Theorem 2.7 ([59]). The second largest eigenvalue of the normalized adjacency matrix

of H is strictly less than 1− 1/104 = 0.9999.

To construct a graph with λ2 ≤ 1 − 2
d
, we can take the k-th graph powers of H

to obtain a new graph H ′ such that it is a 3k-regular graph with the second largest

eigenvalue being λk2. One can verify that if we choose k = 8, the inequality (2.1) will be

satisfied for H ′. Since we take constant graph power of H, the vertex degree in H ′ is still

a constant (although much larger) and the construction time is O(n log n). Therefore H ′

is a (p, 38, 1)-expander. We will use this construction to obtain fast algorithms for the

complete edge splitting-off problem in Section 3.6.
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2.1.9 Superconcentrator

Superconcentrator is a sparse directed acyclic graph with strong connectivity properties.

It is first defined by Valiant [61] for studying the complexity of linear transformations.

Definition ([36]). Let G = (V,E) be a directed graph and let I and O be two subsets of

V with n vertices. We say that G is a superconcentrator if for every k and every S ⊆ I

and T ⊆ O with |S| = |T | = k, there exist k vertex disjoint paths from S to T .

The existence of superconcentrator with O(n) edges is proved by Valiant. There exist

explicit constructions [22, 36] of superconcentrators with the following properties:

1. There are O(n) vertices and O(n) edges,

2. the maximum indegree and the maximum outdegree are constants, and

3. the graphs are directed acyclic.

We also show the construction of superconcentrator in [22, 36] with n inputs and n

outputs in the remaining of this section. The construction is recursive. The base case is

when n is a small constant n0. Then we just build a bipartite graph with n0 vertices on

both sides, and add O(n2
0) directed edges (u, v) for any vertex u on the left side and v

on the right side. To construct a superconcentrator with n > n0 inputs and n outputs,

we need three graphs. Let G1 be a bipartite constant degree expander graph with n

vertices on the left and δn vertices on the right, where δ is a constant less than one.

It can be constructed in O(n) time [22]. See Figure 2.9b for illustration. Let G2 be

a bipartite constant degree expander graph with δn vertices on the left and n vertices

on the right. We connect the vertices in G2 similar to G1 with directions reversed, as

depicted in Figure 2.9c. Let C be a superconcentrator with δn inputs and δn outputs,

which exists by inductive assumption. Then we obtain our desired superconcentrator by

the following procedures:

1. Connect edges from each vertex on right side of G1 to a distinct input of C.

2. Connect edges from each output of C to a distinct vertex on the left side of G2.
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3. Connect edges from each vertex on left side of G1 to a distinct vertex on the right

side of G2.

(a) (b) (c)

G1 G2

C

(d)

G1 G2C

(e)

Figure 2.9: An illustration of recursive construction of superconcentrator. Figure 2.9a
shows the base case when n0 = 4, in which it is a bipartite graph with 16 edges. To
construct a superconcentrator with n > n0 inputs and outputs, we need graphs G1 and
G2, which are shown in Figure 2.9b and Figure 2.9c respectively. The connection steps
are shown in Figure 2.9d and Figure 2.9e separately. Figure 2.9d shows the connection
between G1 and C, and between C and G2, where C is a superconcentrator of smaller
size. We do not expose the connections within C. Figure 2.9e shows the last connection
steps. Combining, the whole graph is a superconcentrator with n inputs and outputs
that satisfies the desired properties.

See Figure 2.9 for an illustration. It is proved in [22, 36] that the above construction

of superconcentrator satisfies the properties.

We will state the running time of the above construction. Let T (n) be the running

time of the construction of superconcentrators with n inputs and n outputs. Then we

can obtain the following recurrence relations

T (n) = T (δn) +O(n).
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It follows that T (n) = O(n). Hence the construction can be implemented in O(n) time.

2.2 Network Coding

2.2.1 Concept

In this section we will first define the multicasting problem. Then we will review previous

work on the multicasting problem by the traditional routing method. After that we

present the idea of network coding and show its advantage over routing.

The multicasting problem is the following: Given a directed acyclic graph G = (V,E)

with a source vertex s and a set T ⊂ V of receivers, we want to transmit data from the

source s to the receivers in T . Each edge e ∈ E carries one unit of data. The multicasting

rate is h if every receiver can receive h units of data in a transmission. The objective of

the multicasting problem is to maximize h.

v

p1 p2 p3

p1 p3

Figure 2.10: An example of routing inside a vertex v. In this figure, v has three incoming
edges and two outgoing edges. The data p1 and p2 are routed to the left and right outgoing
edges respectively. Note that p2 is not routed.

Routing is the classical technique for the multicasting problem. In routing, the data

on an outgoing edge of a vertex v is just a copy of the data on some incoming edge to

v. See Figure 2.10 for illustration. Achieving the optimal rate by routing is shown to be

equivalent to finding an optimal Steiner tree packing. However the problem is shown to

be NP-hard [40].

Network coding is a novel technique to increase the multicasting rate in the

multicasting problem. The study of network coding was first initiated by Ahlswede,

Cai, Li and Yeung [1]. In network coding, each vertex is allowed to encode and decode
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v

p1 p2 p3

f1(p1, p2, p3) f2(p1, p2, p3)

Figure 2.11: An example of encoding inside a vertex v. The data carried by the outgoing
edges is determined by different functions of p1, p2 and p3.

the data. To encode, the data on each outgoing edge of a vertex v is a function of the

data on the incoming edges to v. An example is illustrated in Figure 2.11. Each receiver

attempts to obtain the data sent from s by decoding. Ahlswede et al. [1] proved that

using network coding, the multicasting rate is the smallest s-t edge connectivity among

all receivers t ∈ T . In other words, it is given by mint∈T{λs,t}.

s

u v

w

x

t1 t2

Figure 2.12: An example graph to show the advantage of network coding over routing.

Network coding can achieve higher multicasting rate than routing. Consider the graph

shown in Figure 2.12. Using routing the multicasting rate is one. It is hard to obtain

multicasting rate two because the edge (w, x) cannot transmit different data at the same

time. We show how we can obtain a better multicasting rate using network coding.

Figure 2.13 shows that the s-t1 edge connectivity and the s-t2 edge connectivity are both

two. We present how this can be achieved in Figure 2.14. Here we let a ⊕ b to be a + b

modulo two. In the figure encoding is done in vertex w such that it adds the incoming

data modulo two. It can be seen that t1 receives data a and a⊕ b. Then t1 can retrieve

b by performing addition modulo two on the data, that is, a ⊕ (a ⊕ b) = b. Similarly t2
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s

u v

w

x

t1 t2

(a)

s

u v

w

x

t1 t2

(b)

Figure 2.13: Consider the graph in Figure 2.12. There are two edge disjoint paths from
s to t1 and to t2 respectively. The edge disjoint paths are respectively marked by thick
edges in Figure 2.13a and Figure 2.13b. Therefore both edge connectivities are two.

can retrieve a and b, hence the multicasting rate in this network is two.

s

u v

w

x

t1 t2

a b

a b

a⊕ b

a⊕ b a⊕ b

a b

Figure 2.14: Using network coding in the graph presented in Figure 2.12, vertex w encodes
the incoming data by addition modulo two (denoted as ⊕) and then transmits to the edge
(w, x). Other vertices just forward their received data to their outgoing edges.

2.2.2 Linear Network Coding

In this section, we will introduce the concept of linear network coding, and see how to

obtain optimal multicasting rate using linear network coding. Then we will present the

concept of local encoding coefficients, global encoding vectors, linear network codes, and

network coding solutions. At the end of this section we will review previous work about

constructions of linear network code.

In Section 2.2.1, we have seen an example on how the optimal multicasting rate can be
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achieved by network coding. Ahlswede et al. [1] only proved the existence of optimality

but no constructive algorithm was given in their work. Later Li, Yeung and Cai [50] show

that linear coding suffices to achieve the optimal multicasting rate for the multicasting

problem.

Theorem 2.8 ([50], Theorem 3.3). Let G = (V,E) be a directed acyclic graph, s be a

source vertex, and T ⊂ V be a set of receivers such that s 6∈ T . Let h be the optimal

multicasting rate using network coding. Consider a multicasting transmission scheme

over a large enough finite field Fq, in which the data on an outgoing edge of a vertex is a

linear combination of the data from the incoming edges to the same vertex. Then there

exists such a scheme so that the multicasting rate is h.

Theorem 2.8 says that the optimal multicasting rate can be achieved by linear coding

in any directed graph. Figure 2.15 shows an example of linear encoding in a vertex.

v

~p1 ~p2 ~p3

a1 ~p1 + a2 ~p2 + a3 ~p3 b1 ~p1 + b2 ~p2 + b3 ~p3

Figure 2.15: An example of linear encoding inside a vertex v. The data is represented
by vectors. The data carried by the outgoing edges are determined by different linear
combinations of p1, p2 and p3, where ai, bi ∈ Fq for some finite field of size q.

Without loss of generality, we can assume that dout(s) = din(t) = h for every t ∈ T .

In the actual transmission, the data is a (h + 1)-tuple. The first h values indicate the

coefficients of the data sent from the source. The last value is the numerical value of

the linear combination inside the data. Figure 2.16 shows the actual transmission for

illustration. We omit the last value in the data for simplicity.

