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Abstract—The classical Cheeger’s inequality relates the edge
conductance of a graph and the second smallest eigenvalue of the
Laplacian matrix. Recently, Olesker-Taylor and Zanetti discov-
ered a Cheeger-type inequality connecting the vertex expansion of
a graph and the maximum reweighted second smallest eigenvalue
of the Laplacian matrix.

In this work, we first improve their result to a logarithmic
dependence on the maximum degree in the graph, which is
optimal up to a constant factor. Also, the improved result holds
for weighted vertex expansion, answering an open question by
Olesker-Taylor and Zanetti.

Building on this connection, we then develop a new spectral
theory for vertex expansion. We discover that several interesting
generalizations of Cheeger inequalities relating edge conduc-
tances and eigenvalues have a close analog in relating vertex
expansions and reweighted eigenvalues. These include an analog
of Trevisan’s result on bipartiteness, an analog of higher order
Cheeger’s inequality, and an analog of improved Cheeger’s
inequality.

Finally, inspired by this connection, we present negative
evidence to the 0/1-polytope edge expansion conjecture by Mihail
and Vazirani. We construct 0/1-polytopes whose graphs have very
poor vertex expansion. This implies that the fastest mixing time
to the uniform distribution on the vertices of these 0/1-polytopes
is almost linear in the graph size.

Index Terms—Cheeger inequalities, vertex expansion,
reweighted eigenvalues, mixing time, spectral analysis

I. INTRODUCTION

The connection between vertex expansion and reweighted
eigenvalue is discovered through the study of the fastest mix-
ing time problem introduced by Boyd, Diaconis and Xiao [11].
In the fastest mixing time problem, we are given an undi-
rected graph G = (V,E) and a target probability distribution
π : V → R. The task is to find a time-reversible transition
matrix P ∈ R|V |×|V | supported on the edges of G, so that the
stationary distribution of random walks with transition matrix
P is π. The objective is to find such a transition matrix that
minimizes the mixing time to the stationary distribution π. It is
well-known that the mixing time to the stationary distribution
is approximately inversely proportional to the spectral gap
1 − α2(P ) of the time-reversible transition matrix P , where
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1 = α1(P ) ≥ α2(P ) ≥ · · · ≥ α|V |(P ) ≥ −1 are the
eigenvalues of P . The fastest mixing time problem is thus
formulated as follows in [11] by the maximum spectral gap
achievable through such a “reweighting” P of the input graph
G.

Definition I.1 (Maximum Reweighted Spectral Gap [11]).
Given an undirected graph G = (V,E) and a probability
distribution π on V , the maximum reweighted spectral gap is
defined as

λ∗2(G) := max
P≥0

1− α2(P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.

The graph is assumed to have a self-loop on each vertex,
to ensure that the optimization problem for λ∗2(G) is always
feasible. In the context of Markov chains, this corresponds to
allowing a non-negative holding probability on each vertex.

The last constraint is the time reversible condition to ensure
that the transition matrix P corresponds to random walks
on an undirected graph (where the edge weight of uv is
π(u)P (u, v)) and that the stationary distribution of P is π.
Note that λ∗2(G) = maxP≥0(1 − α2(P )) = maxP≥0 λ2(I −
P ), which is the maximum reweighted second smallest eigen-
value of the normalized Laplacian matrix of G (where the edge
weight of uv is π(u)P (u, v)) subject to the above constraints.

Boyd, Diaconis and Xiao showed that this optimization
problem can be written as a semidefinite program and thus
λ∗2(G) can be computed in polynomial time. Subsequently, the
fastest mixing time problem has been studied in various work
(see [9], [10], [15], [20], [37] and more references in [35]), but
no general characterization was known. Roch [37] showed that
the vertex expansion ψ(G) is an upper bound on the optimal
spectral gap λ∗2(G).

Definition I.2 (Weighted Vertex Expansion). Let G = (V,E)
be an undirected graph and π be a probability distribution on
V . For a subset S ⊆ V , let ∂S := {v /∈ S | ∃u ∈ S with uv ∈
E} be the vertex boundary of S, and π(S) :=

∑
v∈S π(v) be
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the weight of S. The weighted vertex expansion of a set S ⊆ V
and of a graph G are defined as ψ(S) := π(∂S)

π(S) and

ψ(G) := min
{
1, min
S⊆V :0<π(S)≤1/2

ψ(S)
}
.1

When π is the uniform distribution, ψ(S) is the usual vertex
expansion |∂S|/|S|.

Recently, Olesker-Taylor and Zanetti [35] discovered an
elegant Cheeger-type inequality for vertex expansion and the
maximum reweighted spectral gap, showing that small vertex
expansion is qualitatively the only obstruction for the fastest
mixing time to be small. Note that their result only holds when
π is the uniform distribution.

Theorem I.3 (Cheeger Inequality for Vertex Expansion [35]).
For any undirected graph G = (V,E) and the uniform
distribution π = 1⃗/|V |,

ψ(G)2

log |V |
≲ λ∗2(G) ≲ ψ(G).

In terms of the fastest mixing time τ∗(G) to the uniform
distribution, 1

ψ(G) ≲ τ∗(G) ≲ log2 |V |
ψ2(G) . (See section II for

definitions for random walks and mixing time.)

Unlike Cheeger’s inequality for edge conductance where
ϕ(G)2 ≲ λ2(G) ≲ ϕ(G), it is noted in [35] that the log |V |
term might not be completely removed: Louis, Raghavendra
and Vempala [34] proved that it is NP-hard to distinguish be-
tween ψ(G) ≤ ϵ and ψ(G) ≳

√
ϵ log d for every ϵ > 0 where

d is the maximum degree of the graph G, assuming the small-
set expansion conjecture of Raghavendra and Steurer [36].

Besides the fastest mixing time problem, we note that
these “reweighting problems” relating vertex expansion and
reweighted eigenvalues are also well motivated in the study
of approximation algorithms. One example is a conjecture of
Arora and Ge [5, Conjecture 12], which roughly states that,
if a graph G has almost perfect vertex expansion for every
set, then there exists a reweighted doubly stochastic matrix P
of the adjacency matrix of G so that P has few eigenvalues
less than − 1

16 . They proved that if the conjecture was true,
then there is an improved subexponential time algorithm for
coloring 3-colorable graphs. Another example is a conjecture
of Steurer [39, Conjecture 9.2], which is also known to be
related to a reweighting problem between vertex expansion
and the graph spectrum, that if true would imply an improved
subexponential time approximation algorithm for the sparsest
cut problem.

A. Our Results

First we improve and generalize the result of Olesker-Taylor
and Zanetti. Then we build on this new connection to develop

1When π is the uniform distribution, minS⊆V :0<π(S)≤1/2 ψ(S) is always
at most 1. For general π, however, this could be arbitrarily large. Consider for
example a star graph where the center has most of the π-weight. Therefore,
we need to put an upper bound of 1 on ψ(G), as otherwise ψ(G) cannot be
bounded by eigenvalues of the normalized Laplacian matrix which are always
upper bounded by 2.

a spectral theory for vertex expansion. Finally we present
0/1-polytopes with poor vertex expansion and discuss the
implications to the 0/1-polytope expansion conjecture.

1) Optimal Cheeger Inequality for Vertex Expansion:
Olesker-Taylor and Zanetti [35] posed the problem of reducing
the log |V | factor in Theorem I.3 to log d, and also the problem
of generalizing their result to weighted vertex expansion. Our
first result provides a positive answer to these two questions.

