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Abstract

We prove two results on packing common bases of two matroids. First, we show that
the computational problem of common base packing reduces to the special case where one
of the matroids is a direct sum of uniform matroids. Second, we give a counterexample to
a conjecture of Chow, which proposed a sufficient condition for the existence of a common
base packing. Chow’s conjecture is a generalization of Rota’s basis conjecture.

1 Introduction

The problem of packing bases in a matroid was considered in classical work of Edmonds [6] [7,
Application 2]. He characterized when such a packing is possible and gave efficient algorithms
to find such a packing. We consider the following generalization.

Problem 1. Let M1 = (S,I1) and M2 = (S,I2) be matroids on ground set S, where I1 and
I2 are the respective families of independent sets. A set B ⊆ S that is both a base of M1 and of
M2 is called a common base. The problem is to decide if S can be partitioned into common
bases.

The computational complexity of Problem 1 is unclear. In particular, the answers to the
following questions are unknown.

• If each matroid is given by an oracle that tests independence in the matroid, is there an
algorithm that solves the problem using a number of queries that is polynomial in |S|?

• If each matroid is linear and given by an explicit matrix representing the matroid, is there
an algorithm that solves the problem using a number of steps that is polynomial in the
size of this matrix?

Two well-studied special cases of this problem include edge-coloring bipartite graphs and
packing arborescences in digraphs. For these two special cases, both of these questions have
a positive answer; this follows from results of Kőnig [14], Tarjan [19] and Lovász [15]. The
latter two results give an efficient, constructive proof of a min-max relation originally proved by
Edmonds [9].

Another problem related to packing common bases is Rota’s basis conjecture.
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Conjecture 2 (Rota, 1989). Let M = (T,I) be a matroid of rank n. Let A1, . . . , An be a
partition of T into bases of M. Then there are disjoint bases B1, . . . , Bn such that |Ai∩Bj| = 1
for every i = 1, . . . , n and j = 1, . . . , n.

Rota’s conjecture is stated in the work of Huang and Rota [13, Conjecture 4] and remains
open. It can be restated in a way that emphasizes its connection to Problem 1. Let M1 be
a matroid of rank n and let A1, . . . , An be disjoint bases of M. Let M2 be the direct sum of
uniform rank-1 matroids on the sets A1, . . . , An. The conjecture asserts that the solution to
Problem 1 for M1 and M2 is “yes”.

Recently, Chow [1] proposed the following generalization of Rota’s conjecture.

Conjecture 3. Let M = (T,I) be a matroid of rank n with the property that T can be
partitioned into b bases, where 3 ≤ b ≤ n. Let I1, . . . , In ∈ I be disjoint independent sets, each
of size at most b. Then there exists a partition of T into sets A1, . . . , An such that Ii ⊆ Ai and
|Ai| = b for every i = 1, . . . , n, and there exist disjoint bases B1, . . . , Bb such that |Ai ∩Bj| = 1
for every i = 1, . . . , n and j = 1, . . . , b.

For the remainder of this paper, we will only consider the special case of Chow’s conjecture
in which |Ii| = b and hence Ai = Ii for every i = 1, . . . , n.

Obviously Chow’s conjecture implies Rota’s conjecture, by setting b = n. A stronger
statement is also true: Chow [1] proved that, for every value of b, his conjecture implies Rota’s
conjecture. In particular, this suggests an approach to proving Rota’s conjecture, which is to
prove Chow’s conjecture for the special case b = 3. Note that Conjecture 3 is not true if b = 2,
as is shown by a well-known instance based on the graphic matroid of the complete graph K4.
See, e.g., [5], [16, Exercise 12.3.11(ii)] or [18, Section 42.6c].

This paper contains two related results. First, we give a reduction from Problem 1 for
arbitrary M1 and M2 to the same problem for new matroids M′

1 and M′
2 where M′

2 is a direct
sum of uniform matroids. As will be clear later, it is not possible to apply the reduction twice
so that both matroids become direct sums of uniform matroids. Our reduction is efficiently
computable, implying the following statement.

Theorem 4. Problem 1 can be solved in polynomial time if and only if this is true under the
additional assumption that one of the matroids is a direct sum of uniform matroids.

This shows that the computational difficulty of Problem 1 does not stem from the inter-
action of two potentially complicated matroids — the problem is equally difficult when one of
the matroids is very simple.

