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IMPROVED CHEEGER’S INEQUALITY AND ANALYSIS OF LOCAL
GRAPH PARTITIONING USING VERTEX EXPANSION AND

EXPANSION PROFILE∗
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Abstract. We prove two generalizations of the Cheeger’s inequality. The first generalization
relates the second eigenvalue to the edge expansion and the vertex expansion of the graph G, λ2 =
Ω(φV (G)φ(G)), where φV (G) denotes the robust vertex expansion of G and φ(G) denotes the edge
expansion of G. The second generalization relates the second eigenvalue to the edge expansion
and the expansion profile of G, for all k ≥ 2, λ2 = Ω(φk(G)φ(G)/k), where φk(G) denotes the
k-way expansion of G. These show that the spectral partitioning algorithm has better performance
guarantees when φV (G) is large (e.g., planted random instances) or φk(G) is large (instances with
few disjoint nonexpanding sets). Both bounds are tight up to a constant factor. Our approach
is based on a method to analyze solutions of Laplacian systems, and this allows us to extend the
results to local graph partitioning algorithms. In particular, we show that our approach can be
used to analyze personal pagerank vectors and to give a local graph partitioning algorithm for the
small-set expansion problem with performance guarantees similar to the generalizations of Cheeger’s
inequality. We also present a spectral approach to prove similar results for the truncated random
walk algorithm. These show that local graph partitioning algorithms almost match the performance
of the spectral partitioning algorithm, with the additional advantages that they apply to the small-
set expansion problem and their running time could be sublinear. Our techniques provide common
approaches to analyze the spectral partitioning algorithm and local graph partitioning algorithms.
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1. Introduction. Let G = (V,E) be a complete weighted graph and n := |V |.
For simplicity, we assume that the graph is regular and the total weight on each vertex
is one throughout.1 Let w(S, T ) be the total weight of the edges with one vertex in S
and another vertex in T . The edge expansion of a set S ⊆ V and the edge expansion
of a graph G are defined as

φ(S) :=
w(S, S)

|S|
and φ(G) := min

S:|S|≤|V |/2
φ(S),

where S := V − S is the complement set. Let L = I − A be the Laplacian matrix of
G, where I and A are the identity and the adjacency matrix of G, with eigenvalues
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IMPROVED CHEEGER’S INEQUALITY 891

of L being 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. Cheeger’s inequality [Che70, AM85, Alo86]
bounds the edge expansion of G using the second eigenvalue of L,

1

2
λ2 ≤ φ(G) ≤

√
2λ2.

It is useful in bounding the edge expansion of a graph and also bounding the mixing
time of random walks [HLW06]. The proof of Cheeger’s inequality gives an efficient
algorithm to find a set with expansion at most

√
2λ2, and we will refer to this algorithm

as the spectral partitioning algorithm (also known as the sweep cut algorithm on
the second eigenvector). A recent generalization [KLLOT13] of Cheeger’s inequality
bounds the edge expansion of G using the second and the kth eigenvalues of L for
any k ≥ 2,

φ(G) = O(k)
λ2√
λk
.

This provides a better analysis of the spectral partitioning algorithm in practical
instances of image segmentation and data clustering.

1.1. Our results. We prove two new generalizations of Cheeger’s inequality.
These provide better analyses of the spectral partitioning algorithm when some ex-
pansion parameters of the graph are large. We also prove similar bounds for the
personal pagerank algorithm and the truncated random walk algorithm. These give
local graph partitioning algorithms for the small-set expansion problem with improved
Cheeger’s guarantees. Our techniques provide common approaches to analyzing the
spectral partitioning algorithm and local graph partitioning algorithms.

1.1.1. Vertex expansion. The first generalization bounds the second eigen-
value of L by the edge expansion and the vertex expansion of G. We define the robust
vertex expansion by a slight modification of that from Kannan, Lovász, and Montene-
gro [KLM06]. For S ⊆ V , let N1/2(S) := max{|T | | T ⊆ S and w(S, T ) ≤ 1

2w(S, S)}.
In [KLM06], the definition is Ñ1/2(S) = min{|T | | T ⊆ S and w(S, T ) ≥ 1

2w(S, S)}.
It is easy to see that N1/2(S) and Ñ1/2(S) differ by at most 1. Define

φV (S) :=
N1/2(S)

|S|
and φV (G) := min

S:|S|≤|V |/2
φV (S)

as the robust vertex expansion2 of G. Also define

Ψ(S) := φ(S) · φV (S) and Ψ(G) := min
S:|S|≤|V |/2

Ψ(S)

as the minimum product of the edge expansion and the robust vertex expansion. The
following is a generalization of Cheeger’s inequality using robust vertex expansion.

Theorem 1.1.

λ2 = Ω(min{Ψ(G), φ(G)}).

Corollary 1.2.

λ2 = Ω(φV (G) · φ(G)).

2Note that the usual definition of vertex expansion, defined as minS:|S|≤|V |/2N(S)/|S|, is too
sensitive to edges of tiny weights (e.g., adding a complete graph with tiny edge weight will change
φV (G) to one). One could replace the constant 1/2 in the definition of N1/2(S) by another constant,
say, 0.99, so that the definition of robust vertex expansion is closer to the definition of (ordinary)
vertex expansion while we can still obtain similar results.
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892 TSZ CHIU KWOK, LAP CHI LAU, AND YIN TAT LEE

Note that φV (S) ≥ 1
2φ(S) and so Corollary 1.2 is a generalization of Cheeger’s

inequality. Observe that φV (S) could be much larger than φ(S) when the edges
crossing S spread out. For example, randomly generated instances such as those in the
planted partition model [Bop87, McS01] have φV (G) = Ω(1), and thus Theorem 1.1
implies that the spectral partitioning algorithm is a constant factor approximation
algorithm for those instances.3 Another interesting example is the hypercube.4

1.1.2. Expansion profile. The δ-small-set expansion (0 < δ ≤ 1/2) of G and
the k-way expansion (k ≥ 2) of G are defined as

φδ(G) := min
S:|S|≤δ|V |

φ(S) and φk(G) := min
S1,...,Sk: Si∩Sj=∅ ∀i 6=j

max
1≤i≤k

φ(Si).

The curve φδ(G) for 0 < δ ≤ 1/2 is defined by Lovász and Kannan [LK99] and is
called the expansion profile of G. Note that φ(G) = φ1/2(G) = φ2(G). The following
is a generalization of Cheeger’s inequality using k-way expansion.

Theorem 1.3. For all k ≥ 2,

λ2 = Ω

(
1

k
· φk(G) · φ(G)

)
.

Corollary 1.4. For all δ ≤ 1/2,

λ2 = Ω (δ · φδ(G) · φ(G)) .

Both Theorem 1.1 and Theorem 1.3 are tight up to a constant factor. Both proofs
of Theorems 1.1 and 1.3 show that the spectral partitioning algorithm achieves the
performance guarantees, i.e., the algorithm would output a set S with Ψ(S) = O(λ2)
and φ(S) = O(kλ2/φk(G)), respectively. These imply that the spectral partitioning
algorithm is an O(1/φV (G))-approximation and an O(k/φk(G))-approximation for
edge expansion.

