
Edge Splitting-off

and Network Design Problems

YUNG, Chun Kong

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2009

Abstract

Edge Splitting-off and Network Design Problems

YUNG Chun Kong

Master of Philosophy

Department of Computer Science and Engineering

The Chinese University of Hong Kong

2009

The work of this thesis is motivated by the degree bounded network design problem,

which is a topic of much research due to both its theoretical interest and practical appli-

cations. The key technical tool we apply is a simple but powerful operation, known as

edge splitting-off. Apart from network design, this technique is also widely-used in some

other edge-connectivity problems. By extending and improving some edge splitting-off

results, we obtain new approximation results for several network design problems.

Given a complete undirected graph, a cost function on edges and a degree upper bound

B, the degree bounded network design problem is to find a minimum cost subgraph with

maximum degree B satisfying given connectivity requirements. This problem captures

some key problems in combinatorial optimization and it also has practical applications

in various areas as well. However, this problem does not admit any polynomial factor

approximation algorithm, since the feasibility problem is NP-Hard even for simple con-

nectivity requirement such as finding a spanning tree. In this thesis, we show that when

the cost function satisfies triangle inequalities, there are constant factor approximation

algorithms for various degree bounded network design problems. These approximation

algorithms return solutions with smallest possible maximum degree, and the cost guar-

ii

antee is obtained by comparing to the optimal cost when there are no degree constraints.

This demonstrates that degree constraints can be incorporated well into network design

problems with metric costs.

The main technical tool in these algorithms is a combinatorial operation, known as

edge splitting-off. Splitting-off a pair of edges (xu, xv) means deleting these two edges

and adding a new edge uv. Lovász and Mader proved that edge splitting-off can be

performed to preserve edge-connectivities of a graph. Apart from network design, these

splitting-off theorems have applications in various graph problems, including connectivity

augmentation, tree packing and graph orientation. Efficient splitting-off algorithms have

been developed to give fast algorithms for the above problems. Also, splitting-off theorems

have been extended to find new applications in connectivity augmentation problems and

network design problems. Most of the efficient algorithms and extensions are developed

only in the global edge-connectivity setting, although there are important applications in

the more general local edge-connectivity setting.

Extending the techniques we developed, we obtain new edge splitting-off results in the

local edge-connectivity setting. First, we develop efficient edge splitting-off algorithms

that improve the time complexity of the best known algorithm by a factor of Ω̃(n).

These algorithms are conceptually very simple and can be extended to different settings.

Moreover, we also extend edge splitting-off to incorporate some additional constraints

and apply these results to give additive approximation algorithms for several constrained

connectivity augmentation problems.

iii

摘要

Edge Splitting-off and Network Design Problems

邊分離及網絡設計問題

翁振剛

香港中文大學

計算機科學與工程學系

哲學碩士

二零零九

本文的主要動機乃針對度約束網絡規劃問題 (degree bounded network design

problem) 的研究。由於它在理論上及應用上兩方面的重要性，這題目一直是眾多

研究的主題。文中所應用的核心工具是一項名為邊分離 (edge splitting-off) 的技

術。這項簡單而強大的工具不單用於網絡設計，同時亦廣泛應用於各種邊連通性

(edge-connectivity) 的問題上。透過擴展及改進現有的邊分離技術，我們在數個網絡設

計上提出了新的逼近算法。

在既定的邊成本函數 (edge cost function) 及度上限 (degree upper bound) 下，度

約束網絡規劃問題乃是在一個完整的無向圖 (complete undirected graph) 中求取一個

合乎特定連通性要求 (connectivity requirement) 的最低成本子圖 (subgraph)。這問題

不單包含了數個在組合優化 (combinatorial optimization) 中的重要問題，同時亦可

實際應用於在多個領域之中。然而，這問題所對應的可行性問題在簡單的連接要求

下已是 NP-難。故此，它没有任何多項式係數近似解 (polynomial factor approximate

solution)。本文提出了在邊成本函數滿足三角形不等式 (triagnle inequality) 的前提

下用以解決度約束網絡規劃問題的常數因子近似算法 (constant factor approximation

iv

algorithm)。這些算法所求得的解擁有的最大度 (maximum degree) 乃是所有可能情況

下的最小值。而且，這些算法的近似比 (approximation ratio) 是和這問題在没有度上

限的情況所求得的解作比較。這顯示出在邊成本函數滿足三角形不等式的情況下，網

絡設計可將度上限納入考慮之內。

文中所應用的主要工具是一項名為邊分離的組合技術 (combinatorial technique)。

分離一對邊 (xu, xv) 即是刪去這兩條邊並增加一條新的邊 uv。Lovász 和 Mader 證明

了在進行邊分離時，邊連通性可以被保存。除了網絡設計以外，邊分離還可應用於不

同的圖問題，包括了連通擴充 (connectivity augmentation) 、樹壓縮 (tree packing) 及

圖定向 (graph orientation)。故此，一些研究提出了邊分離的高效算法。這為上述問

題提供了一些高效算法。另一方面，一些研究對邊分離作出各種擴展，並應用於連通

擴充及網絡設計等問題上。大部份高效算法及擴展皆是集中於全域邊連通性的設定

(global edge-connectivity)。然而，不少重要的應用卻是在局部邊連通性的設定 (local

edge-connectivity) 下。

透過擴展我們先前所研究的技術，我們得到一些關於邊分離在局部邊連通性的設

定下的成果。首先，我們提出了一些比已知的算法快上 Ω̃(n) 倍的高效算法。這些算

法不單概念上非常簡單，並且可以用於其他設定之下。此外，我們亦擴展了邊分離

以納入其他限制在考慮之內。而這些成果可用於一些約束連通擴充問題 (constrained

connectivity augmentation problems) 的近似算法之中。

v

Acknowledgements

I am greatly indebted to all the people who have helped me through the years of work

that has led to this thesis.

My advisor, Professor Lap Chi LAU is the first among the people who have helped

and inspired me during my master study. I would like to express my sincerest and deepest

gratitude to Professor LAU, for his endless support, constant motivation and invaluable

advice. His guidance helped me in all the time of research and writing of this thesis,

from introducing me to this area of combinatorial optimization, to going through this

voluminous work repeatedly. I do not believe the work could have been accomplished

without his help.

I would also like to show my heartfeld appreciation to all the professors and students

in theory group for the fruitful discussions and enjoyable environment. In particualr, I

must sincerely thank Professor Leizhen CAI, who spent plenty of time on my work in the

years; Tom, who provided important assistance in the writing of this thesis; Isaac and

Jesse, who raised numerous interesting questions on different topics.

I am much indebted to the researchers contributed in the topics covered in this thesis.

My special thanks goes to Professor András Frank, for his effort on deriving clear and

beautiful proofs in edge splitting-off. His work gave me crucial insights into this technique,

which is the basis of this thesis.

Finally, I am immensely grateful to my family for their unconditional love, continuing

care, tremendous support, and for everything they did for me. I dedicate this thesis to

my mother Fung Ying YU.

vi

Contents

1 Overview 2

2 Background 7

2.1 Graphs and Edge-connectivity . 7

2.1.1 Subgraphs . 9

2.1.2 Cut and Edge-Connectivity . 10

2.1.3 Menger's Theorem . 12

2.2 Edge Splitting-off . 13

2.2.1 The Basics . 15

2.2.1.1 Supermodular and Submodular Set Functions 16

2.2.1.2 Set Functions regarding Edge-Connectivity 17

2.2.1.3 Dangerous and Tight Sets 18

2.2.2 Proof of Mader's Theorem . 20

2.2.3 Global Arc-Connectivity Setting 23

2.2.3.1 Local Arc-Connectivity Setting 25

2.2.4 Incorporating Additional Properties 26

2.2.4.1 Non-Admissibility Graph Method 27

2.3 Edge-Connectivity Problems . 29

2.3.1 Degree Bounded Network Design Problems 30

vii

2.3.1.1 Metric Cost Assumption 31

2.3.2 Edge-Connectivity Augmentation Problems 33

2.3.2.1 Frank's Framework . 34

2.3.2.2 Constrained Edge-Connectivity Augmentation Problems 36

2.3.3 Edge Splitting-off Problems . 39

2.4 Edge Splitting-off Algorithms . 40

2.4.1 Fastest Algorithms . 41

2.4.2 An Intuitive Approach . 42

2.4.3 Global Connectivity Settings . 42

2.4.3.1 Legal Ordering . 43

2.4.3.2 Edmonds' Arborescences 44

2.4.4 Local Edge-Connectivity Setting 45

3 Degree Bounded Network Design Problem with Metric Cost 47

3.1 Christofides'-like Algorithm . 49

3.2 Simplicity-Preserving Edge Splitting-Off 50

3.2.1 Proof of Theorem 3.3 . 51

3.3 Approximation Algorithms for Network Design Problems 56

3.3.1 Removing Redundant Edges . 57

3.3.2 Perfect Matching . 58

3.3.3 Edge Splitting-Off Restoring Simplicity 59

3.4 Results in Different Settings . 60

3.4.1 Global Edge-Connectivity . 61

3.4.2 Local Edge-Connectivity . 62

4 Constrained Edge Splitting-off 64

4.1 Preliminaries . 66

viii

4.2 General Constrained Edge Splitting-off Lemma 68

4.3 Structural Properties of Non-Admissible Pairs 69

4.3.1 Some Useful Lemmas . 70

4.3.2 An Upper Bound on |DP | . 71

4.3.3 An Inductive Argument . 73

4.4 Non-Admissibility Graph and Constraint Graph 75

4.4.1 Vertex Set Partition Constraint 76

4.4.2 Graph Simplicity Constraint . 77

4.4.3 Simultaneous Graph Constraint 78

4.4.4 Tight Sufficient Conditions . 79

4.5 Global Arc-Connectivity Setting . 79

4.5.1 Proof of Lemma 4.15 . 81

5 Constrained Edge-Connectivity Augmentation Problem 83

5.1 Preliminaries . 84

5.2 Additive Approximation Algorithms . 87

5.2.1 Edge-Connectivity Augmentation Preserving Vertex Set Partition 87

5.2.2 Edge-Connectivity Augmentation Preserving Simplicity 91

5.2.3 Simultaneous-Graph Edge-Connectivity Augmentation 93

5.3 Global Arc-Connectivity Setting . 95

5.3.1 Edge-Connectivity Augmentation Preserving Vertex Set Partition 95

5.3.2 Edge-Connectivity Augmentation Preserving Simplicity 97

5.3.3 Simultaneous Edge-Connectivity Augmentation 98

6 Efficient Edge Splitting-off Algorithm 100

6.1 Preliminaries . 102

6.1.1 Efficient Tools for Edge-Connectivity Problems 103

ix

1

6.1.2 An Alternative Proof of Mader's Theorem 104

6.2 Framework for Complete Edge Splitting-off 105

6.2.1 Proof of Lemma 6.5 . 106

6.3 Efficient Splitting-off Attempt . 108

6.3.1 Indicator Vertex . 109

6.3.2 Splitting-off to Capacity . 112

6.4 Randomized and Parallelized Edge Splitting-off Algorithm 113

6.5 Deterministic Edge Splitting-off Algorithm 114

6.6 Algorithms in Other Settings . 115

6.6.1 Edge Splitting-off in Network Design Problems 115

6.6.2 Constrained Edge Splitting-off . 116

7 Concluding Remarks 119

Bibliography 121

Chapter 1

Overview

In this thesis, we present approximation algorithms for network design problem by

using edge splitting-off technique. Here we give an outline of the whole thesis. More

comprehensive introductions of each topic are given in the corresponding chapters.

Network design problem is a central topic in combinatorial optimization and approxi-

mation algorithms, and it has various applications in computer network and VLSI design.

Given connectivity requirements r(u, v), the objective is to find a minimum cost subgraph

that has r(u, v) disjoint paths between each two vertices u and v. This is a general prob-

lem which captures a number of classical problems as special cases. One example is the

minimum spanning tree problem, where the connectivity requirement is one for every pair

of vertices. Another example is the minimum Steiner tree problem, where connectivity

requirement is one for every pair of terminal vertices. The connectivity setting is said to

be global in the former example because the requirements are the same throughout the

graph; and it is said to be local in the latter example because the requirements vary for

different vertex pairs. In many applications, the maximum connectivity requirement rmax

is very small, compared to the size of graph.

Connectivity augmentation problem is a well-studied special case of the network design

2

CHAPTER 1. OVERVIEW 3

problem. The goal of this problem is to add a minimum number of edges to a given

graph so that the resulting graph satisfies the given edge-connectivity requirements. This

special case is of particular interest because it can be solved optimally in polynomial-time.

In contrast, the general network design problem is NP-hard to solve. The research on

network design problem has hence focused on obtaining approximation algorithms.

In recent years, much effort has been put on constrained network design problem, a

more general class of network design problems that incorporate additional constraints. A

well-studied case is the degree bounded network design problem. The objective is to find a

minimum cost subgraph satisfying the given edge-connectivity requirements as well as an

upper bound on the maximum vertex degree. On one hand, this problem generalizes some

key problems in combinatorial optimization, including the travelling salesman problem.

On another hand, it also has practical applications where the degree constraint acts as

a tool to bound the workload of nodes. However, this problem captures the travelling

salesman problem as a special case, thus it does not admit any non-trivial approximation

algorithm in general. Recent research has thus focused on obtaining bicriteria approxi-

mation algorithms, which approximates the cost of subgraph but the vertex degree bound

may be slightly violated.

In some network design problems when the cost function satisfies triangle inequalities

(metric costs), much stronger algorithmic results are known. For the travelling sales-

man problem, although there is no non-trivial approximation algorithms in general, it is

well-known that there is a 1.5-approximation algorithm assuming triangle inequalities.

This motivates us to study the more general degree bounded network design problems

with metric costs. The assumption of metric costs actually arises from in many appli-

cations of network design, such as the design of telecommunication networks. In this

thesis, we generalize the result in travelling salesman problem to give the first constant

CHAPTER 1. OVERVIEW 4

x

u v

(a)

x

u v

(b)

Figure 1.1: When splitting-off an edge pair (xu, xv), the two edges xu and xv in (a) are

replaced by a new edge uv in (b).

factor approximation algorithms, showing that degree constraints can be incorporated

into network design problems with metric costs.

There are polynomial-time constant factor approximation algorithms for the degree

bounded network design problem with metric cost.

The main technical tool used is a combinatorial operation, known as edge splitting-off.

Splitting-off a pair of edges (e = ux, f = xv) at a designated vertex x means deleting these

two edges and adding a new edge uv (Figure 1.1). This short-cutting operation does not

increase the total edge cost under the assumption of triangle inequality. A fundamental

result in graph theory shows that edge splitting-off can be performed to preserve pairwise

edge-connectivities, if addition of parallel edges is allowed. Under appropriate conditions,

we extend this result to show that edge splitting-off can be performed to preserve pairwise

edge-connectivities, even if addition of parallel edges is forbidden. By using this stronger

result, edge splitting-off can be performed repeatedly to decrease vertex degree to satisfy

the given upper bound. Details of these approximation algorithms and the edge splitting-

off result are presented in Chapter 3.

Edge splitting-off is a simple but powerful operation. It plays an important role

in many graph problems, both in proving theorems and obtaining polynomial time al-

gorithms. Apart from network design problems, it is also used crucially in tree packing

CHAPTER 1. OVERVIEW 5

problems, edge-connectivity augmentation problems and graph orientation problems. Ef-

ficient splitting-off algorithms have been developed to give fast algorithms for the above

problems. Also, splitting-off theorems have been extended to incorporate additional con-

straints and found new applications in connectivity augmentation problems and network

design problems. Most of the efficient algorithms and extensions were developed only

in the global edge-connectivity setting, although there are important applications in the

local edge-connectivity setting.

Extending the techniques we developed, we obtain some new edge splitting-off results

in the local edge-connectivity setting. First we prove a general structural property about

edge splitting-off, showing that most edge pairs are splittable for preserving pairwise

edge-connectivities. This extends the classical result which guarantees the existence of

splittable edge pairs.

When the degree of designated vertex is sufficiently large, most of the edge pairs are

splittable for preserving pairwise edge-connectivities.

This structural property can be applied in proofs of new splitting-off theorems, as

well as in design of efficient splitting-off algorithms. In constrained edge splitting-off,

edge splitting-off is extended to incorporate some additional constraints. The structural

property states that large proportion of edge pair is splittable, and hence naturally implies

that some of them satisfy the additional constraints as well. These edge splitting-off

results can be applied to obtain additive approximation algorithms for several constrained

edge-connectivity augmentation problems. Details of the structural property and the

approximation algorithms are presented in Chapter 4 and Chapter 5.

There are polynomial-time additive approximation algorithms for several constrained

edge-connectivity augmentation problems.

CHAPTER 1. OVERVIEW 6

Finally we present efficient algorithms to split-off all edges incident to a designated

vertex. In the local edge-connectivity setting, we develop a faster deterministic algorithm

that improves the time complexity of the best known algorithm by a factor of Ω̃(n). Fur-

thermore, when the degree of designated vertex is large, the general structural property

implies that a random edge pair is splittable with high probability. Using this obser-

vation, we can design a faster randomized algorithm that simultaneously split-off many

edge pairs at random when the degree of designated vertex is large.

There is a deterministic Õ(m+ rmax
2 ·n2)-time algorithm and a randomized Õ(m+

rmax
3 ·n)-time algorithm for edge splitting-off problem in the local edge-connectivity

setting.

These algorithms are conceptually very simple. The efficiency is based on new struc-

tural results of edge splitting-off and fast edge-connectivity algorithms by Bhalgat et.al.

The details are presented in Chapter 6. In the following chapter, we first review some

background materials and previous works, before presenting the main materials in Chap-

ter 3 to Chapter 6.

Chapter 2

Background

In this chapter, we will present some background materials regarding edge-connectivity

and edge splitting-off. We start by giving some basic notations and fundamental results

for graphs and edge-connectivity in Section 2.1; and for edge splitting-off in Section 2.2.

Then we will see applications of edge splitting-off by introducing the two edge-connectivity

problems we consider in this thesis in Section 2.3. Finally, we will discuss some previous

work in efficient edge splitting-off algorithms in Section 2.4.

2.1 Graphs and Edge-connectivity

In this section, we will first cover some basic notations for graphs. Then, we will

present the two well-known definitions of edge-connectivity in Section 2.1.2; and show

their equivalence by introducing the famous Menger's theorem in Section 2.1.3.

An undirected graph G = (V,E) consists of an n-element set of vertices V = V (G)

and an m-element set edges E = E(G) that each edge is an unordered pair of vertices.

An edge e ∈ E is incident at a vertex v ∈ V if v ∈ e; such an edge is called a v-edge.

The two vertices an edge is incident at are called its end-vertices; and we say the edge

connects its end-vertices. If two edges connect the same pair of vertices, we call those

7

CHAPTER 2. BACKGROUND 8

edges parallel edges. A graph without parallel edges is called a simple graph. If t parallel

edges are represented as t separate edges (appear t distinct times), then the graph is

called an unweighted graph; if it is represented once, along with its multiplicity t, then

the graph is called a weighted graph.

A directed graph D = (V,A) consists of an n-element set of vertices V = V (D) and an

m-element set arcs A = A(D) that each arc is an ordered pair of vertices. We say that

an arc uv leaves u; enters v; and goes from u to v. For an arc uv, the first vertex u is its

tail and the second vertex v is its head. Two arcs are in parallel if they have the same

head and tail. In the following, we will define some basic notations related to graphs.

Neighbourhood: In an undirected graph G = (V,E), two vertex u, v of G are adjacent

or neighbours of each other if uv is an edge of G. The neighbour set (neighbourhood)

NG(v) of a vertex v in G is the set of vertices adjacent to v in G. We call a vertex

v ∈ V (G) a x-neighbour if v ∈ NG(x). The neighbour set in a directed graph D = (V,A)

is defined in the same manner. A vertex u is an in-neighbour of v in D, or equivalently

v is an out-neighbour of u in D if uv is an arc of D. This defines the in-neighbour set

N+
D (v) and out-neighbour set N−

D (v) of a vertex v in D. We call a vertex v ∈ V (G) an

x-in-neighbour if v ∈ N+
D (x) and an x-out-neighbour if v ∈ N−

D (x).

Degree: In an undirected graph G = (V,E), the degree dG(u, v) between two vertices

u, v in G is the number of edges uv ∈ E. Generalizing this idea, we define the edge set

δG(X,Y) connecting vertex sets X and Y in G as

δG(X,Y) := {uv ∈ E(G) : |X ∩ {u, v}| = |Y ∩ {u, v}| = 1}.

In other words, δG(X,Y) consists of edges with one end-vertex in X − Y and the other

in Y −X. The degree dG(X,Y) := |δG(X,Y)| of vertex sets X and Y is defined to be the

number of edges connecting the two sets in G.

CHAPTER 2. BACKGROUND 9

Similarly, the arc sets δ−D(X,Y) going from X to Y ; and δ+
D(X,Y) going from Y to

X in a directed graph D = (V,A) are defined as

δ−D(X,Y) := {uv ∈ A(D) : u ∈ X, v ∈ Y }.

δ+
D(X,Y) := {uv ∈ A(D) : v ∈ X, u ∈ Y }.

The out-degree d−
D(X,Y) and in-degree d+

D(X,Y) of X from Y in D are defined to be

|δ−D(X,Y)| and |δ+
D(X,Y)| respectively. The arc set δD(X,Y) = δ+

D(X,Y) ∪ δ−D(X,Y)

between X and Y consists of the arcs with one end-vertex in X and the other end-vertex

in Y in D. So the degree dD(X,Y) between X and Y is defined to be |δD(X,Y)|.

Without ambiguity, we will not distinguish between a one-vertex set {v} and its

element v; and we denote f(Z, V −Z), Z ⊆ V , by f(Z) for any function f regarding two

vertex subsets X,Y ⊆ V . This simplifies the representation of degree function we just

defined (and other set functions we will define as well).

2.1.1 Subgraphs

Sometimes, we may want to study only part of a given graph. We say that a graph

H = (U, F) is a subgraph of a graph G = (V,E) if U ⊆ V and F ⊆ E. The graph

H = (U, F) is an induced subgraph of G = (V,E) on vertex subset V ′ ⊆ V if U = V ′ and

F = {uv ∈ E : u, v ∈ V ′}; and H is an induced subgraph of G on edge subset E ′ ⊆ E if

F = E ′ and U = {v ∈ V : v ∈ e for some e ∈ E ′}. A graph is called a complete graph if

the corresponding edge (arc) uv exists for every two vertices u and v. And conversely, a

graph is called an empty graph if there is no edge (arc) in the graph.

To obtain a smaller graph from a given graph, there are two widely-used operations.

Note that the previous notations and the following operations are defined for both undi-

rected and directed graphs.

Deletion: Given a graph G = (V,E), deleting a subset of edges F ⊆ E means removing

CHAPTER 2. BACKGROUND 10

F from the edge set while keeping vertex set unchanged. The resulting subgraph H =

(V,E − F) is denoted by G − F . On another hand, deleting a subset of vertices W ⊆ V

means removing W from the vertex set; together with the removal of the edge set F ,

which consists of edges that are incident to some vertices of W , from the edge set. The

resulting subgraph H = (V − W,E − F) is denoted by G − W .

Contraction: Given a graph G = (V,E), contracting a subset of vertices W ⊆ V returns

a graph H arising from G by adding a new vertex vW to G − W ; and adding dG(v,W)

parallel edges between v and vW in H for every v ∈ V (G) − W . The resulting graph is

denoted by G/W . For a vertex subset Z ⊆ V (G) for which either Z ⊆ V (G) − W or

W ⊆ Z ⊆ V , its corresponding vertex subset in G′ is {v : v ∈ Z} or {v : v ∈ Z−W}+vW

respectively.

2.1.2 Cut and Edge-Connectivity

First of all, we say two vertices are connected in an undirected graph if they are linked

by a path, where a path is defined to be a sequence of distinct vertices P = {v0, v1, . . . , vk}

such that vivi+1 ∈ E(G) for all 0 ≤ i < k. In a directed graph, a directed path (or path

for short) from vertices v0 to vk is defined to be a to a sequence of distinct vertices

P = {v0, v1, . . . , vk} such that vivi+1 ∈ A(D) for all 0 ≤ i < k. Two vertices are strongly

connected (or connected for short) in a directed graph if there exist a path from u to v

and a path from v to u. To measure how well two vertices are connected, we use the

notations of edge-connectivity. Here, we will present the two well-known definitions for

edge-connectivity. These two definitions are equivalent, as we will see in Section 2.1.3.

Number of edge-disjoint paths: An intuitive definition of edge-connectivity is based

on the size of the connection. In an undirected graph, two vertices u and v are k-edge-

connected if they are linked by k edge-disjoint paths, i.e. k paths that do not share an edge.

CHAPTER 2. BACKGROUND 11

The local edge-connectivity (or edge-connectivity for short) λG(u, v) of two vertices u and

v in G is defined to be the largest integer k for which u and v are k-edge-connected. The

definitions are similar in a directed graph that two vertices u and v are k-arc-connected

if there exist k arc-disjoint paths from u to v and k arc-disjoint paths from v to u. The

local arc-connectivity (or arc-connectivity for short) λD(u, v) of two vertices u and v is

hence defined to be the largest integer k for which u and v are k-arc-connected.

Cut size: The second definition of edge-connectivity is based on the robustness of the

connection. Two vertices are k-edge-connected in an undirected graph G if they are

connected in G − F for every edge subset F with |F | < k. Similarly, two vertices are

k-arc-connected in a directed graph D if they are (strongly) connected in D−F for every

arc subset F with |F | < k. This gives rise to the notation of cut. We define a cut

(C, V − C) of a graph to be a bipartition of the vertex set into two sides C and V − C;

and the cut size of a cut C to be the number of edges connecting C and V −C, i.e. d(C).

A cut C separates two vertices u and v if u ∈ C, v /∈ C; and C is called a uv̄ set or a u-v

cut. We call an edge e a cut-edge if there exists a cut consists of e only. Now, we can use

the cut size as a measure of robustness of the connection --- we say that two vertices are

k-edge-connected in an undirected graph G if the size of any cut separating them are at

least k.

A vertex subset U ∈ V (G) is said to be k-edge-connected if u and v are k-edge-

connected for every pair of vertices u, v ∈ U ; if U = V (G), we say that the undirected

graph G is k-edge-connected. The global edge-connectivity (or edge-connectivity for short)

λ(G) of a graph G is the largest integer k for which the graph is k-edge-connected.

Conversely, the local edge-connectivity of a graph is the collection of all pairwise local

edge-connectivity in the graph. We define λmax := maxu,v∈V (G) {λG(u, v)} to be the

maximum edge-connectivity among all vertex pairs. The definition of k-arc-connected

CHAPTER 2. BACKGROUND 12

for a vertex subset, global arc-connectivity and local arc-connectivity in a directed graph

follow in the same manner.

2.1.3 Menger's Theorem

Menger [57] proved a min-max relation regarding edge-connectivity --- the maximum

number of edge-disjoint paths linking two vertices equals the size of a minimum cut

separating them. In other words, the two definition of edge-connectivity covered in Sec-

tion 2.1.2 are actually equivalent.

Theorem 2.1. (Menger's theorem [57]) Let D = (V,A) be a directed graph, and

s, t ∈ V (D) be distinct vertices. There are k arc-disjoint paths from s to t if and only if

d+
D(X) ≥ k for every st̄ set X ⊆ V (D).

This min-max relation is one of the cornerstones of graph theory. From this directed

version of Menger's theorem, one can obtain the following results.

Proposition 2.2. Let D = (V,A) be a directed graph, S ⊆ V (D) be a vertex subset and

k be a positive integer. The following statements are equivalent:

(i) There are k arc-disjoint paths from any vertex of S to any other vertex of S.

(ii) d+
D(X) ≥ k for every vertex subset X ⊂ V (D) separating S.

(iii) S remains strongly connected in D upon removal of k − 1 arcs.

One can derive the undirected version of Menger's theorem from the directed version

easily. This gives the following results.

Theorem 2.3. (Menger's theorem [57]) Let G = (V,E) be an undirected graph, and

s, t ∈ V (G) be distinct vertices. There are k edge-disjoint paths linking s and t if and

CHAPTER 2. BACKGROUND 13

only if

dG(X) ≥ k for every st̄ set X ⊆ V (G).

Proposition 2.4. Let G = (V,E) be an undirected graph, S ⊆ V (G) be a vertex subset

and k be a positive integer. The following statements are equivalent:

(i) There are k edge-disjoint paths linking any two vertices of S.

(ii) dG(X) ≥ k for every vertex subset X ⊂ V (G) separating S.

(iii) S remains connected in G upon removal of k − 1 edges.

2.2 Edge Splitting-off

In this section, we will first introduce the edge splitting-off operation and the famous

results given by Lovász and Mader in undirected graphs. Then, we will present Frank's

proof on Mader's result in Section 2.2.1 and Section 2.2.2. This proof includes the main

tools used in proving edge splitting-off results and is hence a good starting point for

understanding edge splitting-off. Finally, we will discuss edge splitting-off in directed

graphs in Section 2.2.3, and extensions of this technique, the so-called constrained edge

splitting-off, in Section 2.2.4.