Theorem I.4 (Cheeger Inequality for Weighted Vertex Expan-
sion). For any undirected graph G = (V,E) with maximum
degree d and any probability distribution π on V ,

ψ(G)2

log d
≲ λ∗2(G) ≲ ψ(G).

In terms of the fastest mixing time τ∗(G) to the stationary
distribution, 1

ψ(G) ≲ τ∗(G) ≲ log d·log π−1
min

ψ2(G) .

We show that the log d factor in Theorem I.4 is optimal,
by exhibiting graphs G with λ∗2(G) ≍ ψ(G)2

log d . Note that
the tightness result does not rely on the small-set expansion
hypothesis.

We note that Louis, Raghavendra and Vempala [34] gave an
SDP approximation algorithm for vertex expansion with the
same approximation guarantee, but their SDP is different from
and stronger than that in Definition I.1 (see Lemma III.10),
and so it does not have the natural interpretation as the
reweighted second eigenvalue and does not imply the result
on fastest mixing time. The proof of Theorem I.4 is based on
the techniques in [8], [34], which we will discuss in detail in
section III-A2.

2) Maximum Reweighted Lower Spectral Gap and Bipartite
Vertex Expansion: Trevisan [42] proved that the lower spectral
gap 1 + αmin(G) of the normalized adjacency matrix of
G = (V,E) is small if and only if there is a subset S ⊆ V
which is an almost bipartite component in G with small edge
conductance ϕ(S). We define the analogous notions for vertex
expansion and for reweighted lower spectral gap.

Definition I.5 (Bipartite Vertex Expansion). Given an undi-
rected graph G = (V,E), the bipartite vertex expansion of G
is defined as

ψB(G) :=min
{
1, min

∅̸=S⊆V

{
ψ(S) |

G[S] is an induced bipartite graph
}}
.

Definition I.6 (Maximum Reweighted Lower Spectral Gap).
Given an undirected graph G = (V,E) and a probability
distribution π on V , the maximum reweighted lower spectral
gap is defined as

ζ∗(G) := max
P≥0

λmin(DP + P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) ≤ 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.



where DP is the diagonal matrix of row sums of P such that
DP (u, u) =

∑
v∈V P (u, v) for u ∈ V . We note that this

program is slightly different from that in Definition I.1, and
the main reason is that self-loops should not be allowed in
this problem.

We prove an analog of Trevisan’s result that the maximum
reweighted lower spectral gap is small if and only if there is an
induced bipartite subgraph on S with small vertex expansion
ψ(S).

Theorem I.7 (Cheeger Inequality for Bipartite Vertex Expan-
sion). For any undirected graph G = (V,E) with maximum
degree d and any probability distribution π on V ,

ψB(G)
2

log d
≲ ζ∗(G) ≲ ψB(G).

This is the first approximation algorithm for bipartite vertex
expansion to our knowledge. Finding a two-colorable set with
small vertex expansion is one of the three ways in Blum’s
coloring tools [7] to make progress in designing approximation
algorithms for coloring 3-colorable graphs. Indeed, it is in
this context that Arora and Ge [5] made the reweighting
conjecture mentioned in the introduction. Theorem I.7 does
not imply anything new about approximating graph coloring,
but we hope that it is a step towards answering Arora and Ge’s
conjecture.

3) Higher-Order Cheeger Inequality for Vertex Expansion:
Lee, Oveis Gharan and Trevisan [29] and Louis, Raghavendra,
Tetali and Vempala [33] proved the higher-order Cheeger in-
equalities, which state that the k-th smallest eigenvalue λk(G)
of the normalized Laplacian matrix of G = (V,E) is small
if and only if the k-way edge conductance ϕk(G) is small.
More precisely, they proved that λk(G) ≲ ϕk(G) ≲ k2

√
λk

and λ k
2
(G) ≲

√
λk log k. We consider the analogous notion

of k-way vertex expansion.

Definition I.8 (k-Way Vertex Expansion). Given an undirected
graph G = (V,E) and a probability distribution π on V , the
k-way vertex expansion of G is defined as

ψk(G) := min
{
1, min
S1,...,Sk⊆V

max
1≤i≤k

ψ(Si)
}
,

where the minimum is taken over pairwise disjoint subsets
S1, . . . , Sk of V .

Definition I.9 (Maximum Reweighted k-th Smallest Eigen-
value). Given an undirected graph G = (V,E) and a prob-
ability distribution π on V , the maximum reweighted k-th
smallest eigenvalue of the normalized Laplacian matrix of G
is defined as λ∗k(G) := maxP≥0 λk(I−P ), where P is subject
to the same constraints stated in Definition I.1.

We prove an analog of higher-order Cheeger inequalities
that the maximum reweighted k-th smallest eigenvalue is
small if and only if the k-way vertex expansion is small. As
in previous work [29], [33], there is a better approximation
guarantee if we consider only k

2 -way vertex expansion.

Theorem I.10 (Higher-Order Cheeger Inequality for Vertex
Expansion). For any undirected graph G = (V,E) with
maximum degree d and any probability distribution π on V ,

λ∗k(G) ≲ ψk(G) ≲ k
9
2 log k

√
log d · λ∗k(G)

and
ψ k

2
(G) ≲

√
k log k

√
log d · λ∗k(G).

Chan, Louis, Tang and Zhang [12] developed a spectral
theory for hypergraphs and proved a higher-order Cheeger
inequality for hypergraph (edge) expansion. Through a re-
duction from vertex expansion to hypergraph expansion, they
proved that ψ k

2
(G) ≲ k

5
2 log k log log k · log d ·

√
ξk for graphs

with bounded ratio between the maximum degree and the
minimum degree, where ξk ≲ ψk(G) is a relaxation for k-
way vertex expansion. Compared to their result, Theorem I.10
does not require the assumption about the maximum degree
and the minimum degree of G, and has a better approximation
ratio for k

2 -way vertex expansion. Furthermore, Theorem I.10
provides the first true approximation algorithm for k-way
vertex expansion ψk(G) to our knowledge.

4) Improved Cheeger Inequality for Vertex Expansion:
Kwok, Lau, Lee, Oveis Gharan, and Trevisan [27] proved an
improved Cheeger inequality that ϕ(G) ≲ kλ2(G)/

√
λk(G)

for any k ≥ 2. This shows that λ2(G) is a tighter approxima-
tion to ϕ(G) when λk(G) is large for a small k. The result
provides an explanation for the good empirical performance
of the spectral partitioning algorithm.

We prove an analogous result that if the λ∗k(G) is large
for a small k, then λ∗2(G) is a tighter approximation to the
vertex expansion ψ(G). The following result is close to the
tight result in [27] for edge conductance.

Theorem I.11 (Improved Cheeger Inequality for Vertex Ex-
pansion). For any undirected graph G = (V,E) with maxi-
mum degree d, and for any probability distribution π on V
and any k ≥ 2,

λ∗2(G) ≲ ψ(G) ≲
k

3
2 · λ∗2(G) · log d√

λ∗k(G)
.

We remark that the reweighting used in λ∗2(G) and λ∗k(G)
may be different. Through Theorem I.10, we obtain the
following corollary that only depends on the graph structure:
If the k-way vertex expansion ψk(G) is large for a small k,
then λ∗2(G) is a tighter approximation to ψ(G).