Our second result disproves Chow’s conjecture.

Theorem 5. Conjecture 3 is false for every b such that 2 ≤ b ≤ n/3.

In fact, we give two proofs of Theorem 5. Chow [1] mentioned that a variant of Conjecture 3,
when I1, I2, . . . , In are not required to be independent in the matroid, is not true. Our first
proof, given in Section 4, shows that Conjecture 3 can be reduced to this variant, and thus
any counterexample to the variant (such as the one in Appendix A) can be transformed to
a counterexample of Conjecture 3. The second proof, given in Section 5, uses a connection
between packing common bases and packing dijoins. We note that Chow’s conjecture remains
open when b > n/3; in particular, Rota’s conjecture remains open.

By combining our two results, we obtain the following refinement.

Corollary 6. Problem 1 can be solved in polynomial time if and only if this is true under
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the additional assumption that M2 is a direct sum of uniform matroids whose blocks are each
independent in M1.

2 Preliminaries

We begin with some terminology which will be useful throughout this paper. Let M = (T,I)
be a direct sum of uniform rank-1 matroids. In the field of combinatorial optimization, such
a matroid is commonly called a partition matroid [18, pp. 659]. Let A = {A1, . . . , An} be
the partition of T induced by this direct sum; these sets Ai are called the blocks of M. The
independent sets of M are

I = { I : |I ∩Ai| ≤ 1 ∀i = 1, . . . , n } .
It is convenient to denote this matroid U1(A).

A matroid is called a generalized partition matroid if it is the direct sum of uniform
matroids of arbitrary rank. Again assuming that A = {A1, . . . , An} is a partition of T , we let
Uk(A) denote the generalized partition matroid whose independent sets are

{ I : |I ∩Ai| ≤ k ∀i = 1, . . . , n } .

The set of integers {1, . . . , k} is denoted [k]. For a finite set S, we will use its Cartesian
product with [k], namely

S × [k] = { (s, i) : s ∈ S, i ∈ [k] } .
For brevity, we also write this as S[k]. Any subset A ⊆ S is extended to a subset A[k] ⊆ S[k] by
taking A[k] = A × [k]. Similarly, for any s ∈ S, let s[k] = {s} × [k]. Conversely, the projection
onto S of any subset B ⊆ S[k] is

π(B) = { s ∈ S : ∃x ∈ [k] s.t. (s, x) ∈ B } .

For any matroid M = (S,I), we define M[k] to be the matroid on the ground set S[k]

whose independent sets are{
I ⊆ S[k] : π(I) ∈ I, |I ∩ s[k]| ≤ 1 ∀s ∈ S

}
.

In other words, every element of S has been replaced by k parallel elements. Note that the rank
of M[k] is the same as the rank of M.

The direct sum of two matroids M1 and M2 on disjoint ground sets is denoted M1 ⊕M2.
The dual of a matroid M is denoted M∗. For simplicity we write M∗[k] to denote (M∗)[k].

3 Packing common bases and partition matroids

In this section we prove Theorem 4. Suppose we are given two matroids M1 and M2 on a
ground set S. We will show how to construct two new matroids, one of which is a partition
matroid, such that M1 and M2 can be partitioned into common bases if and only if the new
matroids can be partitioned into common bases. The essence of our proof is to generalize an
observation of Edmonds [8, claims 104–106]. He constructs two new matroids, one of which is
a partition matroid, such that a common base of M1 and M2 exists if and only if a common
base of the new matroids exists.
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We may assume that M1 and M2 contain no loops, that their rank is the same number r,
that they have at least one common base, and that |S| is a multiple of r, say |S| = (k + 1) · r.
These assumptions can easily be tested in polynomial time, and if they do not hold then the
solution to Problem 1 is “no”.

The two new matroids are defined on the ground set S ∪ S[k]. Let Ŝ = { ŝ : s ∈ S } be
the partition of S ∪ S[k] where ŝ = {s} ∪ s[k] for each s ∈ S. To visualize this, one can view
the elements of S ∪ S[k] as being written in an |S| × (k + 1) array, where the elements in S are
written in the first column and the elements of ŝ are written in a row for every s ∈ S. The new
matroids are

M = M1 ⊕M
∗[k]
2 and U1(Ŝ).