Edge splitting-off is a simple but powerful operation introduced by Lovász. It plays

an important role in many basic graph problems, both in proving theorems and obtaining

polynomial time algorithms. In an undirected graph G = (V + x,E), splitting-off a pair

of edges e = ux, f = xv means deleting these two edges and adding a new edge uv if

u 6= v. The resulting graph is denoted by Gef . Clearly, edge-connectivity never increases

after splitting-off an edge pair. On another hand, Lovász [54, 55] proved that splitting-

off some specific edge pairs does not decrease the edge-connectivity in the graph. More

CHAPTER 2. BACKGROUND 14

specifically, he showed the existence of an edge pair that keeps the graph k-edge-connected

upon splitting-off the pair.

Theorem 2.5. (Lovász' undirected splitting-off lemma [54, 55]) Let G = (V +

x,E) be an undirected graph with d(x) even, and let k ≥ 2 be an integer that

λG(w, t) ≥ k for every pair of vertices w, t ∈ V .

Then there is an edge f = xv for every edge e = xu so that λGef (w, t) ≥ k holds for every

pair of vertices w, t ∈ V .

After splitting-off an edge pair specified in Lovász' splitting-off lemma, the conditions

in Theorem 2.5 still hold. Therefore, one can apply Lovász' splitting-off lemma repeatedly

until all edges incident to x are splitted-off. We call the operation of splitting-off all x-

edges a complete edge splitting-off at x.

Lovász proved that edge splitting-off operation can preserve global edge-connectivity

of a graph. Mader [56] later generalized Lovász's result by showing that the local edge-

connectivity (pairwise edge-connectivity between each vertex pair) can also be preserved

by edge splitting-off. That is, λG(w, t) = λGef (w, t) holds for every w, t ∈ V after

splitting-off an edge pair (e = xu, f = xv). An edge pair satisfying this condition is said

to be admissible. For an admissible edge pair (e, f), we say that e and f are admissible

partners of each other.

Theorem 2.6. (Mader's theorem [56]) Let G = (V +x,E) be a connected undirected

graph with d(x) 6= 3. If there is no cut-edge incident to x, then there is an admissible

pair of edges incident at x.

The above theorem by Mader guarantees the existence of an admissible edge pair

under natural assumptions. It can also be expressed in the following equivalent statement,

which states the existence of a complete edge splitting-off at x when d(x) is even.

CHAPTER 2. BACKGROUND 15

Theorem 2.7 ([54, 27]). Let G = (V + x, E) be an undirected graph with d(x) even. If

there is no cut-edge incident to x, then the set of edges incident to x can be partitioned

into d(x)/2 disjoint splittable pairs.

To show their equivalence, assume first Theorem 2.6 holds with even d(x) and consider

an admissible edge pair. Recall that local edge-connectivity is preserved upon splitting-

off an admissible pair. Therefore, no cut-edge incident to x will be introduced. We can

apply Theorem 2.6 for d(x)/2 times to get the disjoint splittable pairs in Theorem 2.7.

Conversely, assume Theorem 2.7 holds. The case for even d(x) is trivial, so we assume

d(x) to be odd and hence d(x) ≥ 5. Let G′ denote a graph arising from G by adding a

new vertex y with three parallel edges connecting x and y. Since no cut-edge incident

to x is introduced, we can apply Theorem 2.7 to get (d(x) + 3)/2 disjoint splittable edge

pairs. For d(x) ≥ 5, at least one of the splittable pair consists of original edges only. It

is clear that such edge pair is also splittable in G, which proves Theorem 2.6.

In the following, we will present a proof of Mader's theorem by Frank [27] in Sec-

tion 2.2.1 and Section 2.2.2. Some materials concerning edge splitting-off in directed

graph and extension that incorporates additional constraints will be presented in Sec-

tion 2.2.3 and Section 2.2.4 respectively.

2.2.1 The Basics

As shown in Menger's theorem, the edge-connectivity between two vertices equals the

size of the minimum cut separating them. Therefore, Mader's theorem can be proved by

showing that edge splitting-off preserves the size of pairwise minimum cuts. The size of

cuts has very nice property of submodular functions. Frank [27] used this property to

give an elegant proof for Mader's theorem. Here, we would like to cover the basics of

these functions before presenting Frank's proof in the next section.

CHAPTER 2. BACKGROUND 16

2.2.1.1 Supermodular and Submodular Set Functions

Let V be a finite ground set and f : 2V → R be a real-valued function defined on

the subsets of V . We say that two sets X,Y ⊆ V are intersecting if X − Y, Y − X and

X ∩ Y are all non-empty, and they are crossing if they are intersecting and X ∪ Y ⊂ V ,

i.e. X ∪ Y 6= V . A set function f is called fully supermodular (or supermodular for short)

if the following inequality holds for any two subsets X,Y ⊆ V :

f(X) + f(Y) ≤ f(X ∪ Y) + f(X ∩ Y)

On another hand, a set function f is called fully submodular (or submodular for short)

if the function f ′ = −f is supermodular, i.e. the following inequality holds for any two

subsets X,Y ⊆ V :

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y)

For a more general class of functions, we say that a set function f is skew supermodular

if at least one of the following inequalities holds for any two subsets X,Y ⊆ V :

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) (2.1a)

f(X) + f(Y) ≤ f(X − Y) + f(Y − X) (2.1b)

Similarly, we say that a set function f is skew submodular if f ′ = −f is skew super-

modular. Now, we would like to define a skew supermodular function in an undirected

graph G = (V,E). This function is useful not only in the proof of Mader's theorem but

in edge-connectivity augmentation algorithms (Section 2.3.2.1) as well. Let f(x, y) be a

symmetric non-negative function, that is f(x, y) = f(y, x) ≥ 0 for every x, y ∈ V . Define

a skew supermodular set function F by f as follows:

F (X) :=


0 if X = ∅ or X = V ,

max {f(x, y) : x ∈ X, y ∈ V − X} if ∅ ⊂ X ⊂ V .

(2.2)

CHAPTER 2. BACKGROUND 17

Lemma 2.8. The set function F is skew supermodular.

Proof. First, note that we can transform between (2.1a) and (2.1b) by replacing Y by

V − Y . Let (z, z′) be a pair that maximizes f(z, z′) over all pairs that are separated by

at least one of X and Y . By exchanging z and z′ if necessary, we can assume z ∈ X and

z′ ∈ V − X. And by replacing Y by V − Y if necessary, we can assume z /∈ Y .

If z′ ∈ Y , then we have f(z, z′) = F (X) = F (Y) = F (X − Y) = F (Y − X).

Thus, inequality (2.1b) holds with equality. If z′ /∈ Y , then we have f(z, z′) = F (X) =

F (X ∪ Y) = F (X − Y). Clearly, F (Y) ≤ F (X ∩ Y) or F (Y) ≤ F (Y − X). Inequalities

(2.1a) or (2.1b) holds accordingly.

2.2.1.2 Set Functions regarding Edge-Connectivity

Here, we introduce some useful set functions regarding edge-connectivity. In an undi-

rected graph G = (V + x,E), we have defined dG(X,Y) = |{uv ∈ E(G) : |X ∩ {u, v}| =

|Y ∩ {u, v}| = 1}| to be the number of edges between X − Y and Y − X. Here, we

define d̄G(X,Y) := dG(X ∩ Y, V − (X ∪ Y)) to be the number of edges connecting the

intersection of the sets and outside of their union. The following proposition concerns

the degree function with two vertex sets. It can be proved by observing that each edge

has the same contribution to the two sides of the identities.

Proposition 2.9. For arbitrary X,Y ⊆ V + x both of the following equalities hold:

d(X) + d(Y) = d(X ∩ Y) + d(X ∪ Y) + 2d(X,Y) (2.3a)

d(X) + d(Y) = d(X − Y) + d(Y − X) + 2d̄(X,Y) (2.3b)

Now, we define set function rG(X) to be the maximum edge-connectivity of any vertex

pair separated by X ⊆ V .

rG(X) := max {λG(u, v) : u ∈ X, v ∈ V − X}

CHAPTER 2. BACKGROUND 18

For X = ∅ and X = V , we define rG(X) to be 0. We can see the definition of rG

satisfies the condition of (2.2). This gives the following proposition.

Proposition 2.10. For arbitrary X,Y ⊆ V at least one of the following inequalities

holds:

r(X) + r(Y) ≤ r(X ∩ Y) + r(X ∪ Y) (2.4a)

r(X) + r(Y) ≤ r(X − Y) + r(Y − X) (2.4b)

Now, we define s(X) := d(X) − r(X) to be the surplus of X. By the last two

propositions, we can obtain the following directly.

Proposition 2.11. For arbitrary X,Y ⊆ V at least one of the following inequalities

holds:

s(X) + s(Y) ≥ s(X ∩ Y) + s(X ∪ Y) + 2d(X,Y) (2.5a)

s(X) + s(Y) ≥ s(X − Y) + s(Y − X) + 2d̄(X,Y) (2.5b)

By the min-max relation of Menger's theorem (Theorem 2.3), d(X) ≥ r(X) = r(V −

X) and hence s(X) ≥ 0 before splitting-off any edge pair. After splitting-off an edge

pair (e, f), the edge-connectivity is preserved in Gef if dGef (X) ≥ rG(X) for every vertex

subset X ⊆ V . Therefore, we can identify admissible pairs by checking the value of these

set functions. This gives rise to the idea of dangerous set, which we will discuss in the

next section.

2.2.1.3 Dangerous and Tight Sets

Let G = (V + x,E) be an undirected graph with no cut-edge incident at x. We call

a vertex subset X ⊆ V dangerous if d(X) ≤ r(X) + 1 (or equivalently s(X) ≤ 1); and

tight if d(X) = r(X) (or equivalently s(X) = 0). Dangerous sets are of particular interest

CHAPTER 2. BACKGROUND 19

because they actually define all the non-admissible edge pairs. The idea is stated formally

in the following proposition.

Proposition 2.12 ([27]). An edge pair (e = xu, f = xv) is not admissible if and only if

u, v are contained in a dangerous set.

Proof. The existence of such a dangerous set X clearly makes (e, f) non-admissible be-

cause dGef (X) ≤ dG(X) − 2 ≤ r(X) − 1. To show the other direction, suppose that

(e, f) is non-admissible. Then, there is a vertex pair (w, t) such that λGef (w, t) <

λG(x, y). This implies the existence of a vertex subset X separating w and t for which

dGef (X) = λGef (w, t). Hence, dGef (X) < dG(X), which requires u, v ∈ X. Therefore,

dG(X) − 2 = dGef (X) = λGef (w, t) < λG(w, t) ≤ rG(X). This gives dG(X) − 2 < rG(X)

and hence dG(X) ≤ rG(X) + 1. In other words, X is a dangerous set containing u and

v.

Apart from defining non-admissible pairs, tight sets have the special property that

contraction of a tight set into a single vertex (singleton) does not make any non-admissible

pairs become admissible (Lemma 2.13). When we are looking for an admissible pair, we

can hence reduce the graph into an instance with all tight sets being singletons. This

gives additional structural properties in the graph and significantly simplifies proofs of

edge splitting-off theorems. We call a vertex set T ⊆ V non-trivial if |X| ≥ 2 and

|V + x − T | ≥ 2.

Lemma 2.13 ([56, 27]). Let T be a non-trivial tight set and t be the corresponding vertex

in G/T . For an x-neighbour w in G/T , if w 6= t, let w′ be the corresponding vertex in

G; if w = t, let w′ be any x-neighbour in T in G. Suppose (xu, xv) is an admissible pair

in G/T , then (xu′, xv′) is an admissible pair in G.

Proof. Suppose, by way of contradiction, that (xu′, xv′) is not an admissible pair in G.

Then there exists a maximal dangerous set D containing u′, v′ in G, i.e. sG(D) ≤ 1. If

CHAPTER 2. BACKGROUND 20

either D ∩ T = ∅ or T ⊆ D, then

sG/T (D − T + t) = dG/T (D − T + t) − rG/T (D − T + t) = dG(D) − rG(D) = sG(D) ≤ 1.

Hence D−T +t is also a dangerous set in G/T , contradicting the assumption that (xu, xv)

is an admissible pair in G/T . Therefore D − T 6= ∅ and T − D 6= ∅. Inequality (2.5a)

cannot hold for D and T . For otherwise, D ∪ T is also a dangerous set in G, since

1 + 0 = sG(D) + sG(T) ≥ sG(D ∪ T) + sG(D ∩ T),

contradicting the maximality of D since T − D 6= ∅. Therefore inequality (2.5b) must

hold for D and T in G, and hence

1 + 0 = sG(D) + sG(T) ≥ sG(D − T) + sG(T − D) + 2d̄G(D,T).

It follows that (D − T) is a dangerous set and xu, xv ∈ δG(D − T) (since d̄G(D,T) = 0),

which contradicts that (xu, xv) is an admissible pair in G/T . Therefore, such D does not

exist, proving the lemma.

2.2.2 Proof of Mader's Theorem

We will now present Frank's proof of Mader's theorem (Theorem 2.7). It is an analysis

on the structure of non-admissible pairs (equivalently, structure of dangerous sets) using

the property of submodular functions. Note that the given assumptions of Mader's the-

orem (d(x) even and no cut-edge incident to x) still hold after splitting-off an admissible

pair. It is sufficient to prove the theorem by showing the existence of one admissible edge

pair under the assumptions.

Let G = (V +x,E) be a counter-example with a minimum number of vertices. In other

words, we assume no admissible edge pair exists in G but the theorem holds for every

graph with fewer vertices. By Claim 2.13, a non-admissible pair remains non-admissible

CHAPTER 2. BACKGROUND 21

upon contraction of tight sets. Therefore, we may assume that every tight set consists

of a single vertex only. Let t ∈ N(x) be the vertex with minimum degree among all

x-neighbours. We can show that xt is a cut-edge if it has no admissible partner by the

following claims. This contradicts the assumption that no cut-edge is incident to x and

proves the theorem.

Claim 2.14. λ(w, t) = min {d(w), d(t)} for every w, t ∈ V if every tight set is a singleton,

i.e. consists of one vertex only.

Proof. For any tight set X ⊆ V separating w and t, it consists of one vertex only, i.e.

either w or t. Therefore, the edge-connectivity λ(w, t) is determined by the minimum of

d(w) and d(t).

Claim 2.15. r(X−t) ≥ r(X) for every vertex subset X ⊆ V with t ∈ X and |N(x)∩X| ≥

2.

Proof. Let u ∈ N(x) ∩ (X − t), we have d(u) ≥ d(t) by the choice of t. By the definition

of r(X), we have r(X) = λ(z, z′) for some z ∈ X, z′ ∈ V − X. If z 6= t, then r(X − t) ≥

λ(z, z′) = r(X). Otherwise,

r(X) = λ(t, z′) = min {d(t), d(z′)} ≤ min {d(u), d(z′)} = λ(u, z′) ≤ r(X − t)

according to Claim 2.14.

Claim 2.16. d(x,X) ≤ d(x, V − X) for dangerous set X ⊂ V .

Proof. Let α := d(x,X) and β := d(x, V − X). Then, we can derive α ≤ β + 1 from the

following.

r(V − X) = r(X) ≥ d(X) − 1 = d(V − X) − β + α − 1

≥ r(V − X) − β + α − 1

CHAPTER 2. BACKGROUND 22

Since d(x) is even, the inequality α ≤ β+1 cannot hold with equality. Therefore, α < β+1

and hence α ≤ β.

Since G is a counter-example to the theorem, it is clear that xt has no admissible

partner. Therefore, every x-neighbour belongs to a dangerous set containing t according

to Proposition 2.12. Let L be a smallest collection of dangerous sets containing t that

N(x) ⊆ ∪X∈LX.

Claim 2.17. |L| ≥ 3.

Proof. According to Claim 2.16, d(x,X) ≤ d(x, V − X) for any dangerous set X. This

implies |L| ≥ 2. Assume |L| = 2 that L = {X,Y }. By Claim 2.16 again, we have.

d(x,X) ≤ d(x, V − X) < d(x, (V − X) + t) ≤ d(x, Y)

By symmetry, we also have d(x, Y) < d(x,X) which implies d(x,X) < d(x,X), a con-

tradiction.

Claim 2.18. Inequality (2.5b) holds for each two members X,Y ∈ L.

Proof. Suppose that inequality (2.5a) holds instead of inequality (2.5b). The minimality

of L implies s(X ∪ Y) ≥ 2 and hence s(X ∩ Y) = 0 by the following.

1 + 1 ≥ s(X) + s(Y) ≥ s(X ∪ Y) + s(X ∩ Y) ≥ 2 + 0

Therefore, X ∩ Y is a tight set and it must be a singleton, i.e. {t}, according to our

hypothesis. Then we have X−Y = X−t and Y −X = Y −t. These give r(X) ≤ r(X−Y)

and r(Y) ≤ r(Y − X) according to Claim 2.15. By equality (2.3b), s(X) + s(Y) ≥

s(X − Y) + s(Y − X) + 2d̄(X,Y), i.e. inequality (2.5b) holds.

Claim 2.19. |X − Y | = |Y − X| = 1 and d̄(X,Y) = 1 for each two members X,Y ∈ L.

CHAPTER 2. BACKGROUND 23

Proof. By Claim 2.18, we have

1 + 1 ≥ s(X) + s(Y) ≥ s(X − Y) + s(Y − X) + 2d̄(X,Y) ≥ 0 + 0 + 2.

This implies d̄(X,Y) = 1 and both X−Y and Y −X are tight. They must be singletons,

i.e. |X − Y | = |Y − X| = 1, according to our hypothesis.

To complete the proof of the theorem, let X1, X2, X3 be three elements in L and let

M = X1 ∩ X2 ∩ X3. By Claim 2.19 and the minimality of L, we have Xi = M + xi and

d̄(Xi, Xj) = 1 for 1 ≤ i < j ≤ 3 that xi 6= xj for i 6= j. This implies the edge xt is the

only edge leaving M . In other words, xt is a cut-edge, contradicting the hypothesis of

the theorem.

2.2.3 Global Arc-Connectivity Setting

In this subsection, we will discuss edge splitting-off in directed graphs. The following

directed version of Lovász' splitting-off lemma is given by Mader [56]. It states that edge

splitting-off can preserve global arc-connectivity when in-degree and out-degree of x are

equal.

Theorem 2.20. (Mader's directed splitting-off lemma [56]) Let D = (V + x,A)

be a directed graph that is k-arc-connected in V with d+(x) = d−(x), There is an edge

f = ux for every edge e = xt for which the directed graph Def arising from splitting-off

(e, f) is k-arc-connected in V .

By the min-max relation in Menger's theorem (Theorem 2.1), this splitting-off theorem

can also be proved by showing that edge splitting-off preserves the size of minimum cut

in the graph. A vertex set V is k-arc-connected in a directed graph D = (V + x,A) if

d+
D(X), d−

D(X) ≥ k for every vertex subset X ⊂ V . (2.6)

CHAPTER 2. BACKGROUND 24

We call a vertex subset X ⊆ V in-tight if d+(X) = k and out-tight if d−(X) = k. A

vertex subset X ⊆ V is called tight if it is either in-tight or out-tight. It is clear that an

edge pair (e = xu, f = xv) is admissible if and only if there is no tight set X containing

u and v. The following proposition characterize some properties of the degree function.

It can be proved by counting the contribution of each involved arc.

Proposition 2.21. For arbitrary X,Y ⊆ V both of the following equalities hold:

d+(X) + d+(Y) = d+(X ∩ Y) + d+(X ∪ Y) + d(X,Y) (2.7a)

d+(X) + d+(Y) = d+(X − Y) + d+(Y − X) + d̄(X,Y)

+ d+(X ∩ Y) − d−(X ∩ Y)

(2.7b)

With the above proposition, we can show that the union of two tight sets is also tight

if they contain a common x-neighbour. In other words, each x-neighbour is contained in

at most one (unique) maximal tight set. This gives the key statement in the proof of the

directed splitting-off lemma.

Claim 2.22. X ∪ Y is tight if X and Y are tight sets containing an x-neighbour t.

Proof. Define Z̄ := V + x − Z to be the complement of a vertex subset Z ∈ V . The

claim is trivial for X ⊆ Y or Y ⊆ X so we assume this is not the case. If d+(X) = k and

d−(Y) = k, then by equality (2.7a), we have

k + k = d+(X) + d+(Ȳ) = d+(X ∩ Ȳ) + d+(X ∪ Ȳ) + d(X, Ȳ)

≥ k + k + |zt| ≥ 2k + 1

Therefore, it is impossible that one of them is in-tight and the other one is out-tight.

Suppose that both X and Y are out-tight. If X ∪ Y = V , we have X̄ ∩ Ȳ = x and so

d+(X̄ ∩ Ȳ) = d−(X̄ ∩ Ȳ). Applying equality (2.7b) to X̄ and Ȳ , we have,

k + k = d+(X̄) + d+(Ȳ) = d+(X̄ − Ȳ) + d+(Ȳ − X̄) + d̄(X̄, Ȳ)

≥ k + k + |zt| ≥ 2k + 1.

CHAPTER 2. BACKGROUND 25

This implies X ∪ Y ⊂ V . Now, replace d+ by d− in equality (2.7a), we have

k + k = d−(X) + d−(Y) ≥ d−(X ∩ Y) + d−(X ∪ Y) ≥ k + k.

This restricts d−(X ∩ Y) = d−(X ∪ Y) = k and hence X ∪Y is a tight set. The proof for

the case that both X and Y are in-tight is basically the same, so the proof of this claim

is completed here.

Proof of Theorem 2.20: If there is no tight set containing t, then xt is an admissible

partner to every edge entering x. So we assume this is not the case, i.e. t is contained in

some tight sets. By Claim 2.22, there exists a unique maximal tight set T containing t.

We can complete the proof by showing the existence of an edge entering x that does not

leave from T .

Suppose to the contrary that every in-edge of x leaves from T . If T is an in-tight set,

i.e. d+(T) = k, then we have

d−(V − T) = d+(T + x) ≤ d+(T) − 1 = k − 1.

On the other hand, if T is an out-tight set, i.e. d−(T) = k, then we have

d+(V − T) = d−(T + x) ≤ (d−(T) − d−(x)) + (d+(x) − 1) ≤ d−(T) − 1 = k − 1.

Both contradict premise (2.6) for V being k-arc-connected. ✷

2.2.3.1 Local Arc-Connectivity Setting

In the previous sections, we have discussed some general edge splitting-off theorems

in the local edge-connectivity and global arc-connectivity settings. However, no similar

edge splitting-off theorem is known in the local arc-connectivity setting. The key reason

may be that the surplus functions do not have the nice property of submodular functions,

as we will show in the following.

CHAPTER 2. BACKGROUND 26

Suppose that the arc-connectivity requirements are symmetric, i.e. r+(u, v) = r−(u, v)

and hence r(u, v) = r(v, u). We define s+(X) = d+(X)−r(X) and s−(X) = d−(X)−r(X)

to be the surplus functions in the local arc-connectivity setting. Combining Proposi-

tion 2.10 and Proposition 2.21, we can guarantee at least one of the following inequalities

holds.

s+(X) + s+(Y) ≥ s+(X ∩ Y) + s+(X ∪ Y) + d(X,Y) (2.8a)

s+(X) + s+(Y) ≥ s+(X − Y) + s+(Y − X) + d̄(X,Y)

+ d+(X ∩ Y) − d−(X ∩ Y)

(2.8b)

When inequality (2.8b) holds and d̄(X,Y) + d+(X ∩ Y) < d−(X ∩ Y), we may have

s+(X) + s+(Y) ≤ s+(X − Y) + s+(Y − X).

Therefore, we cannot ensure at least one of inequality (2.1a) or inequality (2.1b) holds,

and thus the surplus function in a directed graph is not skew submodular in general.

Note that the supermodular (submodular) function is the cornerstone supporting edge

splitting-off theorems. Therefore, we cannot extend the directed splitting-off lemma to

the local arc-connectivity setting unless we can support the splitting-off theorems by

something else. The local arc-connectivity setting will not be covered anymore in the

rest of this thesis.

2.2.4 Incorporating Additional Properties

When reducing a graph by edge splitting-off operations, we may want to preserve

some extra properties of the graph, such as graph simplicity, in addition to the edge-

connectivity. This raises the interest of extending edge splitting-off operation to con-

strained edge splitting-off operation, which is a generalization that not only edge-connectivity

must be maintained but the split edge has to satisfy some additional properties as well.

CHAPTER 2. BACKGROUND 27

An edge pair is called legal if the specified properties are preserved upon splitting-off the

pair. In other words, we look for legal admissible edge pairs. The extra requirements for

split edges to satisfy are called additional constraints.

There are several established results on constrained edges splitting-off [4, 3, 44, 37,

59, 5]. Like Mader's theorem, these results are proved by analyses on the structure of

non-admissible pairs (or equivalently, dangerous sets) which use the submodular functions

discussed in Section 2.2.1.1. Note that in general it is NP-hard to decide whether all edges

incident to a designated vertex can be splitted-off by constrained edge splitting-off [43].

Therefore the constrained edge splitting-off theorems usually make stronger assumption

to guarantee the existence of a legal admissible edge pair. In other words, it may be

impossible to split-off all edges incident to a designated vertex. Some of these results will

be covered later in Chapter 4. Here, we would like to highlight the non-admissibility graph

method developed by Jordán [45]. He gave a more general method to prove constrained

edge splitting-off results in the global edge-connectivity setting.

2.2.4.1 Non-Admissibility Graph Method

To show the existence of an admissible edge pair, Frank studied the structure of non-

admissible edge pairs in the graph. Therefore, a straightforward approach to show the

existence of a legal admissible edge pair is to study the structure of non-admissible pairs

under a given constraint. Taking a different approach, Jordán considered admissibility

and the additional constraint separately [45]. Note that the structure of non-admissible

pairs (dangerous sets) remains unchanged regardless of the type of additional constraint.

Therefore, the structural properties identified can be used in different additional con-

straints and hence contribute to a general method.

Consider an undirected graph G = (V + x,E) that G is k-edge-connected for some

k ≥ 2, and a constraint C that G has to satisfy. Jordán defined a non-admissibility

CHAPTER 2. BACKGROUND 28

graph B(x) = (N(x), E(B(x))) of G with respect to the vertex x. The graph B(x)

takes the neighbour set of x as the vertex set; two vertices u, v ∈ N(x) are adjacent in

B(x) if and only if the corresponding edge pair (e = xu, f = xv) is non-admissible in

G. Therefore, there exists an admissible edge pair in G if and only if there exists two

non-adjacent vertices u and v in B(x), i.e. B(x) is not a complete graph. Under the

global edge-connectivity setting, Jordán identified some useful structural properties of

the non-admissibility graph B(x).

Then, Jordán defined a constraint graph HC(x) = (N(x), E(HC(x))) of G with respect

to the vertex x and additional constraint C. The graph HC(x) also takes the neighbour

set of x as the vertex set; two vertices u, v ∈ HC(x) are adjacent if and only if Gef

satisfies the constraint C upon splitting-off the corresponding edge pair (e = xu, f = xv).

For any legal pair (e = xu, f = xv) in G, we have uv ∈ E(HC(x)) and uv /∈ E(B(x)),

i.e. uv ∈ E(HC(x)) ∩ E(B(x)). In words, there exists a legal admissible edge pair if

there is an edge in the graph (N(x), E(HC(x)) ∩ E(B(x))), or equivalently, the graph

(N(x), E(HC(x)) ∩ E(B(x))) is not a complete graph.

Therefore, one can prove constrained edge splitting-off by studying the non-admissibility

graph and constraint graph separately. Note that the structural properties of a non-

admissibility graph is not affected by the additional constraint. Therefore, the structure

identified by Jordán can be applied in various additional constraints and so gives rise to

a general method for solving problems of this type. The exact structures characterized

by Jordán in the global edge-connectivity is quite irrelevant to this thesis since we are

studying the settings of local edge-connectivity and global arc-connectivity. The details

are hence not covered here. Interested readers are referred to Jordán's paper [45].

CHAPTER 2. BACKGROUND 29

2.3 Edge-Connectivity Problems

Edge-connectivity problems include several classical graph problems, like minimum

spanning tree, and are the topic of much research. A problem we are particularly inter-

ested in is the network design problem. The objective is to find a minimum cost subgraph

that satisfies certain edge-connectivity requirements. In this thesis, we consider network

design problem with the following setting:

Definition 2.23. (Network Design Problem) Consider a graph G = (V,E), with

edge-connectivity requirement function r : V × V → Z on each vertex pairs, and cost

function c : E → Q on each edge. Find a minimum cost subgraph H = (V, F) ⊆ G that

λH(u, v) ≥ r(u, v) for each two vertices u, v ∈ V .