5) Vertex Expansion of 0/1-Polytopes: Mihail and Vazirani
(see [18]) conjectured that the graph G = (V,E) (i.e. 1-
skeleton) of any 0/1-polytope is an edge expander, such that
|δ(S)|/|S| ≥ 1 for every subset S ⊆ V with |S| ≤ |V |/2,
where δ(S) denotes the set of edges between S and V \S. This
conjecture would imply fast mixing time of random walks to
the stationary distribution, with applications in designing fast
sampling algorithms for many classes of combinatorial objects.
The conjecture is proved to be correct in several cases [3],
[18], [25], most notably the recent resolution of the matroid



expansion conjecture [3] by Anari, Liu, Oveis Gharan and
Vinzant.

In all these positive results, the Markov chain can be set
up so that the stationary distribution is the uniform distri-
bution, with the mixing time to the stationary distribution
poly-logarithmic in the graph size. Then the fast sampling
algorithms can also be used to obtain an approximate counting
algorithm on the number of vertices in the given 0/1-polytope,
with poly-logarithmic runtime in the graph size. Therefore,
sampling from the uniform distribution is usually the setting
of interest.

Inspired by the connection between fastest mixing time
and vertex expansion, we consider a variant of Mihail and
Vazirani’s conjecture: Is the graph of every 0/1-polytope a
vertex expander? Perhaps surprisingly, we show that there are
0/1-polytopes whose graphs are very poor vertex expanders.

Theorem I.12 (0/1-Polytopes with Poor Vertex Expansion).
Let π be the uniform distribution. For any k > 2 and any
n > 2k sufficiently large, there is a 0/1-polytope Q = Qn,k ⊆
{0, 1}n with O(nk) vertices and

ψ(Q) ≲
(4k)k

nk−2
.

Theorem I.12 and Theorem I.3 together imply that even the
fastest mixing time of the reversible random walks on some
0/1-polytopes is almost linear in the graph size.

Corollary I.13 (Torpid Mixing to Uniform Distribution). For
any constant k > 2, there exists a 0/1-polytope Q such that
any reversible Markov chain on its graph GQ = (V,E) with
stationary distribution 1⃗/|V | has mixing time Ω

(
|V |1− 2

k

)
.

While Theorem I.12 does not provide a counterexample to
the conjecture of Mihail and Vazirani, it shows that even if the
conjecture is true, there are 0/1-polytopes for which random
walks cannot be used for efficient uniform sampling and for
efficient approximate counting.

Remark I.14. After posting the first version of this paper
on arXiv, we recently found out that Gillmann [22, Chap-
ter 3.2] has already constructed examples of 0/1-polytopes
whose graphs have poor vertex expansion. The polytopes
Q ⊆ {0, 1}n constructed have 2(h(c)+o(1))n vertices and
satisfy

ψ(Q) ≲ 2−(h(c)−2c)n,

where h(x) := −x log x − (1 − x) log(1 − x) is the binary
entropy function and c := 1/5 (correspondingly h(c) =
0.7219...). Applying Theorem I.3, this would imply a fastest
mixing time bound of Ω(|V |0.4459...). By choosing smaller
values of c, an almost linear fastest mixing time bound can
be obtained as in Corollary I.13.

B. Related Work

In this subsection, we review previous spectral approaches
for vertex expansion and compare them to the current ap-
proach using reweighted eigenvalues. For previous results
about Cheeger’s inequalities for edge conductances mentioned

in the introduction, they will be discussed in the corresponding
technical sections.

Second Eigenvalue and Vertex Expansion: There are
classical results in spectral graph theory relating vertex expan-
sions and (ordinary) eigenvalues. For any graph G = (V,E)
with maximum degree d, let λ′2(G) be the second smallest
eigenvalue of the (unnormalized) Laplacian matrix, it is known
that

ψ(G) ≥ 2λ′2(G)

d+ 2λ′2(G)
and λ′2(G) ≥

ψ(G)2

4 + 2ψ(G)2
,

where the first inequality is the “easy” direction proved by Tan-
ner [40] and Alon and Milman [2], and the second inequality
is the “hard” direction proved by Alon [1]. These imply that
λ′2(G) can be used to give an O(

√
d · ψ(G))-approximation

algorithm to ψ(G). Compared to Cheeger’s inequality for edge
conductance that ϕ(G)2/2 ≤ λ2(G) ≤ 2ϕ(G) where λ2(G)
is the second smallest eigenvalue of the normalized Laplacian
matrix, there is an extra factor d between the upper and lower
bounds.

Spectral Formulation: Bobkov, Houdré and Tetali [8]
defined an interesting “spectral” quantity called λ∞ (see
Definition III.5), which satisfies an exact analog of Cheeger’s
inequality for symmetric vertex expansion:

1

2
ψsym(G)

2 ≤ λ∞ ≤ 2ψsym(G),

where the symmetric vertex boundary of a set S ⊆ V is
defined as ∂sym(S) := ∂(S) ∪ ∂(V − S) and the symmetric
vertex expansion of S is defined as ψsym(S) := |∂sym(S)|/|S|,
and the symmetric vertex expansion of a graph G is defined as
ψsym(G) := minS:|S|≤|V |/2 ψsym(S). However, it is not known
how to compute λ∞ efficiently, and it is recently shown to be
NP-hard to compute λ∞ by Farhadi, Louis and Tetali [17].

Semidefinite Programming Relaxations: Louis,
Raghavendra and Vempala [34] gave a semidefinite
programming relaxation sdp∞ for λ∞, and proved that
for any graph G = (V,E) with maximum degree d,

ψsym(G)
2

log d
≲ sdp∞ ≲ ψsym(G).

Then, by constructing a graph H such that ψsym(H) =
Θ(ψ(G)), they reduce vertex expansion to symmetric vertex
expansion and obtain a Cheeger’s inequality for ψ(G), one
that is of the same form as in Theorem I.4 for λ∗2(G). We will
show in Lemma III.10 that λ∗2(G) and sdp∞ are different and
sdp∞ is a stronger relaxation such that λ∗2(G) ≤ sdp∞.

The current best known approximation algorithm for vertex
expansion ψ(G) is an O(

√
log |V |) SDP-based approxima-

tion algorithm by Feige, Hajiaghayi and Lee [19]. This is
an extension of the O(

√
log |V |) SDP-based approximation

algorithm for edge conductance ϕ(G) by Arora, Rao, and
Vazirani [6]. The SDP formulation of [6] is known to be
strictly more powerful than the spectral formulation by the
second eigenvalue.

Even though λ∗2(G), sdp∞ and the SDP in [19] are all
semidefinite programming relaxations for ψ(G) and satisfy



similar inequalities, we note that the approach of using
reweighted eigenvalues has some additional features. One
important feature is that λ∗2(G) is closely related to fastest
mixing time. This allows one to develop a spectral theory
for vertex expansion that relates (i) vertex expansion, (ii)
reweighted eigenvalues and (iii) fastest mixing time, which
parallels the classical spectral graph theory that relates (i) edge
conductance, (ii) eigenvalues and (iii) mixing time. Another
feature is that it allows one to extend known generalizations
of Cheeger inequalities to the vertex expansion setting, and as
a consequence to obtain approximation algorithms for bipartite
vertex expansion and k-way vertex expansion.