To decode in t1, it has to solve the following system of linear equations:1 · a+ 0 · b = αu,t1 (Data inside edge (u, t1))

1 · a+ 1 · b = αx,t1 (Data inside edge (x, t1))



2.2. NETWORK CODING 23

s

u v

w

x

t1 t2

[
1
0

] [
0
1

]
[
1
0

] [
0
1

]

[
1
1

]
[
1
1

] [
1
1

]
[
1
0

] [
0
1

]

Figure 2.16: The global encoding vectors shown in the transmission.

where αu,t1 and αx,t1 are the last values contained in the corresponding data. Solving the

equations yields a = αu,t1 and b = αx,t1 − αu,t1 respectively. Similarly t2 can also obtain

a and b by solving another set of linear equations. In general, the receiver needs to solve

a system of linear equations of the form Ax = b, where x represents h units of data that

need to be decoded. If A is of full rank, then the system has a unique solution, and the

decoding is considered successful.

We will define the technical terms in the encoding of linear network coding. We

define the data fe transmitted inside an edge e as global encoding vector. For example,

in Figure 2.16, fe = [1 0]T for e = (u,w) while fe = [1 1]T for e = (w, x). Encoding in

each vertex can be characterized by a single matrix multiplication. Consider again the

Figure 2.15. Suppose v stores a matrix
a1 b1

a2 b2

a3 b3

 ,

then the global encoding vectors of the outgoing edges of v can be computed by
| | |

~p1 ~p2 ~p3

| | |



a1 b1

a2 b2

a3 b3

 =


| |

a1 ~p1 + a2 ~p2 + a3 ~p3 b1 ~p1 + b2 ~p2 + b3 ~p3

| |

 ,



24 CHAPTER 2. BACKGROUND

and each column corresponds to the global encoding vector. We can do the same for

all vertices: for every vertex v with indegree din(v) and outdegree dout(v), there is a

din(v) × dout(v) matrix which characterizes the linear encoding process. We define each

entry in the matrix as local encoding coefficient. Figure 2.17 shows the matrices of local

encoding coefficients of the vertices of the graph shown in Figure 2.12. Note that for

convenience, we can imagine that there are h distinct units of incoming data to the

source vertex s so that its matrix of local encoding coefficients is well defined.

s

[
1 0
0 1

]

u
[
1 1

]
v
[
1 1

]

w
[
1
1

]

x
[
1 1

]

t1 t2

Figure 2.17: In this figure, the matrix of local encoding coefficients are indicated near
the vertices. Follow the description of linear encoding by matrix multiplication, and
assume that the dashed edges contain distinct data to s, all global encoding vectors can
be deduced as in Figure 2.16.

A linear network code is defined by assigning values in Fq to all local encoding

coefficients. Any linear network code is a (linear) network coding solution if the linear

network code is such that every receiver can decode the h units of data successfully. That

is the matrix of incoming vectors to any receiver is of full rank.

There are many results on the construction of network coding solution using linear

network coding. Li et al. [50] proposed the first algorithm to construct a network

coding solution, however the running time of their proposed algorithm is exponential.

Later several polynomial time algorithms in constructing a network coding solution are

proposed [39, 33, 46]. Jaggi and Sander et al. [39] proposed the first polynomial time
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algorithm, which runs in O(mkh+nk2h2(h+k)) time, where k is the number of receivers

and h is the optimal multicasting rate using network coding. The best known result is

by Langberg et al. [46], who showed that a network coding solution can be constructed

in O(mkh + nk2h2 + h4k3(k + h)) time. The improvement is made by reducing the

number of intermediate vertices that perform encoding and reducing the time complexity

of constructing a solution. Koetter and Médard [45] alternatively give an algebraic

framework for linear network coding, which is relatively simpler.

2.2.3 Random Linear Network Coding

In the random network coding algorithm, the local encoding coefficients are random

values in a large enough field. It is shown [34, 35] that if the optimal multicasting rate

is h, then with high probability the random network coding algorithm can achieve such

rate. The main advantage of the random network coding algorithm is that assigning local

encoding coefficients can be done in a decentralized manner, and this is very useful in

practical applications.

We are going to prove the optimality of multicasting rate using the random network

coding algorithm. The proof is based on [35].

Theorem 2.9 ([35], Theorem 3). Given a directed acyclic graph G = (V,E), a source

vertex s, and a set T ⊂ V of k receivers. Also let h be the optimal multicasting rate using

network coding. Let At be a h × din(t) matrix for every t ∈ T such that each column

vector fe corresponds to the data on edge e ∈ δin(t). If all local encoding coefficients

are drawn randomly from a large enough finite field Fq, and each pair of coefficients are

independent, then with high probability At is of rank h for all t ∈ T .

Proof. Now let us treat the local encoding coefficients in each vertex as variables. Let

l(v) be the label of vertex v such that

l(v) =

1 if v = s

maxuv∈δin(v) l(u) + 1 otherwise

.

Then by inductive argument it can be easily seen that each entry of the global encoding
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vector of e ∈ δout(v) is a multivariate polynomial of local encoding coefficients with total

degree at most l(v), since encoding involves addition of multiple global encoding vectors

with each entry being multiplied by at most one local encoding coefficient, hence the

label of a vertex implicity characterizes the total degree.

As l(v) ≤ n for all v ∈ V , each entry in At is a multivariate polynomial of local

encoding coefficients with degree at most n. Therefore det(At) is just a multivariate

polynomial of local encoding coefficients of degree at most hn since At is of size h × h.

Assume that det(At) 6≡ 0, then we can apply Schwartz-Zippel Lemma such that if q ≤ hn3

and we assign random values to the local encoding coefficients independently from Fq,

then det(At) = 0 with probability at most 1
n2 . Hence every receiver t has det(At) 6= 0

with probability at least 1− 1
n

by union bound.

It remains to show that det(At) 6≡ 0 for every receiver t. It suffices to give one

assignment to the local encoding coefficients such that det(At) 6= 0. Since by Theorem 2.8

there are h edge disjoint paths from s to t, for each pair of incoming edge e and outgoing

edge e′ such that they belong to the same edge disjoint path, we assign the corresponding

local encoding coefficient to be one, otherwise assign zero. Then one can easily verify that

eventually t receives h distinct unit vectors, hence At = Ih where Ih is a h × h identity

matrix. Therefore det(At) = 1 and the proof is completed.

2.3 Algebraic Tools

In this section, we will present various definitions and theorems on linear algebra. We will

first describe some matrix notations and some basic algorithms. Then we will introduce

nested dissection, which is a method of solving system of linear equations.

2.3.1 Linear Algebraic Algorithms

Throughout the thesis, we would use the following notations for any matrix M . If M is

a matrix, then we can describe any submatrix of M as MS,T , where S and T are the row

and column subsets of M . If we want to include all rows (or columns) we shall write it

as M∗,T (or MS,∗). So M∗,∗ is identical to M . Let ~ei be the i-th vector in the standard
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basis.

2.3.1.1 Matrix Multiplications, Determinant and Inverse

Given two n×n matrices with entries in a field F of size poly(n), the matrix multiplication

operation can be done in O(nω) time [16] where ω < 2.38. For an n×n matrix, it is known

that the operations of computing the determinant, computing the rank and computing

the inverse can all be done in the same time bound as one matrix multiplication [11, 31].

Given an n×m matrix A and an m×n matrix B, we can use fast matrix multiplication to

improve the running time from the näıve O(n2m) algorithm. The procedure is to break

A and B into k = bm
n
c submatrices, each of them is of size n× n, so that:

AB =
(
A1 A2 · · · Ak

)

B1

B2

...

Bk

 =
k∑
i=1

AiBi.

Now AiBi can be computed in O(nω) time and thus AB can be computed in O(knω) =

O(m
n
nω) = O(mnω−1) time.

2.3.1.2 Schwartz-Zippel Lemma and Matrix of Indeterminates

Schwartz-Zippel Lemma provides us a randomized algorithm to test whether a polynomial

is identically equal to zero or not, with high probability.

Theorem 2.10 ([57] Theorem 3.2 (Schwartz-Zippel Lemma)). Let P ∈ F[x1, . . . , xn] be

a non-zero polynomial of degree d ≥ 0 over a field F. Let S be a finite subset of F and let

r1, r2, . . . , rn be selected randomly from S. Then

Pr[P (r1, r2, . . . , rn) = 0] ≤ d

|S|
.

Proof. The proof is by mathematical induction on the number of variables. The base

case is n = 1. Here P (x) is a degree d polynomial with at most d roots, hence Pr[P (r) =

0] ≤ d
|S| .
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Now assume the theorem holds for all polynomials with n− 1 variables where n > 1.

We can write P as

P (x1, ..., xn) =
d∑
i=0

xi1Pi(x2, ..., xn).

If P 6≡ 0 then there exists i such that Pi(x2, ..., xn) 6≡ 0. Consider the largest such i.

Randomly pick r1, ..., rn ∈ S. By the induction hypothesis, Pr[Pi(r1, r2, ..., rn) = 0] ≤ d−i
|S|

since Pi has degree d− i. If Pi(r1, r2, ..., rn) 6= 0, then P (x1, r2, ..., rn) is now of degree i

with one variable. Hence Pr[P (r1, r2, ..., rn) = 0|Pi(r2, ..., rn) 6= 0] ≤ i
|S| . Finally,

Pr[P (r1, r2, ..., rn) = 0]

= Pr[P (r1, r2, ..., rn) = 0|Pi(r2, ..., rn) = 0] + Pr[P (r1, r2, ..., rn) = 0|Pi(r2, ..., rn) 6= 0]

≤ Pr[Pi(r2, ..., rn) = 0] + Pr[P (r1, r2, ..., rn) = 0|Pi(r2, ..., rn) 6= 0]

≤ d− i
|S|

+
i

|S|
=

d

|S|

Let F be a field, and let F(x1, . . . , xm) be the field of rational function over F with

indeterminates {x1, x2, . . . , xm}. A matrix with entries in F(x1, . . . , xm) is called a matrix

of indeterminates. A matrix M of indeterminates is non-singular if and only if its

determinant is not the zero function. To check if an n×n matrix M with indeterminates

is non-singular, one can substitute each xi with a random value in Fq and call the resulting

matrix M ′. By the Schwartz-Zippel Lemma, if M is non-singular then det(M ′) is zero

with probability at most n/q. Hence, by setting q = nc for a large constant c, this gives

a randomized algorithm with running time O(nω) to test if M is non-singular with high

probability.