We assume that λG(u, v) ≥ r(u, v) to guarantee the existence of a solution. Note that

a number of classical graph problems in combinatorial optimization can be expressed in

this manner. For example, the minimum k-edge-connected subgraph problem asks for a

minimum cost subgraph that each two vertices u, v are k-edge-connected, i.e. λ(u, v) ≥ k;

and the Steiner tree problem asks for a minimum cost subgraph that each two terminal

vertices u, v are connected. The network design problem is hence a generalization of some

classical graph problems in combinatorial optimization.

Another problem we are also interested in is the edge-connectivity augmentation prob-

lem. The goal of this problem is to improve the edge-connectivity of a given graph to

specified extent by adding a minimum set of new edges.

Definition 2.24. (Edge-Connectivity Augmentation Problem) Consider a graph

G = (V,E) with edge-connectivity requirement function r : V × V → Z on each vertex

pairs, and a graph H = (V, F) with cost function c : F → Q on each edge. Find a

minimum cost edge subset F ′ ⊆ F that λG′(u, v) ≥ r(u, v) for each two vertices u, v ∈ V

in the augmented graph G′ = (V,E + F ′).

CHAPTER 2. BACKGROUND 30

These two mentioned edge-connectivity problems are actually equivalent. A network

design problem can be reformulated as an edge-connectivity augmentation problem that

augments an edge-less input graph. Suppose that an edge-connectivity augmentation

problem is tractable for certain connectivity requirements. Then the corresponding net-

work design problem is also tractable by this reduction. Conversely, an edge-connectivity

augmentation problem can also be reformulated as a network design problem that has

a set of zero cost initially assigned edges. The tractability of a network design problem

for certain connectivity requirements, hence, implies the tractability of the corresponding

edge-connectivity augmentation problem.

We would like to distinguish between the edge-connectivity augmentation problem

and network design problem to avoid considering these equivalent problems twice. In the

rest of this thesis, we restrict our attention of edge-connectivity augmentation problem

to the so-call free augmentation version. That is, we can add any number of copies of any

possible edge connecting the vertices of the input graph, and the cost of each new edge is

identical. The free augmentation problem is of special interest because it can be solved

in polynomial-time [26]1. This is in contrast to the network design problem, which is NP-

hard to solve in general. For example, finding a minimum cardinality 2-edge-connected

spanning subgraph, i.e. Hamiltonian cycle, in a graph is well-known to be NP-complete

but the free augmentation problem that augments a graph to be 2-edge-connected is

polynomial-time solvable.

2.3.1 Degree Bounded Network Design Problems

Network design is a central topic in combinatorial optimization and approximation

algorithms. In recent years, much research has been done on the design of approxima-

tion algorithms for degree bounded network design problem. That is, the problem of
1In directed graph, only some special cases, e.g. λ(u, v) ≡ k for all vertex pair u, v, can be solved.

CHAPTER 2. BACKGROUND 31

finding a minimum cost subgraph with maximum vertex degree at most B in a weighted

undirected graph that satisfies certain edge-connectivity requirements. This problem gen-

eralizes some key problems in combinatorial optimization, such as the travelling salesman

problem, and also have applications in various areas including VLSI design and communi-

cation networks [20, 73, 6, 68, 67]. In these applications, vertex degree constraints act as

a tool to model the workload of nodes. For example, in the applications to multicasting,

vertex degree constraint corresponds to a bound on the number of multicast copies a

switch can make in the network.

In general this problem does not admit any non-trivial approximation algorithm, since

the feasibility problem, which captures the Hamiltonian cycle problem as a special case, is

already NP-hard. Recent research has thus focused on obtaining bicriteria approximation

algorithms for degree bounded network design problems [38, 51, 70, 52]. An (α, +β)

bicriteria approximation algorithm is an algorithm which returns a solution with cost at

most α times minimum cost and vertex degree at most Bv + β for all v, where Bv is the

given degree upper bound on vertex v. A polyhedral approach is applied successfully to

obtain bicriteria approximation algorithms with only an additive violation on the degree:

there is a (1, +1)-approximation algorithm for the minimum bounded degree spanning tree

problem [70], a (2, +O(k))-approximation algorithm for the minimum bounded degree k-

edge-connected subgraph problem [52], and a (2, +O(rmax))-approximation algorithm for

the minimum bounded degree Steiner network problem [52], while the maximum degree

of the solutions is at most 2B + 3 [70].

2.3.1.1 Metric Cost Assumption

In some network design problems, stronger algorithmic results are known when the

cost function satisfies triangle inequality [48, 17, 1]. Take the travelling salesman prob-

lem as an example. Although there is no polynomial factor approximation algorithm in

CHAPTER 2. BACKGROUND 32

general, it is well-known that there is a 1.5-approximation algorithm assuming triangle

inequality [66]. This motivates us to study more general degree bounded network design

problems with metric costs. In this thesis, we restrict our attention for network design

problem to the version with vertex degree bound and metric cost.

Definition 2.25. (Degree Bounded Network Design Problem with Metric

Costs) Given a graph G = (V,E), an edge-connectivity requirement function r : V ×V →

Z on each vertex pair, a cost function c : E → Q on each edge satisfying triangle inequal-

ity (c(uv) + c(vw) ≥ c(uw) for all u, v, w), and a degree upper bound B on each vertex

v. Find a minimum cost subgraph H = (V, F) ⊆ G that λH(u, v) ≥ r(u, v) for each two

vertices u, v ∈ V , and the degree of each vertex in H is at most B.

For degree bounded network design problem with metric costs, there are approximation

algorithms to construct a k-edge-connected subgraph with maximum degree k [31, 33], if

parallel edges are allowed. For local edge-connectivity, there is some known result [32]2,

but no constant factor approximation algorithm is known even if parallel edges are al-

lowed.

Note that edge splitting-off reduce vertex degree of the designated vertex by 2 while

satisfying pairwise edge-connectivity requirements. Furthermore, this operation does not

increase the cost of the subgraph when cost function satisfies triangle inequality. Given

any subgraph satisfying the edge-connectivity requirements, we can hence apply edge

splitting-off to reduce vertex degree while maintaining edge-connectivity and keeping the

total cost of the subgraph. Actually, this approach is used in some of the results we just

mentioned above [31, 32]. In Chapter 3, we will show how to solve the degree bounded

network design problem with metric costs in general, even when graph simplicity is taken

into account.
2Graph is assumed to be 2-edge-connected in [32].

CHAPTER 2. BACKGROUND 33

2.3.2 Edge-Connectivity Augmentation Problems

To distinguish from network design problem, we restrict our attention of edge-connectivity

augmentation problem to the free augmentation version in this thesis. That is, we can

add any number of copies of any possible edge connecting the vertices of the initial graph,

and the cost of each new edge is identical. We define the problem in free augmentation

version as follows. Note that this version is sometimes called the cardinality case.

Definition 2.26. (Edge-Connectivity Augmentation Problem) Consider a graph

G = (V,E) with edge-connectivity requirement function r : V × V → Z on each vertex

pair. Find a minimum set of edges F that in the augmented graph G′ = (V,E + F),

λG′(u, v) ≥ r(u, v) for each two vertices u, v ∈ V .

The edge-connectivity augmentation problem is a very well-studied topic. In the

global edge-connectivity setting, Eswaran and Tarjan [23] gave a polynomial-time algo-

rithm to augment a graph to 2-edge-connected with minimum number of new edges.

Generalizing their idea, Watanabe and Nakamura [74], Naor, Gusfield and Martel [65]

augmented a graph to k-edge-connected in polynomial-time for arbitrary k ≥ 2. Cai and

Sun [13] also solved the same problem, and in addition, they provided a min-max relation

for this problem. Note that the application of edge splitting-off technique in augmenta-

tion problem was first introduced in this result. By using this approach, Frank solved

the problem in the local edge-connectivity setting in strongly polynomial time [26].

Regarding the global arc-connectivity setting, Eswaran and Tarjan [23] showed how

to make a directed graph strongly connected, i.e. r(u, v) ≡ 1, by adding a minimum

number of arcs. For the general setting r(u, v) ≡ k, Fulkerson and Shapley [34] solved

the problem when the initial graph has no arc. Kajitani and Ueno [46] solved the problem

in a less restricted case that the initial graph is an arborescence. Applying edge splitting-

off technique, Frank [26] solved the problem for any initial graph.

CHAPTER 2. BACKGROUND 34

Frank's result provided a general framework to solve problems of this kind by edge

splitting-off technique. This framework is later applied with constrained edge splitting-off

operations to solve the so-called constrained edge-connectivity augmentation problems [4,

3, 44, 37, 59, 5]. Some materials of constrained edge-connectivity augmentation problems

will be covered in Section 2.3.2.2. Here, we will first study Frank's framework in the

local edge-connectivity setting. Note that Frank's algorithm works in both local edge-

connectivity and global arc-connectivity settings, but not local arc-connectivity setting.

This is because of the absence of strong edge splitting-off lemma regarding local arc-

connectivity, as we explained in Section 2.2.3.1.

2.3.2.1 Frank's Framework

To solve edge-connectivity augmentation problems, Frank [26] developed a framework

based on the edge splitting-off results. This framework can be applied in the global

edge-connectivity and local edge-connectivity settings to give polynomial time algorithms

for the augmentation problem. Consider an undirected graph G = (V,E) with edge-

connectivity requirement r(u, v) between every two vertices u, v ∈ V . Frank's framework

consists of the following two phases.

(1) External Augmentation Subroutine: In the first subroutine, an extra vertex x

and a minimum set of x-edges are added to the graph to satisfy the edge-connectivity

requirements. Benczúr and Karger [7] called the problem of finding such a minimal

edge set an external augmentation problem. The degree of x is kept to be even by

adding at most one extra x-edge. It can be proved that the optimal value of the external

augmentation problem is at most twice the optimal value of the original augmentation

problem.

(2) Complete Edge Splitting-off Subroutine: In the second subroutine, we perform

CHAPTER 2. BACKGROUND 35

a complete edge splitting-off at x, i.e. split-off all edges incident to x. This is feasible

according to Mader's theorem because the first subroutine guarantee the degree of x to be

even3. Furthermore, the set of split edges is an optimal solution for the edge-connectivity

augmentation problem since the first subroutine also guarantee the number of x-edges is

twice the optimal value.

To show the correctness of Frank's algorithm, the deficiency function qG is used here.

In order to satisfy edge-connectivity requirements in the augmented graph G′, we have

to make sure dG′(X) ≥ r(X) for every vertex subset X ⊂ V . Hence, we define qG(X) :=

r(X) − dG(X) to be the deficiency of a vertex subset X ⊆ V . In words, we have to

add at least qG(X) new edges incident to X in order to satisfy the edge-connectivity

requirements. This gives a lower bound on the size of an optimal solution, γ(G):

∑
1≤i≤t

qG(Xi) ≤ 2γ(G) for every sub-partition {X1, X2, . . . Xt} of V . (2.9)

Now, we can show that the size of solution returned by the external augmentation

subroutine is at most twice of γ(G) by considering the deficiency function (Claim 2.27).

Since each external edge pair is replaced by (at most) one split edge in the complete edge

splitting-off subroutine, the size of the solution returned by Frank's algorithm is hence

bounded by γ(G). This shows the optimality of the algorithm.

Claim 2.27. The size of solution returned by the external augmentation subroutine is at

most twice of γ(G).

Proof. Before adding the extra edge to make d(x) even, the set of x-edge is minimal

to satisfy the given edge-connectivity requirements. Therefore, there exists a tight set

X ⊂ V containing v for each x-neighbour v ∈ N(x) so that removal of xv will violate

some edge-connectivity requirements. Let F := {X1, X2, . . . , Xt} be a family of tight sets
3An extra procedure is used to ensure there is no cut-edge incident to x.

CHAPTER 2. BACKGROUND 36

covering the set of x-neighbours N(x) so that t is minimal, and
∑

|Xi| is minimal for a

given t. If F is a subpartition of V , then the proof can be completed by applying the

lower bound of (2.9) directly. Therefore, we are going to show that Xi's are disjoint.

Apply Proposition 2.11 to any two tight sets X and Y . If inequality (2.5a) holds,

then both X ∩ Y and X ∪ Y are tight sets since

0 + 0 = s(X) + s(Y) ≥ s(X ∩ Y) + s(X ∪ Y).

If inequality (2.5b) holds, then both X − Y and Y − X are tight sets with d̄(X,Y) = 0

since

0 + 0 = s(X) + s(Y) = s(X − Y) + s(Y − X) + 2d̄(X,Y).

Now, consider X,Y ∈ F with X ∩ Y nonempty. Their union X ∪ Y cannot be tight, for

otherwise, we can replace them by their union and this contradicts the minimality of t.

Therefore, we know that both X −Y and Y −X are tight with d̄(X,Y) = 0. We can get

another family of tight sets covering N(x) by replacing X and Y by X − Y and Y − X.

Note that such a family gives smaller
∑

|Xi| and contradicts the choice of F . Therefore,

we can conclude that X ∩ Y = ∅ for any X,Y ∈ F and hence Xi's are disjoint.

Finally, we remark that the framework by Frank actually handles the so-called marginal

components. These components may introduce cut-edges incident to the external vertices

x and violate the assumption for Mader's theorem. Therefore, Frank used an extra pro-

cedure to handle such components so as to guarantee the existence of a complete edge

splitting-off operation in the second subroutine. Interested readers are referred to Frank's

paper [26].

2.3.2.2 Constrained Edge-Connectivity Augmentation Problems

In an edge-connectivity augmentation problem, the goal is to find a minimum set

of edges whose addition satisfies the given edge-connectivity requirements. Sometimes,

CHAPTER 2. BACKGROUND 37

we may want the resulting graph (or equivalently the set of split edges) to satisfy some

extra properties, in addition to the connectivity requirement. Given a bipartite graph,

it is natural to require the resulting graph to stay bipartite. This raises the interest of

studying constrained edge-connectivity augmentation problem, which are extensions of the

original problem that take additional constraints into account. Note that the constrained

edge-connectivity augmentation problem is NP-complete in general [43]. Therefore, we

usually aim at obtaining approximation algorithms.

Definition 2.28. (Constrained Edge-Connectivity Augmentation Problem) Con-

sider a graph G = (V,E) with edge-connectivity requirement function r : V × V → Z on

each vertex pairs. Find a minimum subset of edges F satisfying certain property P and

that in the augmented graph G′ = (V,E + F), λG′(u, v) ≥ r(u, v) for each two vertices

u, v ∈ V .

Frank [26] developed a framework solve edge-connectivity augmentation problem using

edge splitting-off operations. It is hence a natural attempt to approximate a constrained

edge-connectivity augmentation problem by applying constrained edge splitting-off oper-

ations in Frank's framework. In other words, we try to apply the framework that uses

constrained edge splitting-off in the second subroutine. However, such attempt may give

a very bad approximation ratio. Consider a bipartite graph G = (U +V,E) such that an

edge uv exists only if u ∈ U and v ∈ V . Suppose that the external augmentation subrou-

tine returns a solution with all edges connecting between x and U . Then it is impossible

to split-off any edge pair while preserving the bipartiteness of the graph. Therefore, we

are stuck with with arbitrarily large d(x) in the second subroutine.

Note that the properties of the set of split edges are unavoidably dependent on the

properties of the set of x-edges. To handle the issue we addressed above, we solve a

constrained external augmentation problem in the first subroutine so that the set of x-

CHAPTER 2. BACKGROUND 38

edges also satisfies certain properties. Like the unconstrained case, the number of x-edges

is usually bounded by twice of the optimal value of the given constrained edge-connectivity

augmentation problem.

As mentioned in Section 2.2.4, a complete constrained edge splitting-off operation may

not exist. Therefore, usually we can only find an approximate solution in the second sub-

routine. Hence, we need an extra procedure to handle the remaining x-edges. This may

incur extra cost, say by adding extra edges, and makes the solution to be an approximate

one. As a conclusion, the revised framework for solving constrained edge-connectivity

augmentation problem consists of the following 3 subroutines.

(1) Constrained External Augmentation Subroutine: Add an extra vertex x and

a minimum set of x-edges to the graph in order to satisfy edge-connectivity requirements,

where each x-edge satisfies certain additional constraint. An extra x-edge may be added

to make the degree of x to be even. The number of x-edges is usually bounded by twice

the optimal value of the (original) constrained edge-connectivity augmentation problem.

(2) Constrained Complete Edge Splitting-off Subroutine: In the second subrou-

tine, we try to split-off all x-edges by constrained edge splitting-off operations. Since

a complete edge splitting-off operation may not exist in such problem, the subroutine

returns an approximate solution with some remaining x-edges.

(3) Reconciliation Subroutine: In this final subroutine, we isolate and remove x

from the graph. This can be accomplished by replacing the remaining x-edges by some

other x-edges while satisfying both edge-connectivity requirements and the additional

constraints. Such operations usually incur extra cost and make the solution to be an

approximate one.

CHAPTER 2. BACKGROUND 39

2.3.3 Edge Splitting-off Problems

Edge splitting-off operation is an important subroutine in various edge-connectivity

algorithms. In the previous section (Section 2.3.2), we showed an application in edge-

connectivity augmentation problem. Here, we define the problem of finding an admissible

edge pair formally.

Definition 2.29. (Edge Splitting-off Problem) Consider a graph G = (V,E) with a

designated vertex x and edge-connectivity requirement function r : V × V → Z on each

vertex pair, find a pair of edges e, f ∈ δ(x) such that λGef (u, v) ≥ r(u, v) for every two

vertices u, v ∈ V .

As shown by Mader's theorem (Theorem 2.7), edge splitting-off can be applied re-

peatedly and this gives a sequence of admissible edge pairs. Such sequence of edge pair is

called an edge splitting-off sequence; and is called a complete edge splitting-off sequence if

it is a partition of edges incident to the designated vertex. This gives rise to the complete

edge splitting-off problem. Note that a complete sequence may not always exist, e.g. when

d(x) is odd. Therefore, the problem finds an edge splitting-off sequence that contains the

maximum number (copies) of x-edges instead.

Definition 2.30. (Complete Edge Splitting-off Problem) Consider a graph G =

(V,E) with a designated vertex x and edge-connectivity requirement function r : V ×V →

Z on each vertex pair, find a sequence of admissible edge pairs with the maximum number

of x-edges such that in the graph G′ arising from G by splitting-off all the pairs in the

sequence, λG′(u, v) ≥ r(u, v) for every two vertices u, v ∈ V .

Similarly, we can define constrained edge splitting-off problem and constrained complete

edge splitting-off problem accordingly. The edge splitting-off sequence and complete edge

splitting-off sequence are referred to the sequences of legal admissible edge pairs in these

problems.

CHAPTER 2. BACKGROUND 40

Definition 2.31. (Constrained Complete Edge Splitting-off Problem) Consider

a graph G = (V,E) with a designated vertex x, edge-connectivity requirement function

r : V × V → Z on each vertex pairs and an additional constraint C, find a sequence of

legal admissible edge pairs with maximum number of x-edges such that in the graph G′

arising from G by splitting-off all pairs in the sequence, (i) λG′(u, v) ≥ r(u, v) for every

two vertices u, v ∈ V ; and (ii) the additional constraint C is satisfied.

The edge splitting-off we consider here takes the edge-connectivity requirements of the

designated vertex x into account. It is slightly more general than what we discussed in

Mader's theorem in Section 2.2.2. In the rest of this thesis, we will study edge splitting-off

in this more general setting. As a remark, Frank's proof can be modified slightly to prove

Mader's result in this setting.

2.4 Edge Splitting-off Algorithms

Lovász [54, 55] and Mader [56] proved that edge splitting-off can be performed to pre-

serve edge-connectivity of a graph. This combinatorial operation is used as an important

subroutine in several algorithms for connectivity problems, including connectivity aug-

mentation, network design, tree packing and graph orientation. An efficient construction

of an edge splitting-off sequence can hence give fast algorithms for these problems. Most

of the efficient algorithms are developed only for the global edge-connectivity setting,

although there are important applications in the more general local edge-connectivity

setting, such as Steiner tree packing. Here, we will first cover some results of the best

algorithms (Section 2.4.1) and present an intuitive approach for solving the problem (Sec-

tion 2.4.2). Then, we will see some approaches in the global edge-connectivity setting

that are more efficient than the intuitive one (Section 2.4.3); and explain why it is dif-

ficult to extend these approaches to the local edge-connectivity setting (Section 2.4.4).

CHAPTER 2. BACKGROUND 41

For the sake of convenience, we assume the degree of the designated vertex d(x) to be

even to make sure a complete splitting-off sequence exist.

2.4.1 Fastest Algorithms

In the global edge-connectivity setting, i.e. r(u, v) ≡ k, Gabow [36] found a complete

splitting-off sequence in O(n2m log (n2/m)) time for a weighted graph; and in O(k2n+m)

time for an unweighted graph. Bhalgat, Hariharan, Kavitha and Panigrahi [10] improved

Gabow's result that they found complete splitting-off sequences for each vertex of a

specified vertex subset in the same time bound for an unweighted graph. As the best

deterministic algorithm in weighted graph, Nagamochi [58] solved the problem in O(nm+

n2 logn) time, improving the Õ(nm)-time algorithm by Nagamochi and Ibaraki [63].

Benczúr and Karger [7] improved the time bound to Õ(n2) by randomization techniques.

In the global arc-connectivity setting, Gabow [36] found a complete splitting-off sequence

in O(km) time for an unweighted graph. Bhalgat, Hariharan, Kavitha and Panigrahi [10]

again improved Gabow's result that they found complete splitting-off sequences for each

vertex of a specified vertex subset in the same time bound.

This problem is, however, not very well-studied in the local edge-connectivity setting.

The current best time bounds are due to Gabow [36], who finds a complete splitting-

off sequence in O(n3m log (n2/m)) time for a weighted graph; and in O(kn2m) time for

an unweighted graph with maximum edge-connectivity requirement rmax = k. These

results remain to be the fastest algorithms since 1994. It seems the design of efficient

algorithm becomes more difficult when we move from the global edge-connectivity setting

to the local edge-connectivity setting. This may be because nice properties, such as those

regarding minimum cuts, vanish when we consider local edge-connectivity. We will have

a deeper discussion regarding this in Section 2.4.4.

CHAPTER 2. BACKGROUND 42

2.4.2 An Intuitive Approach

A straightforward approach to construct a complete splitting-off sequence is to split-

off admissible edge pairs iteratively --- split-off an admissible edge pair and reduce the

graph. According to Mader's theorem (Theorem 2.6), we can always find an admissible

edge pair by this approach. However, finding an admissible edge pair is not a trivial

task. Gabow [36] used a nice approach to find an admissible edge pair in the local

edge-connectivity setting by using O(n) maximum flow computations. Since each maxi-

mum flow computation takes considerable amount of time, this imposes a bound on the

efficiency of his edge splitting-off algorithm.

Instead of splitting-off an admissible edge pair, we may also split-off any edge pair

(e = xu, f = xv) without knowing the admissibility and then un-split it if any edge-

connectivity requirement is violated. Note that checking the violation is equivalent to

finding a minimum cut in the global edge-connectivity setting; and taking wild guesses

may result in O(|N(x)|2) splitting-off attempts. Therefore, the time complexity is by no

means reduced by using this approach.

2.4.3 Global Connectivity Settings

To obtain an algorithm that runs faster than finding admissible edge pairs one by one,

a natural attempt is to consider the admissibility of several edge pairs together. We may

either split-off multiple edge pairs at once and then fix the decreased edge-connectivity;

or find multiple admissible pairs simultaneously. In both cases, the cornerstones are the

properties of minimum cuts.

CHAPTER 2. BACKGROUND 43

2.4.3.1 Legal Ordering

The edge splitting-off problem in the global edge-connectivity setting is closely related

to the minimum cut problem. A traditional approach to find a global minimum cut uses

Menger's theorem. That is, we use the min-max relation of cut and flow, and compute the

size of minimum cut by solving maximum flow problems. Nagamochi and Ibaraki [62, 64]

developed a revolutionary algorithm for minimum cut problem that does not use Menger's

theorem and flows. A key idea of their algorithm is an ordering of vertices called legal

ordering. Note that a legal ordering is unrelated to the legal edge pair we defined before.

Consider an undirected graph G = (V,E). The algorithm of Nagamochi and Ibaraki [62,

64] is based on the following observation: for any two vertices u, v ∈ V (G) that d(u) =

λ(u, v),

(a) if there exists a global minimum cut of G separating the two vertices, then λ(G) =

λ(u, v) = d(u) and this gives a global minimum cut;

(b) if there is no global minimum cut of G separating the two vertices, global minimum

cuts are preserved upon contraction of u and v into a single vertex, i.e. a cut is a

global minimum cut in G if and only if it is a global minimum cut in G/{u, v}.

If there always exist the desired vertices u and v, then the global minimum cut can be

found by an iterative approach --- check d(u) and then contract u, v into a single vertex.

It is clear that the size of a cut will never decrease upon contraction of vertex subsets,

i.e. no new minimum cut would be created during this iterative algorithm. Therefore,

the algorithm can find the global minimum cut after n − 1 iterations.

The existence of vertices u, v ∈ V (G) with d(u) = λ(u, v) is guaranteed by an appli-

cation of a legal ordering. An ordering v1, v2, . . . , vn of all vertices in V (G) is called legal

if

d({v1, v2, . . . , vi}, vi+1) ≥ d({v1, v2, . . . , vi}, vj) for any 1 ≤ i < j ≤ n.

CHAPTER 2. BACKGROUND 44

A legal ordering [61, 60, 71] satisfies the need that λ(vn, vn−1) = d(vn) always holds, and

such ordering can be found efficiently in Õ(m) time. The algorithm of Nagamochi and

Ibaraki hence consists of (n− 1) computations of legal ordering and has a time bound of

Õ(nm).

Nagamochi and Ibaraki [63] used this algorithm as a subroutine to design an iterative

algorithm for complete edge splitting-off problem. In each iteration, they split-off all

edges incident to x without knowing admissibility. Then, they execute the iterative

algorithm described above. Given an integer k, the iterative algorithm can find cuts with

size smaller than k easily. With the identified small cut, they used some clever operations

to un-split a minimum subset of edge pairs to restore the edge-connectivity of the graph

to k. Since the subset of edge pairs they un-split is minimal, each of the edge pair is non-

admissible. The admissibility information obtained can be used to reduce the number of

splitting-off attempts in later iterations. This bounds the total number of iteration to

O(log |N(x)|) and the total runtime complexity is hence Õ(nm).

2.4.3.2 Edmonds' Arborescences

We define a directionless r-spanning tree to be a spanning tree that edges incident

to r must be directed away from r while other edges can be in any direction. Also, we

define r-connectivity to be the maximum number of arc-disjoint paths from a vertex r to

every other vertex. A classical result of Edmonds [22] shows that a directed graph has

r-connectivity of k if and only if it has k edge-disjoint directionless r-spanning trees that r

has in-degree 0 and every other vertex has in-degree k over all the trees. Gabow [35] gave

construction algorithm for Edmonds' result that constructs k edge-disjoint directionless

r-spanning trees one by one for a directed graph with r-connectivity k. The algorithm

terminates when it finds a cut (C, V −C) separating r ∈ C from some other vertices with

d−(C) = k. This implies that the construction of the (k + 1)th tree is impossible.

CHAPTER 2. BACKGROUND 45

Bhalgat, Hariharan, Kavitha and Panigraji [10] used Gabow's algorithm to detect and

then fixed small cuts in their edge splitting-off algorithm in the global arc-connectivity

setting. Their algorithm solves complete edge splitting-off problems for each vertex in any

specified vertex subset. First, they split-off all the pairs incident to any vertex from the

specified vertex subset. Then they applied Gabow's algorithm to construct edge-disjoint

directionless r-spanning trees for any arbitrary vertex r. Whenever Gabow's algorithm

halts with a cut with size less than k, they re-pair some edge pairs to increase the cut

size back to k and then resume the algorithm. After constructing k trees, the graph is

k-arc-connected and hence the edge pairs splitted-off are all admissible.

For any undirected graph G, we define its directed version to be the directed graph

D obtained by replacing each edge of G to arcs of both directions. Clearly, the directed

version of a k-edge-connected graph is k-arc-connected and hence has k arc-disjoint ar-

borescences rooted at any vertex. By considering the directed version of an undirected

graph, they solved complete edge splitting-off problems for each vertex in any specified

vertex subset in the global edge-connectivity setting. Their algorithm has the same time

bound as Gabow's construction algorithm, which is Õ(km) for unweighted directed graph

and Õ(k2n + m) for unweighted undirected graph. Note that Gabow's earlier result [36]

also used the edge-disjoint directionless spanning tree for solving complete edge splitting-

off problem. Bhalgat, Hariharan, Kavitha and Panigraji improved Gabow's result in a

sense that they solved the problem for each vertex from any specified vertex subset while

Gabow solved the problem for one specified vertex.

2.4.4 Local Edge-Connectivity Setting

In the global edge-connectivity setting, the complete edge splitting-off problem can

be solved efficiently by splitting-off multiple edge pairs at once. However, it seems these

CHAPTER 2. BACKGROUND 46

approaches cannot easily be extended to the local edge-connectivity setting. Recall that

the key ideas supporting these approaches are all regarding to the global minimum cut.