1.1.3. Local partitioning algorithms for small-set expansion. Our proof
techniques allow us to use the same approach to analyze the local partitioning algo-
rithm using personal pagerank vectors [ACL06]. Given a parameter α ∈ (0, 1] and a
vertex s, the personal pagerank vector rs,α ∈ Rn is the unique solution to the equation
rs,α = αχs+(1−α)Wrs,α, where χs is the indicator vector which has value 1 at s and
0 elsewhere, and W = (I +A)/2 is the transition matrix of the lazy random walks.

Theorem 1.5. For any (unknown target) set S ⊆ V , there is a polynomial time
randomized algorithm to find a set S′ with

1. φ(S′) = O(φ(S) log(|S|)/φV (G)) and |S′| = O(|S| log |S|),
2. φ(S′) = O(kφ(S) log(|S|)/φk(G)) and |S′| = O(|S| log |S|)

3For example, in a planted k-partition instance where there are k subsets of size n/k with
probability p having an edge between two vertices in the same subset and probability q having an
edge between two vertices in different subsets for q � p, the improved Cheeger’s inequality only
proves a O(k)-approximation while Theorem 1.1 proves a O(1)-approximation.

4For hypercubes, it is known that the edge expansion is Ω(1/ logn), the vertex expansion
is Ω(1/

√
logn) [Har66], and the product of the edge expansion and the vertex expansion is

Ω(1/ logn) [Mar74]. We believe that the same bounds hold for robust vertex expansion, φV (G) =
Ω(1/

√
logn) and Ψ(G) = Ω(1/ logn), but we don’t know of a proof yet. If that’s true, Corollary 1.2

will give a bound of Ω(1/ log3/2(n)) on the second eigenvalue, and Theorem 1.1 will give the correct
bound of Ω(1/ log(n)), while Cheeger’s inequality only gives a bound of Ω(1/ log2 n).
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IMPROVED CHEEGER’S INEQUALITY 893

by computing rs,α for a random vertex s ∈ S with α = O(φ(S)) and returning a
level set of rs,α. For unweighted d-regular graphs, there is a local implementation with
running time O(d|S| log(|S|)/φ(S) + |S| log2 |S|).

Theorem 1.5 implies that the personal pagerank algorithm is anO(log(|S|)/φV (G))
-approximation and anO(k log(|S|)/φk(G))-approximation for the small-set expansion
problem where the output set size is bounded within a logarithmic factor of the target
set size.

We also present a spectral approach to prove that the local graph partitioning
algorithm using truncated random walks has similar performance guarantees as the
spectral partitioning algorithm. Let ps,t := W tχs be the probability distribution
vector after t steps of lazy random walks starting from the vertex s.

Theorem 1.6. For any (unknown target) set S ⊆ V , there is a polynomial time
randomized algorithm to find a set S′ with

1. φ(S′) = O(kφ(S)/(εφk(G))) and |S′| = O(|S|1+ε),
2. φ(S′) = O(kφ(S) log(|S|)/φk(G)) and |S′| = O(|S|),

by computing ps,t for a random vertex s ∈ S with t = O(log(|S|)/φ(S)) for 1 and
t = O(1/φ(S)) for 2 and returning a level set of ps,t. For unweighted d-regular graphs,
there is a local implementation with running time O(dε2|S|1+ε log2(|S|)/φ(S)3).

Theorem 1.6 implies that the truncated random walks algorithm is anO(k/φk(G))-
approximation or an O(k log(|S|)/φk(G))-approximation for the small-set expansion
problem, with different trade-offs of the output set size.

Our results provide improved analyses of local graph partitioning algorithms when
the vertex expansion or the k-way expansion is large and provide theoretical justifica-
tion of their good empirical performances in applications such as image segmentation
and data clustering (see [ZLM13] and the references therein). The results show that
the performances of local graph partitioning algorithms almost match that of The-
orems 1.1 and 1.3 (within at most an O(log(|S|))-factor in the approximation guar-
antee), with the additional advantages that they apply to the small-set expansion
problem (giving bicriteria approximations for φδ(G)) and also that their running time
could be sublinear in the graph size (when d and |S| are small enough).

1.2. Comparisons with related work.

1.2.1. Generalizations of Cheeger’s inequality. There are several recent
generalizations of Cheeger’s inequality using higher eigenvalues of the Laplacian ma-
trix. The first generalization by Arora, Barak, and Steurer [ABS10] relates higher
eigenvalues to small-set expansions,

φO(k−1/100)(G) = O
(√

λk logk n
)
,

and they use it to design a subexponential time algorithm for approximating unique
games. The second generalization by Louis et al. [LRTV12] and Lee, Oveis Gharan,
and Trevisan [LOT12] relates higher eigenvalues to k-way expansion (a stronger
requirement than small-set expansion),

(1)
1

2
λk ≤ φk(G) ≤ O

(√
λ2k log k

)
,

and this justifies the use of higher eigenvalues in k-way graph partitioning. Then
there is a generalization by Kwok et al. [KLLOT13] relating higher eigenvalues to the
ordinary edge expansion,

(2) φ(G) ≤ O(k)
λ2√
λk
,
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894 TSZ CHIU KWOK, LAP CHI LAU, AND YIN TAT LEE

which shows that the spectral partitioning algorithm performs better in instances with
λk large for a small k.

Instead of using higher eigenvalues to give better bounds on expansion parameters,
our results use expansion parameters to give better bounds on the second eigenvalue.
We remark that the techniques developed in [KLLOT13] could be used to prove
Theorem 1.3 (see Appendix A), but our approach is quite different and could be
used to prove Theorem 1.1 and to extend Theorem 1.3 to analyze personal pagerank
vectors. We also note that our proof of Theorem 1.3 can be used to prove (2) using
a graph powering trick as described in [KL14] (see Appendix A).

1.2.2. Local graph partitioning algorithms. Local graph partitioning al-
gorithms are useful in finding a small nonexpanding set in a large graph, as their
running times are only weakly dependent on the graph size and could be sublin-
ear time. All known algorithms are based on some random walks related processes.
The first local graph partitioning algorithm is a truncated random walk algorithm
by Spielman and Teng [ST13], which returns a set S′ with φ(S′) = O (

√
φ(S) log3 n)

with work-to-volume ratio O(polylog(n)/φ2(S)). The second algorithm is a personal
pagerank algorithm by Andersen, Chung, and Lang [ACL06], which returns a set S′

with φ(S′) = O(
√
φ(S) log(|S|)) with work-to-volume ratio O(polylog(n)/φ(S)). The

evolving set process is used by Andersen and Peres [AP09] to further improve the
work-to-volume ratio to O(polylog(n)/

√
φ(S)) while having the same performance

guarantee as in [ACL06]. Using a better analysis of the escaping probability of ran-
dom walks, Oveis Gharan and Trevisan [OT12] (see also [KL12]) showed that the√

log(|S|) factor in the performance ratio can be removed, thereby almost matching
the guarantee of Cheeger’s inequality. They combined this with the evolving set pro-
cess to find a set S′ with φ(S′) = O(

√
φ(S)/ε), |S′| = O(|S|1+ε) and work-to-volume

ratio O(|S|ε polylog(n)/
√
φ).