One may easily verify that both of these matroids have rank |S|.
Claim 7. The common bases of M and U1(Ŝ) are precisely the subsets B ⊆ S∪S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S and B ∩ S is a common base of M1 and M2. (1)

Proof. Recall that r is the rank of both M1 and M2. Let B1, B2 and B∗
2 respectively denote

the base families of M1, M2 and M∗
2.

Clearly the bases of U1(Ŝ) are the subsets B ⊆ S∪S[k] for which |B∩ŝ| = 1 for every s ∈ S.
Of these subsets, the bases of M are exactly those for which B ∩ S ∈ B1 and π(B ∩ S[k]) ∈ B∗

2.
Note that π(B ∩ S[k]) = S \ B. Since S \ B ∈ B∗

2 is equivalent to B ∩ S ∈ B2, this establishes
(1). �

Corollary 8. If B1, . . . , Bk+1 is a partition of S ∪ S[k] into common bases of M and U1(Ŝ),
then B1∩S, . . . , Bk+1∩S is a partition of S into common bases of M1 and M2.

Claim 9. Given a partition B1, . . . , Bk+1 of S into common bases of M1 and M2, we can
construct a partition B′

1, . . . , B
′
k+1 of S ∪ S[k] into common bases of M and U1(Ŝ).

Proof. The idea is simple: we extend each Bj into a common base of M and U1(Ŝ) by picking
one element from s[k] for each s ∈ S \ Bj . Visualizing the new ground set as an array, the
process is: for each row containing no element of Bj , we pick an arbitrary element in that row,
excluding the first element, since it lies in S.

More formally, we will partition S[k] into C1, . . . , Ck+1 such that the following properties
are satisfied.

π(Cj) = S \Bj and |Cj ∩ s[k]| ≤ 1 ∀s ∈ S.

Then we will set B′
j = Bj ∪ Cj . The resulting sets B′

j will satisfy (1), so by Claim 7 they are

common bases of M and U1(Ŝ). The construction of the sets Cj is by a simple greedy approach
that proceeds by sequentially constructing C1, then C2, etc. To construct Cj , for each element
s ∈ S \Bj we add to Cj an arbitrary element in s[k] \⋃�<j C�. Such an element exists because

the sets Bj are a partition of S, so for every s ∈ S, we have |{ j : s 	∈ Bj }| = k = |s[k]|. �

Claim 7 and Claim 9 together imply Theorem 4.

4 A counterexample to Chow’s Conjecture

In [1], Chow stated that the following variant of Conjecture 3 is not true.
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Conjecture 10. Let M = (S,I) be a matroid of rank m with the property that S can be
partitioned into b bases, where 3 ≤ b ≤ m. Let A1, . . . , Am be disjoint sets, each of size b.
Then there are disjoint bases B1, . . . , Bb such that |Ai ∩ Bj | = 1 for every i = 1, . . . ,m and
j = 1, . . . , b.

Using a reduction similar to that in Theorem 4, we show that any counterexample to
Conjecture 10 yields a counterexample to Conjecture 3. Since counterexamples to Conjecture 10
are known, this yields counterexamples to Conjecture 3 via our reduction. The precise statement
that we prove is the following theorem.

Theorem 11. Let M1 = (S,I1) be a matroid with rank m, no loops and |S| = (k+1) ·m. Let
A = {A1, . . . , Am} be a partition of S where each |Ai| = k+1. With a slight abuse of notation,
define

A[k] =
{
A

[k]
1 , . . . , A[k]

m

}
and M = M1 ⊕Uk(A[k]).

As above, let Ŝ = { ŝ : s ∈ S } be the partition of S ∪ S[k] where ŝ = {s} ∪ s[k] for each s ∈ S.
Then the following statements hold.