Spectral Hypergraph Theory: Louis [32] and Chan, Louis,
Tang, Zhang [12] developed a spectral theory for hypergraphs.
They defined a continuous time diffusion process on a hyper-
graph H = (V,E) and used it to define the Laplacian operator
and its eigenvalues γ1 ≤ γ2 ≤ . . . ≤ γ|V |. The formulation
is similar to the one in [8] for vertex expansion, and they
proved that there is an exact analog of Cheeger’s inequality
for hypergraphs:

1

2
ϕ(H) ≤ γ2 ≤

√
2ϕ(H),

where ϕ(H) is the hypergraph edge conductance of H . As
in [8], the quantity γ2 is not polynomial time computable, and
a semidefinite programming relaxation similar to that in [34]
is used to design a O(

√
ϕ(G) log r)-approximation algorithm

for hypergraph edge conductance where r is the maximum
size of a hyperedge. Using this spectral theory, they prove
an analog of higher-order Cheeger inequality for hypergraph
edge conductance, and also an approximation algorithm for
small-set hypergraph edge conductance. Through a reduction
from vertex expansion to hypergraph edge conductance, they
obtain an analog of higher-order Cheeger inequality for vertex
expansion as mentioned earlier after Theorem I.10 and also
an approximation algorithm for small-set vertex expansion.
This theory also relates (i) expansion, (ii) eigenvalues and (iii)
mixing time, and so the work in [12], [32] is closest to the
current work.

Compared to the theory in [12], [32] for hypergraphs and for
vertex expansion through reduction, we note that the current
approach using reweighted eigenvalues is more direct and
effective for vertex expansion. The reduction in [12, Fact 3]
from vertex expansion ψ(G) of graph G with maximum degree
dmax and minimum degree dmin to edge conductance ϕ(H)
only satisfies

dmin · ϕ(H) ≤ ψ(G) ≤ dmax · ϕ(H),

and so the approximation ratio depends on the ratio between
the maximum degree and the minimum degree. The current
approach using reweighted eigenvalues does not have this
dependency and also proves stronger bounds in k-way vertex
expansion as discussed after Theorem I.10. Also, the defini-
tions of the hypergraph diffusion process and its eigenvalues
are quite technically involved and require considerable effort
to make rigorous [13]. We believe that the definitions of

reweighted eigenvalues are more intuitive and more closely
related to ordinary eigenvalues. Also, reweighted eigenvalues
have close connections to other important problems such
as fastest mixing time and the reweighting conjectures in
approximation algorithms.

C. Techniques

Technically, the advantage of relating reweighted eigenval-
ues to vertex expansions is that many ideas relating eigen-
values to edge conductances can be carried over to the new
setting. So, many steps in our proofs are natural extensions of
previous arguments, and we focus our discussion here on the
new elements.

Vertex Expansion: The proof of Theorem I.3 by Olesker-
Taylor and Zanetti is based on the dual characterization
of Definition I.1 in Proposition III.1, due to Roch [37],
and it has two main steps. In the first step, they used the
Johnson-Lindenstrass lemma to project the SDP solution into
a O(log |V |)-dimension solution, and then further reduce it to
a 1-dimensional “spectral” solution by taking the best coordi-
nate. This is the step where the log |V | factor is lost. In the
second step, they introduced an interesting new concept called
the “matching conductance”, and used some combinatorial
arguments about greedy matchings for the analysis of Cheeger
rounding on Roch’s dual program.

In our proof of Theorem I.4, we also use Roch’s dual
characterization and follow the same two steps. In the first
step, we use the Gaussian projection method in [34] to reduce
the SDP solution to a 1-dimensional solution directly, and
adapt their analysis to show that only a factor of log d is
lost. In the second step, we bypass the concept of matching
conductance and do a more traditional analysis of Cheeger
rounding as in Bobkov, Houdré and Tetali [8]. It turns out that
this analysis works smoothly for weighted vertex conductance,
while the approach using matching conductance faced some
difficulty as described in [35]. A new element in our proof is
the introduction of an intermediate dual program using graph
orientation, which is important in the analysis of both steps.
In section III, we will review the background from [8], [34],
[35], [37] and give a more detailed comparison and overview.

Bipartite Vertex Expansion: The proof of Theorem I.7
for bipartite vertex expansion follows closely the proof of
Theorem I.4 and Trevisan’s result [42], once the correct
formulation in Definition I.6 is found.

Multiway Vertex Expansion: For the proof of higher-order
Cheeger inequality for vertex expansion in Theorem I.10, one
technical issue is that we do not know of a convex relaxation
for the maximum reweighted k-th smallest eigenvalue in Def-
inition I.9. Instead, we define a related quantity σ∗

k(G) called
the maximum reweighted sum of the k smallest eigenvalues,
which can be written as a semidefinite program. We show that
this quantity has a nice dual characterization that satisfies the
sub-isotropy condition. This allows us to adapt the techniques
in [29] to decompose the SDP solution into k disjointly
supported SDP solutions with small objective values, so that



we can apply Theorem I.4 to find k disjoint sets with small
vertex expansion.

Improved Cheeger Inequality: The proof of improved
Cheeger inquality for vertex expansion is similar to that
in [27], which has two main steps. The first step is to prove that
if the 1-dimensional solution to Roch’s dual program is close
to a k-step function, then Cheeger rounding performs well.
The second step is to prove that if the 1-dimensional solution
to Roch’s dual program is far from a k-step function, then we
can construct an SDP solution to σ∗

k with small objective value,
which proves that λ∗k is small. Therefore, if λ∗k is large, then
the 1-dimensional solution must be close to a k-step function,
and hence Cheeger rounding performs well. One interesting
aspect in this proof is to relate the performance of a rounding
algorithm of one SDP (in this case λ∗2(G)) to the objective
value of another SDP (in this case σ∗

k(G)).
Vertex Expansion of 0/1-Polytopes: The examples in

Theorem I.12 for 0/1-polytope is obtained by a simple proba-
bilistic construction. The graph of a 0/1-polytope is defined by
the set of points chosen in {0, 1}n. Let L be the set of points
with k ones, and let R be the set of points with (n− k) ones.
We prove that if we choose a random set M of points with
n/2 ones and set |M | ≍ 4kn2, then with high probability there
are no edges between L and R in the resulting polytope, and
so M is a small vertex separator of L and R where each has(
n
k

)
points. The proof is by elementary geometric arguments

about the edges of a polytope, and a simple result bounding the
number of linear threshold functions in the boolean hypercube
{0, 1}n.

D. Concurrent Work

Jain, Pham, and Vuong [24] independently published a
proof of Theorem I.4 for the uniform distribution case. Their
approach is based on a better analysis of dimension reduction
for maximum matching, which is quite different from our
approach as we bypassed the concept of matching conductance
in [35].

E. Full Version of the Paper

This is an abridged version of the paper. The full version
of the paper can be found at arXiv:2203.06168.

II. PRELIMINARIES

Notations: Given two functions f, g, we use f ≲ g to
denote the existence of a positive constant c > 0, such that
f ≤ c · g always holds. We use f ≍ g to denote f ≲ g and
g ≲ f . For positive integers k, we use [k] to denote the set
{1, 2, . . . , k}. For a function f : X → R, supp(f) denotes the
domain subset on which f is nonzero. For an event E, 1[E]
denotes the indicator function that is 1 when E is true and 0
otherwise.