Our contribution is to show that the performance of some simple local graph
partitioning algorithms (truncated random walks, personal pagerank) almost match
that of the improved Cheeger’s inequalities. These provide the first analyses showing
that random walk based algorithms perform better when φV (G), φk(G) or λk(G) is
large, with similar performances to the spectral partitioning algorithm while having
additional features. We note that Zhu, Lattanzi, and Mirrokni [ZLM13] gave a better
analysis of the personal pagerank algorithm when the internal expansion of the target
set is large; our results are related but incomparable.

1.2.3. Analysis of mixing time. The notion of expansion profile was in-
troduced by Lovász and Kannan [LK99] in the study of mixing times of random

walks. They proved that the mixing time is upper bounded by
∫ 1/2

1/n
dx

xΦ(x)2 , where

Φ(x) = min0≤δ≤x φδ, which is a better bound on the mixing time when the average
conductance is large (e.g., small sets expand well in geometric graphs).

Our work is inspired by their paper and some subsequent work [KLM06, MP05],
both in the proof techniques (discussed in the next subsection) and in the defini-
tions. The robust vertex expansion and its expansion profile are studied in [KLM06],
where better bounds on the mixing time are proved in a similar form to the aver-
age conductance bound above. In particular, it implies the mixing time is bounded
by O(log(n)/Ψ(G)), and thus λ2 ≥ Ω(Ψ(G)/ log(n)). We note that Morris and
Peres also proved a lower bound on the second eigenvalue (Theorem 15 in [MP05])
using a parameter related to vertex expansion, but their definition is incomparable
to ours.
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Our contribution is to directly bound the second eigenvalue (not the mixing time)
using the expansion parameters and our bounds are independent of n. Also, the bound
that we prove using φk is considerably stronger. Using φδ, the average conductance
bound only gives 1/λ2 ≤ O(log(δn)/φ2

δ + log(1/δ)/φ2), not improving on Cheeger’s
inequality even when φδ = Ω(1) for constant δ, while Corollary 1.4 gives an O(1)-
approximation when φδ = Ω(1) for constant δ.

1.3. Technical overview. The proofs are inspired by the work of Lovász and
Kannan [LK99]. We observe that their method is useful in analyzing the solution
to a Laplacian system (Lx = b), and can be extended to study both the second
eigenvectors (Lx = λx) and the personal pagerank vectors.

The high-level approach is to look at the solution vector x ∈ Rn with x1 ≥
x2 ≥ · · · ≥ xn and relate the (slow) decrease of xi to the (large) expansion of the
level sets in this vector. Similar to [LK99], we define a jumping sequence of indices
1 = m0,m1,m2, . . . such that xmi − xmi+1

is inversely proportional to the expansion
of the level set [1,mi] (see Lemma 2.1). Using the Laplacian equation of the second
eigenvector, we use an inductive argument to show that if the expansion of all level
sets is Ω(

√
λ2), then the values of xi decrease slowly enough such that xn/2 > 0 (see

Lemma 2.2), contradicting that x is orthogonal to the all-one vector. We remark
that this gives a new and quite different proof of Cheeger’s inequality (e.g., without
using the Cauchy–Schwarz inequality). To prove Theorem 1.1, we use the robust
vertex expansion to argue that each jump can be made longer (mi+1 − mi made
larger) and this gives the improved bound. To prove Theorem 1.3, we argue that
given an ordering of the vertices, if φk is large, then there are only a small number
of indices in the jumping sequence whose corresponding level sets [1,mi] are of small
expansion (see Lemma 2.3), and then we modify the induction hypothesis to obtain
the result (see Lemma 2.4). The inductive arguments and the use of φk in arguing
about expansions of level sets are the new elements in the proofs that improve upon
the average conductance bound of Lovász and Kannan.

The previous analyses of both the truncated random walk algorithm [ST13] and
the personal pagerank algorithm [ACL06] are based on the combinatorial technique
introduced by Lovász and Simonovits [LS90] in analyzing the mixing time of random
walks. This technique is quite different from the analysis of spectral partitioning
algorithms. It requires one to consider the random walk vectors for many different
time steps, and it is difficult to incorporate the notions of φk or λk in the analyses as
the ordering and level sets are changing in each time step.5

Our techniques provide two approaches to lift the analysis of the spectral graph
partitioning algorithm for local graph partitioning algorithms, bringing closer the
analyses of these two types of algorithms. For the personal pagerank algorithm,
we use the Lovász–Kannan approach to directly analyze the vector so that we can
use φk to reason about the level sets (Lemma 2.3). We note that this approach is
considered by Andersen and Chung to give a simplified proof of the personal pagerank
algorithm [AC07], and we will reuse some of their lemmas to obtain Theorem 1.5. For
the truncated random walk algorithm, we use the spectral approach of Arora, Barak,
and Steurer [ABS10] to directly obtain a vector with small Rayleigh quotient and
small support, so that the improved Cheeger’s inequalities can be applied to obtain
results for approximating small-set expansions.6

5We still don’t know how to do a better analysis for the evolving set process because of this
difficulty.

6We thank David Steurer for suggesting this spectral approach.
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Finally, we remark that this approach can be applied to analyze the solutions to
other Laplacian systems. Consider the following algorithm for approximating edge
expansion. For an unknown target set S, pick a random vertex s ∈ S, inject n units
of current to s and extract one unit of current from every vertex in the graph, sort
the vertices by the voltages,7 and output the level set with the smallest expansion
among all level sets of size up to n/2. Our approach implies that this algorithm always
outputs a set S′ with φ(S′) = O(

√
φ(S) log n). We believe that this approach draws

more connections to the mixing time literature and will find further applications.

2. Spectral partitioning. Let λ := λ2 and x be a second eigenvector such that
Lx = λx. We assume the vertices of the graph are labeled by 1 to n and sort the
vertices so that x1 ≥ x2 ≥ · · · ≥ xn. We use [a, b] to denote the subset of vertices
{a, a+ 1, . . . , b}.

2.1. Vertex expansion. The proof of Theorem 1.1 consists of two steps. The
first step is to prove the drop lemma and then define a jumping sequence to apply the
lemma. The second step is to use an inductive argument to derive a contradiction if
the expansion of all level sets are large.

2.1.1. Drop lemma and jumping sequence. The following lemma bounds
the decrease of the values in x to the expansion of the level sets of x. Recall that
w(S, T ) denotes the total weight of the edges with one vertex in S and another vertex
in T .

Lemma 2.1 (drop lemma). For 1 ≤ a < b ≤ n, we have

xa − xb ≤
λ
∑a
i=1 xi

w([1, a], [b, n])
.

Proof. For each i,

xi −
∑
j

wijxj = λxi.

Summing this equation for 1 ≤ i ≤ a, we have

a∑
i=1

∑
j

xiwij −
a∑
i=1

∑
j

xjwij = λ

a∑
i=1

xi.

Since wij = wji, this can be simplified to

∑
i≤a

∑
j>a

xiwij −
∑
i≤a

∑
j>a

xjwij = λ

a∑
i=1

xi.