2.3.2 Nested Dissection

Nested dissection is a method in solving certain kinds of system of linear equations. In this

section we will first review Gaussian elimination, which is a classical technique of solving

linear equations. Then we will define positive definite matrix, which is required to apply

the nested dissection method. After that we will introduce the notion of elimination
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ordering of a matrix. Then we will describe generalized nested dissection and we will

discuss its applications to various classes of undirected graphs. We end this section by

briefly stating the limitations of generalized nested dissection and presenting its recent

extensions.

In linear algebra, solving a system of n linear equations with n unknowns can be

represented in matrix form Ax = b, where A is an n× n matrix, x is a solution vector of

n unknowns. We assume all entries in A, b and x are real. The solution x is unique if and

only if A is of full rank. Then to obtain the value of entries in x, one classical method is

to perform Gaussian elimination on A. After performing elimination on A, every entry

Ai,j where i > j must be zero, as shown below:

A =


A1,1 A1,2 · · · A1,n

0 A2,2 · · · A2,n

...
...

. . .
...

0 0 · · · An,n

 .

Ordinary Gaussian elimination algorithm takes O(n3) time. A variation of Gaussian

elimination that also takes O(n3) time is known as Gaussian-Jordan elimination, which

eliminates until A becomes a diagonal matrix, as shown below:

A =


A1,1 0 · · · 0

0 A2,2 · · · 0
...

...
. . .

...

0 0 · · · An,n

 .

We now define positive definite matrix, and discuss how we can improve the running

time of elimination algorithm in this class of matrices. We assume that the elimination

algorithm we use is Gaussian-Jordan.

Definition. An matrix A ∈ Rn×n is called positive definite if for every x ∈ Rn such that

x 6= ~0 we have xTAx > 0.

Positive definite matrix guarantees the existence and uniqueness of the solution in a

system of linear equations.
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Theorem 2.11. If a matrix A ∈ Rn×n is positive definite, then det(A) 6= 0.

Proof. Assume det(A) = 0. Then it is equivalent to Ax = ~0 for some x ∈ Rn, and x 6= ~0.

It implies that

xTAx = xt(~0) = 0.

However it means that A is not positive definite, thus a contradiction.

Corollary 2.12. If a matrix A ∈ Rn×n is positive definite, then the system of linear

equations Ax = b must have exactly one solution.

We will give some graph theoretic interpretations of Gaussian elimination. We assume

that no numerical cancellation occurs during elimination. We associate any positive

definitie matrix A with its underlying graph GA = (V,E), which is an undirected graph

so that there are n vertices, and e = (u, v) ∈ E if both Av,u 6= 0 and Au,v 6= 0. Note that

we ignore the self loops presented in Ai,i. In addition, A must be symmetric, meaning

that Ai,j = Aj,i for every i and j. When performing elimination at Ai,i, it is equivalent to

removing vertex i in GA since after elimination, Ai,j = Aj,i = 0 for j 6= i, which implies

that vertex i does not have edges connecting to any other vertices. Fill-in occurs at Aj,k

and Ak,j when Ai,j 6= 0 and Ai,k 6= 0. We see that it is equivalent to add an edge (j, k)

before vertex i is removed, if (i, j), (i, k) ∈ E. Then it can be seen that when eliminating

vertex i in GA, there will be
(
d(i)
2

)
fill-ins. See Figure 2.18 for a simple example.

x

y

z

w

x

y

z

Eliminate w

Figure 2.18: An example of showing elimination in a graph. When vertex w is eliminated
in the left graph, the edges are added between any pair of vertices of x, y and z. The
result is shown on the right graph.

Definition. An elimination ordering is a bijection τ : {1, 2, · · · , n} → V so that the

elimination of the entries of A is done in the order Aτ(1),τ(1), · · ·Aτ(n),τ(n). The underlying
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graph GA after the k-th elimination according to τ is denoted as Gk
A,τ = (V,Ek), so that

G0
A,τ = GA and Gn

A,τ has no edges. Ek is the set of edges after performing upto k-th

elimination according to the ordering defined in τ .

Different elimination orderings produce different number of fill-ins. Consider again

the graph presented in Figure 2.18. An elimination ordering {w, x, y, z} would produce

three fill-ins, which is indicated in Figure 2.18. However, if we consider any elimination

ordering such that vertex w is the last eliminated vertex, then there are no fill-ins at all.

For example, consider the elimination ordering {z, y, x, w}.

Let dk(i) be the degree of vertex i in the graph Gk
A,τ . Then one can verify that a

particular elimination ordering τ would lead to the total number of fill-ins Fτ such that

Fτ =
n∑
i=1

(
di(τ(i))

2

)
.

Ideally we wish to find τ such that Fτ is minimized, however it is shown to be NP-

complete [24].

Nested dissection is a technique to reduce the number of fill-ins if the underlying graph

of a matrix has good separators. Recall from Section 2.1.7, let Z be a separator of GA

such that its removal in GA results in two separated subgraphs with vertex sets X and Y .

The main idea of nested dissection is that eliminating vertices in Z first would produce

more fill-ins than eliminating them at last. We again consider the graph in Figure 2.18,

we see that Z = {w} is a good separator. Hence, as explained before, that eliminating it

last gives less fill-ins. The study of nested dissection is pioneered by George [25].

Generalized nested dissection is the nested dissection method in the graph with good

separators. As discussed in Section 2.1.7, if GA is planar, we can recursively decompose

GA using (O(
√
n), 2/3)-separators according to Theorem 2.4. As such we obtained a weak-

separator tree TA and we perform elimination of A in the bottom up fashion according to

TA. Lipton, Rose and Tarjan [51] first proposed this elimination algorithm in a hereditary

class of graphs that has (O(
√
n), α)-separation where α ∈ (0, 1). They proved the fill-in

bound and the running time of the algorithm as below.

Theorem 2.13 (Generalized Nested Dissection, [51]). Let A ∈ Rn×n be a positive definite
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matrix such that the underlying undirected graph GA is in a hereditary class of graphs

that has a (O(
√
n), α)-separation and can be found in O(nγ) time. Then performing

elimination in A results in O(n log n) fill-ins and runs in O(nω/2 + nγ + n log n) time.

There is another simpler algorithm of generalized nested dissection, which is given

by Gilbert and Tarjan [27]. Note that George’s work [25] is a special case of generalized

nested dissection.

There are certain hereditary classes of graphs that can apply Theorem 2.13. As

mentioned in Section 2.1.7, the class of planar graphs, the class of bounded genus graphs,

and the class of fixed minor free graphs have a (O(
√
n), α)-separation (See Section 2.1.1

for their definitions). In both planar graph and bounded genus graph the separators can

be constructed in linear time [52, 26], therefore nested dissection runs in O(nω/2) time

for both cases. For fixed minor free graph, there is an O(n1.5) algorithm [4] to find the

separator and the nested dissection runs in O(n1.5) time.

There are several restrictions when applying nested dissection algorithms. They are

only applicable to a matrix A which satisfies the following properties:

1. A is symmetric, positive definite.

2. Every entry in A is in R.

In the application of this thesis, we are dealing with matrices that are neither positive

definite, symmetric nor every entry is real. Interestingly, Alon and Yuster [5] extended the

nested dissection method such that it works for any matrix (not necessarily symmetric)

and for any field. It only requires that the underlying graph (now an edge (i, j) is

presented if either Ai,j 6= 0 or Aj,i 6= 0) has a (O(nβ), α)-weak separator tree. In the

following a family of graphs is δ-sparse if any n-vertex graph in this family has at most

δn edges.

Theorem 2.14 (Alon, Yuster [5]). Let F be a δ-sparse family of graphs with an O(nγ)

time algorithm to find an (O(nβ), α)-weak separator tree where α is a positive constant

smaller than 1. Given a system of linear equations Ax = b where A ∈ Fn×n is non-

singular, b ∈ Fn and the underlying graph of A is in F , there is a randomized algorithm

that finds the unique solution of the system in O(nωβ + nγ + n log n) time.
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One consequence is that one can apply the nested dissection method to the directed

version of the previously mentioned classes of graphs, and we will use this in Section 3.4

to obtain faster algorithms for computing edge connectivities.
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Chapter 3

Algorithms for Graph Connectivities

The results of this chapter are based on joint work with Ho Yee Cheung and Lap Chi

Lau [15].

3.1 Introduction

Graph connectivity is a basic concept that measures the reliability and efficiency of

a graph. The edge connectivity from vertex s to vertex t is defined as the size of a

minimum s-t cut, or equivalently the maximum number of edge disjoint paths from s to

t. Computing edge connectivities is a classical and well-studied problem in combinatorial

optimization. Most known algorithms to solve this problem are based on network flow

techniques (see e.g. [58]).