Graphs: Let G = (V,E) be an undirected graph. Through-
out this paper, we use n := |V | to denote the number of
vertices and m := |E| to denote the number of edges in the
graph. If uv is an edge in G, we either write uv ∈ E or use
the notation u ∼ v. The degree of a vertex v, denoted by

deg(v), is the number of edges incident to v. The maximum
degree of a graph is defined as maxv∈V deg(v). We usually
associate G with a probability distribution π : V → R on the
set of vertices, and we write π(S) :=

∑
v∈S π(v) for a subset

S ⊆ V . We assume without loss that π(u) > 0 for all u ∈ V .
Let S ⊆ V be a subset of vertices. The edge boundary

of S is defined as δ(S) := {uv ∈ E | u ∈ S, v /∈ S}.
The volume of S is defined as vol(S) :=

∑
v∈S deg(v). The

edge conductance of S is defined as ϕ(S) := |δ(S)|/|S|. The
vertex boundary of S is defined as ∂S := {v ∈ V \ S | ∃u ∈
S with uv ∈ E}. The π-weighted vertex expansion of S is
defined as ψ(S) := π(∂S)/π(S), and when π is the uniform
distribution ψ(S) = |∂S|/|S| is the usual vertex expansion.
The induced edge set of S is defined as E[S] := {uv ∈ E |
u ∈ S and v ∈ S}.

Let G = (V,
−→
E ) be a directed graph. If uv is a directed edge

in G, we either write uv ∈
−→
E or use the notation u→ v. The

indegree of a vertex v is defined as degin(v) := |{u ∈ V | u→
v}|. We will define a directed analog of vertex expansion in
section III. The definition is not standard and hence deferred
to the relevant section.

Linear Algebra: Let M ∈ Rn×n be a matrix. When M
is symmetric, the spectral theorem states that M admits an
orthonormal eigendecomposition M = UDU−1, where D is
a diagonal matrix and U is a unitary matrix such that U−1U =
In where In is the n× n identity matrix.

Two matrices M,N ∈ Rn×n are said to be cospectral if they
are both diagonalizable, and their eigenvalues are the same.
There are two cases of cospectral matrices that we will use.

Fact II.1. Let M,N ∈ Rn×n. Suppose that M is diagonal-
izable and that M and N are similar (i.e. M = X−1NX
for some invertible matrix X ∈ Rn×n). Then, N is also
diagonalizable, and M and N are cospectral.

Fact II.2. Let M,N ∈ Rn×n. Suppose that there exist
A,B ∈ Rn×n such that M = AB and N = BA. If M is
diagonalizable, then N is also diagonalizable, and M and N
are cospectral.

Given that M is symmetric, we say that M is positive
semidefinite (PSD) if vTMv ≥ 0 for all v ∈ Rn, and we
write M ≽ 0. Equivalently, M is PSD if all its eigenvalues
are nonnegative. Also equivalently, M is PSD if there exists
X such that M = XTX . Let xi ∈ Rn be the i-th column of
X . Then M is called the Gram matrix of x1, . . . , xn ∈ Rn as
M(i, j) = ⟨xi, xj⟩ for all i, j ∈ [n].

The trace of a matrix M ∈ Rn×n is defined as tr(M) :=∑n
i=1M(i, i). We will often use the fact that tr(AB) =

tr(BA) for two matrices of compatible dimensions.
Random Walks: Given a finite state space X , a Markov

chain on X is represented by a matrix P ∈ RX×X , where
P (u, v) is the probability of traversing from state u to state
v in one step. Thus, P has nonnegative entries and satisfies∑
v∈X P (u, v) = 1 for all u ∈ X . A distribution π : X → R

is said to be a stationary distribution of P if πTP = πT .



A transition matrix P is said to be time-reversible with
respect to π if π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ X .
Note that this implies that π is a stationary distribution of P .
The time reversibility condition can be written as ΠP = PTΠ,
where Π := diag(π). Thus, Π1/2PΠ−1/2 is symmetric, hence
diagonalizable with eigenvalues 1 = α1(P ) ≥ α2(P ) ≥ · · · ≥
αn(P ) ≥ −1. As P is similar to Π1/2PΠ−1/2, they have the
same eigenvalues by Fact II.1. The spectral gap of P is defined
as 1− α2(P ).

For ϵ ∈ (0, 1), we define the ϵ-mixing time τmix(P, ϵ) of
P to be the smallest t ∈ N such that dTV (π, ρ) ≤ ϵ for
any initial distribution ρ. Here, dTV (·, ·) is the total variation
distance, defined as dTV (ρ1, ρ2) := maxS⊆V |ρ1(S)− ρ2(S)|
for any two distributions ρ1, ρ2 : X → R≥0. The relaxation
time τrel(P ) of P is defined as the reciprocal of the spectral
gap, so τrel(P ) :=

1
1−α2(P ) . Let πmin := minu∈V π(u). It is

known that (see e.g. Chapter 12 of [30])(
τrel(P )− 1

)
· log 1

2ϵ
≤ τmix(P, ϵ) ≤ τrel(P ) · log

1

ϵ · πmin
.

Because of this connection between the spectral gap and the
mixing time of P , the optimization problem of maximizing
the spectral gap of the random walk matrix is referred to as
“fastest mixing time” in [11].

Spectral Graph Theory: Given a graph G = (V,E), its
adjacency matrix A = A(G) is a n × n matrix where the
(u, v)-th entry is 1uv∈E . The Laplacian matrix is defined as
L := D−A, where D := diag({deg(v)}v∈V ) is the diagonal
degree matrix. For a vector x ∈ Rn, the Laplacian matrix has
a useful quadratic form xTLx =

∑
uv∈E

(
x(u)− x(v)

)2
.

The normalized adjacency matrix is defined as A =
D−1/2AD−1/2, and the normalized Laplacian matrix is de-
fined as L := I − A. Observe that A is similar to the
simple random walk matrix on G, so it is diagonalizable with
eigenvalues 1 = α1(A) ≥ α2(A) ≥ · · · ≥ αn(A) ≥ −1.
Therefore, L is diagonalizable, and its eigenvalues are 0 =
λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) ≤ 2. Note that we use αi
to denote the eigenvalues of the normalized adjacency matrix
A and random walk matrix P , and we use λi to denote the
eigenvalues of the normalized Laplacian matrix L.

Let ϕ(G) := minS⊆V :0<π(S)≤1/2 ϕ(S) be the edge conduc-
tance of the graph G. Cheeger’s inequality [1], [2], [14] states
that

λ2
2

≤ ϕ(G) ≤
√
2λ2.

This theorem is important because it connects (i) the spectral
gap of the normalized Laplacian matrix, (ii) the edge conduc-
tance of the graph and (iii) the mixing time of random walks.

III. OPTIMAL CHEEGER INEQUALITY FOR VERTEX
EXPANSION

The goal of this section is to prove Theorem I.4. We will
first review the proofs in [34], [35] in section III-A, and then
present how to combine their proofs with a graph orientation
idea to prove Theorem I.4 in section III-B.

A. Background
We will first review the proofs by Olesker-Taylor and

Zanetti [35] in section III-A1, and then the proofs by Louis,
Raghavendra and Vempala in [34] in section III-A2.

In this subsection, the stationary distribution π is assumed
to be the uniform distribution. This will slightly simplify the
presentation and was also the setting considered in previous
works.

1) Review of [35]: Recall the fastest mixing time problem
formulated in Definition I.1. When π is the uniform distri-
bution, the problem is to find a doubly stochastic reweighted
matrix P of G that minimizes the second largest eigenvalue
of P .