Consider the edges from the set [1, a] to the set [b, n]. Each edge contributes
(xi−xj)wij to the left-hand side, which is at least (xa−xb)wij . Therefore, we have

w([1, a], [b, n]) · (xa − xb) ≤ λ
a∑
i=1

xi and thus xa − xb ≤
λ
∑a
i=1 xi

w([1, a], [b, n])
.

We define a jumping sequence of indices to apply the drop lemma. Let m0 = 1
and

mi+1 = dmi(1 + φV (mi))e,

7Or equivalently, sort the vertices based on the expected hitting time to s.
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IMPROVED CHEEGER’S INEQUALITY 897

where φV (mi), φ(mi),Ψ(mi) are shorthand for φV ([1,mi]), φ([1,mi]),Ψ([1,mi]), re-
spectively. Then by the definition of φV (mi), we have

w([1,mi], [mi+1, n]) ≥ 1

2
mi · φ(mi).

Putting it in the above inequality with a = mi and b = mi+1, it follows that

(3) xmi − xmi+1 ≤
2λ
∑mi
i=1 xi

mi · φ(mi)
=

2λxmi
φ(mi)

, where xl :=
1

l

l∑
i=1

xi.

Note that xl is nonincreasing over l.

2.1.2. Induction. We will prove the following lemma by induction.

Lemma 2.2. If Ψ(mi) ≥ 32λ and φ(mi) ≥ 32λ for all mi ≤ n/2, then xmi+1 ≤
2xmi+1 for all mi ≤ n/2.

First we see how it implies Theorem 1.1. Let mj be the first term in the jumping
sequence such that mj > n/2. Note that the assumptions of Lemma 2.2 would imply
that xmj ≥ 1

2xmj > 0, where the last inequality follows because
∑n
i=1 xi = 0 (as

the second eigenvector is orthogonal to the all-one vector) and so all partial sums are
positive. But this implies that xk > 0 for all 1 ≤ k ≤ n/2, and applying the same
argument to −x will give us a contradiction. Therefore, the assumptions of Lemma 2.2
must not hold, and thus there is an mi ≤ n/2 with Ψ(mi) ≤ 32λ or φ(mi) ≤ 32λ,
proving Theorem 1.1.

Now we proceed to prove Lemma 2.2. It is clear that the inequality holds for m0.
Assuming that xmi ≤ cxmi where c = 2,8 we would like to prove that xmi+1 ≤ cxmi+1 .
Note that

mi+1∑
i=1

xi =

mi∑
i=1

xi +

mi+1∑
i=mi+1

xi ≤ mixmi + (mi+1 −mi)xmi ≤ xmi(mi+1 + (c− 1)mi).

Dividing both sides of this inequality by mi+1, we have

xmi+1
≤ xmi

(
1 + (c− 1)

mi

mi+1

)
≤ xmi

(
1 +

(c− 1)

1 + φV (mi)

)
≤ xmi+1

(
c+ φV (mi)

1 + φV (mi)

)(
φ(mi)

φ(mi)− 2λc

)
≤ cxmi+1 ,

where the second inequality follows from the definition of mi+1, the third inequality
is by (3) and xmi ≤ cxmi , and the last inequality follows from the following claim by
plugging in φV (mi) for h and φ(mi) for ϕ. Note that the conditions of Claim 1 follow
from the assumptions of Lemma 2.2, and this completes the proof.

Claim 1. If 2 ≤ c ≤ 4, 32λ ≤ hϕ and 32λ ≤ ϕ, then we have(
c+ h

1 + h

)(
ϕ

ϕ− 2λc

)
≤ c.

Proof. The conclusion to check is

c ≥
(
c+ h

1 + h

)(
ϕ

ϕ− 2λc

)
=

(
c− (c− 1)h

1 + h

)(
1 +

2λc

ϕ− 2λc

)
,

8The variable c is used so that we can reuse the calculation here for the proof of Theorem 1.3.
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which is equivalent to

0 ≥ −(c− 1)h

1 + h
+

2λc2

ϕ− 2λc
− (c− 1)h(2λc)

(1 + h)(ϕ− 2λc)
.

Since ϕ ≥ 32λ > 2cλ, this is equivalent to

0 ≥ −(c− 1)h(ϕ− 2λc) + 2λc2(1 + h)− (c− 1)h(2λc),

which can be simplified to

c− 1

c2
≥ 2λ(1 + h)

hϕ
= 2λ

(
1

hϕ
+

1

ϕ

)
.

Since 2 ≤ c ≤ 4, the left-hand side is at least 1/8. We consider two cases. The first
case is when 1/(hϕ) ≥ 1/ϕ, and so the right-hand side is at most 4λ/(hϕ). We have
1/8 ≥ 4λ/(hϕ), as long as hϕ ≥ 32λ, which is satisfied by our assumption. The
second case is when 1/(hϕ) ≤ 1/ϕ, and so the right-hand side is at most 4λ/ϕ. We
have 1/8 ≥ 4λ/ϕ, as long as ϕ ≥ 32λ, which is also satisfied by our assumption.

2.2. Proof of Theorem 1.3. We follow the same approach to prove Theo-
rem 1.3. The additional arguments are in Lemma 2.3 to bound the number of terms
in the jumping sequence with small expansion using φk and in Claim 2 to control the
inductive bound dynamically.

For Theorem 1.3, we define the jumping sequence as follows. Let m0 = 1 and

mi+1 =

⌈
mi

(
1 +

1

2
φ(mi)

)⌉
.

Then we have

w([1,mi], [mi+1, n]) ≥ miφ(mi)− (mi+1 −mi − 1) ≥ 1

2
mi · φ(mi),

so that (3) still holds after applying the drop lemma.

2.2.1. k-way expansion. The assumption on φk allows us to bound the number
of terms in the jumping sequence with small expansion. We note that the following
lemma can be applied to any ordering of vertices (not just for the second eigenvector),
and it will be applied to personal pagerank vectors later.

Lemma 2.3. For any θ < φk/4, there are at most 16k/φk terms mi in the jumping
sequence with θ ≤ φ(mi) ≤ 2θ.

Proof. Suppose by contradiction that there are at least 16k/φk such terms. Let y0

be the first such term and let yi be the (16i/φk)th such term. We claim that the sets
{[1, y0], [y0 + 1, y1], . . . , [yk−1 + 1, yk]} are all of expansion less than φk, contradicting
the definition of φk. Note that

yi+1 ≥ yi
(

1 +
θ

2

) 16
φk

≥ yi
(

1 +
8θ

φk

)
by our choice of mi+1, and thus

yi+1 − yi ≥
8θyi
φk

.
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The expansion of the set [yi + 1, yi+1] is

φ([yi + 1, yi+1]) =
w([yi + 1, yi+1], [1, yi] ∪ [yi+1 + 1, n])

yi+1 − yi

≤ w([1, yi], [1, yi]) + w([1, yi+1], [1, yi+1])

yi+1 − yi

≤ 2θyi+1 + 2θyi
yi+1 − yi

= 2θ

(
1 +

2yi
yi+1 − yi

)
.