Instead of global minimum cuts, what is of concern in the local edge-connectivity setting

are pairwise minimum cuts, i.e. the collection of minimum cuts separating each vertex

pair. Local edge-connectivity for some highly connected vertex pairs may decrease even if

the size of global minimum cut is preserved. It seems not hopeful, or at least not trivial,

to use the properties regarding global minimum cut in the local edge-connectivity setting.

In the local edge-connectivity setting, the runtime of complete edge splitting-off algo-

rithm is boosted either by finding an admissible edge pair more efficiently or by bounding

the length of the splitting-off sequence. Based on these two ideas, Gabow [36] solved

the complete edge splitting-off problem in O(n3m log (n2/m)) for a weighted graph and

O(kn2m) for a graph with maximum edge-connectivity requirement rmax = k. The former

algorithm bounds the length of a splitting-off sequence by a wise grouping of x-neighbours,

followed by an analysis using submodular functions. The latter algorithm finds an admis-

sible edge pair efficiently by using Gomory-Hu tree, a compact representation of pairwise

minimum cuts. These results remain to be the best algorithms since 1994.

Chapter 3

Degree Bounded Network Design

Problem with Metric Cost

The results in this chapter are based on joint work with Yuk Hei CHAN Wai Shing

FUNG and Lap Chi LAU [14].

Degree bounded network design problems are interesting problems in combinatorial

optimization, which also have applications in various areas such as VLSI design, vehicle

routing and communication networks [20, 73, 6, 68, 67], where degree constraints are

useful to bound the workload on nodes. Consider the problem of finding a minimum cost

k-edge-connected subgraph with maximum degree at most B in a weighted undirected

graph. This is a generalization of the travelling salesman problem when k = B = 2, and

the minimum bounded degree spanning tree problem when k = 1.

Since this problem captures the travelling salesman problem as a special case, we

can see that it does not admit any polynomial factor approximation algorithm as the

feasible problem (Hamiltonian cycle problem) is NP-Hard. Recent research has thus

focused on obtaining bicriteria approximation algorithms for degree bounded network

design problems [38, 51, 70, 52].

47

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 48

In some network design problems the cost function satisfies triangle inequalities, and

stronger algorithmic results are known [48, 17, 1]. For the travelling salesman problem,

although there is no polynomial factor approximation algorithms in general, it is well-

known that there is a 1.5-approximation algorithm assuming triangle inequalities [18].

This motivates us to study more general degree bounded network design problems with

metric costs.

Definition 2.25. (Degree Bounded Network Design Problem with Metric

Costs) Given a graph G = (V,E), an edge-connectivity requirement function r : V ×V →

Z on each vertex pair, a cost function c : E → Q on each edge satisfying triangle inequal-

ity (c(uv) + c(vw) ≥ c(uw) for all u, v, w), and a degree upper bound B on each vertex

v. Find a minimum cost subgraph H = (V, F) ⊆ G that λH(u, v) ≥ r(u, v) for each two

vertices u, v ∈ V , and the degree of each vertex in H is at most B.

Like the problem in general cost, only bicriteria approximation algorithms were known

for this problem. Here, we give the first constant factor approximation algorithms for

various degree bounded network design problems with metric costs. In addition, some

of these algorithms return solutions with smallest possible maximum degree (e.g. k-

connected subgraphs with maximum degree k) and the cost is within constant time

the optimal cost when there are no degree constraints. This demonstrates that degree

constraints can be incorporated into network design problems with metric costs.

Theorem 3.1. Given a complete graph with metric costs, there is a polynomial time

(2 + 1/k)-approximation algorithm for the minimum bounded degree k-edge-connected

subgraph problem.

Theorem 3.2. Given a complete graph with metric costs, there is a polynomial time

(4, +1)-approximation algorithm for the minimum bounded degree Steiner network prob-

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 49

lem. For rmax even, there is a polynomial time 6-approximation algorithm for the mini-

mum bounded degree Steiner network problem1.

This chapter is organized as follows. First, we will outline the approximation al-

gorithm in Section 3.1. Then, we will present the technical detail of the algorithm in

Section 3.3 and Section 3.2. Finally, we will show the time complexity in both the global

and local edge-connectivity settings in Section 3.4.

3.1 Christofides'-like Algorithm

In this section, we will present an outline of the algorithm that the technical de-

tails are deferred to the next sections. Our algorithms can be seen as a generalization

of Christofides' algorithm for metric TSP [18]. Christofides' algorithm first constructs

a minimum spanning tree, then adds a minimum perfect matching between odd degree

vertices, and finally short-cuts the high degree vertices without increasing the cost. Our

approach is similar. We illustrate it in the global edge-connectivity setting. First we con-

struct a k-edge-connected subgraph H (without degree constraints) by using an existing

2-approximation algorithm for the minimum cost k-edge-connected subgraph problem

[47]. Then we apply a short-cutting procedure to transform H into a k-edge-connected

subgraph H ′ of maximum degree k + 1 without increasing the cost. Finally we add a

minimum cost perfect matching to vertices with degree k + 1 in H ′, and then apply the

short-cutting procedure once again to transform it to a k-edge-connected subgraph H ′′

of maximum degree k.

To short-cut the high degree vertex x, we use the edge splitting-off operation, which we

discussed in the previous section. With the metric cost assumption, this operation does

not increase total edge cost, and so it can be used to decrease the degree of x by 2 without
1When rmax is odd, each connected component may have one vertex with degree rmax + 1.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 50

increasing the cost. We are concerned with the simplicity of the solutions, and so require

a simplicity-preserving edge splitting-off operation that maintains edge-connectivity and

does not introduce new parallel edges.

The strategy for local edge-connectivity is similar. We remark that the procedure of

reducing maximum degree by edge splitting-off operation was first used by Bienstock,

Brickell and Monma [11], where they proved a similar result to Theorem 3.11(1) when

parallel edges are allowed. Note that the edge splitting-off we consider in the rest of this

thesis takes the edge-connectivity requirements of the designated vertex x into account.

It is slightly more general than what we discussed in Mader's theorem in Section 2.2.2.

3.2 Simplicity-Preserving Edge Splitting-Off

To short-cut high degree vertices in our network design problem, we consider simplicity-

preserving edge splitting off that does not introduce new parallel edges, that is, we do

not allow splitting off xu, xv if the edge uv already exists. This was first studied by

Bang-Jensen and Jordán [4], where they proved that if d(x) = Ω(k2), then there exists

a splittable edge pair; if d(x) = Ω(k4), then there is a complete splitting-off on x that

maintains k-edge-connectivity in the remaining graph. For degree bounded network de-

sign problems, there is no need for a complete edge splitting-off. The following theorem

provides sufficient conditions that guarantee the existence of a simplicity-preserving edge

splitting-off operation that maintains local edge-connectivity requirements (include those

regarding x). As a remark, we will present an efficient procedure for this edge splitting-off

operation in Section 6.6.

Theorem 3.3. Suppose N(x) is not a clique and |N(x)| ≥ rmax + 2. If d(x) 6= 3 and

there is no cut-edge incident to x, then there is a simplicity-preserving edge splitting-off

operation on x that maintains the local edge-connectivity for any pair of vertices u, v ∈ V .

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 51

Before proving Theorem 3.3, we state some of the important notations and proposi-

tions as a recap. Two edges xu, xv form an admissible pair if the graph after splitting-off

xu, xv does not violate s(X) ≥ 0 for all X ⊂ V ; and they form an legal pair if no new

parallel edge is formed after the pair is splitted-off. In other words, we split-off legal

admissible pairs in our algorithms. When we consider a pair of edges, they are assumed

to be incident to x unless otherwise specified. For a vertex set X ⊆ V − x, X is called

tight if s(X) = 0 and dangerous if s(X) ≤ 1. A pair xu, xv is not admissible if and only

if u, v are both contained in some dangerous set (Proposition 2.12). Finally, we mention

the following proposition, which is useful in the proof of edge splitting-off result.

Proposition 3.4 ([4]). Suppose there is no cut-edge incident to x. For any disjoint

vertex sets S1, S2 with d(S1, S2) = 0 and d(x, S1) ≥ 1 and d(x, S2) ≥ 1, then S1 ∪ S2 is

not a dangerous set.

Proof. For any disjoint vertex sets S1 and S2 with d(S1, S2) = 0, we have

s(S1 ∪ S2) = d(S1 ∪ S2) − r(S1 ∪ S2)

≥ d(S1) + d(S2) − max{r(S1), r(S2)}

≥ min{d(S1), d(S2)}.

Since d(x, S1) ≥ 1 and d(x, S2) ≥ 1, it follows that either d(S1) = 1 or d(S2) = 1, which

implies a cut-edge incident to x, violating the assumption.

3.2.1 Proof of Theorem 3.3

Suppose, by way of contradiction, that all the conditions in Theorem 3.3 are satisfied,

but there is no legal admissible pair on x. We will prove in Lemma 3.7 that a certain

3-dangerous-set structure exists, see Figure 3.1(a) and Definition 3.5. Then we will prove

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 52

(a) (b) (c)

Figure 3.1: The 3-dangerous-set structures.

in Lemma 3.8 that such a 3-dangerous-set structure would imply that either d(x) = 3 or

there is a cut-edge incident to x, violating the conditions in Theorem 3.3.

Definition 3.5. A 3-dangerous-set structure characterize maximal dangerous sets X,Y, Z

such that u, v, w ∈ N(x) and u ∈ X ∩Y , v ∈ X ∩Z, w ∈ Y ∩Z and u, v, w /∈ X ∩Y ∩Z.

First we need the following claim to establish the 3-dangerous-set structure.

Claim 3.6. Suppose |N(x)| ≥ rmax + 2. Then for any dangerous set D, there exists a

vertex w ∈ N(x) ∩ (V − D) with d(w,D) = 0.

Proof. Suppose to the contrary that d(v,D) ≥ 1 for each v ∈ (V − D) ∩ N(x).

d(D) ≥ d(x,N(x) ∩ D) + d(D,N(x) ∩ (V − D))

≥ |N(x) ∩ D| + |N(x) ∩ (V − D)|

= |N(x)| ≥ rmax + 2,

which contradicts the assumption that D is dangerous. Therefore there exists a vertex

w ∈ N(x) ∩ (V − D) with d(w,D) = 0.

The following lemma shows that a certain 3-dangerous-set structure as shown in Fig-

ure 3.1(a) must exist, which is a crucial step in the proof.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 53

Lemma 3.7. Suppose N(x) is not a clique and |N(x)| ≥ rmax + 2. If there is no legal

admissible pair on x, then there exist maximal dangerous sets X, Y , Z and u, v, w ∈ N(x)

such that u ∈ X ∩ Y , v ∈ X ∩ Z, w ∈ Y ∩ Z and u, v, w /∈ X ∩ Y ∩ Z.

Proof. Since N(x) is not a clique, there exist u′, v′ ∈ N(x) with u′v′ /∈ E. (xu′, xv′) must

be non-admissible because there is no legal admissible pair on x. By Proposition 2.12,

there exists a dangerous set that contains both u′ and v′. Let X be a maximal dangerous

set containing u′, v′ such that X ∩ N(x) is not a proper subset of D ∩ N(x) for any

dangerous set D.

By Claim 3.6, there exist w′ ∈ N(x) ∩ (V − X) such that u′w′, v′w′ /∈ E. As there

is no legal admissible pair on x, both (xu′, xw′) and (xv′, xw′) must be non-admissible.

By Proposition 2.12, there exist a dangerous set containing (u′, w′) and a dangerous set

containing (v′, w′). If there exist maximal dangerous sets Y and Z that u′, w′ ∈ Y , v′ /∈ Y

and v′, w′ ∈ Z, u′ /∈ Z, then we get the desired 3-dangerous-set structure.

Otherwise, there must exist a maximal dangerous set Y that u′, v′, w′ ∈ Y . Since

d̄(X,Y) ≥ d(u′ + v′, x) ≥ 2, we have s(X) + s(Y) ≤ 1 + 1 < 2d̄(X,Y). So inequality

(2.5b) cannot hold for (X,Y), and thus inequality (2.5a) must hold for (X,Y). As X

and Y are maximally dangerous, X ∪ Y cannot be dangerous and thus s(X ∪ Y) ≥ 2.

Therefore, by inequality (2.5a), s(X∩Y) = d(X,Y) = 0. By the definition of X, X∩N(x)

is not a proper subset of Y ∩N(x). Since w′ ∈ N(x)∩ Y , there must exist t′ ∈ N(x)∩X

and t′ /∈ Y . From d(X,Y) = 0, we have t′w′ /∈ E, i.e. the edge pair is legal. Since

(xt′, xw′) is not legal admissible there exists a maximal dangerous set Z containing both

w′ and t′ for the pair to be non-admissible. We will show that both u′ and v′ are not in Z.

By using this, we can define u = u′, w = w′, v = t′ and get the desired 3-dangerous-set

structure.

We now complete the proof by showing that both u′ and v′ are not in Z. Suppose,

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 54

by way of contradiction, that u′ ∈ Z. Then since d̄(Y, Z) ≥ d(u′ + w′, x) ≥ 2 and

s(Y) + s(Z) ≤ 1 + 1 = 2, inequality (2.5b) does not hold for (Y, Z) and thus inequality

(2.5a) must hold for (Y, Z). As Y and Z are maximal dangerous sets, Y ∪ Z cannot

be a dangerous set and s(Y ∪ Z) ≥ 2. By inequality (2.5a) for (Y, Z), this implies

that d(Y, Z) = s(Y ∩ Z) = 0. Consider Y ∩ Z and X. Note that d̄(Y ∩ Z,X) ≥

d(u′, x) ≥ 1 and s(Y ∩ Z) + s(X) ≤ 0 + 1 = 1. So inequality (2.5b) does not hold for

(Y ∩ Z,X), and thus inequality (2.5a) must hold for (Y ∩ Z,X). Therefore we have

s((Y ∩ Z) ∪ X) ≤ s(Y ∩ Z) + s(X) = 1, which implies that (Y ∩ Z) ∪ X is a dangerous

set. Since w ∈ (Y ∩ Z) − X, this contradicts the maximality of X and completes the

proof.

The following lemma shows that the 3-dangerous-set structure in Lemma 3.7 (Fig-

ure 3.1(a)) would contradict with the conditions of Theorem 3.32. This completes the

proof of Theorem 3.3.

Lemma 3.8. If there are maximal dangerous sets X, Y , Z and u, v, w ∈ N(x) such that

u ∈ X ∩Y , v ∈ X ∩Z, w ∈ Y ∩Z and u, v, w /∈ X ∩Y ∩Z, then either d(x) = 3 or there

is a cut-edge incident to x.

Proof. The proof is divided into 2 cases: Case 1: Inequality (2.5a) holds for at least one

of (X,Y), (X,Z), (Y, Z). Without loss of generality, assume inequality (2.5a) holds for

(X,Y). Since w /∈ Y −X, by the maximality of X, s(X∪Y) ≥ 2. By inequality (2.5a) for

(X,Y), this implies that s(X∩Y) = d(X,Y) = 0 and s(X∪Y) = 2. Consider X∩Y and

Z. Suppose inequality (2.5a) holds for (X∩Y, Z), then (X∩Y)∪Z will be dangerous, but

this contradicts the maximality of Z since u ∈ (X ∩ Y)−Z. Therefore, inequality (2.5b)

must hold for (X ∩ Y, Z). Thus, s(Z − (X ∩ Y)) ≤ s(X ∩ Y) + s(Z) ≤ 0 + 1 = 1. Note

that Z − (X ∩ Y) is non-empty since v, w ∈ Z − (X ∩ Y). This implies that Z − (X ∩ Y)

2Similar structures also appear in [5, 8].

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 55

is dangerous.

Define Z ′ = Z − (X ∩ Y); hence X ∩ Y ∩ Z ′ = ∅, see Figure 3.1(b). Consider X ∪ Y

and Z ′. Note that d̄(X ∪ Y, Z ′) ≥ d(v + w, x) ≥ 2 and s(X ∪ Y) + s(Z ′) ≤ 2 + 1 = 3.

So inequality (2.5b) does not hold for (X ∪ Y, Z ′), and thus inequality (2.5a) must

hold. Since w ∈ Z ′ − X, by the maximality of X, X ∪ Y ∪ Z ′ cannot be dangerous,

and hence s(X ∪ Y ∪ Z ′) ≥ 2. By inequality (2.5a) for (X ∪ Y, Z ′), this implies that

s((X ∪ Y) ∩ Z ′) = s((X ∩ Z ′) ∪ (Y ∩ Z ′)) ≤ 1. Note that d(X,Y) = 0 implies that

d(X ∩ Z ′, Y ∩ Z ′) = 0. Applying Proposition 3.4 with S1 := X ∩ Z ′ and S2 := Y ∩ Z ′,

this shows that either xv or xw is a cut-edge, completing the proof of Case 1.

Case 2: Inequality (2.5a) does not hold for any pair (X,Y), (X,Z), (Y, Z). In other

words, inequality (2.5b) holds in these three pairs. Consider X and Y , d̄(X,Y) ≥

d(u, x) ≥ 1 and s(X) + s(Y) ≤ 1 + 1 = 2. By inequality (2.5b) for (X,Y), this implies

that s(X − Y) = s(Y − X) = 0. Consider X − Y and Z, d̄(X − Y, Z) ≥ d(v, x) ≥ 1 and

s(X−Y)+s(Z) ≤ 0+1 = 1, and so inequality (2.5b) does not hold for (X−Y, Z). Thus

inequality (2.5a) must hold for (X − Y, Z), and so d((X − Y)∪Z) ≤ s(X − Y) + s(Z) ≤

0 + 1 = 1. Therefore, (X − Y) ∪ Z is dangerous. By the maximality of Z, X − Y − Z

must be empty. Using similar argument, Y −X − Z and Z −X − Y are also empty, see

Figure 3.1(c).

Since inequality (2.5b) holds for (X,Y), (X,Z), (Y, Z) and X,Y, Z are all dangerous,

d̄(X,Y) = d(u, x) = 1, d̄(X,Z) = d(v, x) = 1, d̄(Y, Z) = d(w, x) = 1. Therefore d(X ∪

Y ∪ Z, V − (X ∪ Y ∪ Z) − x) = 0. Suppose d(x) 6= 3. Consider another x-neighbour t,

then t ∈ V − X ∪ Y ∪ Z. From d̄(X,Y) = 1, ut /∈ E, i.e. the edge pair is legal. Since

(xu, xt) is not legal admissible, there exists a dangerous set D containing u and t for the

pair to be non-admissible. Applying Proposition 3.4 with S1 := D − (X ∪ Y ∪ Z) and

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 56

S2 := D ∩ (X ∪ Y ∪ Z), this shows that there is a cut-edge incident to x. Therefore,

either d(x) = 3 or there is a cut-edge incident to x. This completes the proof of Case 2,

and thus the Lemma.

3.3 Approximation Algorithms for Network Design

Problems

With the simplicity preserving edge splitting-off operation, we can short-cut high

degree vertices while maintaining connectivity requirements and preserving simplicity.

Here, we present the approximation algorithms for degree bounded network design prob-

lems with metric costs. Our algorithms can be seen as a generalization of Christofides'

algorithm on metric TSP. The following is an overview of the algorithm for the case of

local edge-connectivity.

First we use Jain's algorithm [42] to compute a simple Steiner network whose cost is

no more than twice the optimal cost. Note that there may be vertices with degree larger

than rmax. We plan to use the simplicity preserving edge splitting-off operation to short-

cut those vertices. To do so we need to make sure that the conditions in Theorem 3.3

are satisfied. If rmax = 1, there is a simple 2-approximation algorithm for the minimum

bounded degree Steiner network problem. Hence we assume rmax ≥ 2, and thus d(v) 6= 3

when |N(v)| ≥ rmax + 2. We also augment the Steiner network so that each connected

component is 2-edge-connected, with a double in the cost (see Section 3.4.2), and thus

there is no cut-edge in the Steiner network. In Section 3.3.1, we show that if |N(v)| ≥

rmax +2 and N(v) is a clique, then we can remove redundant edges without violating any

connectivity requirements and without introducing cut-edges.

With all the conditions satisfied, we can apply Theorem 3.3 on a vertex v with

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 57

|N(v)| ≥ rmax +2. Call a vertex u ∈ V r-even if d(u) has the same parity as rmax, and call

u r-odd if d(u) has different parity than rmax. For every r-even vertex u, by repeatedly

applying Theorem 3.3, its degree can be reduced to at most rmax since d(u) = |N(u)| in

a simple graph. Similarly, for every r-odd vertex, its degree can be reduced to at most

rmax + 1 by repeatedly applying Theorem 3.3. Since the cost function satisfies triangle

inequalities, the cost of the resulting Steiner network is no more than the cost of the ini-

tial Steiner network. This gives approximation algorithms with maximum vertex degree

rmax + 1.

To further reduce the maximum degree from rmax + 1 to rmax, we adds a matching

between vertices like Christofides' algorithm does. Assume for simplicity that rmax is even,

and thus the number of r-odd vertices is even. We add a minimum cost perfect matching

on r-odd vertices to make them r-even, and so all the vertices with degree larger than rmax

are of degree rmax +2. Note that parallel edges may be created when we add a matching.

In Section 3.3.3, we prove that the simplicity-preserving edge splitting-off operation can

be performed on those vertices with degree rmax + 2 to maintain connectivity and restore

simplicity again, so that the resulting graph is simple and has maximum degree rmax.

Now let us present the details for different settings.

3.3.1 Removing Redundant Edges

The following claim shows that whenever the neighbours of a vertex x form a clique

and degree of x is high, we can always remove some edges without violating edge-

connectivity requirements.

Claim 3.9. If d(x) ≥ rmax + 2 and N(x) is a clique, then for any u, v ∈ N(x), we can

remove uv, xu and xv without violating that s(X) ≥ 0 for all X ⊂ V .

Proof. Suppose a set D ⊂ V with d(D) < r(D) after removing the edges uv, xu, xv. By

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 58

symmetry, assume x ∈ D. For d(D) < r(D), at least one of u, v ∈ V − D. Without loss

of generality, assume u ∈ V − D. We have

d(D) ≥ d(x,N(x) ∩ (V − D)) + d(x,N(x) ∩ D) = d(x) ≥ rmax ≥ r(D).

This leads to a contradiction and shows removal of uv, xu and xv will not violate the

condition.

Note that in removing the three edges, no cut-edges is introduced. Furthermore, the

parities of the degrees of x, u, v remain the same. Henceforth, we assume that whenever

d(x) ≥ rmax + 2, then N(x) is not a clique.

3.3.2 Perfect Matching

In the global edge-connectivity setting, we say a vertex is a k-odd vertex if it has

degree of different parity than k. The following claim bounds the cost of a minimum cost

perfect matching between k-odd vertices.

Claim 3.10. The cost of a minimum cost perfect matching between k-odd vertices in

a graph G is at most ECk(G)/k, where ECk(G) denotes the optimal cost of a k-edge-

connected subgraph.

Proof. Let the set of k-odd vertices be T . First, assume that |T | is even. When the

cost function satisfies triangle inequalities, the cost of a minimum cost perfect matching

between T is equal to the cost of a minimum T -join, where a T -join is a subgraph in

which T is equal to the set of vertices with odd degree. Let H be a k-edge-connected

subgraph with minimum cost. Since H is k-edge-connected, by setting xe = 1/k for each

edge e ∈ H, it is a feasible solution to the up hull of the T -join polytope [69]. Since the

T -join polytope is integral, this implies that the cost of a minimum cost perfect matching

between T is at most ECk(G)/k.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 59

When |T | is odd, then k is odd, and there is no k-regular subgraph. Given a specific

vertex v, if v ∈ T , we set T ′ := T −{v}; if v /∈ T , we set T ′ := T ∪{v}. Then we can add

a minimum cost perfect matching between T ′, so that v is the only vertex with degree

k + 1 in the resulting graph. By the same argument, the cost of this matching is at most

ECk(G)/k.

3.3.3 Edge Splitting-Off Restoring Simplicity

Suppose we are given a simple Steiner network with maximum degree rmax+1. Suppose

further that there is no cut-edge and number of r-odd vertices is even. We need to further

reduce its maximum degree to rmax. First we add a minimum cost perfect matching

between the r-odd vertices. Note that the resulting Steiner network may then have

parallel edges. We plan to apply edge splitting-off operations to reduce the maximum

degree to rmax and furthermore restore the simplicity of the Steiner network.

Consider a vertex x with degree rmax + 2. We can assume that d(x) 6= 3 and N(x)

is not a clique by Claim 3.9. If there are no parallel edges incident to x, then we can

apply Theorem 3.3 to reduce the degree of x to rmax without increasing the cost, while

maintaining local edge-connectivity without introducing new parallel edges. Now consider

the case when there are parallel edges incident to x. Let v be the unique neighbour of

x so that there are two parallel edges between x and v. If x and v have at least rmax

common neighbours (which includes the case that N(x) is a clique), then there are rmax

edge-disjoint paths between x and v, and so both parallel edges between x and v can be

removed while keeping local edge-connectivity requirement for all pairs. So assume that

x and v have at most rmax − 1 common neighbours. If there exists u so that xu ∈ E and

vu /∈ E and xu, xv are admissible, then this is a simplicity-preserving edge splitting-off

operation to reduce the degree of x to rmax and there is no more parallel edges incident

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 60

to x. By repeatedly applying this operation, we can reduce the degree of every vertex

to rmax while keeping connectivity requirements and restoring simplicity. It remains to

prove that such a u must exist.

Suppose, by way of contradiction, that x has no neighbour u that (xu, xv) is a legal

admissible pair. Let x, v share rmax − l common neighbours with l ≥ 1. Denote by

{u1, u2, . . . , ul} the set of neighbours of x that is not adjacent to v. Since xui, xv are

not admissible for all ui, there exists a dangerous set Di such that ui, v ∈ Di, x 6∈ Di for

1 ≤ i ≤ l. Since one parallel edge between xv is added in the matching, this implies that

Di is tight before the addition of the matching for all i. Consider the Steiner network G

before the addition of the matching. Since d̄G(Di, Dj) ≥ d(x, v) = 1, inequality (2.5b)

cannot hold for (Di, Dj), and thus inequality (2.5a) must hold for (Di, Dj). This implies

that the union of these tight sets is tight in G. Therefore, there exists a tight set T in

G such that ui, v ∈ T, x /∈ T for 1 ≤ i ≤ l, and thus dG(x, T) ≥ l + 1. In addition, the

rmax − l common neighbours of x and v provide rmax − l edge-disjoint paths between x

and v in G, Therefore, dG(T) ≥ rmax + 1, which contradicts that T is a tight set in G.

This shows that such a u must exist, and thus the simplicity-preserving edge splitting-off

operation can be applied to obtain a simple Steiner network with maximum degree rmax.

3.4 Results in Different Settings

The Christofides'-like Algorithm gives constant factor approximation algorithms for

various degree bounded network design problems with metric costs. In addition, these

algorithms return solutions with smallest possible maximum degree (e.g. k-connected

subgraphs with maximum degree k) and the cost is within a constant time the optimal

cost when there are no degree constraints. This demonstrates that degree constraints can

be incorporated into network design problems with metric costs.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 61

3.4.1 Global Edge-Connectivity

We first consider the problem of finding a minimum cost k-edge-connected simple

subgraph with metric costs. The main procedure is to transform any k-edge-connected

simple subgraph into a k-edge-connected simple subgraph with maximum degree k, with

only a small increase in the cost.

Theorem 3.11. Given a complete graph G = (V,E) with metric costs and any simple

k-edge-connected subgraph H of G, there is a polynomial time algorithm to construct:

(1) A simple k-edge-connected subgraph H ′ with maximum degree at most k + 1 and

cost(H ′) ≤ cost(H).

(2) A simple k-edge-connected subgraph H ′′ with maximum degree k and cost(H ′′) ≤

cost(H) + ECk(G)/k, where ECk(G) is the cost of a minimum k-edge-connected

subgraph of G3.

Proof. Given any k-edge-connected graph with k ≥ 2, after removing redundant edges

as in Section 3.3.1, we can apply Theorem 3.3 repeatedly to obtain a simple k-edge-

connected graph with maximum degree k + 1, without increasing the cost. This proves

(1). By Claim 3.10, we can add a perfect matching between k-odd vertices with cost at

most ECk(G)/k. Then, as in Section 3.3.3, we can apply the simplicity-preserving edge

splitting-off operation once again to obtain a simple k-edge-connected subgraph with

maximum degree k, without increasing the cost. This proves (2).

Applying Khuller's 2-approximation algorithm [47], we can obtain a simple k-edge-

connected subgraph as the initial graph for Theorem 3.11. This gives the result of The-
3When both k and |V | are odd numbers, then it is impossible to have a k-regular-subgraph. In that

case our algorithm can choose any vertex v in the graph, and returns a solution with v having degree
k + 1 while all other vertices having degree k, which is best possible.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 62

orem 3.1, the first constant factor approximation algorithm for the minimum bounded

degree k-edge-connected subgraph problem.

We remark that if parallel edges are allowed in the solutions, then a similar statement

as Theorem 3.11(1) is proved by Bienstock, Brickell, Monma [11]. However, for degree

bounded network design problems, there are capacity constraints on edges and so their

result can not be directly applied4.