M1 and U1(A) have k + 1 disjoint common bases if and only if M and U1(Ŝ) do, (2a)

every set in Ŝ is independent in M, and (2b)

if M1 has k + 1 disjoint bases then M has k + 1 disjoint bases. (2c)

Proof. Statement (2b) is straightforward, so we begin by proving (2c). Since M is a direct
sum, it suffices to show that S can be partitioned into k + 1 bases of M1 and that S[k] can
be partitioned into k + 1 bases of Uk(A[k]). The first condition holds by assumption. We now
prove the second condition in a manner similar to Claim 9. Since |Ai| = k+1 for every i, there
exists a partition of S into bases B1, . . . , Bk+1 of U1(A). We will greedily construct a partition

of S[k] into C1, . . . , Ck+1 such that |Cj ∩A
[k]
i | = k for each i and each j, implying that each Cj

is a base of Uk(A). To construct Cj , for each element s ∈ S \ Bj we add to Cj an arbitrary
element in s[k] \⋃�<j C�. Such an element exists because the sets Bj are a partition of S, so for

every s ∈ S, we have |{ j : s 	∈ Bj }| = k = |s[k]|.
To prove (2a) we require the following claim, which is similar to Claim 7.

Claim 12. The common bases of M andU1(Ŝ) are precisely the subsets B ⊆ S∪S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S and B ∩ S is a common base of M1 and U1(A).

Proof. The common bases of M and U1(Ŝ) are the subsets B ⊆ S ∪ S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S (3a)

B ∩ S is a base of M1 (3b)

|B ∩A
[k]
i | = k ∀i. (3c)

The main point is that, under the assumption that (3a) holds, (3c) is equivalent to

|B ∩Ai| = 1 ∀i.

This last condition is equivalent to B ∩ S being a base of U1(A). �

Now we prove (2a). If B1, . . . , Bk+1 are disjoint common bases of M and U1(Ŝ) then, by
Claim 12, B1∩S, . . . , Bk+1∩S are disjoint common bases of M1 and U1(A). Conversely, suppose

5



that B1, . . . , Bk+1 are disjoint common bases of M1 and U1(A). Then the argument of Claim 9
shows that we can construct k + 1 disjoint common bases of M and U1(Ŝ). �

Proof (of Theorem 5). Suppose that we have a counterexample to Conjecture 10 consisting
of a matroid M1 together with the sets A1, . . . , Am, each of which has |Ai| = b. Let A =
{A1, . . . , Am}. Then each of M1 and U1(A) can be partitioned into b bases, but they cannot
be partitioned into b common bases.

Let k = b− 1. Construct the matroids M and U1(Ŝ) as in Theorem 11. Then M has rank
|S| and it can be partitioned into b bases, by (2c). Furthermore U1(Ŝ) is a partition matroid
whose blocks are each independent in M, by (2b). Since M1 and U1(A) do not have k + 1
disjoint bases, neither do M and U1(Ŝ), by (2a). Thus M and U1(Ŝ) give a counterexample to
Conjecture 3.

McDiarmid showed a counterexample (briefly described in Appendix A) to Conjecture 10
for any b ≥ 2 with m = 3 and |S| = 3b. Thus our construction shows that Conjecture 3 is
false for any b ≥ 2 and n = 3b. By Chow’s theorem [1], this implies that Conjecture 3 is false
whenever 2 ≤ b ≤ n/3. �

Theorem 4 describes a polynomial-time reduction from an arbitrary instance of Problem
1 to an instance in which one of the matroids is a partition matroid. Theorem 11 describes
a polynomial-time reduction from an instance of Problem 1 in which one of the matroids is
a partition matroid to another instance in which one of the matroids is a partition matroid
whose blocks are independent in the other matroid. Composing these two reductions proves
Corollary 6.

5 Chow’s Conjecture and Dijoins

In this section we give an alternative proof of Theorem 5. The proof is based on a connection
between dijoins and common matroid bases, due to Frank and Tardos [11], and Schrijver’s
counterexample on packing dijoins [17].

Let D = (V,A) be a directed graph. For any set U ⊆ V , we let δin(U) be the set of arcs
entering U and let δout(U) be the set of arcs leaving U . Define din(U) = |δin(U)| and dout(U) =
|δout(U)|. For any arc set F we also define dinF (U) = |δin(U) ∩ F | and doutF (U) = |δout(U) ∩ F |.
For any vertex v ∈ V , we use the shorthand dinF (v) for d

in
F ({v}).