Using the lower bound on yi+1 − yi, we have

φ([yi, yi+1]) ≤ 2θ +
φk
2
< φk,

where the last inequality is by our assumption that θ < φk/4.

2.2.2. Induction. In the following, we assume that φ2
k ≥ 1024λ, as otherwise

Theorem 1.3 holds trivially since φk ≥ φ. We will prove the following lemma by
induction.

Lemma 2.4. If φ2
k ≥ 1024λ and φ(mi) ≥ 256kλ/φk for all mi ≤ n/2, then

xmi+1
≤ 4xmi+1

for all mi ≤ n/2.

As argued before in applying Lemma 2.2, the assumptions of Lemma 2.4 would
imply that xi > 0 for all 1 ≤ i ≤ n/2, leading to a contradiction. So, the assumptions
of Lemma 2.4 must not hold, and thus there is an mi with φ(mi) ≤ 256kλ/φk, proving
Theorem 1.3.

To prove Lemma 2.4, we will prove by induction that xmi ≤ cixmi where initially
c0 = 2 and

ci+1 =

{
ci if φ(mi) ≥ φk/4,

ci/(1− εici) if φ(mi) < φk/4,where εi = 2λ/φ(mi).

We first assume this induction step and show that c∞ ≤ 4 using Lemma 2.3. Then
we will verify the induction step.

Claim 2. c∞ ≤ 4.

Proof. First, we prove by induction that

ci =
c0

1−
∑i−1
j=0 εjc0

,

where εj = 0 if φ(mj) ≥ φk/4. Assume this is true for i. Then

ci+1 =
ci

1− εici
=

(
c0

1−
∑i−1
j=0 εjc0

) 1

1− εi
(

c0
1−

∑i−1
j=0 εjc0

)
 =

c0

1−
∑i
j=0 εjc0

.

Next, we bound c∞ using Lemma 2.3. Recall that εi = 2λ/φ(mi) and we can assume
that φ(mi) ≥ 256kλ/φk. Let θ0 = 256kλ/φk and θi+1 = 2θi. By Lemma 2.3, there
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are at most 16k/φk terms mi in the jumping sequence with θ ≤ φ(mi) < 2θ when
θ < φk/4. Therefore,

∑
εj =

∑
i≥0

∑
j:θi≤φ(mj)≤2θi

εj ≤
∑
i≥0

∑
j:θi≤φ(mj)≤2θi

2λ

θi

≤
∑
i≥0

16k

φk

2λ

θi
=
∑
i≥0

32kλ

φk

φk
256kλ2i

=
1

4
.

Therefore,

c∞ =
c0

1−
∑
j εjc0

≤ c0
1− c0

4

= 4.

We prove the induction step. There are two cases, depending on whether φ(mi) <
φk/4. We first consider the case when φ(mi) < φk/4. In this case, just apply (3) and
we have

xmi+1
≥ xmi −

2λcixmi
φ(mi)

= xmi(1− εici) ≥ xmi
(

1− εici
ci

)
≥
xmi+1

ci+1

by the definition of εi and ci+1 and we are done in this case.
It remains to consider the case when φ(mi) ≥ φk/4. By induction, we assume

that xmi ≤ cixmi , and we claim that xmi+1 ≤ cixmi+1 . By the same calculation as in
the induction for Theorem 1.1, we have

mi+1∑
i=1

xi =

mi∑
i=1

xi +

mi+1∑
i=mi+1

xi ≤ xmi(mi+1 + (ci − 1)mi).

Similarly, dividing both sides of this inequality by mi+1, we have

xmi+1
≤ xmi+1

(
ci + 1

2φ(mi)

1 + 1
2φ(mi)

)(
φ(mi)

φ(mi)− 2λci

)
≤ cixmi+1

,

where the first inequality is by mi/mi+1 ≤ 1/(1 + φ(mi)/2) and (3), and the last
inequality follows from Claim 1 by plugging in h = φ(mi)/2, ϕ = φ(mi), c = ci and
checking that the conditions 2 ≤ c ≤ 4 (Claim 2), hϕ ≥ ϕ2/2 ≥ φ2

k/32 ≥ 32λ, and
ϕ ≥ 32λ are satisfied by our assumptions. This completes the induction step and thus
the proof of Lemma 2.4.

3. Personal pagerank. We show that a similar and simpler analysis applies
to the personal pagerank vector and prove Theorem 1.5. In subsections 3.1 and 3.2,
we will show some basic properties of the pagerank vector. After that, we will prove
the first part of Theorem 1.5 in subsection 3.3 and the second part in subsection 3.4.
Finally in subsection 3.5 we will show how to compute the required set in time almost
linear to the size of the target set.

Given a parameter α ∈ (0, 1] and a vertex s, the personal pagerank vector rs,α ∈
Rn is the unique solution to the equation rs,α = αχs + (1−α)Wrs,α, where W is the
transition matrix of the lazy random walks. Note that rs,α is a probability distribution
vector. In the following, we assume S is an unknown target set with 3|S|H(|S|) ≤ n,
where H(n) =

∑n
i=1 1/i is the harmonic series.
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3.1. Drop lemma. Let x := rs,α be the personal pagerank vector and assume
x1 ≥ x2 ≥ · · · ≥ xn. Andersen and Chung proved a drop lemma for pagerank vectors
(see Lemma 1 of [AC07] and compare to our Lemma 2.1), for 1 ≤ a < b ≤ n,

(4) xa − xb ≤
α

w([1, a], [b, n])
.

3.2. Escaping probability. Let S be an unknown target set. Using a bound
on the escaping probability of random walks [ST13],9 Andersen and Chung proved
that for half of the vertices s in S, the personal pagerank vector x := rs,α will have
the property that (see Lemma 5 of [AC07])

(5)
∑
i∈S

xi ≥ 1− φ(S)

α
.

Setting α = 3φ(S) makes sure that
∑
i∈S xi ≥ 2/3 and it follows that (see Lemma 2

of [AC07]) there exists an a ≤ |S| with

xa ≥
2

3aH(|S|)
,

since otherwise
|S|∑
i=1

xa <
2

3

|S|∑
i=1

H(|S|)
a

=
2

3
,

which leads to a contradiction. In the following we assume a satisfies xa ≥ 2/(3aH(|S|)).

3.3. Vertex expansion. For vertex expansion, we start our jumping sequence
by setting m0 = a and then define

mi+1 = dmi(1 + φV (G))e

whenever mi < 3|S|H(|S|). We denote by m∞ the last defined term. By this defini-
tion, we have w([1,mi], [mi+1, n]) ≥ 1

2mi · φ(mi), and it follows that

xmi+1 ≥ xmi −
2α

mi · φ(mi)
and xm∞ ≥ xa −

∑
i≥0

2α

mi · φ(mi)
.