3.4.2 Local Edge-Connectivity

Theorem 3.11 can be extended to general edge-connectivity requirements. In the

following let rmax := maxu,v r(u, v) be the maximum edge-connectivity requirement, and

call a subgraph H satisfying all connectivity requirements a Steiner network.

Theorem 3.12. Given a complete graph G = (V,E) with metric costs and any simple

Steiner network H of G, there is a polynomial time algorithm to construct:

(1) A simple Steiner network H ′ with maximum degree at most rmax +1 and cost(H ′) ≤

2 · cost(H).

(2) A simple Steiner network H ′′ with maximum degree at most rmax and cost(H ′′) ≤

3 · cost(H), when rmax is even.3

Proof. Suppose we are given a Steiner network H. In order to apply Theorem 3.3 to

short-cut the high degree vertices, we first augment the Steiner network so that each

connected component is 2-edge-connected, and thus there is no cut-edge in the resulting

Steiner network. One way to augment the graph is as follows: Double H to obtain H ′

so that each connected component of H is 2-edge-connected, then short-cut and remove

redundant edges to make H ′ simple and each connected component 2-edge-connected.
4Incidentally, if parallel edges are allowed, then there is a simple constant factor approximation

algorithm by taking k/2 copies of an approximate solution of metric TSP.

CHAPTER 3. DEGREE BOUNDED NETWORK DESIGN 63

The cost of H ′ is at most twice the cost of H. We can then apply Theorem 3.3 to obtain

a simple Steiner network which has maximum degree rmax+1, without increasing the cost.

This proves (1). In the following we assume rmax is even. We add a minimum cost perfect

matching on r-odd vertices in each component of the current Steiner network. Then we

apply Theorem 3.3 once again to obtain a simple Steiner network with maximum degree

rmax as in Section 3.3.3. Note that the cost of the matching is at most the cost of H,

which can be proved by standard doubling and short-cutting argument. Therefore, the

cost of the resulting Steiner network is at most 3 times the cost of the initial Steiner

network H, which proves (2).

Applying Jain's algorithm [42], we can obtain a simple Steiner network, which has

cost at most 2opt, as the initial Steiner network H in Theorem 3.12. This proves

Theorem 3.2, the first constant factor approximation algorithm for the minimum bounded

degree Steiner network problem with metric costs.

Chapter 4

Constrained Edge Splitting-off

The results in this chapter are based on joint work with Lap Chi LAU [53].

In an edge splitting-off operation, we replace an edge pair (xu, xv) by a split edge

uv while maintaining edge-connectivity. Mader's theorem (Theorem 2.6) shows this is

feasible under natural assumptions. However, we may sometimes want the graph, arising

from edge splitting-off operations, to satisfy some additional constraints as well. For

example, it is very natural to require a bipartite graph to remain bipartite upon edge

splitting-off operations. In this chapter, we will discuss constrained edge splitting-off

problems that satisfy additional constraints.

Constrained edge splitting-off is a generalization of the edge splitting-off that not

only edge-connectivity must be maintained but also the split edges have to satisfy some

additional properties as well [4, 3, 44, 37, 59, 5]. Examples of this type include the

simplicity-preserving edge splitting-off problem we studied in the previous chapter. Here,

we consider complete constrained edge splitting-off problem that split-off the maximum

number of edges. Note that the complete constrained edge splitting-off problem is NP-

hard in general [43]. Therefore, we sometimes aim at approximate solutions instead, i.e.

splitting-off most of the x-edges.

64

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 65

Mader's theorem guarantees a splittable edge pair always exists under natural as-

sumption and this implies a polynomial time algorithm for complete edge splitting-off

problem. Here, we look for sufficient conditions for the existence of a splittable edge

pair in constrained edge splitting-off. And similarly, these give polynomial time ap-

proximation algorithms for the complete constrained edge splitting-off problem. These

sufficient conditions and algorithms can be applied in the corresponding constrained edge-

connectivity augmentation problems to give additive approximation algorithms. These

will be discussed in detail in the next chapter.

Our constrained edge splitting-off results are based on a structural property of non-

admissible edge pairs, which states that each x-edge is included in at most 2rmax non-

admissible edge pairs (Theorem 4.1). In other words, a high proportion of edge pairs are

admissible when d(x) is sufficiently large. It is intuitive that some of these admissible

edge pairs also satisfy the additional constraints and these edge pairs are the qualified

pairs in constrained edge splitting-off problems. Also, this simple structural property can

be used in the design of efficient randomized procedure to split-off edges, as we will later

show in Chapter 6. And as a remark, this property can be viewed as an extension of

the classical result by Mader [56], which states that every x-edge is contained in at least

one admissible edge pair (Theorem 2.7); and later results by Bang-Jensen et.al. [4] and

Szigeti [72].

This chapter is organized as follows. First, we will cover some basic definitions and re-

lated works in Section 4.1. Then, we will present a short proof for the general constrained

edge splitting-off lemma (Theorem 4.2) in Section 4.2. The lemma is based (solely) on

structural properties of non-admissible edge pairs. This structural properties is a key

result in this thesis that they are also used to speedup complete edge splitting-off algo-

rithm in Chapter 6. We will cover the details in Section 4.3. After that, we will apply

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 66

our sufficient condition in some constrained edge splitting-off problems in Section 4.4.

Finally, we end this chapter by some similar results in the global arc-connectivity setting

in Section 4.5.

4.1 Preliminaries

Consider a constrained edge splitting-off problem. We say that an edge pair is admis-

sible if the edge-connectivity requirements are satisfied upon splitting-off the pair; and

it is legal if the addition of its corresponding split edge does not violate the additional

constraint. Given an edge pair (xu, xv), the edges xu and xv are non-admissible partner

to each other if the edge pair is non-admissible; and they are illegal partner to each other

if the edge pair is illegal. The goal of this problem is to find an edge pair that sat-

isfies both edge-connectivity requirements and additional constraint upon splitting-off.

In order words, we look for legal admissible edge pairs. For some other definitions and

notation, please refer to Section 2.2.

The constrained edge splitting-off problem is well-studied under several specific con-

straints [4, 3, 44, 37, 59, 5]. Some of these results were later generalized by Jordán,

who presented a general framework by investigating the structural properties of non-

admissible pairs [45]. This framework uses the so-called non-admissibility graph and

constraint graph and is briefly described in Section 2.2.4.1. However, most of the work

are done only for global edge-connectivity setting. The only established result in the local

edge-connectivity setting is sufficient conditions in simplicity-preserving edge splitting-

off problem by Bang-Jensen and Jordán [4]. Here, we focus on the following 3 specific

constraints.

Vertex partition constraint: Consider a graph G = (V,E) with a designated vertex

x and a vertex partition P = {P1, P2, . . . , Pl} on V − x. In partition-preserving edge

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 67

splitting-off problem, we have to make sure that no split edge is included in any vertex

partition while satisfying edge-connectivity requirements. In the global edge-connectivity

setting, Bang-Jensen, Gabow, Jordán and Szigeti [3] characterized the structure for which

no complete edge splitting-off sequence exists. With this structure, they showed that there

exists a splitting-off sequence with length at least d(x)/2− 2 under natural assumptions;

and there exists a complete edge splitting-off sequence by adding two extra x-edges.

Graph simplicity constraint: Consider a graph G = (V,E) with a designated vertex

x. In simplicity-preserving edge splitting-off problem, we have to make sure that the

split edges are not in parallel with any other edges while satisfying edge-connectivity

requirements. In the global edge-connectivity setting and under natural assumptions,

Bang-Jensen and Jordán [4] showed that a legal admissible pair exists if d(x) ≥ k(k + 1);

and a complete edge splitting-off sequence exists if d(x) ≥ 3k4 and d(x) is even. These

results are also extended to the local edge-connectivity setting in the same paper, and

these are the only results for constrained edge splitting-off problem in the local edge-

connectivity setting.

Simultaneous graph constraint: Consider c graphs Gi = (V,Ei+E ′) with a designated

vertex x for i = 1, . . . , c that E ′ = δ(x). In simultaneous-graph edge splitting-off problem,

we have to make sure that the split edges satisfy edge-connectivity requirements in all

the c graphs. Jordán considered this problem in the global edge-connectivity setting

with c = 2 [44]. He characterized the structure for which no complete edge splitting-off

sequence exists. With this structure, he showed that there exists a splitting-off sequence

with length at least d(x)/2 − 2 under natural assumptions; and there exists a complete

edge splitting-off sequence by adding two extra x-edges.

As a remark, the structural properties of non-admissible edge pairs under local edge-

connectivity setting are also studied by Bang-Jensen et.al. [4], Szigeti [72] and Bernáth

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 68

et.al. [8]. Interested reader can take a look at their papers.

4.2 General Constrained Edge Splitting-off Lemma

In this section, we will present a sufficient condition for the existence of a legal admis-

sible edge pair in a general constrained edge splitting-off problem. To show the existence

of a legal admissible edge pair, we can consider admissibility and legality separately. We

prove a legal admissible edge pair exists by showing that the numbers of non-admissible

edge pair and illegal edge pair are both bounded. With the 3-dangerous-set structure

studied in the previous chapter, we get useful structural properties on any collection of

maximal dangerous sets containing any specific x-neighbour v ∈ N(x). These properties

allow us to apply an inductive argument to show that each x-edge is included in at most

2rmax − 2 non-admissible pairs. This result is stated formally in the following theorem.

The proof and the related structural properties will be covered in detail in the Section 4.3.

Theorem 4.1. Consider a graph G = (V,E) with a designated vertex x. The number of

non-admissible partners for any given x-edge is at most max {2rmax − 2, rmax} if there is

no cut-edge incident to x and d(x) 6= 3.

Since each x-edge is included in d(x)−1 edge pairs and at most max {2rmax − 2, rmax}

of them are non-admissible, each x-edge is included in a number of admissible edge pairs

(d(x) − 1) − max {2rmax − 2, rmax} = min {d(x) − 2rmax + 1, d(x) − 1 − rmax}.

Therefore, there exists a legal admissible edge pair if there exists an x-edge that is included

in at most than min {d(x) − 2rmax, d(x) − 3} illegal edge pairs. This gives the following

theorem, a sufficient condition in the general constrained edge splitting-off problem.

Theorem 4.2. Consider an undirected graph G = (V,E) with a designated vertex x.

There exists a legal admissible pair in constrained edge splitting-off problem if (i) d(x) ≥

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 69

max {2rmax, 4}, (ii) there is no cut-edge incident to x and (iii) there exists an x-edge

which is included in at most min {d(x) − 2rmax, d(x) − 3} illegal edge pairs.

We will present some constraints that satisfy the assumption in the above theorem

in Section 4.4. This gives sufficient conditions for the corresponding constrained edge

splitting-off problems.

4.3 Structural Properties of Non-Admissible Pairs

In this section, we will show that each edge has at most max {2rmax − 2, rmax} non-

admissible partners. Given an edge pair (xv, xw), if it is a non-admissible pair, then

there is a dangerous set D with {xv, xw} ⊆ δ(D) by Proposition 2.12, and we say such

a dangerous set D covers xv and xw. Let P be the set of non-admissible partners of xv

in the initial graph. Our goal is to show that |P | ≤ max {2rmax − 2, rmax}.

We first present an outline of the proof. Let DP be a minimal set of maximal dangerous

sets such that (i) each set D ∈ DP covers the edge xv and (ii) each edge in P is covered

by some set D ∈ DP . Since d(D) ≤ rmax + 1 and D covers xv for each D ∈ DP , each

set in DP can cover at most rmax non-admissible partners of xv. So the theorem follows

immediately if |DP | = 1.

For |DP | ≥ 2, we have d(x,D) < d(D) ≤ rmax + 1 for every D ∈ DP ; for otherwise,

either D or every other D′ ∈ DP is not a maximal dangerous set according to Proposi-

tion 4.4. Since D covers xv for every D ∈ DP , D covers at most rmax − 1 other x-edges.

So the theorem follows immediately if |DP | = 2.

The next step is to show that |DP | ≤ rmax − 1, where the proof use very similar

ideas as in [4, 72]. When |DP | ≥ 3, we show in Lemma 4.5 that inequality (2.5a) must

hold for each pair of dangerous sets in DP . Since each dangerous set is connected by

Proposition 3.4, this allows us to conclude in Lemma 4.7 that |DP | ≤ rmax − 1. By the

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 70

previous argument, this implies that |P | ≤ (rmax − 1)2.

To improve this bound, we use a new inductive argument to show that |P | ≤ rmax −

1 + |DP | ≤ 2rmax − 2 for rmax ≥ 2 (the case is trivial for rmax = 1 since since |DP | = 1 by

Lemma 4.7). First we prove in Lemma 4.8 that there is an admissible pair (xa, xb) in P (so

by definition a, b 6= v). By splitting-off (xa, xb), let P ′ = P −{xa, xb} with |P ′| = |P |−2.

In the resulting graph, we prove in Lemma 4.9 that |DP ′| ≤ |DP |−2. Hence, by repeating

this reduction, we can show that after splitting-off ⌊|DP |/2⌋ pairs of edges in P , the

remaining edges in P is covered by one dangerous set if |DP | is odd or by one tight set

if |DP | is even. Therefore, we can conclude that |P | ≤ rmax − 1 + |DP | ≤ 2rmax − 2,

completing the proof.

In the following, we will first present some useful lemmas in edge splitting-off in

Section 4.3.1. Then, we will prove the upper bound on |DP | in Section 4.3.2 and provide

the details of the inductive argument in the Section 4.3.3.

4.3.1 Some Useful Lemmas

Here, we state two simple propositions that will be used later.

Proposition 4.3 ([4]). If d(x, v) ≥ 2, (2.5a) holds for two dangerous sets X,Y containing

v.

Proof. Suppose to the contrary that inequality (2.5a) does not hold. Then inequal-

ity (2.5b) must hold for X and Y , which is impossible since

1 + 1 ≥ s(X) + s(Y) ≥ s(X − Y) + s(Y − X) + 2d̄(X,Y)

≥ s(X − Y) + s(Y − X) + 2d(x, v)

≥ s(X − Y) + s(Y − X) + 2 · 2

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 71

Proposition 4.4. Suppose d(x,D) = d(D) for a vertex subset D, then for any other

maximal dangerous set D′, either D ∩ N(x) ⊆ D′ or D ∩ N(x) ⊆ V − D′.

Proof. Suppose to the contrary that there exists u ∈ N(x) ∩ D ∩ D′ and v ∈ N(x) ∩

(D − D′). Since d(x,D) = d(D), we have d(D′ ∩ D,D′ − D) = 0. Let S1 = D′ ∩ D and

S2 = D′ −D. By Proposition 3.4, D′ = S1 ∪ S2 is not a dangerous set, contradicting the

definition of D′.

4.3.2 An Upper Bound on |DP |

By contracting non-trivial tight sets, each edge in P is still a non-admissible partner

of xv by Lemma 2.13. Henceforth, we will assume that all tight sets in G are singletons.

Also we assume there is no cut-edge incident to x and d(x) 6= 3 as required in Theorem 4.2.

Recall that DP is a minimal collection of maximal dangerous sets such that (i) each set

D ∈ DP covers the edge xv and (ii) each edge in P is covered by some set D ∈ DP . Here,

we will first give some characterizations for on the collection of DP for |DP | in Lemma 4.5

and Proposition 4.6. Then, we will use these characterizations to derive an upper bound

on |DP |.

Lemma 4.5 ([4]). If |DP | ≥ 3, then inequality (2.5a) holds for every X,Y ∈ DP .

Proof. Suppose, by way of contradiction, that inequality (2.5b) holds for X and Y . Then

1 + 1 ≥ s(X) + s(Y) ≥ s(X − Y) + s(Y − X) + 2d̄(X,Y)

≥ s(X − Y) + s(Y − X) + 2(d(x, v) + d(V − x − (X ∪ Y), X ∩ Y))

≥ s(X − Y) + s(Y − X) + 2 + 2d(V − x − (X ∪ Y), X ∩ Y).

It implies that both X − Y and Y − X are tight and d(V − x − (X ∪ Y), X ∩ Y) = 0.

Since tight sets are singletons, we let X −Y = {a} and Y −X = {b}. By the minimality

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 72

of DP , a and b are both x-neighbours and any dangerous set Z ∈ DP − X − Y contains

none of a and b. Since d(V − x − (X ∪ Y), X ∩ Y) = 0 and a, b /∈ Z, it follows that

d(Z − (X ∩ Y ∩ Z), X ∩ Y ∩ Z) = 0.

Let S1 = X ∩ Y ∩ Z and S2 = Z − X ∩ Y ∩ Z, and thus d(S1, S2) = 0. Since v ∈

X ∩ Y ∩ Z, we have d(x, S1) ≥ 1. By the minimality of DP , there is an x-neighbour in

S2 = Z − (X ∩ Y ∩ Z) and thus d(x, S2) ≥ 1. By Proposition 3.4, Z = S1 ∪ S2 is not a

dangerous set, contradicting the definition of DP .

Proposition 4.6 ([72]). If |DP | ≥ 3, then X ∩Y = {v} is a tight set for any X,Y ∈ DP .

Proof. Since X,Y ∈ DP are maximal dangerous sets, X ∪ Y is not a dangerous set. By

Lemma 4.5, inequality (2.5a) holds for X and Y , and it follows that X ∩ Y is a tight set.

Since each tight set is a singleton and v ∈ X ∩ Y , the proposition follows.

Lemma 4.7. |DP | ≤ rmax − 1 if rmax ≥ 2, and |DP | = 1 for otherwise.

Proof. First, suppose to the contrary that |DP | ≥ 2 and rmax = 1. Then every X,Y ∈ DP

share a common x-neighbour v, and there exist u ∈ N(x)∩ (X −Y), w ∈ N(x)∩ (Y −X)

by the minimality of DP , we have d(x,X) < d(X). For otherwise, the vertex subset Y

cannot be dangerous according to Proposition 4.4. Since each dangerous set in DP covers

at least 2 x-edges, this leads to a contradiction that

2 ≤ d(x,X) < d(X) ≤ 2.

Now, we consider the case rmax ≥ 2. If |DP | ≤ 2, then the lemma holds since we have

rmax ≥ 2. So we assume |DP | ≥ 3. Then, by Proposition 4.6, we have X ∩ Y = {v}

for any X,Y ∈ DP . For each set X ∈ DP , we have d(x, v) ≥ 1 and d(x,X − v) ≥ 1

by the minimality of DP . Therefore, we must have d(v,X − v) ≥ 1; otherwise, by

Proposition 3.4, it follows that X is not a dangerous set, contradicting the definition of

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 73

DP . By Proposition 4.6, X − v and Y − v are disjoint for each pair X,Y ∈ DP . Since

d(v,X − v) ≥ 1 for each X ∈ DP , it follows that |DP | ≤ d(v). By Proposition 4.6, {v} is

a tight set and thus |DP | ≤ d(v) − d(x, v) ≤ rmax − 1.

4.3.3 An Inductive Argument

The goal is to prove that |P | ≤ rmax − 1+ |DP | if rmax ≥ 2. By Lemma 4.7, this holds

if d(x,X − v) = 1 for every dangerous set X ∈ DP . Hence we assume that there is a

dangerous set A ∈ DP with d(x,A − v) ≥ 2; this property will only be used at the very

end of the proof. By Lemma 4.5, inequality (2.5a) holds for A and B for every B ∈ DP .

By the minimality of DP , there exists an x-neighbour a ∈ A which is not contained in

any other set in DP . Similarly, there exists b ∈ B which is not contained in any other

set in DP . The following lemma shows that the edge pair (xa, xb) is admissible (proof is

deferred to the end of this section).

Lemma 4.8. For any A,B ∈ DP satisfying inequality (2.5a), an edge pair (xa, xb) is

admissible if a ∈ A − B and b ∈ B − A.

After splitting-off (xa, xb), let the resulting graph be G′ and let P ′ = P − {xa, xb}.

Clearly, since each edge in P ′ is a non-admissible partner of xv in G, every edge in P ′

is still a non-admissible partner of xv in G′. Furthermore, by contracting non-trivial

tight sets in G′, each edge in P ′ is still a non-admissible partner of xv by Lemma 2.13.

Hence we assume all tight sets in G′ are singletons. Let DP ′ be a minimal set of maximal

dangerous sets such that (i) each set D ∈ DP ′ covers the edge xv and (ii) each edge in P ′

is covered by some set D ∈ DP ′ . The following lemma shows that there exists DP ′ with

|DP ′| ≤ |DP | − 2 (proof is deferred to the end of this section).

Lemma 4.9. When |DP | ≥ 3, the edges in P ′ can be covered by a set DP ′ of maximal

dangerous sets in G′ such that (i) each set in DP ′ covers xv, and (ii) each edge in P ′ is

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 74

covered by some set in DP ′, and (iii) |DP ′ | ≤ |DP | − 2.

Recall that we chose A with d(x,A−v) ≥ 2, and hence d(x, v) ≥ 2 after the splitting-

off and contraction of tight sets. Therefore, by Proposition 4.3, inequality (2.5a) holds

for every two maximal dangerous sets in DP ′ . By induction, when |DP | ≥ 3, we have

|P | = |P ′| + 2 ≤ rmax − 1 + |DP ′| + 2 ≤ rmax − 1 + |DP |. In the base case when

|DP | = 2 and A,B ∈ DP satisfy (2.5a), the same argument in Lemma 4.9 can be used

to show that the edges in P ′ is covered by one tight set after splitting-off (xa, xb), and

thus |P | = |P ′| + 2 ≤ rmax − 1 + 2 ≤ rmax − 1 + |DP |. This completes the proof that

|P | ≤ rmax − 1 + |DP |, proving the theorem.

Proof of Lemma 4.8: Suppose, by way of contradiction, that (xa, xb) is non-admissible.

Then, by Proposition 2.12, there exists a maximal dangerous set C containing a and b.

We claim that v ∈ C; otherwise there exists a 3-dangerous-set structure, contradicting

Lemma 3.8. Then d(x,A ∩ C) ≥ d(x, {v, a}) ≥ 2, and so inequality (2.5b) cannot hold

for A and C, since

1 + 1 ≥ s(A) + s(C) ≥ s(A − C) + s(C − A) + 2d̄(A,C) ≥ 0 + 0 + 2 · 2.

Therefore, inequality (2.5a) must hold for A and C. Since A and C are maximal dangerous

sets, A ∪ C cannot be a dangerous set, and thus

1 + 1 ≥ s(A) + s(C) ≥ s(A ∪ C) + s(A ∩ C) + 2d(A,C) ≥ 2 + s(A ∩ C) + 0,

which implies that A ∩ C is a tight set, but this contradicts the assumption that each

tight set is a singleton as {v, a} ⊆ A ∩ C. ✷

Proof of Lemma 4.9: We will use the dangerous sets in DP to construct DP ′ . Since

each pair of sets in DP satisfies inequality (2.5a), we have s(A ∪D) = 2 before splitting-

off (xa, xb) for each D ∈ DP . Also, before splitting-off (xa, xb), for A,B,C ∈ DP ,

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 75

inequality (2.5b) cannot hold for A ∪ B and C because

2+1 = s(A∪B)+ s(C) ≥ s((A∪B)−C)+ s(C − (A∪B))+2d̄(A∪B,C) ≥ 2+0+2 ·1,

where the last inequality follows since v ∈ A ∩ B ∩ C and (A ∪ B) − C is not dangerous

(as it covers the admissible edge pair (xa, xb)). Therefore inequality (2.5a) must hold for

A ∪ B and C, which implies that s(A ∪ B ∪ C) ≤ 3 since

2 + 1 = s(A ∪ B) + s(C) ≥ s((A ∪ B) ∪ C) + s((A ∪ B) ∩ C).

For A and B as defined before Lemma 4.8, since s(A∪B) = 2 before splitting-off (xa, xb),

A∪B becomes a tight set after splitting-off (xa, xb). For any other set C ∈ DP −A−B,

since s(A ∪ B ∪ C) ≤ 3 before splitting-off (xa, xb), A ∪ B ∪ C becomes a dangerous set

after splitting-off (xa, xb). Hence, after splitting-off (xa, xb) and contracting the tight set

A∪B into v, each set in DP −A−B becomes a dangerous set. Then DP ′ = DP −A−B

is a set of dangerous sets covering each edge in P ′, satisfying properties (i)-(iii). By

replacing a dangerous set C ∈ DP ′ by a maximal dangerous set C ′ ⊇ C and removing

redundant dangerous sets in DP ′ so that it minimally covers P ′, we have found DP ′ as

required by the lemma. ✷

4.4 Non-Admissibility Graph and Constraint Graph

In this section, we will construct non-admissibility graph and constraint graphs similar

to the ones by Jordán [45] to give an illustration for our sufficient condition. Note that

these graphs take N(x) the neighbourhood of x in the input graph as the vertex set in

Jordán's work. Since our sufficient condition is on d(x) but not |N(x)|, these graphs take

δ(x) the set of x-edges as vertex set in our case.

Let the non-admissibility graph B = (U, F) be a graph that takes the set of x-edges

δ(x) to be the vertex set. If there exists l copies of edge xu, then U contains u1, u2, . . . , ul.

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 76

Two vertices are adjacent in B if and only if the corresponding edge pair is non-admissible

in G. Since U is the set of x-edges and F corresponds to the non-admissible edge pairs,

we have d(u) ≤ 2rmax − 2 for any u ∈ B(U) according to Theorem 4.1.

Let the constraint graph C = (U, F ′) be a graph that takes the same vertex set as B.

Two vertices ui, vj are adjacent in C if and only if the corresponding split edge uv violates

the given constraint. Therefore, a legal admissible edge pair exists if and only if there

exist two vertices wi, ti that are non-adjacent to each other in both non-admissibility and

constraint graphs. Since vertex degree is at most 2rmax−2 in the non-admissibility graph,

such vertex pair exists if the given constraint does not introduce too many edges in C.

We will demonstrate how to obtain sufficient conditions in some constrained edge

splitting-off problems by this idea. Actually, direct application of Theorem 4.2 also gives

the same result but the idea of constraint graph seems more illustrative. Since the

admissibility and legality are considered separately in this general approach, it is not

surprising that the sufficient conditions obtained are not best possible (tight). However,

these sufficient conditions are still highly comparable to the tight ones that they only differ

by constant coefficients. We will mention the tight sufficient conditions in Section 4.4.4.

4.4.1 Vertex Set Partition Constraint

Consider an undirected graph G = (V,E) with a designated vertex x and vertex

partition P = {P1, P2, . . . , Pl} of V − x and edge-connectivity requirements r(u, v) for

each two vertices u, v ∈ V . In partition-preserving edge splitting-off problem, we have to

make sure that no split edge is included in any vertex partition, i.e. an edge pair (xu, xv)

is illegal if and only if u, v ∈ Pi for some i.

Lemma 4.10. Consider an undirected graph G = (V,E) with a designated vertex x and

a vertex partition P = {P1, P2, . . . , Pl} on V −x that d(x, Pi) ≥ d(x, Pj) for i ≤ j. There

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 77

exists a legal admissible pair including an x-edge from P1 in the partition-constrained edge

splitting-off problem if d(x) ≥ 4rmax and P1 ≤ d(x)/2 and there is no cut-edge incident

to x.

Proof. First, we construct the constraint graph that ui, vj are connected if and only if the

corresponding vertices u, v ∈ G(V) are in the same partition. Since d(x, Pi) ≤ d(x)/2,

vertex degree is strictly less than d(x)/2 in the constraint graph C = (U, F ′). On another

hand, vertex degree is at most max {2rmax − 2, rmax} in the non-admissible graph B =

(U, F) since each x-edge is included in at most max {2rmax − 2, rmax} non-admissible edge

pairs according to Theorem 4.1. Vertex degree in (U, F ∪ F ′) is strictly less than

max {d(x)/2 + 2rmax − 2, d(x)/2 + rmax} ≤ d(x) − 1.

Therefore, each vertex is non-adjacent to at least one other vertex in both graphs. This

implies that each x-edge is included in at least one legal admissible edge pair.

4.4.2 Graph Simplicity Constraint

Consider an undirected graph G = (V,E) with a designated vertex x. In simplicity-

preserving edge splitting-off problem, we have to make sure that the split edges are not

in parallel with any other edges, i.e. an edge pair (xu, xv) is illegal if and only if uv ∈ E.

Lemma 4.11. Consider an undirected graph G = (V,E) with a designated vertex x.

There exists a legal admissible pair in the simplicity-preserving edge splitting-off problem,

if d(x) ≥ rmax
2 + 2rmax + 1 and there is no cut-edge incident to x.