The starting point is the following dual characterization of
the primal program in Definition I.1 obtained by Roch [37],
which is stated in the form for a general distribution π that
we will use.

Proposition III.1 (Dual Program for Fastest Mixing [35],
[37]). Given an undirected graph G = (V,E) and a proba-
bility distribution π on V , the following semidefinite program
is dual to the primal program in Definition I.1 with strong
duality λ∗2(G) = γ(G) where γ(G) is defined as

γ(G) := min
f :V→Rn

g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗

g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E.

We note that this is equivalent to the dual program given
in [11], but Roch’s program is written in a vector program
form that will be more convenient for rounding.

The proof of Theorem I.3 has two main steps. The first
step is to project the above dual program to the following
one-dimensional “spectral” program.

Definition III.2 (One-Dimensional Dual Program for Fastest
Mixing [35]). Given an undirected graph G = (V,E) and a
probability distribution π on V , γ(1)(G) is defined as

γ(1)(G) := min
f :V→R
g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v)f(v)2 = 1∑
v∈V

π(v)f(v) = 0

g(u) + g(v) ≥ (f(u)− f(v))2 ∀uv ∈ E.

Olesker-Taylor and Zanetti use the Johnson-Lindenstrauss
lemma to first project the solution in Proposition III.1 to
O(log n) dimensions with constant distortion, and then take
the best coordinate to obtain a 1-dimensional solution with
the following guarantee. Note that this step works for any
probability distribution π on V .



Proposition III.3 ( [35], Proposition 2.9). For any undirected
graph G = (V,E) and any probability distribution π on V ,

γ(G) ≤ γ(1)(G) ≲ log |V | · γ(G).

In the second step, Olesker-Taylor and Zanetti observed that
the dual program in Definition III.2 is similar to the weighted
vertex cover problem with edge weights (f(u) − f(v))2 for
each edge uv ∈ E, which is equivalent to the fractional
matching problem by linear programming duality. To analyze
Definition III.2, they introduced an interesting new concept
called “matching conductance”, and used some combinatorial
arguments about greedy matching as well as some spectral
arguments to prove the following Cheeger-type inequality.

Theorem III.4 ( [35], Theorem 2.10). For any undirected
graph G = (V,E) and the uniform distribution π = 1⃗/|V |,

ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Combining Proposition III.1 and Proposition III.3 and The-
orem III.4 gives

ψ(G)2 ≲ γ(1)(G) ≲ log |V | · γ(G) = log |V | · λ∗2(G)

and

λ∗2(G) = γ(G) ≤ γ(1)(G) ≲ ψ(G),

proving Theorem I.3.
Note that the proof of the second step only works when π is

the uniform distribution. Olesker-Taylor and Zanetti discussed
some difficulty in generalizing their combinatorial arguments
to the weighted setting, and left it as an open question to prove
Theorem III.4 for any probability distribution π.

2) Review of [34]: Our proof is based on the techniques
in [34] which we review here. Their algorithm is based on the
following “spectral” formulation λ∞ by Bobkov, Houdré and
Tetali [8], which is for the uniform distribution π.

Definition III.5 (λ∞ in [8]). Given an undirected graph G =
(V,E),

λ∞(G) := min
x:V→R, x⊥1⃗

∑
u∈V maxv:(v,u)∈E (x(u)− x(v))2∑

u∈V x(u)
2

.

Bobkov, Houdré and Tetali [8] proved an exact analog
of Cheeger’s inequality for symmetric vertex expansion that
1
2ψsym(G)

2 ≤ λ∞(G) ≤ 2ψsym(G). We will use some of their
arguments to prove a similar statement in Theorem III.15 in
section III-B.

The issue is that λ∞ is not known to be efficiently com-
putable, and indeed recently Farhadi, Louis and Tetali [17]
proved that it is NP-hard to compute λ∞(G) exactly. To design
an approximation algorithm for ψ(G), Louis, Raghavendra and
Vempala [34] defined the following semidefinite programming
relaxation for λ∞, which we denote by sdp∞.

Definition III.6 (sdp∞ in [34]). Given an undirected graph
G = (V,E), define the sdp∞(G) program as

min
f :V→Rn

g:V→R

∑
v∈V

g(v)

subject to
∑
v∈V

∥f(v)∥2 = 1∑
v∈V

f(v) = 0⃗

g(v) ≥ ∥f(u)− f(v)∥2 ∀u ∈ V with uv ∈ E.

The rounding algorithm in [34] is to project the solution
to sdp∞ into a 1-dimensional solution by setting x(v) =
⟨f(v), h⟩ where h ∼ N(0, 1)n is a random Gaussian vector.
They proved that the 1-dimensional solution is a O(log d)-
approximation to sdp∞ where d is the maximum degree of
the graph.

Theorem III.7 ( [34], Lemma 9.6). For any undirected graph
G = (V,E) with maximum degree d,

sdp∞(G) ≤ λ∞ ≲ log d · sdp∞(G).

For the analysis, they used the following properties of
Gaussian random variables, for which we will also use in
our proofs and so we state them here. The first fact is for
the analysis of the numerator and the second fact is for the
analysis of the denominator of λ∞.

Fact III.8 ( [34], Fact 9.7). Let Y1, Y2, . . . , Yd be d Gaussian
random variables with mean 0 and variance at most σ2. Let
Y be the random variable defined as Y := max{Yi | i ∈ [d]}.
Then

E[Y ] ≤ 2σ
√
log d.

Fact III.9 ( [34], Lemma 9.8). Suppose z1, . . . , zm are
Gaussian random variables (not necessarily independent) such
that E[

∑m
i=1 z

2
i ] = 1. Then

Pr

[
m∑
i=1

z2i ≥ 1

2

]
≥ 1

12
.

B. Proof of Theorem I.4

We follow the same two-step plan as in [35]. We will
prove in Proposition III.14 in section III-B2 that γ(1)(G) ≲
γ(G) · log d for any probability distribution π. Note that this
already improves Theorem I.3 to the optimal bound, when
π is the uniform distribution. Then, we will prove in Theo-
rem III.15 in section III-B3 that ψ(G)2 ≲ γ(1)(G) ≲ ψ(G)
for any probability distribution π on V . As in [35], combining
Proposition III.1 and Proposition III.14 and Theorem III.15
gives Theorem I.4.

1) Dual Program on Graph Orientation: To extend the
techniques in [8], [34] to prove the two steps, we will introduce
a “directed” program −→γ (G) to bring γ(G) in Proposition III.1
closer to sdp∞(G) in Definition III.6.

Observe that the two SDP programs γ(G) and sdp∞(G)
have very similar form. The only difference is that the last



constraint in Proposition III.1 only requires that g(u)+g(v) ≥
∥f(u)− f(v)∥2 for uv ∈ E, while the last constraint in Defi-
nition III.6 has a stronger requirement that min{g(u), g(v)} ≥
∥f(u)− f(v)∥2 for uv ∈ E. So sdp∞ is a stronger relaxation
than γ(G) = λ∗2(G).

Lemma III.10. For any undirected graph G = (V,E) and
any probability distribution π on V ,

λ∗2(G) ≤ sdp∞(G).

For our analysis of λ∗2(G), we consider the follow-
ing “directed” program −→γ (G) where the last constraint is
max{g(u), g(v)} ≥ ∥f(u)− f(v)∥2 for uv ∈ E. We also
state the corresponding 1-dimensional version as in Defini-
tion III.2 in the following definition.