Suppose by contradiction that φ(mi) > 36φ(S)H(|S|)/φV (G) for all mi ≤ 3|S|H(|S|),
where S is the unknown target set. Then∑

i≥0

2α

mi · φ(mi)
<
∑
i≥0

2αφV (G)

36a(1 + φV (G))iφ(S)H(|S|)
≤ 1

3aH(|S|)
,

where the last inequality uses the bound that
∑
i≥0 1/(1 + φV (G))i ≤ (1 + φV (G))/

φV (G) ≤ 2/φV (G) and our choice that α = 3φ(S). This implies that

x3|S|H(|S|) ≥ xm∞ ≥ xa −
∑
i≥0

2α

mi · φ(mi)
>

2

3aH(|S|)
− 1

3aH(|S|)
=

1

3aH(|S|)
,

9Actually, using a stronger result by Oveis Gharan and Trevisan [OT12], one can show that

x(S) ≥ φ(S)(1+α)
α+φ(S)(1−α) , but it does not change the results in the following subsections.
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and thus ∑
j≥0

xj >
∑

1≤j≤3|S|H(|S|)

1

3aH(|S|)
≥ 1,

since a ≤ |S|, contradicting that x is a probability distribution vector. Therefore,
there must exist an mi ≤ 3|S|H(|S|) with φ(mi) ≤ 36φ(S)H(|S|)/φV (G). Since
H(|S|) = Θ(log |S|), this proves the first part of Theorem 1.5.

3.4. k-way expansion. For k-way expansion, we define the jumping sequence
by setting m0 = a and

mi+1 =

⌈
mi

(
1 +

1

2
φ(mi)

)⌉
.

As before, we have w([1,mi], [mi+1, n]) ≥ 1
2mi · φ(mi), and it follows that

xmi+1 ≥ xmi −
2α

mi · φ(mi)

and hence

(6) xm∞ ≥ xa −
∑
i≥0

2α

mi · φ(mi)
.

We divide the summation into two parts:

(7)
∑

i:φ(mi)<φk/4

2α

mi · φ(mi)
+

∑
i:φ(mi)≥φk/4

2α

mi · φ(mi)
.

The second part is at most∑
i:φ(mi)≥φk/4

2α

miφk/4
≤
∑
i≥0

8α

aφk(1 + φk/2)i
≤ 64α

aφ2
k

.

The first summation in (7) can be bounded by Lemma 2.3 as follows. Suppose by
contradiction that φ(mi) > 1152kφ(S)H(|S|)/φk for all mi ≤ 3|S|H(|S|). Let θ0 =
1152kφ(S)H(|S|)/φk and θi = 2θi−1 for i ≥ 1. By Lemma 2.3, there are at most
16k/φk terms in the jumping sequence having conductance between θ and 2θ when
θ < φk/4. Therefore, the first part in (7) is at most∑

j≥0

∑
i:θj≤φ(mi)≤2θj

2α

aφ(mi)
≤
∑
j≥0

32k

φk

α

aθj
=
∑
j≥0

32k

φk

α

a2jθ0
=

64kα

aφkθ0
.

Putting these back into (6), we have

xm∞ ≥ xa −
64α

aφ2
k

− 64kα

aφkθ0
≥ 2

3aH(|S|)
− 192φ(S)

aφ2
k

− 192φ(S)k

aφkθ0
,

where the second inequality is by the lower bound of xa and the choice of α =
3φ(S). Note that we can assume φ2

k ≥ 1152φ(S)H(|S|) = θ0φk/k, since otherwise
Theorem 1.5 can be obtained by [OT12] (and [KL12]), which finds a set S′ with
|S′| = O(|S| log |S|) and φ(S′) = O(

√
φ(S) log |S|). With this assumption, we have

xm∞ ≥
2

3aH(|S|)
− 384φ(S)k

aφkθ0
>

1

3aH(|S|)
,
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where the last inequality is by our choice of θ0. This implies that

x3|S|H(|S|) >
1

3aH(|S|)
and thus

∑
j≥1

xj >
∑

1≤j≤3|S|H(|S|)

1

3aH(|S|)
= 1

since a ≤ |S|, contradicting that x is a probability distribution vector. Therefore,
there must exist an mi ≤ 3|S|H(|S|) with φ(mi) ≤ 1152kφ(S)H(|S|)/φk, proving the
second part of Theorem 1.5 as H(|S|) = Θ(log |S|).

3.5. Local algorithm. Andersen and Chung [AC07] show that the drop lemma
(equation (4)) still holds even for approximate personal pagerank vectors, which can
be computed efficiently in unweighted graphs. In the following, we assume the graphs
are unweighted d-regular (in our setting, the edge weights are either 1/d or 0). An ε-
approximate vector for rs,α is a vector r′s,α that satisfies r′s,α = α(χs−q)+(1−α)Wr′s,α
where the vector q is nonnegative and satisfies q(i) ≤ ε for every vertex i in the graph.

Lemma 3.1 (see [AC07]). There is an algorithm that computes an ε-approximate
vector r′s,α. The running time of the algorithm is O(d/(εα)). Assume r′s,α(1) ≥ r′s,α
(2) ≥ · · · ≥ r′s,α(n). The approximate vector r′s,α satisfies for any 1 ≤ a < b ≤ n,

r′s,α(a)− r′s,α(b) ≤ α

w([1, a], [b, n])
.

Note that 0 ≤ q ≤ ε~1 implies

rs,α − r′s,α = α(I − (1− α)W )−1(χs − (χs − q)) = α(I − (1− α)W )−1q

≤ εα(I − (1− α)W )−1~1 = ε~1,

where the last equality holds since ~1 is an eigenvector of both I and W with eigenvalue
1. Hence for any vertex i, we have r′s,α(i) ≥ rs,α(i) − ε. We set ε = 1/(6|S|) and
α = 3φ(S) so that

∑
i∈S

r′s,α(i) ≥
∑
i∈S

rs,α(i)− ε|S| ≥ 1− φ(S)

α
− 1

6
=

1

2

for those vertices s that satisfy (5). Hence there exists an a ≤ |S| with

r′s,α(a) ≥ 1

2aH(|S|)
,

as otherwise
|S|∑
i=1

r′s,α(a) <

|S|∑
i=1

1

2aH(|S|)
= 1,

contradicting to
∑
i∈S r

′
s,α(i) ≥ 1/2.

Since r′s,α satisfies the drop lemma (equation (4)) and contains good initial value,
both arguments in vertex expansion and k-way expansion follow (with the assump-
tion 3|S|H(|S|) ≤ n replaced by 6|S|H(|S|) ≤ n). The runtime of this algorithm
is dominated by the runtime for computing the approximate vector p′s,t and sorting
at most O(|S| log(|S|)) vertices after, and hence the total complexity is O(d/(εα) +
|S| log2(|S|)) = O(d|S|/φ(S) + |S| log2(|S|)).
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4. Random walks. In this section, we present a spectral analysis of the random
walk local graph partitioning algorithm [ST13, KL12]. The proof consists of three
steps. The first step is to show that the Rayleigh quotient of the random walk vector
ps,t = W tχs is small for t ≈ log(|S|)/φ(S), by using the analysis in the power method.
The second step is to show that the ‖ps,t‖2 is large for many vertices s in the unknown
target set, by using the bound on escaping probability (or the staying probability).
This allows us to apply the argument in [ABS10] to ps,t to obtain a vector with
small Rayleigh quotient and small support. Then we apply the improved Cheeger’s
inequality to prove Theorem 1.6. Finally, we show that the truncated random walk
vectors would also work, thereby proving a local implementation of the algorithm.