Proof. First, we may assume that that d(u, v) ≤ rmax for any u, v ∈ N(x) since the extra

copies of an edge are redundant for satisfying edge-connectivity requirements. On another

hand, we can show that removal of (one copy of) an edge pair (xu, xv) does not violate

edge-connectivity requirements if |N(u) ∩ N(x)|, |N(v) ∩ N(x)| ≥ rmax. Therefore, we

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 78

may assume that |N(u)∩N(x)| < rmax holds for at least |N(x)|−1 of all the x-neighbours

u ∈ N(x). Each of these corresponding x-edges is hence included in at most rmax
2 illegal

edge pairs, and this implies the vertex degree at most rmax
2 for a number of vertices

in the constraint graph. By Theorem 4.1, vertex degree is at most 2rmax − 1 in the

non-admissible graph since each x-edge is included in at most max {2rmax − 2, rmax} non-

admissible edge pairs. Vertex degree in (U, F ∪F ′) is hence bounded by rmax
2 +2rmax−1.

Therefore, there exist two vertices that are non-adjacent to each other in both graphs.

They represent a legal admissible edge pair in the input graph.

4.4.3 Simultaneous Graph Constraint

Consider c undirected graphs Gi = (V,Ei + E ′) with a designated vertex x for i =

1, . . . , c that E ′ = δ(x). In simultaneous-graph edge splitting-off problem, we have to

make sure that the split edges satisfy edge-connectivity requirements of all the c graphs,

i.e. an edge pair is legal if and only if it is admissible in all c graphs. Let rmax be the

maximum edge-connectivity among all the c graphs.

Lemma 4.12. Consider c undirected graphs Gi = (V,Ei + E ′) with a designated vertex

x for i = 1, . . . , c that E ′ = δ(x). there exists a legal pair in the simultaneous-graph edge

splitting-off problem if d(x) ≥ 2crmax and there is no cut-edge incident to x.

Proof. Consider the non-admissibility graphs Bi = (U, Fi) for each of Gi, i = 1, . . . , c. By

Theorem 4.2, vertex degree in each of these graphs is at most max {2rmax − 2, rmax}. Ver-

tex degree in the constraint graph C = (U,∪i=1,...,cFi) is at most max {2crmax − 2c, crmax} ≤

d(x). Therefore, each x-edge is included in a number of legal admissible edge pairs.

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 79

4.4.4 Tight Sufficient Conditions

By consider the non-admissibility and legality together, we can get structural proper-

ties to tighten the sufficient conditions. The proof just involves some technical work and

hence and covered here.

Lemma 4.13. Consider an undirected graph G = (V,E) with a designated vertex x and

vertex partition P = {P1, P2, . . . , Pl} that d(x, Pi) ≥ d(x, Pj) for i ≤ j. There exists a legal

admissible pair including an x-edge from P1 in the partition-constrained edge splitting-off

problem if d(x) ≥ 4
3
rmax + 2 ≥ 6, P1 ≤ d(x)/2 and no cut-edge incident to x.

Lemma 4.14. Consider an undirected graph G = (V,E) with a designated vertex x.

there exists a legal admissible pair in simplicity-preserving edge splitting-off problem if no

cut-edge incident to x, d(x) > rmax(rmax + 1)/4 and d(x) 6= 3.

Note that the sufficient conditions in Lemma 4.13 and Lemma 4.14 are tight as there

are examples achieving them (for arbitrary rmax > 1). For the simultaneous-graph edge

splitting-off problem, we cannot find any better structural property even if we consider

non-admissibility and legality together. We hence do not have any sufficient condition

better than the one in Lemma 4.12. On another hand, we also cannot construct any

example to show that the sufficient condition is tight.

4.5 Global Arc-Connectivity Setting

The constrained edge splitting-off problem is also not very well-studied in the global

arc-connectivity setting. The only established result is a sufficient condition in partition-

preserving edge splitting-off problem done by Gabow and Jordán [37]. In this section, we

will present a sufficient condition in the general constrained edge splitting-off problem;

and then give results in the 3 specified constrained edge splitting-off problems.

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 80

Applying the approach used in the local edge-connectivity setting, we consider the

non-admissibility and legality separately. By investigating the structural property of non-

admissible edge pairs, we can show that the total number of non-admissible edge pair in

the whole graph is bounded. This bound is stated formally in Lemma 4.15 and the proof

is deferred to Section 4.5.1.

Lemma 4.15. Consider a directed graph D = (V,A) with a designated vertex x that

V −x is k-edge-connected and d+(x) = d−(x). There are at most d(x)2/8 non-admissible

edge pairs in the graph. Furthermore, there are strictly less than d(x)2/8 non-admissible

edge pairs in the graph when d(x) > 4k.

Since the total number of non-admissible edge pairs is bounded, there exists a legal

admissible edge pair if the total number of illegal edge pairs is also bounded. This gives

the following sufficient condition for the general constrained edge splitting-off problem in

the global arc-connectivity setting.

Theorem 4.16. Consider a directed graph D = (V,A) with a designated vertex x that

V − x is k-edge-connected and d+(x) = d−(x) > 2k. There exists a legal admissible edge

pair for constrained edge splitting-off operation if the constraint introduce at most d(x)2/8

illegal edge pairs in the whole graph.

Applying this general constrained edge splitting-off lemma, we get sufficient conditions

in the following constrained edge splitting-off problems.

Lemma 4.17 (citegj01). (Also in [37]) Consider a directed graph D = (V,A) with a

designated vertex x that V −x is k-arc-connected, and vertex partition P = {P1, P2, . . . , Pl}

that d(x, Pi) ≤ d(x, Pj) for i ≤ j. There exists a legal admissible pair including an

x-edge from P1 in partition-preserving edge splitting-off problem if P1 ≤ d(x)/2 and

d+(x) = d−(x) > 2k.

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 81

Lemma 4.18. Consider a k-arc-connected directed graph D = (V,A) with a designated

vertex x that V − x is k-arc-connected. There exists a legal admissible pair in simplicity-

preserving edge splitting-off problem if |N+(x)|, |N−(x)| > 2k and δ+(x) = δ−(x). This

sufficient condition can be tighten to |N+(x)|, |N−(x)| > k and d+(x) = d−(x) by a deeper

analysis.

Lemma 4.19. Consider two directed graph D1 = (V,E1 + E ′), G2 = (V,E2 + E ′) and a

designated vertex x that E ′ = δ(x) and D1, D2 are k-arc-connected and l-arc-connected

respectively. There exists a legal admissible pair in simultaneous-graph edge splitting-off

problem if δ+(x) = δ−(x) > 2k, where k ≥ l.

4.5.1 Proof of Lemma 4.15

By Claim 2.22, the union of tight sets containing t ∈ N(x) is also tight. For each

v ∈ N(x), there exists at most one maximal tight set containing v. Let T be the collection

of these tight sets and define T ′ = {T ∩ N(x) : T ∈ T }. Each x-neighbours exists in at

most one subset from T , so T ′ is a subpartition of N(x). Note that an edge pair (ux, xv)

is not admissible if and only if u and v are in the same subset from T ′. In other words,

the total number of non-admissible edge pairs equals

∑
T∈T ′

d+(x, T) · d−(x, T).

With the definition of T ′, we can now show that the total number of non-admissible

edge pairs is at most d(x)2/8. Suppose that the number is at least d(x)2/8 = d+(x)/2.

Then, there exists u ∈ N+(x) that ux has more than δ−(x)/2 non-admissible partners.

This implies the existence of U ∈ T ′ that δ−(x, U) ≥ δ−(x)/2 = δ(x)/4. By the following

simple proposition, we have δ+(x, U) ≤ δ(x)/4.

Proposition 4.20. For any tight set, δ+(x, T) + δ−(x, T) ≤ δ(x)/2.

CHAPTER 4. CONSTRAINED EDGE SPLITTING-OFF 82

We can now show the upper on the total number of non-admissible edge pairs as

follows:

d+(x, U) · d−(x, U) +
∑

T∈T ′−U

d+(x, T ′) · d−(x, T ′)

≤ d+(x, U) · d−(x, U) + d+(x, V − U) · d−(x, V − U)

≤ d+(x)/2 · d−(x)/2 + d+(x)/2 · d−(x)/2

= d(x)2/8

Furthermore, the inequality holds with equality only if d+(x, U), d+(x, V − U) =

d+(x)/2 and d−(x, U), d−(x, V − U) = d−(x)/2. These conditions can be satisfied only if

d(x) ≤ 4k; for otherwise, U cannot be tight. This proves the second part of the lemma.

Chapter 5

Constrained Edge-Connectivity

Augmentation Problem

The results in this chapter are based on joint work with Lap Chi LAU [53].

In edge-connectivity augmentation problem, the goal is to find a minimum set of new

edges so that the given edge-connectivity requirement is satisfied after adding the edge

set. This optimization problem is very well-studied [34, 23, 74, 13, 65, 26] and there are

a number of efficient algorithms for solving this problem [26, 36, 63, 7]. Apart from the

edge-connectivity requirement, we may also want the resulting graph to preserve certain

properties. Given a simple input graph, it is natural to require the resulting graph to

remain simple. This gives rise to the study of constrained edge-connectivity augmentation

problems, which are different extensions of the original problem that consider additional

constraints together with the given edge-connectivity requirements.

Definition 2.28. (Constrained Edge-Connectivity Augmentation Problem) Con-

sider a graph G = (V,E) with edge-connectivity requirement function r : V × V → Z on

each vertex pairs. Find a minimum subset of edges F satisfying certain property P and

that in the augmented graph G′ = (V,E + F), λG′(u, v) ≥ r(u, v) for each two vertices

83

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 84

u, v ∈ V .

To solve edge-connectivity augmentation problems, Frank developed a general frame-

work based on the edge splitting-off results. His framework was later modified to work

with constrained edge splitting-off operations for solving constrained edge-connectivity

augmentation problem in several settings [4, 3, 44, 37, 59]. Here, we will use this approach

with the constrained edge splitting-off results obtained in the previous chapter. This gives

additive approximation algorithms for some unsolved constrained edge-connectivity aug-

mentation problems.

This chapter is organized as follows. First, we will cover some basic definitions and

related works in Section 5.1. Then, we will present the additive approximation algo-

rithms for some constrained edge-connectivity augmentation problems in the local edge-

connectivity setting in Section 5.2. Finally, we end this chapter by some similar results

in the global arc-connectivity setting in Section 5.3.

5.1 Preliminaries

Consider a constrained edge-connectivity augmentation problem with additional con-

straint C in an undirected graph G = (V,E). The goal is to add a minimum set of new

edges F to G in order to satisfy edge-connectivity, where the set of new edge F satisfies

the given constraint C. We denote the optimal value, i.e. size of an optimal solution, of

this constrained edge-connectivity augmentation problem by γC(G); and denote the op-

timal value of the corresponding unconstrained edge-connectivity augmentation problem

by γS(G).

In edge-connectivity augmentation problem, Frank [26] developed a framework based

on Mader's result [56] that a splittable edge pair always exists. This framework was

later modified to solve constrained edge-connectivity augmentation problem by applying

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 85

constrained edge splitting-off results. The modified framework consists of the following 3

subroutines.

(1) Constrained External Augmentation Subroutine: Add an external vertex x

and a minimum set of x-edges to satisfy the edge-connectivity requirements and

some additional properties.

(2) Constrained Complete Edge Splitting-off Subroutine: Split-off as many x-

edges by constrained edge splitting-off operations as possible.

(3) Reconciliation Subroutine: Replace any remaining x-edge by other edges while

satisfying edge-connectivity requirements and the given constraint.

By applying appropriate constrained edge splitting-off operation (and edge replacement

operation), the set of new edges are guaranteed to satisfy the given constraint. Note

that the edge replacement operation may add extra edges and the algorithm may hence

return an approximate solution. It is important to guarantee most of x-edges can be

splitted-off in the second subroutine in order to reduce the number of extra edges added

in the last subroutine. This is the reason for imposing an additional requirement in the

first subroutine. Interested readers are referred to Section 2.3.2.1 and Section 2.3.2.2 for

more details about both Frank's original framework and the modified framework. This

modified framework is applied to solve the constrained edge-connectivity augmentation

problem in several settings. Here, we focus on the following 3 specific constraints.

Vertex partition constraint: Consider an undirected graph G = (V,E) with vertex

partition P = {P1, P2, . . . , Pl}. In partition-preserving edge-connectivity augmentation

problem, the objective is to add a minimum set of new edges F to G in order to sat-

isfy edge-connectivity requirements, where every new edge has end-vertices from two

different partitions. It is quite natural to require a graph to remain l-partite while in-

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 86

creasing edge-connectivity. Also, this augmentation problem has application in the graph

rigidity [12]. In the global edge-connectivity setting, Bang-Jensen, Gabow, Jordán and

Szigeti [3] solved the problem efficiently in O((nm + n2 logn) · logn) time. In addition,

they showed that the optimal value increases by at most one when we take vertex parti-

tion constraint into account. That is, γC(G) ≤ γS(G)+1, where γC(G) and γS(G) are the

size of an optimal solutions with and without vertex partition constraint. In the global

arc-connectivity setting, Gabow and Jordán [37] gave an approximate solution with an

additive cost of O(k).

Graph simplicity constraint: Consider an undirected graph G = (V,E). In simplicity-

preserving edge-connectivity augmentation, the objective is to add a minimum set of

new edges in order to satisfy edge-connectivity requirements, where every new edge is

not in parallel with any other edge. Like the network design problem we discussed in

Chapter 3, it is of practical interest to study the edge-connectivity augmentation problem

that returns a simple graph. In the global edge-connectivity setting, Bang-Jensen and

Jordán [4] gave an approximate solution with an additive cost of O(k2); and an exact

solution when the optimal value is at least O(k4). In addition, they showed that the

optimal value increases by at most O(k2) when we take simplicity constraint into account.

That is, γC(G) ≤ γS(G) + O(k2), where γC(G) and γS(G) are the size of an optimal

solutions with and without simplicity constraint. They also extended these results to the

local edge-connectivity setting in the same paper.

Simultaneous graph constraint: Consider two undirected graphs Gi = (V,Ei) for

i = 1, 2. In simultaneous-graph edge-connectivity augmentation problem, the objective

is to add a minimum set of new edges in order to satisfy edge-connectivity requirements

in both graphs, where every new edge is common to both graphs. In the global edge-

connectivity setting, i.e. rG1(u, v) ≡ k, rG2(u, v) ≡ l, Jordán [44] gave an approximate

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 87

solution with an additive cost of 1; and an exact solution when k and l are both even.

5.2 Additive Approximation Algorithms

In this section, we will show how to modify Frank's framework to give additive ap-

proximation algorithms in 3 specific constrained edge-connectivity augmentation prob-

lems under local edge-connectivity setting. These algorithms are very similar to the

established ones in the global edge-connectivity setting [3, 4, 44]. Our main efforts are

(i) new constrained edge splitting-off results applied in second subroutine and (ii) edge

replacement operations applied in the third subroutine. For the sake of simplicity, we as-

sume the input graphs here to be connected to avoid the trouble of handling the so-called

marginal components (Section 2.3.2.1).

5.2.1 Edge-Connectivity Augmentation Preserving Vertex Set

Partition

Consider an undirected graph G = (V,E) with vertex partition P = {P1, P2, . . . , Pl}.

In partition-preserving edge-connectivity augmentation problem, the objective is to add

a minimum set of new edges F to G in order to satisfy edge-connectivity requirements,

where every new edge has end-vertices from two different partitions. By applying our

sufficient condition in partition-preserving edge splitting-off problem obtained in the pre-

vious chapter, we get an additive approximation algorithm in the local edge-connectivity

setting.

Lemma 5.1. Under local edge-connectivity setting, there is a polynomial time algorithm

for edge-connectivity augmentation problem with vertex set partition constraint that gives

an approximate solution with an additive cost of at most ⌈1
3
rmax⌉.

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 88

(1) Constrained External Augmentation Subroutine: This subroutine is basically

the same as the one used in the global edge-connectivity setting [3]. The objective is to

add a small set of edges connecting to an external vertex x to satisfy the edge-connectivity

requirements with the additional constraint that maxi {d(x, Pi)} ≤ d(x)/2. For the sake

of convenience, we assume d(x, Pi) ≥ d(x, Pj) for i ≥ j. To make sure d(x, P1) ≤ d(x)/2,

we solve an (unconstrained) external augmentation problem, and perform two sets of

operations if d(x, P1) > d(x)/2. First, we try to swap x-edges to reduce the difference.

That is, we remove x-edge incident to u ∈ P1 and add x-edge incident to v /∈ P1 while

keeping edge-connectivity requirements (Claim 5.2). Second, we add extra x-edges if

no swapping can be performed. More precisely, d(x, P1) − d(x)/2 copies of x-edges are

added to v /∈ P1. It can be shown (as in [3]) that the number of x-edges is at most twice

the optimal value of the partition-preserving edge-connectivity augmentation problem

(Claim 5.3). This gives a solution for the constrained external augmentation subroutine.

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.10, there

exists a legal edge pair containing x-edge from P1 if (i) d(x) ≥ 4rmax, (ii) d(x, P1) ≤

d(x)/2 and (iii) there is no cut-edge incident to x. First, Condition (ii) is satisfied in the

solution returned by the first phase. And we assume the initial graph to be connected to

satisfy Condition (iii). Therefore, we can apply constrained edge splitting-off that keeps

maxPi∈P d(x, Pi) ≤ d(x)/2 as long as d(x) ≥ 4rmax.

(3) Reconciliation Subroutine: For the remaining x-edges, ignore the vertex partition

constraint and use a complete splitting-off algorithm to split-off all of them. Pair-up these

split edges that each pair consists of edge from different partitions. Then we replace each

pair by three other edges to satisfy both edge-connectivity requirements and partition

constraints (Claim 5.4). Note that this pairing is feasible since maxPi∈P d(x, Pi) ≤ d(x)/2.

Since constrained edge splitting-off operation is applicable as long as d(x) ≥ 4rmax in the

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 89

previous subroutine, there are less than 2rmax illegal split edges. Therefore, less than

rmax extra edges are added in this subroutine and this implies an approximate solution

with an additive cost of rmax. Note that we can get a smaller additive cost of ⌈1
3
rmax⌉

if we apply a tighter sufficient condition (Lemma 4.13) in constrained complete edge

splitting-off subroutine.

Claim 5.2. Consider any two x-neighbour u, v ∈ N(x) that u and v are in the same

minimal tight set. Swapping one copy of xu to xv maintain the edge-connectivity require-

ments.

Proof. Suppose to the contrary that some edge-connectivity requirement are violated

after removing one copy of xu and adding one copy of xv. This implies the existence of

a tight set T containing u but not v before the swapping. Consider T together with the

minimal tight set T ′ containing u and v. Since u ∈ T ∩ T ′, inequality (2.5b) cannot hold

for (T ′, Tu); for otherwise,

0 + 0 = s(T) + s(T ′) ≥ s(T − T ′) + s(T ′ − T) + 2d̄(T, T ′) ≥ 0 + 0 + 2 · 1.

Hence, inequality (2.5a) holds and this implies that T ′ ∩ Tu is tight since

0 + 0 = s(T) + s(T ′) ≥ s(T ∪ T ′) + s(T ∩ T ′) + 2d(T, T ′) ≥ 0 + s(T ∩ T ′) + 2 · 0.

With v ∈ T−T ′, we have T∩T ′ ⊂ T ′. Therefore, T∩T ′ is a smaller tight set, contradicting

the definition of T ′.

Claim 5.3. After adding d(x, P1)−d(x)/2 ≥ 0 copies of x-edges, the number of x-edges is

at most twice the optimal value of the partition-preserving edge-connectivity augmentation

problem.

Proof. Denote the collection of minimal tight sets containing x-neighbours from P1 by

T . By Claim 5.2, each tight set in T is a subset of P1 when no swapping can be done.

Therefore, there exists a subpartition C of P1 with total deficiency equals d(x, P1).

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 90

Now, suppose to the contrary that there exists a solution S to the partition-preserving

edge-connectivity augmentation problem with size strictly less than d(x, P1). As explained

in Section 2.3.2.1, dS(X) is not less than the deficiency for any vertex subset X ∈ V in

order to satisfy the edge-connectivity requirement. This implies
∑

X∈C dS(X) ≥ d(x, P1).

Therefore, some edges in S are connecting between vertices in Pi since |S| < d(x, P1) by

the definition of S. This violates the vertex partition constraint and contradicts that S

is a solution. We can now conclude that the size of any solution is not less than d(x, P1)

and hence d(x) is at most twice the optimal value after adding d(x, P1) − d(x)/2 ≥ 0

copies of x-edges.

Claim 5.4. For any two edges uv and wt that u, v ∈ Pi, w, t ∈ V −Pi, we can replace them

by three other edges to satisfy both edge-connectivity requirements and vertex partition

constraint.

Proof. Add an extra vertex x and un-split-off uv, wt, i.e. add xu, xv, xw, xt and remove

uv, wt. It is clear that (xu, xv) and (xw, xt) are admissible edge pairs. We claim that

one of (xu, xw) and (xu, xt) is admissible after adding an extra copy of xu.

Suppose to the contrary that none of them is admissible. Then there exists dangerous

sets D1 that contains (u,w) and D2 that contains (u, t). Inequality (2.5b) cannot hold

for D1 and D2, for otherwise,

1 + 1 ≥ s(D1) + s(D2) ≥ s(D1 − D2) + s(D2 − D1) + 2d̄(D1, D2) ≥ 0 + 0 + 2 · 2.

Since an extra copy of xu is added, D1 ∩ D2, which contains u, cannot be tight. This

implies that D1 ∪ D2 is a dangerous set by considering inequality (2.5a).

1 + 1 ≥ s(D1) + s(D2) ≥ s(D1 ∪D2) + s(D1 ∩D2) + 2d(D1, D2) ≥ s(D1 ∪D2) + 1 + 2 · 0.

Since w, t ∈ D1 ∪ D2, the edge pair (xw, xt) is hence non-admissible and leads to a

contradiction. Therefore, one of (xu, xw) and (xu, xt) is admissible after adding an extra

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 91

copy of xu. We split-off the admissible pair among them, say (xu, xw), and then add an

extra copy of xt. By the same argument, we can show that one of (xu, xt) and (xv, xt) is

admissible, which actually implies a complete splitting-off sequence {(xu, xt), (xv, xt)}.

The edges ut, vt and uw are the three edges that satisfy both edge-connectivity require-

ments and vertex partition constraint.

5.2.2 Edge-Connectivity Augmentation Preserving Simplicity

Consider an undirected graph G = (V,E). In simplicity-preserving edge-connectivity

augmentation, the objective is to add a minimum set of new edges in order to satisfy edge-

connectivity requirements, where every new edge is not in parallel with any other edge.

By applying our sufficient condition in simplicity-preserving edge splitting-off problem

obtained in previous chapter, we get an additive approximation algorithm in the local

edge-connectivity setting.

Lemma 5.5. Under local edge-connectivity setting, there is a polynomial time algorithm

for simultaneous edge-connectivity augmentation problem that gives an approximate so-

lution with an additive cost of at most rmax(rmax + 1)/8.

Here, the approximate error is compared with the optimal solution in unconstrained

edge-connectivity augmentation problem. In other words, this means that γC(G) ≤

γS(G)+rmax(rmax +1)/8, where γC(G) and γS(G) are the optimal values in augmentation

problems with and without simplicity constraint respectively.

(1) External Augmentation Subroutine: Since the approximate solution is compared

with the optimal value in unconstrained edge-connectivity augmentation problem, no

extra requirements can be imposed on the set of x-edges. In other words, this is an

(unconstrained) external augmentation subroutine that the objective is to add a small set

of edges connecting to an external vertex x to satisfy the edge-connectivity requirements.

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 92

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.11, there

exists a legal edge pair if (i) d(x) ≥ rmax
2 +2rmax +1 and (ii) there is no cut-edge incident

to x. By assuming the initial graph to be connected to satisfy Condition (ii), we can

apply constrained edge splitting-off as long as d(x) ≥ rmax
2 + 2rmax + 1.

(3) Reconciliation Subroutine: For the remaining x-edges, ignore the graph simplicity

constraint and use a complete splitting-off algorithm to split-off all of them. Then, we

replace each of these illegal split edges by two other edges to satisfy both edge-connectivity

requirements and simplicity constraints (Claim 5.6). Since constrained edge splitting-off

operation is applicable as long as rmax
2 + 2rmax + 1, there are less than O(rmax

2) illegal

split edges. Therefore, less than O(rmax
2) extra edges are added in this phase and this

implies an approximate solution with an additive cost of O(rmax
2). Note that we can

get a smaller additive cost of rmax(rmax + 1)/8 if we apply a tighter sufficient condition

(Lemma 4.14) in the constrained complete edge splitting-off subroutine.

Claim 5.6. If there are parallel edges between u, v ∈ V , we can remove one copy of uv

and add at most 2 other edges so that edge-connectivity requirements are preserved and

no new parallel edge is formed.

Proof. If either the removal of uv does not violate connectivity requirements or there

exists w ∈ V that uw, vw /∈ E, it is clear we have to add at most 2 edges to maintain

connectivity requirements. Thus, suppose neither of the above conditions holds. No

desired vertex w exists implies N(u) ∪ N(v) = V . Let N ′(v) = N(v) − (N(u) + u) =

{v1, v2, . . . } and N ′(u) = N(u) − (N(v) + v) = {u1, u2, . . . }. We claim that there exist

vertices v∗ ∈ N ′(v), u∗ ∈ N ′(u) that adding edge uv∗ and u∗v maintains the connectivity

requirements after removing one copy of uv.

Suppose to the contrary that no such v∗, u∗ exists. This implies for every pair vi ∈

N ′(v), uj ∈ N ′(u), there exists a maximal tight set Ti,j that u, vi ∈ Ti,j, v, uj /∈ Ti,j. We

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 93

claim that inequality (2.5b) cannot hold for any two tight sets X,Y if X ∪ Y ⊂ V and

they share an x-neighbour. For otherwise,

0 + 0 = s(X) + s(Y) ≥ s(X − Y) + s(Y − X) + 2d̄(X,Y) ≥ 0 + 0 + 2 · 1.

Inequality (2.5a) hence holds for X and Y , which implies that X ∪ Y is a tight set:

0 + 0 = s(X) + s(Y) ≥ s(X ∪ Y) + s(X ∩ Y) + 2d(X,Y) ≥ s(X ∪ Y) + 0 + 2 · 0.

Since u ∈ ∩Ti,j and v /∈ ∪Ti,j, we can union all Ti,j to give a tight set T ′. Clearly,

{u,N ′(v)} ⊆ T ′ and {v,N ′(u)} ⊆ V − T ′. Now, notice that

d(T ′) ≥ d(u, v) + d(v,N ′(v)) + d(u,N ′(u)) + |N(u) ∩ N(v)|

≥ d(u, v) + |N(v) ∪ N(u) − {u, v}|

≥ 2 + (|V | − 2)

≥ rmax + 1.

This contradicts the definition of tight set and shows the desired u∗, v∗ must exist.

5.2.3 Simultaneous-Graph Edge-Connectivity Augmentation

Consider two undirected graphs Gi = (V,Ei) for i = 1, 2. In simultaneous-graph edge-

connectivity augmentation problem, the objective is to add a minimum set of new edges

in order to satisfy edge-connectivity requirements in both graphs, where every new edge

is common to both graphs. By applying our sufficient condition in simultaneous-graph

edge splitting-off problem obtained in previous chapter, we get an additive approximation

algorithm in the local edge-connectivity setting.

Lemma 5.7. Under local edge-connectivity setting, there is a polynomial time algorithm

for simultaneous edge-connectivity augmentation problem that gives an approximate so-

lution with an additive cost of at most 2rmax.

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 94

(1) Constrained External Augmentation Subroutine: This subroutine is basically

the same as the one used in the global edge-connectivity setting [44]. The objective is to

add a small set of edges connecting to an external vertex x to satisfy the edge-connectivity

requirements in both graph that every new edge is common to the 2 graphs. Let z(A) be

the number of parallel edges between A ⊆ V and x after adding x-edges. As shown in

Section 2.3.2.1, z(A) is not less than the deficiency of the vertex set A for every A ⊆ V to

satisfy edge-connectivity requirements. Frank [26] showed that the set of feasible z defines

a contra-polymatroid C. Finding a minimum set of x-edges to satisfy edge-connectivity

requirements is equivalent to finding an integer-valued vector of C with z(V) minimum.

Similarly, finding a minimum set of x-edges to satisfy edge-connectivity requirements of

both G1 and G2 is equivalent to finding an integer-valued vector common to CG1 and CG2

with minimum z(V). By Frank's g-polymatroid intersection theorem [25, 30], the system

of vectors common to CG1 and CG2 is a submodular flow system. Therefore, we can find

a minimum integer-valued vector in polynomial time by submodular flow algorithms.

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.12, there

exists a legal edge pair if (i) d(x) ≥ 4rmax and (ii) there is no cut-edge incident to x.

By assuming the initial graph to be connected to satisfy Condition (ii), we can apply

constrained edge splitting-off as long as d(x) ≥ 4rmax.

(3) Reconciliation Subroutine: For the remaining x-edges, duplicate each of them

so that each of G1 and G2 has a separate copy of x-edges. This reduces the problem to

two (unconstrained) edge splitting-off problems that we can apply a complete splitting-

off algorithm to split-off all of them. Since constrained edge splitting-off operation is

applicable as long as d(x) ≥ 4rmax in the previous subroutine, there are less than 2rmax

extra split edges. This implies an approximate solution with an additive cost of 2rmax.