Definition III.11 (Directed Dual Programs for γ(G)). Given
an undirected graph G = (V,E) and a probability distribution
π on V ,

−→γ (G) := min
f :V→Rn

g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗

max{g(u), g(v)} ≥ ∥f(u)− f(v)∥2

∀uv ∈ E.

−→γ (1)(G) is defined as the 1-dimensional program of −→γ (G)
where f : V → R instead of f : V → Rn.

Note that −→γ (G) is not a semidefinite program because of
the max constraint, but γ(G) and −→γ (G) are closely related
and −→γ (G) is only used in the analysis as a proxy for γ(G).

Lemma III.12. For any undirected graph G = (V,E) and
any probability distribution π on V ,

γ(G) ≤ −→γ (G) ≤ 2γ(G)

and
γ(1)(G) ≤ −→γ (1)(G) ≤ 2γ(1)(G).

Proof. As g ≥ 0, any feasible solution f, g to −→γ (G) is a
feasible solution to γ(G) and so the first inequalities follow.
On the other hand, for any feasible solution f, g to γ(G), note
that f, 2g is a feasible solution to −→γ (G) and so the second
inequalities follow.

The reason that we call −→γ (G) the “directed” program is as
follows. For each edge uv ∈ E, the constraint in sdp∞(G)
requires both g(u) and g(v) to be at least ∥f(u)− f(v)∥2,
while the constraint in −→γ (G) only requires at least one of g(u)
or g(v) to be at least ∥f(u)− f(v)∥2. We think of −→γ (G) as
assigning a direction to each edge and requiring that g(v) ≥
∥f(u)− f(v)∥2 for each directed edge u→ v. Then, we can
rewrite the programs −→γ (G) and −→γ (1)(G) by eliminating the

variables g(v) for v ∈ V , by minimizing over all possible
orientations of the edge set E.

Lemma III.13 (Directed Dual Programs Using Orientation for
γ(G)). Let G = (V,E) be an undirected graph and π be a
probability distribution on V . Let

−→
E be an orientation of the

undirected edges in E. Then
−→γ (G) = min

f :V→Rn
min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

∥f(u)− f(v)∥2

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗.

Similarly, −→γ (1)(G) can be written in the same form with f :
V → R instead of f : V → Rn.

Proof. In one direction, given an orientation
−→
E , we can define

g(v) := max
u:uv∈

−→
E
∥f(u)− f(v)∥2, so that f, g is a feasible

solution to −→γ (G) as stated in Definition III.11 with the same
objective value.

In the other direction, given a solution f, g in Defini-
tion III.11, we can define an orientation

−→
E of E so that each

directed edge uv satisfies g(v) ≥ ∥f(u)− f(v)∥2. Note that
g(v) ≥ max

u:uv∈
−→
E
∥f(u)− f(v)∥2, and setting it to be an

equality would satisfy all the constraints and not increase the
objective value as g ≥ 0.

This formulation will be useful in both the Gaussian pro-
jection step for Proposition III.14 and the threshold rounding
step for Theorem III.15.

2) Gaussian Projection: The following proposition is an
improvement of Proposition III.3 in [35]. The formulation
in Lemma III.13 allows us to use the expected maximum
of Gaussian random variables in Fact III.8 to analyze the
projection as was done in [34].

Proposition III.14 (Gaussian Projection for γ(G)). For any
undirected graph G = (V,E) with maximum degree d and
any probability distribution π on V ,

γ(G) ≤ γ(1)(G) ≲ γ(G) · log d.

Proof. We will prove that −→γ (G) ≤ −→γ (1)(G) ≲ log d · −→γ (G),
and the proposition will follow from Lemma III.12. The first
inequality is immediate as −→γ (1)(G) is a restriction of −→γ (G),
so we focus on proving the second inequality.

Let f : V → Rn and
−→
E be a solution to −→γ (G) as stated

in Lemma III.13. As in [34], we construct a 1-dimensional
solution y ∈ Rn to −→γ (1)(G) by setting y(v) = ⟨f(v), h⟩,
where h ∼ N(0, 1)n is a Gaussian random vector with
independent entries.

First, consider the expected objective value of y to −→γ (1)(G).
For each max term in the summand,

E
[
max
u:u→v

(
y(u)− y(v)

)2]
= E

[
max
u:u→v

〈
f(u)− f(v), h

〉2
]

≤ 2 max
u:u→v

∥f(u)− f(v)∥2 · log d,



where the last inequality is by applying Fact III.8 on
normal random variable ⟨f(u) − f(v), h⟩ with variance
∥f(u)− f(v)∥2 for each of the at most d terms. By linearity
of expectation, the expected objective value of −→γ (1)(G) is

E

[∑
v∈V

π(v) max
u:u→v

(
y(u)− y(v)

)2]
≤ 2 log d ·

∑
v∈V

π(v) max
u:u→v

∥f(u)− f(v)∥2

= 2 log d · −→γ (G).

Therefore, by Markov’s inequality,

Pr

[∑
v∈V

π(v) max
u:u→v

(
y(u)−y(v)

)2 ≥ 48 log d·−→γ (G)

]
≤ 1

24
.

Next, by applying Fact III.9 with zv =
√
π(v)·y(v), it follows

that

E

[∑
v∈V

π(v)y(v)2

]
=

∑
v∈V

π(v) ∥f(v)∥2 = 1

=⇒ Pr

[∑
v∈V

π(v)y(v)2 ≥ 1

2

]
≥ 1

12
.

Finally, since
∑
v∈V π(v)f(v) = 0⃗, it holds that∑

v∈V
π(v)y(v) =

∑
v∈V

π(v)⟨f(v), h⟩ =
〈∑
v∈V

π(v)f(v), h
〉
= 0.

Therefore, with probability at least 1
24 , all of these events hold

simultaneously. The second event∑
v∈V

π(v)y(v)2 ≥ 1

2

means that we can rescale y by a factor of at most
√
2, so

that the constraint
∑
v∈V π(v)y(v)

2 = 1 is satisfied and the
objective value is at most 96 log d ·−→γ (G). Hence we conclude
that −→γ (1)(G) ≲ −→γ (G) · log d.

3) Cheeger Rounding for Vertex Expansion: We generalize
Theorem III.4 to weighted vertex expansion. Our proof does
not use the concept of matching conductance in [35], rather
it is based on a more traditional analysis as in [8] using the
directed program −→γ (1)(G) in Lemma III.13.

Theorem III.15 (Cheeger Inequality for Weighted Vertex
Expansion). For any undirected graph G = (V,E) and any
probability distribution π on V ,

ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

The organization is as follows. The proof of the easy
direction is omitted and can be found in the full version of
the paper. For the hard direction, we will work on −→γ (1)(G)
instead. First we do the standard preprocessing step to truncate
the solution to have π-weight at most 1/2. Then the main step
is to define a modified vertex boundary condition for directed
graphs and use it for the analysis of the standard threshold

rounding. Finally we clean up the solution obtained from
threshold rounding to find a set with small vertex expansion
in the underlying undirected graph.

Lemma III.16 (Easy Direction). For any undirected graph
G = (V,E) and any probability distribution π on V ,

γ(1)(G) ≤ 2ψ(G).