4.1. Rayleigh quotient. Recall that the Rayleigh quotient of a vector x is
defined asR(x) = xTLx/‖x‖2. The following lemma shows that the Rayleigh quotient
of the vector ps,t := W tχs becomes smaller when t becomes larger. The proof follows
the analysis of the power method in computing the largest eigenvector.

Lemma 4.1. For any starting vertex s,

R(ps,t) ≤ 2− 2‖ps,t‖1/t2 .

Proof. Let χs =
∑n
i=1 civi, where vi are unit eigenvectors of L. Note that the

lazy random walk matrix is W = I − L/2, and thus the vector ps,t = W tχs =∑n
i=1 ci(1− λi/2)tvi. Hence, the Rayleigh quotient of ps,t is

R(ps,t) =
pTs,tLps,t

‖ps,t‖2
=

∑n
i=1 c

2
i (1− λi/2)2tλi∑n

i=1 c
2
i (1− λi/2)2t

= 2− 2

∑n
i=1 c

2
i (1− λi/2)2t+1∑n

i=1 c
2
i (1− λi/2)2t

.

Note that
∑
i c

2
i = ‖χs‖22 = 1, and thus c2i can be viewed as a probability distribution.

Let X be the random variable having value 1 − λi/2 with probability c2i . Then we
can write R(ps,t) = 2 − 2E[X2t+1]/E[X2t]. By the power mean inequality and the
nonnegativity of X (or Jensen’s inequality on the function x1+1/(2t)), we have

E[X2t+1]1/(2t+1) ≥ E[X2t]1/(2t).

Hence

R(ps,t) ≤ 2− 2E[X2t]1/2t = 2− 2

(
n∑
i=1

c2i (1− λi/2)2t

)1/2t

= 2− 2‖ps,t‖1/t2 .

4.2. Small support vector with small Rayleigh quotient. A vector x is
called spectrally δ-sparse if ‖x‖21 ≤ δn‖x‖22, and the support of the vector x is
supp(x) := {i | xi 6= 0}. First, by using a result by Oveis Gharan and Trevisan
on escaping probability (or staying probability), we bound the spectral sparsity of the
random walk vector. Then, we use a result used by Arora, Barak, and Steurer to turn
a spectrally sparse vector into a small support vector with similar Rayleigh quotient.

The following lemma by Oveis Gharan and Trevisan shows that if φ(S) is small,
there is a large subset U ⊆ S, such that the random walk starting at any vertex s ∈ U
stays entirely inside S with good probability. In particular, the probability that the
walk ends inside S is large.

Theorem 4.2 (see [OT12]). For any subset S ⊆ V , there is a subset U ⊆ S
such that |U | ≥ |S|/2, and for any s ∈ U we have∑

v∈S
ps,t(v) ≥ 1

200

(
1− 3φ(S)

2

)t
.
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The following lemma provides a bound on the spectral sparsity of ps,t.

Lemma 4.3. For any subset S ⊆ V , there is a subset U ⊆ S such that |U | ≥ |S|/2,
and for any s ∈ U we have

‖ps,t‖21 ≤
40000|S|

(1− 3φ(S)/2)2t
‖ps,t‖22.

Proof. By Cauchy–Schwarz and Theorem 4.2, we have

‖ps,t‖22 ≥
∑
v∈S

ps,t(v)2 ≥ 1

|S|

(∑
v∈S

ps,t(v)

)2

≥ 1

|S|

(
1

200

(
1− 3φ(S)

2

)t)2

=
1

40000|S|

(
1− 3φ(S)

2

)2t

.

Since ‖χs‖1 = 1 and W preserves the 1-norm, we have ‖ps,t‖21 = ‖W tχs‖2 = 1, and
the result follows.

The following lemma in [ABS10] shows how to obtain a vector y with small
support and similar Rayleigh quotient from a spectrally δ-sparse vector x. The proof
is by choosing an appropriate threshold t and set y = max(x− t, 0).

Lemma 4.4 (see [ABS10]). Let x ∈ R|V |≥0 be a nonnegative vector with ‖x‖21 ≤
δn‖x‖22. Then there exists a vector y with | supp(y)| = O(δn) and R(y) = O(R(x)).

We will apply Lemma 4.4 on ps,t and obtain a vector with small Rayleigh quotient
(Lemma 4.1) and small support (Lemma 4.3).

4.3. Improved Cheeger’s guarantees. We are ready to prove Theorem 1.6.
We will prove the approximation guarantee in this subsection and show how to com-
pute the required set fast in the following subsection. In the following we assume
φ(S) ≤ 1/4 and |S| ≥ 2. We set t = ε log |S|/(6φ(S)) so that

(8)

(
1− 3φ(S)

2

)2t

≥ exp(−3φ(S))2t = exp(−6tφ(S)) = exp(−ε log |S|) = |S|−ε.

By Lemma 4.3, we have

‖ps,t‖21 ≤ 40000|S|1+ε‖ps,t‖22.

On the other hand, since |S| ≥ 2,

(40000|S|)−1/(2t) ≥ exp

(
−17 log |S|

2t

)
= exp

(
−51φ(S)

ε

)
≥ 1− 51φ(S)

ε
.

Therefore, by Lemma 4.1, we have

(9) R(ps,t) ≤ 2− 2(1− 3φ(S)

2
)(1− 51φ(S)

2ε
) = O

(
φ(S)

ε

)
.

Now, we apply Lemma 4.4 by plugging the vector ps,t for x and obtain a vector
y with | supp(y)| ≤ O(|S|1+ε) and R(y) = O(φ(S)/ε). Finally, by the proof of
the improved Cheeger’s inequality (2) (see Appendix A), for any nonnegative vec-
tor x, we can find a level set S′ with |S′| ≤ | supp(x)| and φ(S′) = O(kR(x)/φk) or
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φ(S′) = O(kR(x)/
√
λk). Applying this to the vector y, we find |S′| ≤ | supp(y)| =

O(|S|1+ε) and

φ(S′) = O

(
kφ(S)

εφk

)
or φ(S′) = O

(
kφ(S)

ε
√
λk

)
.

Since a level set of y is a level set of ps,t, this proves the approximation guarantee of
Theorem 1.6.

4.4. Local algorithm. Computing the vector ps,t = W tχs exactly requires at
least linear time. In the following, we assume the graph is an unweighted d-regular
graph (in our setting, the edge weight is either 1/d or 0). To obtain a local algorithm,
we can compute a good approximation to ps,t by repeatedly applying the operator W
(initially we compute Wχs) and truncating the small values to zero.

Lemma 4.5 (see [ST13, KL12]). Let ps,t = W tχs be the exact random walk
vector starting at vertex s. There is an algorithm that computes a vector p′s,t such

that ps,t ≥ p′s,t ≥ ps,t − α~1 and p′s,t ≥ 0 in time O(dt2/α).

We set t = ε log |S|/φ(S) and α = φ(S)/(160000|S|1+ε), so that the time com-
plexity of our local algorithm is O(dε2|S|1+ε log2 |S|/φ(S)3). It remains to show that
p′s,t is still spectrally sparse and has small Rayleigh quotient.