An arc set C ⊆ A is called a directed cut if there exists ∅ 	= U � V such that C = δin(U)
and dout(U) = 0. A k-dijoin is an arc set F ⊆ A that contains at least k arcs from each directed
cut of D. A 1-dijoin is called simply a dijoin. Schrijver’s counterexample showed the existence
of a digraph and a 2-dijoin that cannot be partitioned into two disjoint dijoins. By adding three
arcs x′, y′, z′ to Schrijver’s example, we can obtain a 3-dijoin that cannot be decomposed into
three dijoins. The resulting example is shown in Figure 1 and is denoted D = (V,A). Let F be
the set of bold arcs in this example. One may verify that F is a 3-dijoin.

Claim 13. The arc set F cannot be decomposed into three dijoins.

Proof. Let D be the family of all arc sets equivalent to {x′, y′, z′} under the relations x ≡ x′,
y ≡ y′ and z ≡ z′. Note that all arc sets in D are dijoins.

Any decomposition of F into three dijoins cannot contain a dijoin in D since the remainder
is Schrijver’s counterexample, which cannot be decomposed into two dijoins. Any dijoin not
in D must contain at least four arcs because of the nodes of in-degree and out-degree zero
represented in Figure 2(a). Any dijoin of exactly four arcs must contain two nonparallel arcs

6



from {x, x′, y, y′, z, z′}, as is clear from Figure 2(a). Since F has twelve elements, each of the
three disjoint dijoins must have exactly four arcs and each must contain two nonparallel arcs
from {x, x′, y, y′, z, z′}. But Figure 2(b) shows that such an arc set cannot be a dijoin: there is
a set of out-degree zero in D that it does not enter. �

We define an arc set F ′ (which is not a subset of A) by taking F and adding two reversed
arcs for each arc of F . For a ∈ F , these reversed arcs will be denoted by a−1

1 and a−1
2 . We

obtain another counterexample for Chow’s conjecture by defining a matroid with ground set F ′.
First define

X :=
{
X : ∅ 	= X � V and doutA (X) = 0

}
and define iF (X) to be the number of arcs of F with both endpoints in X. The matroid M is
defined by its bases: a set B ⊆ F ′ is a base if and only if |B| = |F | and∑

v∈X
dinB(v) ≥ iF (X) + 1 ∀X ∈ X . (4)

It was shown by Frank and Tardos [11] [18, Section 55.5] that this construction gives a matroid.

Claim 14. The ground set F ′ of the matroid M can be partitioned into three bases.

Proof. First we claim that the base polyhedron of M is

Q :=

{
x : x(F ′) = |F |,

∑
v∈X

x(δin(v)) ≥ iF (X) + 1 ∀X ∈ X , 0 ≤ xa ≤ 1 ∀a ∈ F ′
}
.

To see this, first note that, since the directed cuts form a crossing family, their complements
also form a crossing family C. We can define a crossing submodular function f : C → R such
that (4) is equivalent to |B ∩ Z| ≤ f(Z) for all Z ∈ C. Now by following another argument in
Schrijver [18] proving that M is a matroid (see Theorem 49.7, Equation (49.11) and Equation
(44.43)) it follows that Q is indeed the base polyhedron of M.

Since F ⊂ F ′ and F is a 3-dijoin, we have∑
v∈X

dinF ′(v) = iF ′(X) + dinF ′(X) ≥ iF ′(X) + 3 ∀X ∈ X .

Since iF ′(X) = 3iF (X) for every X ⊆ V , we have

∑
v∈X

dinF ′(v)

3
≥ iF (X) + 1 ∀X ∈ X .

Let x be the the characteristic vector of F ′, divided by 3. Then we have shown that x ∈ Q.
Since matroid base polyhedra have the integer decomposition property [18, Corollary 42.1e],
this implies that F ′ can be partitioned into three bases. �

Let us define the sets Ia = {a, a−1
1 , a−1

2 } (a ∈ F ). These triplets are independent sets. To
see this, note that F is a base; moreover, it satisfies inequality (4) with iF (X) + 3 instead of
iF (X) + 1. Thus, for arbitrary distinct arcs a, b, c ∈ F , the set (F \ {a, b, c}) ∪ Ia is a base.

Conjecture 3 would imply that F ′ can be decomposed into three bases B1, B2, B3 such that
|Bj∩Ia| = 1 for any j ∈ {1, 2, 3} and a ∈ F . Suppose that this is possible; then iBj (X) = iF (X)
for every X ⊆ V , so

∑
v∈X dinBj

(v) ≥ iF (X) + 1 implies that

dinBj
(X) ≥ 1 for every ∅ 	= X � V with doutA (X) = 0.
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x'
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Figure 1: Schrijver’s example, augmented with additional arcs x′, y′ and z′. The bold arcs
form a 3-dijoin which cannot be decomposed into three dijoins.