The fastest algorithm to compute s-t edge connectivity in a simple directed graph by

Even and Tarjan runs in O(min{m1/2, n2/3} ·m) time, where m is the number of edges

and n is the number of vertices. To compute the edge connectivities for many pairs,

however, it is not known how to do it faster than computing edge connectivity for each

pair separately, even when the pairs share the source or the sink. For instance, it is

not known how to compute all pairs edge connectivities faster than computing s-t edge

connectivity for Ω(n2) pairs. This is in contrast to the problem in undirected graphs,

where all pairs edge connectivities can be computed in Õ(mn) time by constructing a

Gomory-Hu tree [8].

35
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Network coding is an innovative method to transmit information in a computer

network. The fundamental result is a max-information-flow min-cut theorem for

multicasting [1]: if the edge connectivity between the source vertex s to each sink

vertex ti is at least k, then one can transmit k units of information to all sink vertices

simultaneously, by performing encoding and decoding at the vertices. An elegant

algebraic framework has been developed to construct efficient network coding schemes

for multicasting [50, 45].

In this thesis, we use the techniques developed in network coding to obtain a new

algebraic formulation for computing edge connectivities. This reduces the problem of

computing edge connectivities to solving systems of linear equations, and opens up

new directions to design algorithms for the problem. One advantage is that the edge

connectivities from a source vertex to all other vertices can be computed simultaneously

(as in the max-information-flow min-cut theorem). This leads to faster algorithms for

computing single source edge connectivities and all pairs edge connectivities, and in some

settings the amortized time to compute the edge connectivity for one pair is sublinear.

In the process we have also found an interesting use of expanders and superconcentrators

to design fast algorithms for graph connectivity problems.

3.1.1 Our Results

Our new algebraic formulation for computing edge connectivities is inspired by the

random linear coding algorithm [35] in constructing network codes. Let G = (V,E)

be a directed graph. Let s be the source vertex with out-degree d, with outgoing edges

e1, . . . , ed. For each edge e ∈ E we associate a vector fe of dimension d, where each

entry in fe is an element from a large enough finite field F. The vectors fe are required

to satisfy the following properties: (1) the vectors on e1, . . . , ed are linearly independent,

and (2) the vector on an edge e = (v, w) is a random linear combination of the incoming

vectors of v. Once we obtain the vectors, we can compute the edge connectivities from

the source vertex as follows.

Theorem 3.1 (Informal statement). With high probability there is a unique solution to

the vectors, and the edge connectivity from s to t is equal to the rank of the incoming
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vectors of t for any t ∈ V − s.

See Figure 3.1 for an example and Theorem 3.5 for the formal statement. This

formulation is previously known for directed acyclic graphs only [38, 60]. For general

directed graphs, network coding schemes require convolution codes [18, 49], and it is not

known how to use these to compute edge connectivities. Our contribution is to come up

with this simple formulation that can be used to compute edge connectivities only.

s

v1

v3

v2 v4

f1 =

 1
0
0



f2 =

 0
1
0



f3 =

 0
0
1



f4 =

 1
2
1



f5 =

 0
0
2



f6 =

 4
6
3



f7 =

 2
3
1



f8 =

 0
0
1



7
4

10

5

2

1

2

1

2

f4 = 7 · f1 + 4 · f6
f5 = 2 · f3
f6 = 2 · f7 + 1 · f8
f7 = 2 · f4 + 10 · f2 + 5 · f5
f8 = 1 · f3

Figure 3.1: In this example three independent vectors f1, f2 and f3 are sent from the
source s. Other vectors are a linear combination of the incoming vectors, according to
the random coefficients on the dotted lines. All operations are done in the field of size
11. To compute the edge connectivity from s to v2, for instance, we compute the rank of
(f2, f4, f5) which is 3 in this example.

The algebraic formulation reduces the problem of computing edge connectivities to

solving systems of linear equations. We call the step to compute the vectors fe as the

encoding step, and the step to compute the ranks as the decoding step. The formulation

has the advantage that after the encoding step has been done, the edge connectivities

from the source vertex s to all other vertices can be computed readily.

We first present algorithmic results on single source edge connectivities and then

algorithmic results on all pairs edge connectivities.
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In directed acyclic graphs, the encoding step can be implemented directly without

solving linear equations, but the resulting algorithm is not competitive to the existing

algorithms. By a simple transformation using superconcentrators [61, 36], we show how

to implement the encoding step optimally by this direct approach. This can be used to

improve the random linear coding algorithm [35] for network coding. Also we obtain a

faster algorithm for computing single source edge connectivities in directed acyclic graphs.

The algorithm runs in linear time when d is a constant, and by a simple reduction this

can be used to return all vertices with edge connectivity at most d from the source s in

linear time.

Theorem 3.2. Given a simple directed acyclic graph and a source vertex s with outdegree

d, the encoding step can be done in O(dm) time, and the edge connectivities from s to all

vertices can be computed in O(dω−1m) time, where ω ≈ 2.38 is the matrix multiplication

exponent.

In some graphs the system of linear equations can be solved more efficiently. For

instance, we can use a recent result of Alon and Yuster [5] to perform the encoding

step faster in directed planar graphs with constant maximum degree. The best known

algorithm to compute single source edge connectivities in directed planar graphs requires

O(n2) time, by using a O(n) time algorithm to compute s-t edge connectivity [10].

Theorem 3.3. Given a simple directed planar graph with constant maximum degree and

a source vertex s, the edge connectivity from s to all vertices can be computed in O(nω/2)

time.

For general directed graphs, we show that all pairs edge connectivities can be

computed in one matrix inverse time, instead of solving the linear equations for each

source vertex separately. The algorithm is faster when the graph has O(n1.93) edges,

for example when m = O(n) it takes O(nω) time while the best known algorithm takes

O(n3.5) time.

Theorem 3.4. Given a simple directed graph, the edge connectivities between all pairs

of vertices can be computed in O(mω) time where m is the number of edges in the graph.
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The idea of transforming the graph using superconcentrators can also be used in

other graph connectivity problems. In Section 3.6 we show how to use expanders and

superconcentrators to speedup the algorithms for finding edge splitting-off operations

preserving edge connectivities in undirected and directed graphs.

3.1.2 Related Work

The standard way to solve the s-t edge connectivity problem in directed graphs is by

network flow techniques. For simple directed graphs, the best known algorithm is a

O(min{n2/3,m1/2} ·m) time algorithm [19] by the blocking flow method. As mentioned

previously, in directed graphs, it is not known how to compute all pairs edge connectivities

faster than computing s-t edge connectivity for Ω(n2) pairs separately. This is in contrast

to the problem in undirected graphs, where all pairs edge connectivities can be computed

in Õ(mn) time by constructing a Gomory-Hu tree [8], much faster than computing edge

connectivities for Ω(n2) pairs.

There are many improvements in special cases of the s-t edge connectivity problem

in directed graphs. For bipartite matching, the best known algorithm is a O(m
√
n) time

algorithm [37] by the blocking flow method, and a O(nω) time algorithm [55, 32] by

algebraic techniques. It is known that the bipartite matching problem is equivalent to

the s-t vertex connectivity problem in directed graphs, and so the above results hold for

the latter problem as well [14]. For simple undirected graphs, there is a O(n3/2
√
m) time

algorithm [29] by a combination of the blocking flow method and a graph sparsification

technique, and the best known algorithm is a Õ(n2.2) time algorithm [43] by extending [29]

with random sampling. In directed planar graphs, there is an optimalO(n) time algorithm

for computing s-t edge connectivity [10].

For network coding, the max-information-flow min-cut theorem for multicasting

is first proved by an information theoretical argument [1]. Later on it is shown

that linear network coding is enough to achieve the max-flow min-cut theorem for

multicasting [50] and an algebraic framework is developed [45]. Then a polynomial

time deterministic algorithm is obtained to construct optimal linear coding schemes

for multicasting in directed acyclic graphs [39], and in general directed graphs using
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convolution codes [18, 49]. Subsequently a simple polynomial time randomized algorithm

is obtained for constructing optimal linear coding schemes for multicasting [35], and our

algorithm is based on this approach.

3.1.3 Techniques

The starting observation is that the random linear coding algorithm [35] for network

coding does not require the knowledge of the graph topology, and it could be used to

compute the edge connectivities from the source to the sinks. Actually this observation

was already made for directed acyclic graphs in earlier work [38, 60]. For general directed

graphs, however, network coding schemes are more complicated (even for random linear

coding) as convolution codes are required [18, 49], and it is not known how to use these to

compute edge connectivities. Our contribution is to come up with a simple formulation

that can be used to compute edge connectivities only. The simple coding scheme (without

using convolution codes) also allows us to design more efficient algorithms. The proof

extends the ideas developed in the random linear coding algorithm.

We show a simple transformation using expanders and superconcentrators [61, 36] to

design fast algorithms for some graph connectivity problems. In Eulerian directed graphs,

the idea is to replace a vertex of indegree d and outdegree d by a superconcentrator with

d inputs and d outputs. This reduces the maximum degree of the graph significantly,

while preserving the edge connectivities and only increasing the number of vertices

moderately. For random linear coding, using the direct algorithm in the resulting

graph gives an optimal algorithm in the original graph. For edge splitting-off, using the

straightfoward algorithm in the resulting graph gives a considerable improvement upon

the same algorithm in the original graph. In undirected graphs, we can use constant

degree expander graphs for the same purpose.

For all pairs edge connectivities, we observe that if we change the source vertex the

system of linear equations is similar, and so we could compute the n single source edge

connectivities in one matrix inversion time.
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3.1.4 Organization

We present the algebraic formulation in Section 3.2 and prove a formal statement of

Theorem 3.1. In Section 3.3 and 3.4 we present algorithms for single source edge

connectivities and prove Theorem 3.2 and 3.3. In Section 3.5 we present algorithms

for all pairs edge connectivities and prove Theorem 3.4. Finally we show the use of

expanders and superconcentrators in the edge splitting-off problem in Section 3.6.