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 95

5.3 Global Arc-Connectivity Setting

In this section, we will study the 3 constrained edge-connectivity augmentation prob-

lems under the global arc-connectivity setting. With the constrained edge splitting-off

results obtained in the previous chapter (Section 4.5), we can modify Frank's framework

to give additive approximation algorithms for these problems easily.

5.3.1 Edge-Connectivity Augmentation Preserving Vertex Set

Partition

Consider a directed graph D = (V,A) with vertex partition P = {P1, P2, . . . , Pl} and

global arc-connectivity requirement k. In partition-preserving edge-connectivity augmen-

tation problem, the objective is to add a minimum set of new edges F to G in order to

satisfy edge-connectivity requirements, where every new edge has end-vertices from two

different partitions. By applying our sufficient condition in partition-preserving edge

splitting-off problem obtained in previous chapter, we get an additive approximation al-

gorithm in the global arc-connectivity setting. Note that the same result was obtained

by Gabow and Jordán [37].

Lemma 5.8 ([37]). Under global arc-connectivity setting, there is a polynomial time

algorithm for edge-connectivity augmentation problem with vertex set partition constraint

that gives an approximate solution with an additive cost of at most k.

(1) Constrained External Augmentation Subroutine: This subroutine is basi-

cally the same as the one used in the local edge-connectivity setting we discussed in

Section 5.2.1. The objective is to add a small set of edges connecting to an external

vertex x to satisfy the edge-connectivity requirements with the additional constraint that

maxi {d(x, Pi)} ≤ d(x)/2 and d+(x) = d−(x). For the sake of convenience, we assume

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 96

d(x, Pi) ≥ d(x, Pj) for i ≥ j. To make sure d(x, P1) ≤ d(x)/2, we solve an (unconstrained)

external augmentation problem, and perform two sets of operations if d(x, P1) > d(x)/2.

First, we try to swap x-edges to reduce the difference. That is, we remove x-edge in-

cident to u ∈ P1 and add x-edge incident to v /∈ P1 while keeping edge-connectivity

requirements. Second, we add extra x-arcs if no swapping can be performed (while min-

imizing |d+(x) − d−(x)|). More precisely, d(x, P1) − d(x)/2 copies of x-arcs are added

to v /∈ P1. It can be shown that the number of x-edges is at most twice the optimal

value of the partition-preserving edge-connectivity augmentation problem. Finally, some

extra x-edges are added to make d+(x) = d−(x). This gives a solution for the constrained

external augmentation subroutine.

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.17, there

exists a legal admissible edge pair containing an x-edge from P1 if (i) d+(x), d−(x) > 2k

(ii) P1 ≤ d(x)/2 and (iii) d+(x) = d−(x). Both the second and the third conditions are

satisfied in the solution returned by the first phase. Therefore, we can apply constrained

edge splitting-off that keeps maxPi∈P d(x, Pi) ≤ d(x)/2 as long as d+(x), d−(x) > 2k.

(3) Reconciliation Subroutine: For the remaining x-arcs, ignore the vertex partition

constraint and use a complete splitting-off algorithm to split-off all of them. Then,

we replace each two of these illegal split edges by at most three other edges to satisfy

both edge-connectivity requirements and partition constraints. Since constrained edge

splitting-off operation is applicable as long as d(x) > 4k, there are at most than 2k illegal

split edges. Therefore, at most k extra edges are added in this phase and this implies an

approximate solution with an additive cost of at most k.

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 97

5.3.2 Edge-Connectivity Augmentation Preserving Simplicity

Consider a directed graph D = (V,A) with global arc-connectivity requirement k. In

simplicity-preserving edge-connectivity augmentation, the objective is to add a minimum

set of new edges in order to satisfy edge-connectivity requirements, where every new edge

is not in parallel with any other edge. By applying our sufficient condition in simplicity-

preserving edge splitting-off problem obtained in previous chapter, we get an additive

approximation algorithm in the global arc-connectivity setting.

Lemma 5.9. Under global arc-connectivity setting, there is a polynomial time algorithm

for edge-connectivity augmentation problem with simplicity constraint that gives an ap-

proximate solution with an additive cost of at most k2/2.

Here, the approximate error is compared with the optimal solution in unconstrained

edge-connectivity augmentation problem. In other words, this also implies that γC(D) ≤

γS(D) + k2/2, where γC(D) and γS(D) are the optimal values in augmentation problems

with and without simplicity constraint respectively. Note that the additive error can be

reduce to around k2/8 by a deeper analysis.

(1) External Augmentation Subroutine: Since the approximate solution is compared

with the optimal value in unconstrained edge-connectivity augmentation problem, no

extra requirements can be imposed no the set of x-edges. In other words, this is an

(unconstrained) external augmentation subroutine that the objective is to add a small set

of edges connecting to an external vertex x to satisfy the edge-connectivity requirements,

where d+(x) = d−(x).

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.18, there

exists a legal admissible edge pair if (i) |N+(x)|, |N−(x)| > k and (ii) d+(x) = d−(x).

The second condition is satisfied in the solution returned by the first phase. Therefore,

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 98

we can apply constrained edge splitting-off as long as |N+(x)|, |N−(x)| > k, which can

be implied by d+(x), d−(x) > k2.

(3) Reconciliation Subroutine: For the remaining x-arcs, ignore the graph simplicity

constraint and use a complete splitting-off algorithm to split-off all of them. Then, we

replace each of these illegal split edges by two other edges to satisfy both edge-connectivity

requirements and simplicity constraints. Since constrained edge splitting-off operation is

applicable as long as d+(x), d−(x) > k2, there are at most k2 illegal split edges. Therefore,

at most k2/2 extra edges are added in this phase and this implies an approximate solution

with an additive cost of at most k2/2.

5.3.3 Simultaneous Edge-Connectivity Augmentation

Consider two directed graphs Di = (V,Ai) for i = 1, 2 with global arc-connectivity

requirement k and l respectively (assume k ≥ l). In simultaneous-graph edge-connectivity

augmentation problem, the objective is to add a minimum set of new edges in order to

satisfy edge-connectivity requirements in both graphs, where every new edge is common

to both graphs. By applying our sufficient condition in simultaneous-graph edge splitting-

off problem obtained in previous chapter, we get an additive approximation algorithm in

the global arc-connectivity setting.

Lemma 5.10. Under global arc-connectivity setting, there is a polynomial time algorithm

for simultaneous edge-connectivity augmentation problem that gives an approximate so-

lution with an additive cost of 2k.

(1) Constrained External Augmentation Subroutine: The objective is to add

a small set of edges connecting to an external vertex x to satisfy the arc-connectivity

requirements in both graph that every new edge is common to the 2 graphs. This sub-

routine is very similar to the one used in the local edge-connectivity setting that we use

CHAPTER 5. EDGE-CONNECTIVITY AUGMENTATION 99

two submodular flow procedures separately to find a minimum set of x-in-edges and a

minimum set of x-out-edges to satisfy the given arc-connectivity requirements. Finally,

some extra x-edges are added to make d+(x) = d−(x).

(2) Constrained Complete Edge Splitting-off Subroutine: By Lemma 4.19, there

exists a legal admissible edge pair if (i) d(x) > 4k and (ii) d+(x) = d−(x). The second

condition is satisfied in the solution returned by the first phase. Therefore, we can apply

constrained edge splitting-off as long as d(x) > 4k.

(3) Reconciliation Subroutine: For the remaining x-arcs, duplicate each of them so

that each of D1 and D2 has a separate copy of x-edges. This reduces the problem to

two (unconstrained) edge splitting-off problems that we can apply a complete splitting-

off algorithm to split-off all of them. Since constrained edge splitting-off operation is

applicable as long as d(x) > 4k in the previous subroutine, there are less than 2k extra

split edges. This implies an approximate solution with an additive cost of 2k.

Chapter 6

Efficient Edge Splitting-off

Algorithm

The results in this chapter are based on joint work with Lap Chi LAU [53].

In the previous chapters, we have covered some applications of edge splitting-off tech-

nique. These results are basically sufficient conditions for the existence of splittable edge

pairs. In this chapter, we will study how to find such splittable edge pairs efficiently

in the local edge-connectivity setting. The main technical tools here are efficient algo-

rithms by Bhalgat, Hariharan, Kavitha, and Panigrahi [10] and structural properties of

non-admissible pairs.

Construction of a complete edge splitting-off sequence has been the subject of much

research [36, 63, 7, 10] and has found many applications in graph connectivity problems,

e.g. connectivity augmentation [74, 26, 16], graph orientation [29, 28], Steiner tree pack-

ing [2, 49, 50, 10, 15], etc. A straightforward approach to construct a complete edge

splitting-off sequence is to split-off any edge pair (e = xu, f = xv) without knowing the

admissibility and then un-split it if any edge-connectivity requirement is violated. Note

that taking wild guesses may result in O(|N(x)|2) splitting-off attempts. Algorithms

100

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 101

taking this approach may run very slowly.

We consider the complete splitting-off problem in the local edge-connectivity setting

for unweighted graphs. The fastest algorithm in the local edge-connectivity setting an

O(rmax
2 ·n3)-time algorithm by Gabow [36]. We will present two algorithms that improves

the running time of Gabow's algorithm by a factor of Ω̃(n). In many applications, it is a

valid assumption that rmax is small, and the improvement of the randomized algorithm

is more significant.

Theorem 6.1. In the local edge-connectivity setting, there is a deterministic Õ(m+rmax
2 ·

n2)-time algorithm and a randomized Õ(m + rmax
3 · n)-time algorithm for the complete

splitting-off problem in unweighted graph.

Our algorithms are conceptually very simple. They are based on the same framework

that finds a complete edge splitting-off sequence by using at most O(|N(x)|) splitting-off

attempts (instead of O(|N(x)|2) attempts by the straightforward algorithm). The time

complexity hence depends on the efficiency of the subroutine for splitting-off attempt.

This framework gives a deterministic Õ(m + rmax
2 · n2)-time algorithm by using the

deterministic tree packing algorithm by Bhalgat et.al. [9]; and gives a randomized Õ(m+

rmax
3 ·n)-time algorithm by using the randomized Gomory-Hu tree algorithm by Bhalgat

et.al. [9] (together with some further structural properties of non-admissible pairs).

This chapter is organized as follows. We will first cover some basic background and

related works in Section 6.1, and then present the framework that finds a complete edge

splitting-off sequence by using O(|N(x)|) splitting-off attempts in Section 6.2. Then, in

Section 6.3, we show how to efficiently perform one edge splitting-off attempt, by using

some preprocessing steps and applying some fast algorithms to check edge-connectivities.

Combining these two steps yields an Õ(rmax
2 ·n2) randomized algorithm for the complete

splitting-off problem. After that, we will show how to speedup the algorithm by using

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 102

further structural properties of non-admissible pairs in a randomized splitting-off pro-

cedure, obtaining an Õ(rmax
3 · n) randomized algorithm for the problem in Section 6.4.

Then, we will show how to modify some steps in the algorithm presented in Section 6.3

to obtain an Õ(rmax
2 ·n2) deterministic algorithm for the problem in Section 6.5. Finally,

we will end this chapter by mentioning some results by applying of our framework in

some other settings in Section 6.6. These include efficient edge splitting-off procedures

for the network design problem and constrained edge splitting-off problems we dicussed

in previous chapters.

6.1 Preliminaries

We first state some notations used in the algorithms. Since an edge pair (xu, xv) is

determined by their end-vertices u and v, we can consider vertex pairs instead of edge

pairs in a splitting-off problem. A vertex subset is called a non-admissible set if every

vertex pair inside the set is non-admissible. We define the capacity of an edge pair to

be the number of copies of the edge pair that can be splitted-off while satisfying edge-

connectivity requirements. In our algorithms we will always split-off an edge pair to its

capacity (which could be zero), and only attempt at most O(|N(x)|) pairs. Following

the definition of Gabow [36], we say that a splitting-off operation voids a vertex u if

d(x, u) = 0 after the splitting-off.

Throughout the complete splitting-off algorithm, we assume that there is no cut-edge

incident to x. This holds at the beginning by our assumption, and so the local edge-

connectivity between x and v is at least two for each x-neighbour v. Therefore, we can

reset the connectivity requirement between u and v as max{r(u, v), 2}. Since pairwise

edge-connectivity requirements are preserved by edge splitting-off operations, the set of

x-neighbours remains 2-edge-connected, implying that there is no cut-edge incident to x

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 103

at each step.

Several efficient algorithms are proposed for the complete edge splitting-off prob-

lem [63, 7, 10], but only Gabow's algorithm [36] can be used in the local edge-connectivity

setting. He found an admissible edge pair by O(n) maximum flow computation. By

splitting-off admissible pairs iteratively, he solved the complete edge splitting-off prob-

lem in O(rmax
2 ·n3) time in unweighted graph and in Õ(n3 ·m) time in weighted graph. In

the global edge-connectivity setting, multiple edge pairs are splitted-off simultaneously

to get much faster algorithms [63, 7, 10]. The key properties supporting these algorithms

are all regarding to minimum cuts, and hence cannot be applied (directly) in the local

edge-connectivity setting. Interested readers are referred to Section 2.4 for more details.

6.1.1 Efficient Tools for Edge-Connectivity Problems

In the following, we state some useful tools in obtaining the fast algorithms. Nag-

amochi and Ibaraki [61] gave a fast algorithm to find a sparse subgraph that satisfies

edge-connectivity requirements, which will be used in Section 6.3 as a preprocessing step.

Theorem 6.2 ([61]). There is an O(m)-time algorithm to construct a subgraph with

O(rmax · n) edges that satisfies all the connectivity requirements.

As a key tool in checking local edge-connectivities, we need to construct a Gomory-Hu

tree, which is a compact representation of all pairwise min-cuts of an undirected graph.

Let G = (V,E) be an undirected graph, a Gomory-Hu tree is a weighted tree T = (V, F)

with the following property. Consider any s, t ∈ V , the unique s-t path P in T , an edge

e = uv on P with minimum weight, and any component K of T − e. Then the local

edge-connectivity between s and t in G is equal to the weight of e in T , and δ(K) is a

minimum s-t cut in G. To check whether the edge-connectivity requirements are satisfied,

we only need to check the pairs with λ(u, v) < rmax. A partial Gomory-Hu tree Tk of G

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 104

is obtained from a Gomory-Hu tree T of G by contracting all edges with weight at least

k. Therefore, each node in Tk represents a subset of vertices S in G, where the local

edge-connectivity between each pair of vertices in S is at least k. For vertices u, v ∈ G in

different nodes of Tk, their local edge-connectivity (which is less than k) is determined in

the same way as in an ordinary Gomory-Hu tree. Bhalgat et.al. [9] gave a fast randomized

algorithm to construct a partial Gomory-Hu tree. We will use the following theorem by

setting k = rmax. The following result can be obtained by using the algorithm in [41],

together with the fast tree packing algorithm in [9].

Theorem 6.3 ([41, 9]). A partial Gomory-Hu tree Tk can be constructed in time Õ(km)

with high probability.

6.1.2 An Alternative Proof of Mader's Theorem

Here, we present an alternative proof of Mader's theorem. Our framework of finding

complete edge splitting-off sequence can be viewed as a generalization of this proof.

The following lemma about non-admissible sets can be used directly to derive Mader's

theorem.

Lemma 6.4. Suppose there is no 3-dangerous set structure. Then, for any non-admissible

set U ⊆ N(x) with |U | ≥ 2, there is a dangerous set containing U .

We will now prove the equivalent statement of Mader's theorem (Theorem 2.7) that

there is an admissible pair on a vertex x ∈ V when d(x) is even and there is no cut-edge

incident to it. By Lemma 3.8, there is no 3-dangerous set structure in G. Suppose that

there is no admissible pair incident to x. Then, by Lemma 6.4, there is a dangerous set

D containing all vertices in N(x). But this is impossible since

r(V − D − x) = r(D) ≥ d(D) − 1 = d(V − D − x) + d(x) − 1 ≥ d(V − D − x) + 1,

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 105

contradicting that the connectivity requirements are satisfied in G. This gives an alter-

native proof for Mader's theorem.

Proof of Lemma 6.4: We prove the lemma by a simple induction. The statement

holds trivially for |U | = 2 by Proposition 2.12. Consider U = {u1, u2, . . . , uk+1} ⊆ N(x)

where every pair (ui, uj) is non-admissible. By induction, since every pair (ui, uj) is non-

admissible, there are maximal dangerous sets X,Y such that {u1, ..., uk−1, uk} ⊆ X and

{u1, ..., uk−1, uk+1} ⊆ Y . Since (uk, uk+1) is non-admissible, by Proposition 2.12, there is

a dangerous set Z containing uk and uk+1. If there is some ui /∈ Z, then X,Y and Z

form a 3-dangerous-set structure with u = ui, v = uk, w = uk+1. Hence we must have

U = {u1, . . . , uk+1} ⊆ Z, proving the lemma. ✷

6.2 Framework for Complete Edge Splitting-off

In this section, we will present an iterative approach that finds a complete edge

splitting-off sequence by using at most O(|N(x)|) splitting-off attempts (to split-off to

capacity). In the algorithm, we maintain a non-admissible set C; initially C = ∅. In each

iteration, the algorithm will apply one of the following three operations guaranteed by

the following key lemma. The proof of this lemma will be presented in Section 6.5.

Lemma 6.5. Suppose that C is a non-admissible set and there is a vertex u ∈ N(x)−C.

Then, using at most three splitting-off attempts, at least one of the following operations

can be applied:

(1) Splitting-off an edge pair to capacity that voids an x-neighbour.

(2) Deducing that every pair in C ∪ {u} is non-admissible, and add u to C.

(3) Contracting a tight set T containing at least two x-neighbours.

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 106

We claim that the algorithm maintains the property that C is a non-admissible set,

which holds at the beginning of the algorithm when C = ∅. It is clear that in case (2)

the set C remains non-admissible. In case (1), by splitting-off an admissible pair, every

pair of vertices in C remains non-admissible. Also, in case (3), by contracting a tight set,

every pair of vertices in C remains non-admissible by Lemma 2.13.

The algorithm terminates when there is no vertex in N(x) − C. At that time, if

C = ∅, then we have found a complete splitting-off sequence; if C 6= ∅, then by Mader's

theorem, this only happens if d(x) = 3 and d(x) is odd at the beginning. In any case, the

longest splitting-off sequence is found and the given complete edge splitting-off problem

is solved.

Finally, we claim that the total number of splitting-off attempts in the whole algorithm

is at most O(|N(x)|). To see this, we claim that each of the operations in Lemma 6.5

will be performed at most |N(x)| times. Indeed, case (1) and (3) will be applied at

most |N(x)| times since each application reduces the number of x-neighbours by at least

one, and case (2) will be applied at most |N(x)| times since each application reduces the

number of x-neighbours in N(x) − C by one. This proves the following theorem.

Theorem 6.6. A complete edge splitting-off sequence can be computed using at most

O(|N(x)|) splitting-off attempts.

6.2.1 Proof of Lemma 6.5

We consider three cases based on the size of C. When |C| = 0, we split-off (u, u)

to capacity (i.e. remove the maximum even number of copies of xu while satisfying the

connectivity requirements of the graph). Either case (1) applies if u becomes void or case

(2) applies in the resulting graph after (u, u) is splitted-off to capacity. When |C| = 1,

pick the vertex v ∈ C, and split-off (u, v) to capacity. Either case (1) applies when one

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 107

of u and v becomes void, or case (2) applies in the resulting graph after (u, v) is splitted-

off to capacity. Hence, when |C| ≤ 1, either case (1) or case (2) applies after only one

splitting-off attempt.

The interesting case is when |C| ≥ 2 for which we consider v1, v2 ∈ C. Since C is

a non-admissible set, by Lemma 6.4, there is a maximal dangerous set D containing C.

First, we split-off (u, v1) and (u, v2) to capacity. If case (1) applies then we are done, so

we assume that none of the three x-neighbours voids, implying that (u, v1) and (u, v2) are

non-admissible in the resulting graph G′ after splitting-off these edge pairs to capacity.

Note that the edge pair (v1, v2) is also non-admissible since non-admissible edge pair in

G remains non-admissible in G′. By Lemma 6.4 again, there exists a maximal dangerous

set D′ covering the non-admissible set {u, v1, v2}. Then inequality (2.5b) cannot hold for

D and D′, since

1 + 1 = s(D) + s(D′) ≥ s(D − D′) + s(D′ − D) + 2d̄(D,D′)

≥ 0 + 0 + 2d(x, {v1, v2})

≥ 2 · 2.

Therefore inequality (2.5a) must hold for D and D′, hence

1 + 1 = s(D) + s(D′) ≥ s(D ∩ D′) + s(D ∪ D′).

This implies that either D ∪ D′ is a dangerous set for which case (2) applies, since

C ∪ {u} is contained in a dangerous set and hence every pair is a non-admissible pair by

Proposition 2.12, or D ∩ D′ is a tight set for which case (3) applies since v1 and v2 are

x-neighbours. Note that v1, v2 are contained in a tight set if and only if after splitting-off

one copy of (xv1, xv2) the connectivity requirement of some pair is violated by two (see

Section 6.3). Hence this can be checked by one splitting-off attempt, and thus we can

distinguish between case (2) and case (3), and in case (3) we can find such a tight set

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 108

efficiently (see Section 6.3). Therefore, by making at most three splitting-off attempts

((xu, xv1), (xu, xv2), (xv1, xv2)), one of the three operations can be applied, proving the

lemma.

6.3 Efficient Splitting-off Attempt

In this section, we will show how to perform a splitting-off attempt efficiently. Our

goal is to preserve the local edge-connectivity for each pair u, v with λ(u, v) ≤ rmax. The

main tool is a fast Gomory-Hu tree construction algorithm in [9], which allows us to check

the local edge-connectivities quickly.

The following is an outline of the whole algorithm for the complete splitting-off prob-

lem. First we use the O(m)-time algorithm in Theorem 6.2 by Nagamochi and Ibaraki [61]

to construct a subgraph of G with O(rmax · n) edges. To find a complete splitting-off se-

quence, we can thus restrict our attention to preserving the local edge-connectivities

in this subgraph. In the next preprocessing step, we will reduce the problem further

to an instance where there is a particular indicator vertex t 6= x, with the property

that for any pair of vertices u, v ∈ V − x with λ(u, v) ≤ rmax, then it holds that

λ(u, v) = min{λ(u, t), λ(v, t)}. With this indicator vertex, to preserve the local edge-

connectivity for all pairs with λ(u, v) ≤ rmax, we only need to preserve the local edge-

connectivities from t to every vertex v with λ(v, t) ≤ rmax. This allows us to make

only O(n) queries (instead of O(n2) queries) to check the local edge-connectivities. This

reduction step can be done by computing a partial Gomory-Hu tree and contracting

appropriate tight sets; the details will be presented in Section 6.3.1. The total prepro-

cessing time is at most Õ(m + rmax
2 · n), by using the fast Gomory-Hu tree algorithm in

Theorem 6.3.

After these two preprocessing steps, we can perform a splitting-off attempt (split-off

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 109

a pair to capacity) efficiently. For a vertex pair (u, v), we replace min{d(x, u), d(x, v)}

copies of xu and xv by copies of uv, and then determine the maximum violation of

connectivity requirements by constructing a partial Gomory-Hu tree and check the local

edge-connectivities from the indicator vertex t to every other vertex; the details will be

discussed in Section 6.3.2. Therefore, using Theorem 6.3, one splitting-off attempt can

be performed in Õ(rmax · m + n) = Õ(rmax
2 · n) time. By Theorem 6.6, the complete

splitting-off problem can be solved by at most O(|N(x)|) = O(n) splitting-off attempts.

Hence we obtain the following result.

Lemma 6.7. The complete splitting-off problem can be solved in Õ(m + rmax
2 · n2) time

with high probability.

6.3.1 Indicator Vertex

We show how to reduce the problem of maintaining pairwise edge-connectivity re-

quirement into an instance of preserving rooted edge-connectivity. More specifically, we

reduce the problem into an instance with a particular indicator vertex t 6= x, with the

property that if λ(u, v) ≤ rmax for u, v 6= x, then λ(u, v) = min{λ(u, t), λ(v, t)}. Hence

if we could preserve the local edge-connectivity from t to v for every v ∈ V − x with

λ(v, t) ≤ rmax, then the connectivity requirements for every pair in V − x will be satis-

fied. Furthermore, by splitting-off an admissible pair, the indicator vertex t will remain

to be an indicator vertex, and therefore this procedure needs to be executed only once.

Without loss of generality, we assume that the connectivity requirement for each pair of

vertices u, v ∈ V − x is equal to min{λ(u, v), rmax}, and r(x, v) = 0 for every v ∈ V − x.

First we compute a partial Gomory-Hu tree Trmax in Õ(rmax ·m) time by Theorem 6.3,

which is Õ(rmax
2 · n) after applying the sparsifying algorithm in Theorem 6.2. Recall

that each node in Trmax represents a subset of vertices in G. In the following we will use

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 110

a capital letter (say U) to denote both a node in Trmax and the corresponding subset of

vertices in G. If Trmax has only one node, then this means that the local edge-connectivity

between every pair of vertices in G is at least rmax. In this case, any vertex t 6= x is an

indicator vertex. So assume that Trmax has at least two nodes. Let X be the node in

Trmax that contains x in G, and U1, . . . , Up be the nodes adjacent to X in Trmax , and let

XU1 be the edge in Trmax with largest weight among XUi for 1 ≤ i ≤ p. See Figure 6.1

for an illustration.

U1
* Up

*

…

X

U1 Up

*

U2

U2

t

Figure 6.1: The case when X contains a vertex t 6= x. In this case each U∗
i is a tight set.

After contracting each U∗
i into a single vertex, the vertex t becomes an indicator vertex.

Suppose X contains a vertex t 6= x in G. The idea is to contract tight sets so that

t becomes an indicator vertex in the resulting graph. For any edge XUi in Trmax , let

T ′
i be the component of Trmax that contains Ui when XUi is removed from Trmax . We

claim that each U∗
i := ∪U∈T ′

i
U is a tight set in G; see Figure 6.1. By the definition of a

Gomory-Hu tree, the local edge-connectivity between any vertex ui ∈ Ui and t is equal

to the edge weight of XUi in Trmax . Also, by the definition of a Gomory-Hu tree, d(U∗
i)

is equal to the weight of edge XUi in Trmax . Therefore, U∗
i is a tight set in G, because

r(ui, t) = λ(ui, t) = d(U∗
i) for some pair ui, t ∈ V − x. By Proposition 2.12, we can

contract each U∗
i into a single vertex ui for 1 ≤ i ≤ p without losing any information

about admissible pairs in G. Since each U∗
i becomes a single vertex, the vertex t becomes

an indicator vertex in the resulting graph.

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 111

Suppose X contains only x in G. Then U∗
1 may not be a tight set, since there may not

exist a pair u, v ∈ V −x with r(u, v) = λ(u, v) = d(U∗
1) (note that there is a vertex v with

λ(x, v) = d(U∗
1), but r(x, v) = 0 for every vertex v). In this case, we contract appropriate

tight sets so that any vertex in U1 becomes an indicator vertex. Let W1 6= X, . . . ,Wq 6= X

be the nodes (if any) adjacent to U1 in Trmax ; see Figure 6.2. By using similar arguments

as before, it can be shown that each U∗
i is a tight set for 2 ≤ i ≤ p (through ui ∈ Ui

and u1 ∈ U1). Therefore we can contract each U∗
i into a single vertex ui for 2 ≤ i ≤ p.

Similarly, we can argue that each W ∗
j (defined analogously as U∗

i) is a tight set, and hence

we can contract each W ∗
j into a single vertex wj for 1 ≤ j ≤ q. We can see that any vertex

t ∈ U1 is an indicator vertex in the resulting graph, because λ(t, v) ≥ min{λ(w, v), rmax}

for any pair of vertices v, w.

U2
*

Up
* W1

* Wq
*

… …

U1x

U2 Up W1
Wq

Figure 6.2: The case when X contains only x. In this case each U∗
i is a tight set for

2 ≤ i ≤ p, and each W ∗
j is a tight set for 1 ≤ j ≤ q. After contracting each U∗

i for

2 ≤ i ≤ p and each W ∗
j for 1 ≤ j ≤ q into a single vertex, any vertex t ∈ U1 becomes an

indicator vertex.

Henceforth we can consider this resulting graph instead of G for the purpose of com-

puting a complete splitting-off sequence, and using t as the indicator vertex to check

connectivities. The running time of this procedure is dominated by the partial Gomory-

Hu tree computation, which is at most Õ(rmax
2 · n).

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 112

6.3.2 Splitting-off to Capacity

Here, we will show how to split-off a pair u, v of x-neighbours to capacity efficiently.