In other words, Bj has at least one arc in every directed cut of D. However, the only arcs that
are in directed cuts of D are the arcs of F . Thus the conjecture would imply that F can be
decomposed into three dijoins, but by Claim 13 this is impossible.

This proves Theorem 5 for the case b = 3. By adding additional arcs parallel to x′, y′, z′

one can extend this argument to obtain a counterexample to Conjecture 3 for all 3 ≤ b ≤ n/3−1.
This proves Theorem 5, with slightly weaker parameters.

Concluding Remarks

Several basic questions on disjoint common bases of two matroids remain open. One question
is to determine the computational complexity of Problem 1. As we have shown, it suffices to
consider the case when one of the matroids is a partition matroid. Even when the other matroid
is a graphic matroid, the computational complexity is still unknown. Another question is to
find a sufficient condition that guarantees the existence of k disjoint common bases. Geelen
and Webb [12] showed that there are

√
n disjoint common bases under the setting in Rota’s

conjecture.

Finding further counterexamples to Chow’s conjecture may lead to an improvement of
the parameters in Theorem 5, and perhaps a better understanding of Rota’s conjecture. One
framework that seems quite relevant for such questions is the topic of clutters [2, 3]. A clutter
C is a pair (V (C), E(C)), where V (C) is a finite set and E(C) = {E1, E2, . . .} is an antichain in
the lattice of subsets of V (C), i.e., a family of distinct subsets of V (C) such that Ei ⊆ Ej implies
i = j. The elements of V (C) are called vertices and the elements of E(C) are called edges.
A transversal of C is a subset of V (C) that intersects all edges in E(C). Let τ(C) denote the
minimum cardinality of any transversal. We say that the clutter C packs if there exist τ(C)
pairwise disjoint edges.

As in Conjectures 2 and 3, let M = (T,I) be a matroid of rank n with the property that
T can be partitioned into b bases, where 3 ≤ b ≤ n. Let A1, . . . , An ∈ I be disjoint independent
sets, each of size b. Consider the clutter C with V (C) = T and

E(C) = { B : B ∈ I and |Ai ∩B| = 1 ∀i ∈ [n] } . (5)

Note that every B ∈ E(C) is a base of M.
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(a) (b)

Figure 2: (a) Nodes of out-degree 0 (black) and in-degree 0 (gray) in the digraph (V, F ). (b)
The solid arcs do not form a dijoin because of the set of out-degree 0, indicated by the oval.

Conjectures 2 and 3 are equivalent to the statement that the clutter C packs, since we show
in Appendix B that τ(C) = b. Therefore any counterexample to these conjectures necessarily
involves a clutter that does not pack. Characterizing clutters that do not pack seems difficult,
although there has been significant work on identifying the minimal such clutters [4].

The counterexample to Conjecture 3 given in Section 4 is based on a well-known clutter1

Q6 that does not pack, and which underlies the K4 counterexample described in Appendix A.
The counterexample to Conjecture 3 given in Section 5 is based on another famous such clutter,
known as Q6 ⊗ {1, 3, 5}. This clutter was developed by Schrijver [17] to disprove a conjecture
of Edmonds and Giles [10] on packing dijoins.

An important class of clutters is the the class of ideal clutters [2]. One can show that the
clutter C defined in (5) is not necessarily ideal: there is a laminar matroid on nine elements
such that C2

3 is a minor of C. On the other hand, our two counterexamples are based on Q6 and
Q6⊗{1, 3, 5}, which are both ideal. Is there a counterexample based on a non-ideal, non-packing
clutter?
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Figure 3: (a) The graph K4 with our chosen edge labeling. (b) The graph G2 is obtained by
letting a2, b2 and c2 be parallel copies of a1, b1 and c1, respectively.