3.2 New Algebraic Characterization

We define the algebraic formulation for computing graph connectivities formally. Given a

directed graph G = (V,E) and a specified source vertex s, we are interested in computing

the edge connectivities from s to other vertices. Let m = |E| and E = {e1, e2, . . . , em}.

Let d = dout(s) and δout(s) = {e1, . . . , ed}. Let F be a finite field. For each edge e ∈ E,

we associate a global encoding vector fe ∈ Fd of dimension d where each entry is in F.

We say a pair of edges e′ and e are adjacent if the head of e′ is the same as the tail of

e, i.e. e′ = (u, v) and e = (v, w) for some v ∈ V . For each pair of adjacent edges e′ and

e, we associate a local encoding coefficient ke′,e ∈ F. We assume that ke′,e = 0 for every

pair of edges e′ and e that are not adjacent. Given the local encoding coefficients for all

pairs of adjacent edges in G, we say that the global encoding vectors are a network coding

solution if the following two sets of equations are satisfied:

1. For each edge ei ∈ δout(s), we have fei =
∑

e′∈δin(s) ke′,ei · fe′ + ~ei, where ~ei is the

i-th vector in the standard basis.

2. For each edge e = (v, w) with v 6= s, we have fe =
∑

e′∈δin(v) ke′,e · fe′ .

An example is depicted in Figure 3.1. Note that not every possible choices of the

local encoding coefficients can result in a network coding solution. But we can guarantee

the existence and the uniqueness of such solution by the following theorem, as the formal

statement of Theorem 3.1.

Theorem 3.5. Let F be a finite field with |F| = Ω(mc+3) for some integer c. If we choose

each local encoding coefficient independently and uniformly at random from F, then with
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probability at least 1−O(1/mc):

1. There is a unique network coding solution for the global encoding vectors fe.

2. For t ∈ V − s, let δin(t) = {a1, . . . , al}, the edge connectivity from s to t is equal to

the rank of the matrix (fa1 , fa2 , . . . , fal).

We will prove Theorem 3.5 in the remaining of this section. First we need to state a

matrix form of a network coding solution.

Claim 3.6. Let F be a d×m matrix such that

F =


| |

fe1 · · · fem

| |

 .

If all fei in F are a network coding solution, then we have F = FK +Hs, where K is an

m×m matrix such that Ki,j = kei,ej . Also, Hs is a d×m matrix with exactly d columns

that form a basis of d-dimensional space.

Proof. Let

F ′ = FK =


| |

f ′e1 · · · f ′em

| |

 .

If the vectors in F are a network coding solution, then for every edge e 6∈ δout(s), f ′e = fe.

For every edge e = (v, w), we have

f ′e =
∑
e′∈E

fe′ke′,e .

Since ke′,e = 0 for all e′ such that e′ and e are not adjacent, we can rewrite f ′e as

f ′e =
∑

e′∈δin(v)

fe′ke′,e .

By the second requirement of network coding solution, we can conclude that f ′e = fe for

every e 6∈ δout(s).
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For every ei ∈ δout(s), fei − f ′ei = ~ei. Therefore if we add F ′ by an additional d ×m

matrix Hs such that the column which corresponds to the edge ei is ~ei, while the other

columns are zero vectors, then F ′ + Hs also satisfies the first requirement of network

coding solution. Therefore the vectors in F ′ + Hs are a network coding solution. Since

the vectors in F are also a network coding solution, we can conclude that

F = F ′ +Hs = FK +Hs.(3.1)

Without loss of generality, we can assume that the first d columns of Hs are distinct

vectors from the standard basis. For this to be true we can permute some columns in F

and can permute columns and rows in K, such that we can assume that (3.1) is in the

following form
|

· · · fej · · ·

|


=


|

· · · fej · · ·

|





ke1,ej
...

· · · kei,ej · · ·
...

kem,ej


+


| | | |

~e1 · · · ~ed ~0 · · · ~0

| | | |


.

The equation (3.1) can be rewritten as F (I −K) = Hs. Hence to prove the first part

of Theorem 3.5, we will prove in the following lemma that (I −K) is non-singular with

high probability. Then (3.1) can be formulated as F = Hs(I −K)−1, which implies that

the global encoding vectors are uniquely determined.

Lemma 3.7. Given the conditions in Theorem 3.5, the matrix (I −K) is non-singular

with probability at least 1−O(1/mc+2).

Proof. Since the diagonal entries of K are zero, the diagonal entries of I − K are all

one. By treating each entry of K as an indeterminate Ki,j, it follows that det(I −K) =

1 + p(· · · , Ki,j, · · · ) where p(· · · , Ki,j, · · · ) is a polynomial of the indeterminates with

total degree at most m. Note that det(I −K) is not a zero polynomial since there is a

constant term. Hence, by the Schwartz-Zippel Lemma, if |F| = Ω(mc+3) and each Ki,j
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is a random element in F, then det(I − K) = 0 with probability at most O(1/mc+2),

proving the lemma.

After we obtained the global encoding vectors, we would like to show that the edge

connectivities can be determined from the ranks of these vectors. Consider a vertex

t ∈ V − s. Let δin(t) = {a1, . . . , al} and let Mt be the d × l matrix (fa1 , fa2 , . . . , fal).

Let the edge connectivity from s to t be λs,t. We prove in the following lemma that

rank(Mt) = λs,t with high probability.

Lemma 3.8. Given the conditions of Theorem 3.5, we have rank(Mt) = λs,t with

probability at least 1−O(1/mc+1).

Proof. We will first prove that rank(Mt) ≤ λs,t with high probability. The plan is to

show that the global encoding vector on each incoming edge of t is a linear combination

of the global encoding vectors in a minimum s-t cut with high probability. Consider a

minimum s-t cut δin(T ) where T ⊂ V with s /∈ T and t ∈ T and din(T ) = λs,t. Let

E ′ = {e′1, . . . , e′m′} be the set of edges in E with their heads in T . Let λ = λs,t and

assume δin(T ) = {e′1, . . . , e′λ}. See Figure 3.2a for an illustration. Let F ′ be the d ×m′

matrix (fe′1 , . . . , fe′m′ ). Let K ′ be the m′ ×m′ submatrix of K restricted to the edges in

E ′. Let H ′ be the d × m′ matrix (fe′1 , . . . , fe′λ ,
~0, . . . ,~0). Then, by the network coding

requirements, the matrices satisfy the equation

F ′ = F ′K ′ +H ′.

By the same argument as in Lemma 3.7, the matrix (I − K ′) is nonsingular with

probability at least 1 − O(1/mc+2). So the above matrix equation can be rewritten

as F ′ = H ′(I − K ′)−1. This implies that every global encoding vector in F ′ is a linear

combination of the global encoding vectors in H ′, which are the global encoding vectors

in the cut δin(T ). Therefore the rank(Mt) ≤ din(T ) = λs,t.

Now we prove that rank(Mt) ≥ λs,t with high probability. The plan is to show that

there is a λ × λ submatrix M ′
t of Mt such that det(M ′

t) is a non-zero polynomial of the

local encoding coefficients with small total degree. First we use the edge disjoint paths

from s to t to define M ′
t . Let λ = λs,t and P1, . . . , Pλ be a set of λ edge disjoint paths
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from s to t. Set ke′,e = 1 for every pair of adjacent edges e′, e ∈ Pi for every i, and set

all other local encoding coefficients to be zero. See Figure 3.2b for an illustration. Then

each path sends a distinct unit vector of the standard basis to t, and thus Mt contains a

λ× λ identity matrix as a submatrix. Call this λ× λ submatrix M ′
t . Next we show that

the det(M ′
t) is a non-zero polynomial of the local encoding coefficients with small total

degree. Recall that F = H(I −K)−1. By considering the adjoint matrix of I −K, each

entry of (I −K)−1 is a polynomial of the local encoding coefficients with total degree m

divided by det(I −K), and thus the same is true for each entry of F . Hence det(M ′
t) is

a degree λm polynomial of the local encoding coefficients divided by (det(I −K))λ. By

using the edge disjoint paths P1, . . . , Pλ, we have shown that there is a choice of the local

encoding coefficients so that rank(M ′
t) = λ. Thus det(M ′

t) is a non-zero polynomial of

the local encoding coefficients. Conditioned on the event that det(I −K) is nonzero, the

probability that det(M ′
t) is zero is at most O(λ/mc+2) ≤ O(1/mc+1) by the Schwartz-

Zippel Lemma. By bounding the probability that det(I −K) = 0 using Lemma 3.7, we

obtain that the probability that det(M ′
t) = 0 is at most O(1/mc+1). This implies that

M ′
t is a full rank submatrix with high probability, and thus rank(Mt) ≥ rank(M ′

t) = λ.

We conclude that rank(Mt) = λs,t with probability at least 1− O(1/mc+1) by the union

bound.

s

t T

fe′1

fe′2 · · ·
fe′λ

fe′i

(a) Upper bound by min-cut.

s

t

1
0

0

1

0

1 1

0

(b) Lower bound by paths.

Figure 3.2
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Thus the probability that rank(Mt) 6= λs,t for some t ∈ V −s is at most n·O(1/mc+1) ≤

O(1/mc) by the union bound on t, and this proves the second part of Theorem 3.5.

Therefore, we only need to set c to be a constant to guarantee a high probability result,

while each field operation can be done in O(logm) time.