We now turn to proving the hard direction. Given a solution
y : V → R to −→γ (1)(G) in Lemma III.13 satisfying y ⊥ π,
we do the standard preprocessing step to truncate y to obtain
a non-negative solution x with π(supp(x)) ≤ 1/2 and com-
parable objective value. Note that we no longer require that
x ⊥ π. The proof of the following lemma is standard and can
be found in the full version of the paper.

Lemma III.17 (Truncation). Let G = (V,E) be an undirected
graph and π be a probability distribution on V . Given a
solution y and

−→
E to −→γ (1)(G) as stated in Lemma III.13, there

is a solution x and
−→
E with x ≥ 0 and π(supp(x)) ≤ 1/2 and∑

v∈V π(v)max
u:uv∈

−→
E
(x(u)− x(v))2∑

v∈V π(v)x(v)
2

≤ 4−→γ (1)(G).

For the standard threshold rounding, we define the appro-
priate vertex boundary

−→
∂ S for the analysis of the directed

program −→γ (1)(G). Note that, unlike ∂S,
−→
∂ S may contain

vertices in S. A good interpretation is to think of
−→
∂ S as

a vertex cover of the edge boundary δ(S) in the undirected
sense.

Definition III.18 (Directed Vertex Boundary and Expansion).
Let G = (V,

−→
E ) be a directed graph. For S ⊆ V , define the

directed vertex boundary and the directed vertex expansion as
−→
∂ S :=

{
v ∈ S | ∃u /∈ S with uv ∈

−→
E
}

∪
{
v /∈ S | ∃u ∈ S with uv ∈

−→
E
}

and
−→
ψ (S) :=

π(
−→
∂ S)

π(S)
.

The main step is to prove that the standard threshold
rounding will find a set S with small directed vertex expansion−→
ψ (S).

Proposition III.19 (Threshold Rounding for γ(G)). Let G =
(V,E) be an undirected graph and π be a probability distri-
bution on V . Given a solution x and

−→
E with x ≥ 0 and∑

v∈V π(v)maxu:u→v(x(u)− x(v))2∑
v∈V π(v)x(v)

2
≤ γ(G),

there is a set S ⊆ supp(x) with
−→
ψ (S) ≲

√
γ(G).

Proof. For any t ≥ 0, define St := {v ∈ V | x(v)2 > t}. By
a standard averaging argument,

min
t

−→
ψ (St) ≤

∫∞
0
π
(−→
∂ St

)
dt∫∞

0
π(St) dt

.



The denominator is∫ ∞

0

π(St) dt =
∑
v∈V

π(v)

∫ ∞

0

1[v ∈ St] dt =
∑
v∈V

π(v)x(v)2.

For the numerator, note that a vertex v is in
−→
∂ St if and only if

min{x(u)2 | uv ∈
−→
E } ≤ t ≤ max{x(u)2 | uv ∈

−→
E }, where

we recall the assumption that every vertex has a self loop,
and so vv ∈

−→
E and thus min{x(u)2 | uv ∈

−→
E } ≤ x(v)2 ≤

max{x(u)2 | uv ∈
−→
E }. Hence the numerator is∫ ∞

0

π
(−→
∂ St

)
dt

=
∑
v∈V

π(v) ·
∫ ∞

0

1

[
v ∈

−→
∂ St

]
dt

=
∑
v∈V

π(v) ·
∫ ∞

0

1

[
min

{
x(u)2 | uv ∈

−→
E
}
≤ t ∧

t ≤ max
{
x(u)2 | uv ∈

−→
E
}]
dt

=
∑
v∈V

π(v)

[
max
u:u→v

x(u)>x(v)

{
x(u)2 − x(v)2

}
+ max

u:u→v
x(u)<x(v)

{
x(v)2 − x(u)2

}]
≤ 2

∑
v∈V

π(v)

[
max
u:u→v

{
|x(u)2 − x(v)2|

}]
≤ 2

∑
v∈V

π(v)

[
max
u:u→v

{
(x(u)− x(v))2

+ 2x(v) · |x(u)− x(v)|
}]

≤ 2
∑
v∈V

π(v) max
u:u→v

(x(u)− x(v))2

+ 4

√∑
v∈V

π(v)x(v)2 ·
∑
v∈V

π(v) max
u:u→v

(x(u)− x(v))2,

where the second-last inequality is by |x(u)2 − x(v)2| ≤
|x(u)−x(v)|·

(
|x(u)−x(v)|+2|x(v)|

)
, and the last inequality

is by the Cauchy-Schwarz inequality.
Combining the numerator and the denominator bounds,∫∞

0
π
(−→
∂ St

)
dt∫∞

0
π(St) dt

≤
∑
v∈V π(v)maxu:u→v(x(u)− x(v))2∑

v∈V π(v)x(v)
2

+ 2

√∑
v∈V π(v)maxu:u→v(x(u)− x(v))2∑

v∈V π(v)x(v)
2

= γ + 2
√
γ ≲

√
γ,

where the last inequality is by γ ≤ 2 as was shown in
the proof of the easy direction in Lemma III.16. Therefore,
mint

−→
ψ (St) ≲

√
γ and St ⊆ supp(x) by construction.

Finally, given a set S with small directed vertex expansion−→
ψ (S), we show how to find a set S′ ⊆ S with small

vertex expansion ψ(S′). This step is similar to the step
in [35, Proposition 2.2] from matching conductance to vertex
expansion.

Lemma III.20 (Postprocessing for Vertex Expansion). Let
G = (V,

−→
E ) be a directed graph. Given a set S with−→

ψ (S) < 1/2, there is a set S′ ⊆ S with ψ(S′) ≤ 2
−→
ψ (S)

in the underlying undirected graph of G.

Proof. From Definition III.18, the observation is that all
undirected edges in δ(S) are incident to at least one vertex
in

−→
∂ S. Define S′ := S−

−→
∂ S. Then observe that ∂S′ ⊆

−→
∂ S,

as there are no incoming edges to S′ from V − (S′ ∪
−→
∂ S)

and all outgoing edges from S′ go to
−→
∂ (S). This implies that

π(∂S′) ≤ π
(−→
∂ S

)
=

−→
ψ (S) · π(S) ≤ 2

−→
ψ (S) · π(S′),

where the last inequality uses the assumption that
−→
ψ (S) =

π
(−→
∂ S

)
/π(S) < 1/2 and so π(S′) ≥ π(S) − π

(−→
∂ S

)
≥

π(S)/2. We conclude that ψ(S′) ≤ 2
−→
ψ (S).

We now have all the necessary components to complete the
proof of Theorem III.15. To see how to put together the steps,
refer to the full version of the paper.

IV. CONCLUDING REMARKS

We present a new spectral theory which relates (i)
reweighted eignevalues, (ii) vertex expansion and (iii) fastest
mixing time. This is analogous to the classical spectral theory
which relates (i) eigenvalues, (ii) edge conductance and (iii)
mixing time. This spectral approach for vertex expansion
has the advantage that most existing results and proofs for
edge conductances and eigenvalues have a close analog for
vertex expansion and reweighted eigenvalues with almost tight
bounds. We do not intend to be exhaustive in this paper, and
we fully expect that other results relating eigenvalues and edge
conductances also have an analog for vertex expansion using
reweighted eigenvalues.

To conclude, we believe that our work provides an interest-
ing spectral theory for vertex expansion, as the formulations
have the natural interpretation as reweighted eigenvalues and
also have close connections to other important problems such
as fastest mixing time and the reweighting conjectures in
approximation algorithms. We also believe that this approach
can be extended further for hypergraph edge expansion.
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