A The K4 counterexample

Consider K4, the complete graph on four vertices. As shown in Figure 3(a), we write its edges
as S = {a0, a1, b0, b1, c0, c1}, where a0 ∩ a1 = ∅, b0 ∩ b1 = ∅, c0 ∩ c1 = ∅, and {a1, b1, c1} forms
a spanning star. Let M1 = (S,I1) be the graphic matroid of K4. Let M2 be the partition
matroid

U1({{a0, a1} , {b0, b1} , {c0, c1}}).
It is well-known [5] that both M1 and M2 have two disjoint bases, but they do not have two
disjoint common bases. The common bases of M1 and M2 are precisely the spanning stars in
K4.

McDiarmid [1] showed how to extend this example to obtain, for any k ≥ 1, two matroids
M1 = (S,I1) and M2 = (S,I2) such that

• S can be partitioned into k + 1 bases of M1,

• S can be partitioned into k + 1 bases of M2, and

• S cannot be partitioned into k + 1 common bases of M1 and M2.

We now describe this extension. The example is based on the graph Gk, which is con-
structed from K4 by adding new edges:

• a2, . . . , ak parallel to a1,

• b2, . . . , bk parallel to b1, and

• c2, . . . , ck parallel to c1.

The graph G2 is shown in Figure 3(b). Define

Ea = {a1, . . . , ak} Eb = {b1, . . . , bk} Ec = {c1, . . . , ck}
Fa = {a0, . . . , ak} Fb = {b0, . . . , bk} Fc = {c0, . . . , ck} .

Let M1 be the graphic matroid of Gk. Let M2 = U1(Fa, Fb, Fc). It is easy to see that the
edges can be partitioned into k + 1 bases of M1, or into k + 1 bases of M2.

Claim 15. The edges cannot be partitioned into k + 1 common bases of M1 and M2.
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Proof. As remarked above, the common bases of M1 and M2 are precisely the spanning stars
in Gk. We consider two cases.

Case 1: k ≥ 3. Since there are only three edges not in Ea ∪ Eb ∪ Ec, at least one of the k + 1
common bases is contained in Ea ∪ Eb ∪ Ec. Removing this common base, the resulting graph
is Gk−1. By induction, this instance cannot be partitioned into k common bases.

Case 2: k = 2. Note that there is no spanning star using exactly two edges from Ea ∪Eb ∪Ec.
So two of the common bases use three of those edges, and the other common base uses none.
But the complement of Ea ∪ Eb ∪Ec is not a spanning star. �

The matroids M1 and M2 give a counterexample to Conjecture 10 for m = 3 and arbitrary
b ≥ 2: take k = b−1, and define the sets A1, A2, A3 to be the blocks of the matroidM2. However,
this does not directly yield a counterexample to Conjecture 3 for b ≥ 3 since the sets A1, A2, A3

are not independent in M1.

B Minimum Transversals and Rota’s Conjecture

In this appendix, we determine the minimum cardinality of any transversal for the clutter defined
in (5).

Claim 16. τ(C) = b.

Proof. Obviously τ(C) ≤ b as any set Ai is a transversal. So suppose there exists a transversal
D ⊆ T such that |D| < b. Let A = {A1, . . . , An}. We wish to show that there is an edge that
does not intersect D, which is equivalent to showing that M\D and U1(A)\D have a common
base. Let rM and rU1(A) respectively be the rank function of M and U1(A). By the matroid
intersection theorem [18, Theorem 41.1] [16, Theorem 12.3.15], it suffices to show that

rM(A) + rU1(A)(T \ (D ∪A)) ≥ n ∀A ⊆ T \D. (6)

By Edmonds’ matroid base covering theorem [18, Corollary 42.1c] [16, Theorem 12.3.12], for
any set A we have rM(A) ≥ �|A|/b� and rU1(A)(A) ≥ �|A|/b�. Thus

rM(A) + rU1(A)(T \ (D ∪A)) ≥
⌈ |A|

b

⌉
+

⌈ |T \ (D ∪A)|
b

⌉
=

⌈ |A|
b

⌉
+

⌈ |T \ A|
b

⌉
− ε ≥ n− ε,

where ε ∈ {0, 1}, since |D| < b.

If the last inequality is strict, then (6) must be satisfied. If last inequality holds with
equality then |A|/b and |T \ A|/b are both integers, which implies that �|T \ (D ∪A)|/b� =
|T \ A|/b, since |D| < b. Thus ε = 0 and so (6) is satisfied. �
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