3.3 Connectivities in Acyclic Graph

In directed acyclic graphs, one can compute the global encoding vectors directly by

following the topological ordering of the graph. We can first preprocess the graph by

a breadth first search to remove all vertices that are not connected from the source

vertex. Then the source vertex s is the only vertex with indegree zero, and we set the

global encoding vectors of its outgoing edges to be the vectors in the standard basis,

as required by the first condition for the network coding solution. We assign random

local encoding coefficients to each pair of adjacent edges. Then we process the remaining

vertices following the topological ordering of the graph, so that when each vertex v is

processed all the vectors of its incoming edges are already computed. For each outgoing

edge of v, we compute its vector by taking a linear combination of the vectors of the

incoming edges of v, according to the local encoding coefficients. It is easy to see that the

global encoding vectors of all edges will be computed, and the resulting vectors satisfy

the second requirement of the network coding solution.

Let d be the outdegree of the source vertex s. So each global encoding vector is of

dimension d. For a vertex v with indegree din(v), it requires d·din(v) arithmetic operations

to compute the vector of one outgoing edge of v, and thus it requires d · din(v) · dout(v)

operations to compute the vectors of all outgoing edges of v. Therefore the total encoding

time of this straightforward implementation is
∑

v∈V−s d · din(v) · dout(v), and in worst

case it requires Θ(dnm) steps since
∑

v∈V−s d
in(v) · dout(v) ≤ n

∑
v∈V−s d

out(v) = Θ(nm).

In this section we are going to obtain faster encoding algorithms. By improving the

algorithm we can compute single source all pairs connectivities faster. In the remaining of

this section we will discuss how we can improve by applying fast matrix multiplications.

Next we will state an important transformation of the graph using superconcentrators

so that the connectivities are preserved in the transformed graph while it has constant
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indegree. This transformation provides faster algorithms for encoding.

3.3.1 Faster Encoding Algorithms

An improvement is to use a fast rectangular matrix multiplication algorithm to compute

all the outgoing vectors of a vertex. First we observe that for every vertex v 6= s, it takes

O(d · din(v)dout(v)) time to compute all global encoding vectors that are on the edges of

outgoing from v, using simple matrix multiplication. As discussed in Section 2.3.1.1, we

can perform the multiplication in O(d · (dout(v))ω−2din(v)) time. Hence the total time of

encoding is given by

∑
v∈V−s

d · (dout(v))ω−2din(v) = d
∑
v∈V−s

(dout(v))ω−2din(v)

≤ dn
∑
v∈V−s

(dout(v))ω−2

≤ dn

( ∑
v∈V−s

dout(v)

)ω−2
(By Lemma 3.19)

= O(dnmω−2).

This already gives a faster algorithm than the näıve approach since ω < 3.

Next we consider an efficient implementation of this algorithm using superconcentra-

tors.

Theorem 3.9. Given a simple directed acyclic graph and a source vertex s with outdegree

d, the encoding step can be done in O(dm) time. In addition, the edge connectivities from

s to all vertices can be computed in O(dω−1m) time.

Proof. Observe that the encoding operation is much faster if the indegree of a vertex is a

constant. This is because encoding any vertex v 6= s amounts to multiplying a d× din(v)

matrix with a din(v)×dout(v) matrix, so that if both din(v) and dout(v) are constant, then

encoding v takes O(d) time by simple matrix multiplication.

So the idea is to transform the graph into a bounded degree graph, and it turns out

that superconcentrators give us an optimal transformation for this purpose. To improve
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the encoding time, we first transform the graph G = (V,E) by replacing each vertex in

V − s by a superconcentrator (see Section 2.1.9 for more details). For each vertex v, let

dv = max{din(v), dout(v)}, we replace v by a superconcentrator Γv with |I| = |O| = dv,

and “rewire” each incoming edge of v to a distinct vertex in I and each outgoing edge of

v from a distinct vertex in O. See Figure 3.3 for an illustration. The total transformation

time is
∑

v∈V O(dv) =
∑

v∈V O((din(v) + dout(v))) = O(m).

v

w1

w2

w3

w4

u1

u2

u3

I O

dv inputs dv outputs

u1

u2

u3

w1

w2

w3

w4

Superconcentrator
Γv

Figure 3.3: Replace vertex v by a superconcentrator Γv and “rewire” the edges.

Call the graph after the transformation G′. A key point is that the edge connectivity

from the source s to a vertex t in G is equal to the edge connectivity from the source

s to Γt in G′ by thinking of Γt as a node. To see this, any set of edge disjoint paths

from s to t in G corresponds to a set of edge disjoint paths from s to Γt in G′, because

paths sharing a vertex v in G can be routed using the disjoint paths guaranteed by the

superconcentrator Γv in G′.

By the properties described in Section 2.1.9, G′ is a directed acyclic graph with

constant maximum indegree. Thus the global encoding vector of one edge in G′ can

be computed in O(d) time, where d is the outdegree of the source vertex s. Since

Γv has O(dv) edges, the global encoding vectors of the outgoing edges of Γv can be

computed in O(d · dv) time. Therefore, all the global encoding vectors can be computed

in
∑

v∈V O(d · dv) =
∑

v∈V O(d · (din(v) + dout(v))) = O(dm) time.

To compute the edge connectivity from s to Γt in G′, by Theorem 3.5 we can compute

the rank of the incoming vectors of Γt in G′. For a rectangular matrix of size a × b, its

rank can be computed in O(abω−1) time [32]. So the total decoding time is given by

∑
v

O(din(v) · dω−1) = O(m · dω−1).
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Note that the encoding time is optimal since writing down all the global encoding

vectors already takes O(dm) time. It is surprising that the vectors of all the outgoing

edges of Γv in G′ can be computed in O(d · dv) time, the same time complexity as

computing the vector for just one outgoing edge of v in G. This can be used to improve

the random linear coding algorithm [35] for network coding.

Our algorithm is faster than running the Even-Tarjan algorithm for Ω(n) times for

all n and m. When d is small we can compute single source edge connectivites in linear

time. Recall from Section 2.1.2 that λs,t is the edge connectivity from s to t. When

the outdegree of s is unbounded, this can be used to obtain an algorithm to compute

min{λs,t, d} for all t in linear time for constant d, by adding a new source s′ with d

outgoing edges to s and compute the edge connectivities from s′. This also gives us an

efficient linear time checker to test whether the multicasting rate of G is at least d by

computing min{λs,t, d} for all t that belong to a set of receivers T ⊆ V .

3.4 Directed Planar Graphs

In this section we will discuss how to improve the algorithms for directed planar graphs,

bounded genus graphs, and fixed minor free graphs (see Section 2.1.1 for the definitions).

Using the matrix formulation in Section 3.2, we could find a network coding solution by

solving systems of linear equations.

Claim 3.10. Finding a network coding solution F amounts to solving d systems of linear

equations, where d = dout(s).

Proof. Since the source vertex has outdegree d, the global encoding vectors are of

dimension d (see Section 3.2 for details). The matrix formulation that we obtained

in Section 3.2 is equivalent to

(I −K)TF T = (Hs)
T .

Hence we can obtain d systems of linear equations since the matrix form above can be
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illustrated as follows,



aej ,e1
...

· · · aej ,ei · · ·
...

aej ,em


︸ ︷︷ ︸

m×m matrix


...

− fej −
...


︸ ︷︷ ︸

m×d matrix

=



− ~e1 −
...

− ~ed −

− ~0 −
...

− ~0 −


︸ ︷︷ ︸

m×d matrix

,

where aej ,ei = (I−K)ej ,ei . The k-th system of linear equations Axk = bk can be obtained

by setting xk = (F T )∗,k , bk = ((Hs)
T )∗,k, and A = (I −K)T .

To solve a system of linear equations in general, one can apply Gaussian elimination

on A, and then perform backward substitution, which runs in O(mω) time. However,

from Section 2.3.2, we see that if the underlying graph of (I −K) has a weak separator

tree, then this system of linear equations can be solved more efficiently using nested

dissection.

Assume that the original network G as a simple directed planar graph with constant

maximum degree d, and let G′ be the underlying graph of (I − K). Observe that G is

planar does not imply that G′ is planar, because it is obtained from the line graph of a

planar graph. See Figure 3.4 for an example.

x

u1

u2

u3

e 0

e1
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2

v1

v2

v3

e
5

e4

e 3

e0 e1 e2

e3 e4 e5

Figure 3.4: An example that shows a planar graph is not necessarily planar in its line
graph. In particular, the complete bipartite graph K3,3 on the right is the line graph of
the left one. The left graph is clearly planar while its line graph is not.

Nevertheless, if d is a constant, then we can argue that G′ also has a good separator.
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Lemma 3.11. Given a simple directed planar graph G with constant maximum degree d,

its line graph has a (O(
√
n), α)-separation, where α < 1.

Proof. By Theorem 2.4, any planar graph has a (O(
√
n), 2/3)-separator Z. We consider

all the directed edges that have at least one endpoint in Z. Denote the set of these edges

as Z ′. Since the maximum degree of G is d, which is a constant, |Z ′| = O(d
√
n) = O(

√
n).

We will take Z ′ as the separator of the line graph of G, and argue that the two separated

parts X ′ and Y ′ are of size at most αn, where α is a constant smaller than one.

Without loss of generality, we assume that the graph has no isolated vertices. By

Theorem 2.4, |X ∪Z| ≤ 2n/3 and |Y ∪Z| ≤ 2n/3, hence we have that both X and Y are

of size at least n/3. Therefore there are at least n/3−1 edges with an endpoint in X, and

similarly for Y . Since Z ′ has at most O(
√
n) edges, the number of directed edges with

both endpoints in X is at least n/3− 1−O(
√
n) = βn. The same argument holds for Y .