Let G′ be the graph obtained from G by splitting-off min {d(x, u), d(x, v)} copies of the

edge pair (xu, xv). Let t be the indicator vertex as defined in Section 6.3.1. By the

definition of t, if the edge-connectivity requirement from t to every vertex v ∈ V − x

(which is equal to min{λ(v, t), rmax}) is satisfied, then the local edge-connectivity for every

pair u, v ∈ V − x is satisfied. Let q = maxw∈V −x {r(w, t) − λG′(w, t)} be the maximum

violation of the edge-connectivity requirement from t in G′. Let G′′ be the graph obtained

from G by splitting-off min{d(x, u), d(x, v)} − ⌈q/2⌉ copies of the edge pair (xu, xv). We

will show in the following claim that the edge-connectivity requirement from t to every

vertex v ∈ V −x is satisfied in G′′. This implies that exactly min{d(x, u), d(x, v)}−⌈q/2⌉

copies of the edge pair (xu, xv) are admissible in G.

Claim 6.8. For any vertex s ∈ V − x, it holds that λG′′(s, t) ≥ r(s, t) in G′′.

Proof. By Menger's theorem, we only need to check that dG′′(X) ≥ r(s, t) for any X

separating s and t. The edge-connectivity requirements are satisfied in G, and so we

have dG(X) ≥ r(s, t). The splitting-off operation decreases the degree of X if and only if

u, v ∈ X. By definition, q ≥ r(s, t) − λG′(s, t) ≥ r(s, t) − dG′(X). On the other hand, we

have dG′′(X) ≥ dG′(X) + q, since ⌈q/2⌉ copies of the edge pair are un-splitted. Therefore

dG′′(X) ≥ r(s, t), proving the claim.

To check the maximum violation, we compute a partial Gomory-Hu tree Trmax in

Õ(rmax
2 · n) time. Then we can easily compute q = maxv∈V −x {r(v, t) − λG′(v, t)} in

O(n) time. Furthermore, one can identify the violating cut easily from the Gomory-Hu

tree. Therefore, splitting-off a pair to capacity can be implemented in Õ(rmax
2 · n) time.

Finally, we remark that the same technique can be used to check whether two vertices

are contained in a tight set, as needed in Lemma 6.5.

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 113

6.4 Randomized and Parallelized Edge Splitting-off

Algorithm

In this section we will present a randomized edge splitting-off procedure to speedup

the algorithm. By Theorem 4.1, when the degree of x is much larger than 2rmax, even

a random edge pair will be admissible with high probability. Using this observation, we

show how to reduce d(x) to O(rmax) in Õ(rmax
3 · n) time. Then, by Lemma 6.7, the

remaining edges can be splitted-off in Õ(rmax
2 · d(x) · n) = Õ(rmax

3 · n) time. So the

total running time of the complete splitting-off algorithm is improved to Õ(m+rmax
3 ·n),

proving Theorem 6.1.

The idea is to split-off many random edge pairs in parallel, before checking if some

connectivity requirement is violated. Suppose that 2l+q−1 < d(x) ≤ 2l+q and 2l−1 <

rmax ≤ 2l for some positive integers l and q. To reduce d(x) to 2l+q−1 (i.e. to reduce d(x) by

half, perhaps except for the first round), we need to split-off at most 2l+q−1 x-edges. Since

each x-edge has at most 2rmax non-admissible partners by Theorem 4.1, the probability

that a random edge pair is admissible is at least (d(x)−1)−2rmax
d(x)−1

≥ 2l+q−1−2l+1

2l+q−1 = 2q−2−1
2q−2 . Now,

consider a random splitting-off operation that split-off at most 2q−2 edge pairs at random

in parallel. The operation is successful if all the edge pairs are admissible. The probability

for the operation to succeed is at least (2q−2−1
2q−2)2q−2

= O(1). After each operation, we run

the checking algorithm as in Section 6.3 to determine whether this operation is successful

or not. Consider an iteration that consists of c · logn operations for some constant c. The

iteration is successful if it finds a set of 2q−2 admissible pairs, i.e. any of its operations

succeeds. The probability for an iteration to fail is hence at most 1/nc for q ≥ 3. The

time complexity of an iteration is Õ(rmax
2 · n).

Since each iteration reduces the degree of x by 2q−2, with at most 2l+1 ≈ rmax successful

iterations, we can then reduce d(x) to 2l+q−1 (i.e. reduce d(x) by half, perhaps except for

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 114

the first round). This procedure is applicable as long as q ≥ 3. Therefore, we can reduce

d(x) to 2l+2 by using this procedure for O(logn) times. The total running time is thus

Õ(2l · logn · rmax
2 · n) = Õ(rmax

3 · n). Note that there are at most Õ(rmax) iterations

and the failure probability of each iteration is at most 1/nc. By the union bound, the

probability for above randomized algorithm to fail is at most 1/nc−1. Therefore, with

high probability, the algorithm succeeds in Õ(rmax
3 · n) time to reduce d(x) to O(rmax).

6.5 Deterministic Edge Splitting-off Algorithm

Here, we will show how to modify the randomized algorithm giving Lemma 6.7 to

obtain a deterministic algorithm. The randomized Gomory-Hu tree construction is used

in two places. First it is used in finding an indicator vertex in Section 6.3.1, and for

this purpose it is executed only once. Here we can replace it by a slower deterministic

partial Gomory-Hu tree construction algorithm. It is well-known that a Gomory-Hu

tree can be computed using at most n − 1 max-flow computations [40, 39]. By using

the Ford-Fulkerson maximum flow algorithm [24], one can obtain an O(rmax
2 · n2)-time

deterministic algorithm to construct a partial Gomory-Hu tree Trmax . The randomized

partial Gomory-Hu construction is also used many times in the algorithm (Section 6.3)

to check whether the connectivity requirements are satisfied. With the indicator vertex

t, this task reduces to checking the local edge-connectivities from t to other vertices. It

turns out that there is a fast deterministic algorithm for this task. We will need the

following result by Bhalgat et.al. [9], which is obtained by a deterministic tree packing

algorithm, building on and improving the work by Cole and Hariharan [19].

Theorem 6.9 ([9]). Given an undirected graph G and a vertex t, there is an Õ(rmax ·m)-

time deterministic algorithm to compute min{λG(t, v), rmax} for all vertices v ∈ G.

Therefore, we can replace the randomized partial Gomory-Hu tree algorithm by this

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 115

algorithm, and thus Lemma 6.7 still holds deterministically. Hence there is a deterministic

Õ(rmax
2 · n2)-time algorithm for the complete splitting-off problem.

6.6 Algorithms in Other Settings

In this section, we will show how to apply the framework (Section 6.2) and the ran-

domized procedure (Section 6.4) in other settings to obtain efficient edge splitting-off

algorithms. We will see applications in the network design problem discussed in Chap-

ter 3, and the constrained edge splitting-off problems discussed in Chapter 4.

6.6.1 Edge Splitting-off in Network Design Problems

Here, we will sketch an efficient edge splitting-off procedure for the network design

problem we discussed in Chapter 4. We will apply the framework to reduce the degree of

a vertex x by at most O(|N(x)|) splitting-off attempts; and hence we have to show the

operations to maintain a non-admissible set C.

If st ∈ E for every pair of s ∈ C and t ∈ N(x) − C, then it is clear that there is

no legal admissible pair contains any of s ∈ C. We can ignore those x-neighbours in

the non-admissible set and consider the rest of x-neighbours. Therefore, suppose this is

not the case, i.e. there exists u ∈ C and w ∈ N(x) − C that uw /∈ E. Consider also

another vertex v ∈ C − u. If either both uw, vw /∈ E, or both (xu, xw) and (xv, xw) are

non-admissible, then we can apply the analysis in Lemma 6.5.

Therefore, the remaining case is that (xu, xw) is non-admissible and (xv, xw) is ad-

missible but vw ∈ E. By Proposition 2.12, there exist a maximal dangerous sets X

containing C, and Y containing u and w. Since vw ∈ E, we have d(X,Y) ≥ 1. Inequal-

ity (2.5a) cannot hold; for otherwise, X ∪ Y will be a dangerous set, contradicting the

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 116

admissibility of (xv, xw):

1 + 1 ≥ s(X) + s(Y) ≥ s(X ∩ Y) + s(X ∪ Y) + 2d(X,Y) ≥ 0 + s(X ∪ Y) + 2 · 1.

Therefore, inequality (2.5b) must hold. This implies that X − Y and Y −X are both

tight, and d̄(X,Y) = 1:

1 + 1 ≥ s(X) + s(Y) ≥ s(X − Y) + s(X − Y) + 2d̄(X,Y) ≥ 0 + 0 + 2d̄(X,Y).

By the contra-positive of Lemma 4.5, there exist two maximal dangerous sets X ′ and

Y ′ covers all the x-edges that are non-admissible to xu. We can assume that C ⊆ X ′ and

w ∈ Y ′, and then show that X ′ − Y ′ and Y ′ −X ′ are both tight by the above argument.

Now, one of the following 3 situations holds for any other x-neighbour t ∈ N(x)−C −w

that ut /∈ E.

(i) (xu, xt) is an admissible pair.

(ii) (xv, xt) is a non-admissible pair and there exists a tight set, namely X ′ − Y ′ con-

taining t and C.

(iii) (xw, xt) is a non-admissible pair and there exists a tight set, namely Y ′ − X ′ con-

taining t and w.

If there does not exist t ∈ N(x)−C −w that ut /∈ E, then u is not included in any legal

admissible edge pair. Hence, we can ignore this x-neighbour in the rest of the algorithm.

This shows that we can always make progress by a few edge splitting-off attempts.

6.6.2 Constrained Edge Splitting-off

Here, we will present Õ(m + rmax
3n)-time randomized algorithms for the some con-

strained edge splitting-off problems. These randomized algorithms are basically the same

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 117

as the randomized algorithm for complete edge splitting-off problem in Section 6.4. Re-

call that the algorithm in Section 6.4 is based on the property of bounded number of

non-admissible partners. The same approach can hence be applied in constrained edge

splitting-off problems when the number of non-admissible or illegal partners are bounded.

Suppose that 2l+q−1 < d(x) ≤ 2l+q and 2l−1 < rmax ≤ 2l for some positive integers l and

q.

Vertex partition constraint: Consider an undirected graph G = (V,E) with a des-

ignated vertex x and a vertex partition P = {P1, P2, . . . , Pl} on V − x. In partition-

preserving edge splitting-off problem, we have to make sure that no split edge is included

in any vertex partition while satisfying edge-connectivity requirements. In the random-

ized algorithm, we pair up x-edges from different partitions randomly so that none of the

pairs is illegal. The probability that a random edge pair is a legal admissible pair is at

least
d(x)/2 − 2rmax

d(x)/2
≥ 2l+q−2 − 2l+1

2l+q−2
=

2q−3 − 1

2q−3
.

Therefore, we can reduce d(x) to Õ(rmax) in O(m + rmax
3n) time by the randomized

approach used in Section 6.4. This gives an approximate solution with additive error of

O(rmax).

Graph simplicity constraint: Consider an undirected graph G = (V,E) with a des-

ignated vertex x. In simplicity-preserving edge splitting-off problem, we have to make

sure that the split edges are not in parallel with any other edges while satisfying edge-

connectivity requirements. In the randomized algorithm, we pair up x-edges randomly.

We have shown that each x-edge is included in at most rmax
2 illegal edge pairs. The

probability that a random edge pair is a legal admissible pair is hence at least

d(x) − rmax
2 − 2rmax

d(x)
≥ 2l+q−1 − 22l+2 − 2l+1

2l+q−1
≥ 2q−l−3 − 2

2q−l−3
.

Therefore, we can reduce d(x) to Õ(rmax
2) in O(m + rmax

3n) time by the randomized

CHAPTER 6. EFFICIENT EDGE SPLITTING-OFF 118

approach used in Section 6.4. This gives an approximate solution with additive error of

O(rmax
2).

Simultaneous graph constraint: Consider c undirected graphs Gi = (V,Ei + E ′) for

i = 1, . . . , c with a designated vertex x that E ′ = δ(x). In simultaneous-graph edge

splitting-off problem, we have to make sure that the split edges satisfy edge-connectivity

requirements in all the c graphs. In the randomized algorithm, we pair up x-edges

randomly. Recall that an edge pair is legal if it is admissible in all the c graphs. The

probability that a random edge pair is a legal admissible pair is at least

d(x) − c · 2rmax

d(x)
≥ 2l+q−1 − c · 2l+1

2l+q−1
≥ 2q−2 − c

2q−2
.

Therefore, we can reduce d(x) to Õ(c · rmax) in O(m + rmax
3n) time by the randomized

approach used in Section 6.4. This gives an approximate solution with additive error of

O(c · rmax).

Chapter 7

Concluding Remarks

In this thesis, we studied edge splitting-off techniques in some edge-connectivity prob-

lems. As a main result, we obtained the first constant factor approximation algorithms for

various degree bounded network design problem when the cost function satisfies triangle

inequalities. Using the insights developed, we obtained further edge splitting-off results

in two directions. First, we developed a framework for splitting-off edges efficiently. This

framework is conceptually simple and substantially improves the best known algorithm

(in specific setting). Second, we identified some structural properties of non-splittable

edge pairs. These properties not only provide a short proof for a classical edge splitting-

off result, but also have applications in efficient randomized edge splitting-off procedures

and constrained edge splitting-off problems.

As a direction for future work, I am most interested in finding some other applications

of our structural properties. The results of this thesis are based on extensions and gen-

eralizations of a structural properties, named as 3-dangerous-set structure. This simple

structure seems to be very useful in deriving edge splitting-off results. It would be nice

to see this structure used in other edge-connectivity problems. In particular, I would like

to study the compact representation of pairwise minimum cuts. There are well-known

119

CHAPTER 7. CONCLUDING REMARKS 120

results for capturing all global minimum cuts [21] and for capturing the size of all pair-

wise minimum cuts [39]. Is it possible to apply our structural properties for finding a

representation of all (or a certain portion) of pairwise minimum cuts?

Regarding the efficient edge splitting-off algorithms, a straightforward direction for

future work is to investigate their applications in other edge-connectivity problems. Edge

splitting-off operation is used as an important subroutine in algorithms for several con-

nectivity problems, including connectivity augmentation, network design, tree packing

and graph orientation. It is of practical interests to study how our edge splitting-off

procedure speedup these algorithms. As other direction, it is interesting to study the

derandomization of our randomized procedure used to edge splitting-off algorithms (Sec-

tion 6.4). This procedure pair-up edges randomly until it finds a "good" pairing. Actually,

"bad" pairings also give important information of non-admissibility. It may be possible to

use the non-admissibility information, together with some structural properties, to find

a "good" pairing deterministically.

Bibliography

[1] C. Artur and L. Andrzej. Approximation Schemes for Minimum-cost k-Connectivity

Problems in Geometric Graphs, chapter 51. Chapman & Hall/CRC, Boca Raton,

FL, 2007.

[2] J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-

connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155--

178, 1995.

[3] J. Bang-Jensen, H. Gabow, T. Jordán, and Z. Szigeti. Edge-Connectivity Augmen-

tation with Partition Constraints. SIAM Journal on Discrete Mathematics, 12:160,

1999.

[4] J. Bang-Jensen and T. Jordán. Edge-connectivity augmentation preserving simplic-

ity. SIAM J. Discret. Math., 11(4):603--623, 1998.

[5] J. Bang-Jensen and T. Jordán. Splitting off Edges between Two Subsets Preserving

the Edge-connectivity of the Graph. Journal of Combinatorial Optimization, 276(1-

-3):5--28, 2004.

[6] F. Bauer and A. Varma. Degree-constrained multicasting in point-to-point networks.

In INFOCOM '95: Proceedings of the Fourteenth Annual Joint Conference of the

121

BIBLIOGRAPHY 122

IEEE Computer and Communication Societies (Vol. 1)-Volume, page 369, Washing-

ton, DC, USA, 1995. IEEE Computer Society.

[7] A. A. Benczúr and D. R. Karger. Augmenting undirected edge connectivity in Õ(n2)

time. Journal of Algorithms, 37(1):2--36, 2000.

[8] A. Bernáth and T. Király. A New Approach to Splitting-Off. In Proceedings of Integer

Programming and Combinatorial Optimization, 13th International Conference, pages

401--415. Bertinoro, Italy, 2008.

[9] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) gomory-hu

tree construction algorithm for unweighted graphs. In STOC '07: Proceedings of the

thirty-ninth annual ACM symposium on Theory of computing, pages 605--614, New

York, NY, USA, 2007. ACM.

[10] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. Fast edge splitting and

edmonds' arborescence construction for unweighted graphs. In SODA '08: Pro-

ceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 455--464, Philadelphia, PA, USA, 2008. Society for Industrial and Applied

Mathematics.

[11] D. Bienstock, E. Brickell, and C. Monma. On the Structure of Minimum-Weightk-

Connected Spanning Networks. SIAM Journal on Discrete Mathematics, 3:320, 1990.

[12] E. Bolker and H. Crapo. How to brace a one-story building. Environ. Plan. B,

4:125--152, 1977.

[13] G.-R. Cai and Y.-G. Sun. The minimum augmentation of any graph to a k-edge-

connected graph, pages 151--172. A Wiley Company, 1989.

BIBLIOGRAPHY 123

[14] Y. H. Chan, W. S. Fung, L. C. Lau, and C. K. Yung. Degree bounded network

design with metric costs. In FOCS '08: Proceedings of the 2008 49th Annual IEEE

Symposium on Foundations of Computer Science, pages 125--134, Washington, DC,

USA, 2008. IEEE Computer Society.

[15] C. Chekuri and F. Shepherd. Approximate Integer Decompositions for Undirected

Network Design Problems. SIAM Journal on Discrete Mathematics, 23:163, 2008.

[16] E. Cheng and T. Jordán. Successive edge-connectivity augmentation problems.

Mathematical Programming, 84(3):577--593, 1999.

[17] J. Cheriyan and A. Vetta. Approximation algorithms for network design with metric

costs. In STOC '05: Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing, pages 167--175, New York, NY, USA, 2005. ACM.

[18] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. 1976.

[19] R. Cole and R. Hariharan. A fast algorithm for computing steiner edge connectivity.

In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,

pages 167--176. ACM New York, NY, USA, 2003.

[20] N. Deo and S. Hakimi. The shortest generalized hamiltonian tree. In Proceedings of

the 6th Annual Allerton Conference, pages 879--888, 1968.

[21] E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of

minimal weighted cuts in a graph. Studies in Discrete Optimization, pages 290--306,

1976.

[22] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91--96,

1972.

BIBLIOGRAPHY 124

[23] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Computing,

5(4):653--665, 1976.

[24] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8(3):399--404, 1956.

[25] A. Frank. Generalized Polymatroids, pages 285--294. Elsevier Science Publishing

Company, Amsterdam, The Netherlands, 1984.

[26] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Jour-

nal on Discrete Mathematics, 5(1):25--53, 1992.

[27] A. Frank. On a theorem of Mader. Annals of Discrete Mathematics, 101(1-3):49--57,

1992.

[28] A. Frank and T. Király. Combined connectivity augmentation and orientation prob-

lems. Discrete Applied Mathematics, 131(2):401--419, 2003.

[29] A. Frank and Z. Kiraly. Graph orientations with edge-connection and parity con-

straints. Combinatorica, 22(1):47--70, 2002.

[30] A. Frank and É. Tardos. Generalized polymatroids and submodular flows. Mathe-

matical Programming, 42(1):489--563, 1988.

[31] T. Fukunaga and H. Nagamochi. Approximating a generalization of metric tsp.

IEICE - Trans. Inf. Syst., E90-D(2):432--439, 2007.

[32] T. Fukunaga and H. Nagamochi. Approximating minimum cost multigraphs of spec-

ified edge-connectivity under degree bounds. Journal of the Operations Research

Society of Japan-Keiei Kagaku, 50(4):339--349, 2007.

BIBLIOGRAPHY 125

[33] T. Fukunaga and H. Nagamochi. Network design with edge connectivity and degree

constraints, pages 188--201. Springer Berlin / Heidelberg, 2007.

[34] D. R. Fulkerson and L. S. Shapley. Minimal k-arc-connected graphs. Networks,

1:91--98, 1971.

[35] H. N. Gabow. A matroid approach to finding edge connectivity and packing arbores-

cences. In STOC '91: Proceedings of the twenty-third annual ACM symposium on

Theory of computing, pages 112--122, New York, NY, USA, 1991. ACM.

[36] H. N. Gabow. Efficient splitting off algorithms for graphs. In STOC '94: Proceedings

of the twenty-sixth annual ACM symposium on Theory of computing, pages 696--705,

New York, NY, USA, 1994. ACM.

[37] H. N. Gabow and T. Jordán. Bipartition constrained edge-splitting in directed

graphs. Discrete Appl. Math., 115(1-3):49--62, 2001.

[38] M. X. Goemans. Minimum bounded degree spanning trees. In FOCS '06: Proceedings

of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages

273--282, Washington, DC, USA, 2006. IEEE Computer Society.

[39] R. Gomory and T. Hu. Multi-terminal network flows. Journal of the Society for

Industrial and Applied Mathematics, pages 551--570, 1961.

[40] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal

on Computing, 19:143, 1990.

[41] R. Hariharan, T. Kavitha, and D. Panigrahi. Efficient algorithms for computing all

low st edge connectivities and related problems. In Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms, pages 127--136. Society for

Industrial and Applied Mathematics Philadelphia, PA, USA, 2007.

BIBLIOGRAPHY 126

[42] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network

problem. Combinatorica, 21(1):39--60, 2001.

[43] T. Jordan. Two NP-complete augmentation problems. Odense Universitet.

[44] T. Jordán. Edge-Splitting Problems with Demands. In Proceedings of the 7th Inter-

national IPCO Conference on Integer Programming and Combinatorial Optimiza-

tion, pages 273--288. Springer-Verlag London, UK, 1999.

[45] T. Jordán. Constrained edge-splitting problems. SIAM J. Discret. Math., 17(1):

88--102, 2004.

[46] Y. Kajitani and S. Ueno. The minimum augmentation of a directed tree to ak-edge-

connected directed graph. Networks, 16(2), 1986.

[47] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Jour-

nal of the ACM, 41(2):214--235, 1994.

[48] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers.

In APPROX '00: Proceedings of the Third International Workshop on Approxima-

tion Algorithms for Combinatorial Optimization, pages 194--205, London, UK, 2000.

Springer Berlin / Heidelberg.

[49] M. Kriesell. Edge-disjoint trees containing some given vertices in a graph. J. Comb.

Theory Ser. B, 88(1):53--65, 2003.

[50] L. C. Lau. An Approximate Max-Steiner-Tree-Packing Min-Steiner-Cut Theorem*.

Combinatorica, 27(1):71--90, 2007.

[51] L. C. Lau, J. S. Naor, M. R. Salavatipour, and M. Singh. Survivable network design

with degree or order constraints. In STOC '07: Proceedings of the thirty-ninth

BIBLIOGRAPHY 127

annual ACM symposium on Theory of computing, pages 651--660, New York, NY,

USA, 2007. ACM.

[52] L. C. Lau and M. Singh. Additive approximation for bounded degree survivable

network design. In STOC '08: Proceedings of the 40th annual ACM symposium on

Theory of computing, pages 759--768, New York, NY, USA, 2008. ACM.

[53] L. C. Lau and C. K. Yung. Efficient Edge Splitting and Constrained Edge Splitting.

Manuscript, 2009.

[54] L. Lova'sz. Lecture. Conference of Graph Theory, Prague, 1974.

[55] L. Lova'sz. Combinatorial problems and exercises. Elsevier, Budapest, 1979.

[56] W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete

Mathematics, 3:145--164, 1978.

[57] K. Menger. Zur Allgemeinen Kurventheorie, pages 95--115. 1927.

[58] H. Nagamochi. A Fast Edge-Splitting Algorithm in Edge-Weighted Graphs. IEICE

TRANSACTIONS on Fundamentals of Electronics, Communications and Computer

Sciences, pages 1263--1268, 2006.

[59] H. Nagamochi and P. Eades. An edge-splitting algorithm in planar graphs. Journal

of Combinatorial Optimization, 7(2):137--159, 2003.

[60] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and

capacitated graphs. SIAM J. Discrete Math., 5(1):54--66, 1992.

[61] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-

connected spanning subgraph of a k-connected graph. Algorithmica, 7(5--6):583--596,

1992.

BIBLIOGRAPHY 128

[62] H. Nagamochi and T. Ibaraki. A faster edge splitting algorithm in multigraphs and

its application to the edge-connectivity augmentation problem. In Proceedings of

the 4th International IPCO Conference on Integer Programming and Combinatorial

Optimization, pages 403--413, London, UK, 1995. Springer-Verlag.

[63] H. Nagamochi and T. Ibaraki. Deterministic Õ(nm) time edge-splitting in undirected

graphs. Journal of Combinatorial Optimization, 1(1):5--46, 1997.

[64] H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an undi-

rected network. SIAM J. Discret. Math., 10(3):469--481, 1997.

[65] D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the

edge connectivity. SIAM J. Comput., 26(4):1139--1165, 1997.

[66] C. Nicos. Worst-case analysis of a new heuristic for the traveling salesman prob-

lem. Report 388, Graduate School of Industrial Administration, Carnegie Mellon

University, 1976.

[67] C. Oliveira and P. Pardalos. A survey of combinatorial optimization problems in

multicast routing. Computers and Operations Research, 32(8):1953--1982, 2005.

[68] R. Ravi, M. Marathe, S. Ravi, D. Rosenkrantz, and H. Hunt III. Approximation

algorithms for degree-constrained minimum-cost network-design problems. Algorith-

mica, 31(1):58--78, 2001.

[69] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

[70] M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees

to within one of optimal. In STOC '07: Proceedings of the thirty-ninth annual ACM

symposium on Theory of computing, pages 661--670, New York, NY, USA, 2007.

ACM.

BIBLIOGRAPHY 129

[71] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585--591,

1997.

[72] Z. Szigeti. Edge-splittings preserving local edge-connectivity of graphs. Discrete

Appl. Math., 156(7):1011--1018, 2008.

[73] S. Voß. Problems with generalized steiner problems. Algorithmica, 7(1):333--335,

1992.

[74] T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. J.

Comput. Syst. Sci., 35(1):96--144, 1987.

	Overview
	Background
	Graphs and Edge-connectivity
	Subgraphs
	Cut and Edge-Connectivity
	Menger's Theorem

	Edge Splitting-off
	The Basics
	Supermodular and Submodular Set Functions
	Set Functions regarding Edge-Connectivity
	Dangerous and Tight Sets

	Proof of Mader's Theorem
	Global Arc-Connectivity Setting
	Local Arc-Connectivity Setting

	Incorporating Additional Properties
	Non-Admissibility Graph Method

	Edge-Connectivity Problems
	Degree Bounded Network Design Problems
	Metric Cost Assumption

	Edge-Connectivity Augmentation Problems
	Frank's Framework
	Constrained Edge-Connectivity Augmentation Problems

	Edge Splitting-off Problems

	Edge Splitting-off Algorithms
	Fastest Algorithms
	An Intuitive Approach
	Global Connectivity Settings
	Legal Ordering
	Edmonds' Arborescences

	Local Edge-Connectivity Setting

	Degree Bounded Network Design Problem with Metric Cost
	Christofides'-like Algorithm
	Simplicity-Preserving Edge Splitting-Off
	Proof of Theorem 3.3

	Approximation Algorithms for Network Design Problems
	Removing Redundant Edges
	Perfect Matching
	Edge Splitting-Off Restoring Simplicity

	Results in Different Settings
	Global Edge-Connectivity
	Local Edge-Connectivity

	Constrained Edge Splitting-off
	Preliminaries
	General Constrained Edge Splitting-off Lemma
	Structural Properties of Non-Admissible Pairs
	Some Useful Lemmas
	An Upper Bound on | DP|
	An Inductive Argument

	Non-Admissibility Graph and Constraint Graph
	Vertex Set Partition Constraint
	Graph Simplicity Constraint
	Simultaneous Graph Constraint
	Tight Sufficient Conditions

	Global Arc-Connectivity Setting
	Proof of Lemma 4.15

	Constrained Edge-Connectivity Augmentation Problem
	Preliminaries
	Additive Approximation Algorithms
	Edge-Connectivity Augmentation Preserving Vertex Set Partition
	Edge-Connectivity Augmentation Preserving Simplicity
	Simultaneous-Graph Edge-Connectivity Augmentation

	Global Arc-Connectivity Setting
	Edge-Connectivity Augmentation Preserving Vertex Set Partition
	Edge-Connectivity Augmentation Preserving Simplicity
	Simultaneous Edge-Connectivity Augmentation

	Efficient Edge Splitting-off Algorithm
	Preliminaries
	Efficient Tools for Edge-Connectivity Problems
	An Alternative Proof of Mader's Theorem

	Framework for Complete Edge Splitting-off
	Proof of Lemma 6.5

	Efficient Splitting-off Attempt
	Indicator Vertex
	Splitting-off to Capacity

	Randomized and Parallelized Edge Splitting-off Algorithm
	Deterministic Edge Splitting-off Algorithm
	Algorithms in Other Settings
	Edge Splitting-off in Network Design Problems
	Constrained Edge Splitting-off

	Concluding Remarks
	Bibliography