Since these edges correspond to the vertices in X ′ and Y ′, therefore we can conclude that

both |X ′ ∪ Z ′| and |Y ′ ∪ Z ′| are at most (1− β)n+O(
√
n) = αn, where α is a constant

less than one. This implies that the line graph of G has a (O(
√
n), α)-separation.

Theorem 3.12. Given a simple directed planar graph G with constant maximum degree

d, the encoding time of G is O(nω/2).

Proof. By Lemma 3.11, finding a separator for G′ is equivalent to finding a separator for

G, which can be done in linear time [52]. Hence we apply Theorem 2.14 with γ = 1,

β = 1/2 and δ a constant (since the maximum degree is a constant), we obtain an

O(nω/2) time randomized algorithm for solving one system of linear equation Axk = bk.

By Claim 3.10 there are d systems of linear equations, it takes O(dnω/2) time to complete

the encoding process. However, as d is a constant, the total encoding time is O(nω/2).

In order to compute the edge connectivity from s to t, we need to find the rank of

a dout(s) × din(t) matrix, according to Theorem 3.5. As dout(s) = d is constant and

din(t) ≤ d, the matrix has constant size in both dimensions. Hence computing λs,t can be

done in constant time. Thus we can compute the edge connectivities from a fixed source

s efficiently.
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Theorem 3.13. Given G is directed, planar with constant maximum degree d, and a

given source s, the edge connectivities from s to all vertices can be computed in O(nω/2)

time.

Proof. By Theorem 3.12 we can perform encoding for this graph in O(nω/2) time. For

any t ∈ V , its decoding time is constant. Hence decoding all vertices takes O(n) time

since
∑

t∈V O(dout(s) · din(t)) ≤ n · O(1) = O(n). We finish the proof by observing that

the encoding time actually dominates the whole algorithm since ω ≥ 2.

The above results can be applied to other classes of graphs that have good separators.

For the class of bounded genus graphs with constant maximum degree, a (O(
√
n), 2/3)-

separator can be found in linear time [26]. Hence we can apply the same argument to

find a network coding solution in O(nω/2) time.

Corollary 3.14. Given G is a bounded genus graph with constant maximum degree and

a source s, the edge connectivities from s to all vertices can be computed in O(nω/2) time.

For the class of fixed minor free graphs with constant maximum degree, it is known

that there is an O(n1.5) time algorithm [4] to find a (O(
√
n), 2/3)-separator. Apply

Theorem 2.14 we obtain the following corollary.

Corollary 3.15. Given a fixed minor free graph G with constant maximum degree and a

source vertex s, the edge connectivities from s to all vertices can be computed in O(n1.5)

time.

Alon and Yuster [5] showed how to improve the time complexity to O(n3ω/(3+ω)) =

O(n1.33), by using a faster algorithm to find a larger separator (so γ is smaller but β

is bigger), and this improved algorithm can be used for computing single source edge

connectivities as well. Very recently, Kawarabayashi and Reed [44] proposed an O(n1+ε)

time algorithm for finding a separator in fixed minor-free graphs for any ε > 0, and this

can be used to improve the running time.

Corollary 3.16. Given a fixed minor free graph G with constant maximum degree and a

source vertex s, the edge connectivities from s to all vertices can be computed in O(nω/2)

time.
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3.5 All Pairs Edge Connectivities

To solve F = FK + Hs for the global encoding vectors, one can compute the inverse of

I −K and get F = Hs(I −K)−1. It takes O(mω) time to compute (I −K)−1 since the

matrix (I −K) is of size m×m, but we observe that all pairs edge connectivities can be

computed readily once we have (I −K)−1.

Lemma 3.17. For any source vertex s ∈ V , the network coding solution F can

be determined by taking a submatrix of (I − K)−1 directly. In particular, F =

((I −K)−1))δout(s),∗.

Proof. In our setup, Hs is a dout(s) ×m matrix with a dout(s) × dout(s) identity matrix

in the columns corresponding to δout(s). So F is just equal to ((I −K)−1)δout(s),∗ up to

permuting rows.

Therefore (I − K)−1 contains all the global encoding vectors for all source vertices,

and thus the total encoding time for all pairs is O(mω).

To compute the edge connectivity from s to t, by Theorem 3.5 we compute the rank

of F∗,δin(t) and this is just equal to the rank of ((I −K)−1)δout(s),δin(t).

Theorem 3.18. Given a vertex s, computing the ranks of ((I −K)−1)δout(s),δin(t) for all

t can be done in O(m · (dout(s))ω−1) time.

Proof. Since the matrix is of size dout(s) × din(t), computing the rank takes O(din(t) ×

dout(s)ω−1) time. Hence for all t ∈ V , the total time of computing the ranks is given by

∑
t∈V

O(din(t) · dout(s)ω−1) = O(m · dout(s)ω−1).

To prove the time bound for all pairs edge connectivities, we need the following lemma.

Lemma 3.19. Let {b1, · · · bn} be a set of positive integers, and k ≥ 1. Then

n∑
i=1

bki ≤
( n∑
i=1

bi

)k
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Proof. Let B =
∑n

i=1 bi. Obviously we have bi
B
≤ 1 ≤ bi for all i. Then,

n∑
i=1

(
bi
B

)k
≤ 1

n∑
i=1

bki ≤ Bk

n∑
i=1

bki ≤
( n∑
i=1

bi

)k

Theorem 3.20. All pairs edge connectivities can be computed in O(mω) time.

Proof. By Theorem 3.18 and summing over all possible choices of source vertex s, the

total decoding time is
∑

s∈V O(m · (dout(s))ω−1). Since dout(s) ≤ n in a simple graph, by

Lemma 3.19, this sum is at most O(mω). Since encoding can be done in O(mω) time,

computing all pairs edge connectivities can be done in the same time bound.

In fact a tighter bound on decoding can be obtained. This will be useful for graphs

that have a faster encoding algorithm, as we will describe below.

Theorem 3.21. The total decoding time is bounded by O(m2nω−2).

Proof. Consider D = {dout(s) : s ∈ V }. We pick any two distinct elements di, dj from D

such that di + dj ≤ n. Replace D by removing di, dj and insert di + dj. Repeat until we

cannot pick any such pair. It is obvious to see that there is at most one element di in D

such that di ≤ n
2
. Hence we have |D| = O

(
m
n
2

)
= O(2m

n
). Since each element in D is at

most n, by Lemma 3.19, we can conclude that

∑
s∈V

O(m · (dout(s))ω−1) = O(m · 2m

n
· nω−1)

= O(m2nω−2).

Our algorithm is faster than running the Even-Tarjan algorithm for Ω(n2) pairs as

long as m = O(n1.93). For m = O(n) our algorithm runs in O(nω) time while running
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the Even-Tarjan algorithm for Ω(n2) pairs takes O(n3.5) time.

It turns out that if the given graph has good separator (see Section 2.1.7 for more

details), we can compute (I−K)−1 faster. Combining with Theorem 3.21, we can compute

all pairs edge connectivities faster in these graphs. The following result is proven in [15].

Theorem 3.22 ([15]). All pairs edge connectivities can be computed in O(dω−2nω/2+1)

time for any directed fixed minor free graph with maximum degree d.

3.5.1 Connections with Previous Work

We note that similar work has been done by Cheriyan [14], who obtained an algebraic

formulation to compute s-t vertex connectivities.

Theorem 3.23 ([14], Theorem 4.3). Let G = (V,E) be a directed graph, and s, t ∈ V

with s 6= t. Let Q be an n× n matrix such that

Qi,j =


qi,i if i = j

qi,j if i 6= j and (i, j) ∈ E

0 otherwise

,

where each qi,j is a distinct indeterminate. Let X = {x : (s, x) ∈ E} and Y = {y :

(y, t) ∈ E}. By randomly assigning each indeterminate with an integer from {1, . . .W},

then with probability at least 1−n/W , Q is non-singular. If Q is non-singular, then with

probability at least 1− n2/W , the s-t vertex connectivity equals to rank((Q−1)X,Y ).

We are going to show that the method used in this section can be derived from

Cheriyan’s work and vice versa. We first show how Theorem 3.23 derives our formulation.

Given a directed graph G = (V,E), and two distinct vertices s, t ∈ V , we construct the

line graph LG of G. Then for each outgoing edge of s in G, we add a super source s′

and connect an edge to the associated vertex in LG. We do the same to connect each

vertex in LG which corresponds to an incoming edge of t in G to a super sink t′. Now it

is clear that the s-t edge connectivity in G is equal to the s′-t′ vertex connectivity in LG.

By Theorem 3.23, Q is an m ×m matrix, as LG has m vertices. It can be checked that
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Q is identical to I − K in our formulation by associating Qi,j with Ki,j for i 6= j, and

assigning Qi,i = 1.

Next we show that Cheriyan’s formulation can be derived from our work. Given a

directed graph G, we wish to compute the vertex connectivity between s and t. Using

Theorem 3.23 we just need to compute the rank of the inverse of an n × n matrix.

In general our formulation deals with a matrix with larger size, but we can use our

formulation to derive the more compact one in Theorem 3.23. Note that computing the

s-t vertex connectivity in G is equivalent to computing the s-t edge connectivity in a

directed graph G′ by a simple transformation, which is discussed in Section 2.1.3. Every

vertex in G′ has indegree or outdegree exactly equal to one. Then every vertex in G′

either transmits a single random linear combination of vectors to the only outgoing edge,

or simply forwards the only incoming vector to all its outgoing edges. In either case we

can simply store the global encoding vector in each vertex in G instead of every edge.

Then we can obtain the formulation with respect to G below from (3.1):


|

. . . fv . . .

|

 =


|

. . . fv . . .

|




...

. . . ki,j . . .
...

+


| |

. . . ~ei . . . ~0 . . .

| |

 .

Now K is an n× n matrix such that

Ki,j =

ki,j where (i, j) is an edge in G

0 otherwise

,

where each ki,j is a distinct indeterminate. Then by Theorem 3.5 and Lemma 3.17, the

s-t edge connectivity in G′ can be computed by rank(((I −K)−1)δout(s),δin(t)). It matches

the formulation in Theorem 3.23, except that the diagonal entries are different.

3.6 Edge Splitting-off

In this section we show that expanders and superconcentrators can be applied to design

fast algorithms for another well-studied graph connectivity problem.
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Consider the edge splitting-off problem in Section 2.1.6. Recall that splitting off a

pair of edges (xu, xv) in an undirected graph G = (V,E) means deleting these two edges

and adding a new edge uv if u 6= v. There are many applications of graph connectivity

problems using edge splitting-off. We refer readers to Section 2.1.6 for more details.

In this section, our goal is to design a fast algorithm to completely split-off x (see

Section 2.1.6 for the definition). A straightforward algorithm is to try every pair of

edges on x, and check whether the edge connectivities decrease for some pairs after its

splitting-off. In the worst case this requires O((d(x))2) attempts to completely split-

off x. We show how to use expanders and superconcentrators to completely split-off x

in O(d(x)) attempts in undirected graphs and O(din(x)) attempts in Eulerian directed

graphs respectively.

3.6.1 Edge Splitting-off in Directed Graphs

Recall that Theorem 2.3 states that in the Eulerian directed graph, there exists an edge

pair to be split-off for every vertex. However it is not known how to completely split-off a

vertex faster than O((din(x))2) attempts, and we show how to do it in O(din(x)) attempts

using superconcentrators. Superconcentrators can be used to reduce the maximum degree

significantly while preserving the edge connectivities and only increasing the number of

vertices moderately. We replace vertex x by a superconcentrator Γx with O(din(x)) inputs

and O(din(x)) outputs as in Figure 3.3.

Theorem 3.24. Let G = (V,E) be a directed graph. Let Gx be the directed graph obtained

by replacing a vertex x in G with a superconcentrator Γx with O(din(x)) inputs and

O(din(x)) outputs. Then for every pair of vertices s, t ∈ V − x, λs,t in G is the same as

that in Gx.

Proof. Assume that there are k ≤ λs,t edge disjoint paths connecting from s to t which

pass through vertex x in G. Let S and T be the set of incoming and outgoing edges of

vertex x that are occupied by those k edge disjoint paths, and |S| = |T | = k. Now each

of these edges in Gx are connected to k inputs and outputs of Γx. By the definition of

superconcentrator, there are k vertex-disjoint paths from the k inputs to the k outputs.

Hence we see that the s-t edge connectivity in Gx is at least λs,t.
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Theorem 3.24 implies that completely split-off x in G is equivalent to completely

split-off every vertex in Γx. However not all vertices in Γx have the same indegree and

outdegree. We can add extra edges within Γx to make sure that every vertex has the

same indegree and outdegree and Γx becomes an Eulerian directed graph. Then by

Theorem 2.3, we can completely split-off every vertex in Γx.

Theorem 3.25. Given a directed graph G = (V,E), completely split-off a vertex x can

be done in O(din(x)) attempts.

Proof. Construct the graph Gx as in Theorem 3.24. By the definition of superconcentra-

tor, each vertex in Γx has constant degree, therefore it can be completely split-off in O(1)

attempts. Since there are O(din(x)) vertices in Γx, completely split-off every vertex in Γx

can be done in O(din(x)) attempts. By Theorem 3.24, after we completely split-off all

vertices in Γx, this is the same as completely split-off x in G and the edge connectivity

between every pair of vertices is preserved.

3.6.2 Edge Splitting-off in Undirected Graphs

In undirected graphs, it is proved by Lau and Yung [48] that O(d(x)) attempts are

enough to completely split-off x, using a structural theorem of mincuts. Following the

idea in directed graph, we want to use an “undirected superconcentrator” so that by

replacing each vertex with this gadget, we can also reduce the number of splitting-off

attempts of a vertex x to O(d(x)). It turns out that expander graphs can be used as

a superconcentrator to prove the same result easily. We replace x by a constant degree

expander graph Hx with O(d(x)) vertices, and “rewire” each edge of x to a distinct vertex

in Hx. See Figure 3.5 for an illustration. Let Vx be the set of vertices in Hx.

To ensure that the edge connectivities are preserved after this operation, we require

that d(S) ≥ |S| for all S with |S| ≤ |Vx|/2.

Theorem 3.26. Let G = (V,E) be an undirected graph. Let G′ be the new graph obtained

by replacing a vertex x with Hx in G. Then for any pair of vertices s, t ∈ V − x, the s-t

edge connectivity in G′ is preserved.
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x u1

u2u3

u4

u5 u6

Hx u1

u2

u3

u4

u5

u6

Figure 3.5: Replace vertex x by an expander Hx and “rewire” the edges.

Proof. Assume that there are k ≤ d(x)/2 edge disjoint paths between s and t that pass

through x in G. Then there exist 2k edge pairs (s′1, t
′
1) . . . (s

′
2k, t

′
2k) such that for every

1 ≤ i ≤ 2k, s′i and t′i are incident to x, and they are from the same edge disjoint path.

Let S = {s′i} and T = {t′i}. Now each of the edges in S and T is incident to a distinct

vertex in Hx, so we assume that S and T now correspond to the subsets of vertices in

Hx. By the property of Hx, |S| = |T | = k ≤ d(x)/2, d(S) ≥ |S| = k and d(T ) ≥ |T | = k.

The size of a minimum cut between S and T is at least k. Hence by Menger’s Theorem,

there are at least k edge disjoint paths between S and T in Hx, and thus the s-t edge

connectivity is preserved in G′.

This implies that if we can completely split-off all vertices in Hx, the resulting graph

is equivalent to completely split-off x in the original graph. To ensure that vertices in

Hx can be completely split-off, by Theorem 2.2 we need to ensure that all vertices in Hx

are of even degree. This can be achieved by adding extra edges to any pair of vertices in

Hx that are of odd degree. After that every vertex in Hx can be completely split-off by

Mader’s theorem.

Claim 3.27. After replacing an even degree vertex x by a constant degree expander Hx

such that every vertex in Hx is of even degree, completely split-off all vertices in Hx can

be done in O(d(x)) attempts.

Proof. Since every vertex in Hx is of constant degree, we can completely split-off one

vertex in Hx in O(1) attempts by the straightforward algorithm, and thus we can

completely split-off all vertices in Hx in O(d(x)) attempts since Hx has only O(d(x))
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vertices.

We have shown that using constant degree expander graph we can reduce the number

of splitting-off attempts of x by a factor of O(d(x)). It remains to construct such a

constant degree expander graph efficiently and deterministically.

Recall that in Section 2.1.8, we have discussed a deterministic construction of a

(O(n), 38, 1)-expander, which can be constructed in O(n log n) time. It can be used

to replace the vertex in the original graph for complete edge splitting-off. This is

the “undirected superconcentrator” that we wanted for the complete edge splitting-off

algorithm.

In general, expander graphs and superconcentrators can be used to reduce the

maximum degree significantly while preserving the edge connectivities and only increasing

the number of vertices moderately. This may be used to reduce the running time of an

algorithm that has a super-linear dependency on the maximum degree. We believe that

these reductions will find further applications for other graph connectivity problems.



Concluding Remarks

In this thesis we propose an algebraic formulation to compute edge connectivity in

general directed graph, using random network coding. We also use superconcentrator

and expander to improve algorithms in graph connectivity problems. By some simple

transformations, we obtain faster algorithms to compute edge connectivities and find

edge splitting-off operations to preserve edge connectivities. The technique of applying

network coding to compute edge connectivity is very new as well.

A major question is that whether computing single pair edge connectivity can be

improved. Even if we assumed the best coefficient of matrix multiplication, our algorithm

is much slower than the fastest combinatorial algorithm, if the graph is not sparse. We

hope to see a more compact algebraic formulation, so that computing connectivities could

be faster than combinatorial algorithms.

Another important problem is that whether our formulation can be easily generalized

to capacitated graphs so as to obtain efficient algorithms. In this work we assumed that

the graph is uncapacitated. In that case an edge with capacity k is equivalent to k parallel

edges in our problem. As our formulation is based on the number of edges, it would be

inefficient in our approach unless there exists more compact formulation that can deal

with capacitated graph efficiently.

In directed acyclic graph, we described an algorithm to construct the edge disjoint

paths using fast inverse update. However we do not have similar algorithm for general

graph. It is because our path construction algorithm is based on topological ordering of

directed acyclic graph, which may not be well defined in general graph. Since it is more

practical to construct the paths, it would be interesting if there exists such an efficient

algorithms.

61
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We use superconcentrator and expander as tools to efficiently solve some graph

connectivity problems. We use superconcentrator to show that optimal encoding time

in directed acyclic graph can be achieved. We also show that superconcentrator

and expander can be used to reduce the number of splitting-off attempts. All these

improvements are based on simple transformations. In general, expander graphs and

superconcentrators can be used to reduce the maximum degree significantly while

preserving the edge connectivities and only increasing the number of vertices moderately.

This may be used to reduce the running time of an algorithm that has a super-linear

dependency on the maximum degree. We believe that these reductions will find further

applications for other graph connectivity problems.
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