Lemma 4.6. For ps,t that satisfies the conclusion in Lemma 4.3, we have

‖p′s,t‖21 ≤
1

80000|S|1+ε
‖p′s,t‖22.

Proof. In the proof, we let x := ps,t and y := p′s,t. By Lemma 4.5, we have
y(i)2 ≥ x(i)2 − 2αx(i) since y(i) ≥ max(x(i)− α, 0). Therefore,

‖y‖22 =
∑
i

y(i)2 ≥
∑
i

x(i)2 − 2α
∑
i

x(i) = ‖x‖22 − 2α.

By Lemma 4.3 and (8), we have ‖x‖22 ≥ 1/(40000|S|1+ε). From our choice of α, we
have 2α = φ(S)/(80000|S|1+ε) ≤ φ(S)‖x‖22/2. Therefore,

‖x‖22 − 2α ≥ ‖x‖22
(

1− φ(S)

2

)
≥ 1

80000|S|1+ε
≥ 1

80000|S|1+ε
‖y‖21,

where the last inequality holds as ‖y‖21 ≤ ‖x‖21 = 1.

Lemma 4.7.

R(p′s,t) ≤ O
(
φ(S)

ε

)
.

Proof. Again, we let x := ps,t and y := p′s,t in the proof. Let r = x−y ≥ 0. Then
we have

R(y) =
yTLy

yT y
=

(x− r)TL(x− r)
yT y

=
xTLx+ rTLr − 2xTLr

yT y
≤ 2xTLx+ 2rTLr

yT y
.

By the calculation in Lemma 4.6, ‖y‖22 ≥ (1 − φ(S)/2)‖x‖22. Hence, using r ≥ 0 and
y ≥ 0, we have ‖r‖22 ≤ ‖x‖22 − ‖y‖22 ≤ φ(S)‖x‖22/2 and rTLr ≤ 2rT r ≤ φ(S)‖x‖22. So,
we have

R(y) = O

(
xTLx

yT y
+
rTLr

yT y

)
= O

(
xTLx

xTx
+
rTLr

xTx

)
= O(R(x)+φ(S)) = O

(
φ(S)

ε

)
,

where the last inequality is by (9).
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With Lemmas 4.6 and 4.7, we can use the same proof in section 4.3 to prove
Theorem 1.6 with the time complexity claimed.

To prove Theorem 1.6.2, we only need to set ε = 1/ log(|S|) so that |S|1+ε =
O(|S|).

4.5. Local eigenvalue. We remark that if we do not care about local imple-
mentations, we can find a particular good starting vertex u such that the random walk
algorithm starting at u gives a better performance guarantee φ(S′) = O(kλS/(εφk)),
where λS is the smallest eigenvalue of the matrix LS which is the restriction of L on
the subset S. Chung [Chu07] shows the following local Cheeger’s inequality:

λS ≤ min
T⊆S

φ(T ) ≤
√

2λS .

Hence λS is at most φ(S) and could be much smaller, for instance, when a subset
of S has very small expansion. The idea is similar to that in [KL12] and we just
give a quick sketch. Let vS be the corresponding eigenvector with eigenvalue λS . We
choose our starting vertex to be u = argmaxi |vS(i)|. Then we show that the spectral
sparsity of the t-steps random walk is at most |S|/(1− λS)2t < |S|/(1− O(φ(S)))2t.
This allows us to set t to be larger so as to improve the Rayleigh quotient of the
random walk vector.

Appendix A. Relations between improved Cheeger’s inequality and
Theorem 1.3. First, although it is unclear how to derive Theorem 1.3 from the
statement of improved Cheeger’s inequality, we can show that Theorem 1.3 can be
derived from the proof in [KLLOT13], as pointed out to us by Luca Trevisan. Then,
we show that the improved Cheeger’s inequality can be derived from Theorem 1.3,
using a graph powering trick as described in [KL14].

A.1. Improved Cheeger’s inequality implies Theorem 1.3. The following
stronger statement was shown in [KLLOT13].

Theorem A.1 (Theorem 3.5 of [KLLOT13], restated). For any nonnegative
vector x with | supp(x)| ≤ n/2, let φsweep(x) be the minimum expansion of the level
sets of x. At least one of the following holds:

1. φsweep(x) ≤ O(k)R(x).
2. There exist k disjointly supported vectors x1, . . . , xk such that for all 1 ≤ i ≤
k, supp(xi) ⊆ supp(x) and R(xi) ≤ O(k2R(x)2/φsweep(x)2).

We apply the theorem with x = max(v2, 0) or x = max(−v2, 0), whichever is of
smaller support. Note that R(x) ≤ λ2 by standard argument [HLW06]. When the
first case of Theorem A.1 holds, it is clear that

φ(G) ≤ φsweep(x) ≤ O(k)R(x) ≤ O(kλ2) ≤ O
(
kλ2

φk

)
.

Otherwise, there exist k disjointly supported vectors, each with Rayleigh quotient
not larger than O(k2λ2

2/φ
2
sweep(x)). Applying (the original) Cheeger’s arguments on

these vectors, we can find k disjoint subsets Si, each of them satisfying φ(Si) ≤
O(kλ2/φsweep(x)). This implies that

φk ≤ O
(

kλ2

φsweep(x)

)
, or λ2 = Ω

(
φkφsweep(x)

k

)
= Ω

(
φkφ(G)

k

)
,

and Theorem 1.3 follows.
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A.2. Theorem 1.3 implies improved Cheeger’s inequality. In [KL14], the
authors proved a lower bound on the expansion of graph powers and used it to show
some reductions on Cheeger’s inequalities. We show that the same approach can be
used to prove improved Cheeger’s inequality by Theorem 1.3.

Theorem A.2 (Theorem 1 of [KL14], restated). Let H denote the graph with
adjacency matrix W t where W is the lazy random walk matrix of G. Then we have

φ(H) ≥ 1

20

(
1−

(
1− φ(G)

2

)√t)
.

The following corollary is a generalization of Corollary 12 of [KL14], which shows
that general cases of improved Cheeger’s inequality can be reduced to the cases where
λk is constant.

Corollary A.3. Suppose one could prove that φ(H) ≤ Cλ2(H) for some C ≥
1/10 for all graphs H with λk(H) ≥ 1/4; then it implies that φ(G) ≤ 40Cλ2(G)/√
λk(G) for any G and any λk(G).

Proof. We assume that φ(G) ≤
√
λk, as otherwise, by Cheeger’s inequality,

2λ2(G) ≥ φ(G)2 ≥ φ(G)
√
λk and the statement is true. Consider H with adjacency

matrix W 1/λk(G). Then

λk(H) = 1−
(

1− λk(G)

2

)1/λk

≥ 1− exp

(
−1

2

)
≥ 1/4.

Therefore, if one could prove that φ(H) ≤ Cλ2(H), then

Cλ2(H) ≥ φ(H) ≥ 1

20

1−
(

1− φ(G)

2

)√1/λk(G)


≥ 1

20

(
1− exp

(
− φ(G)

2
√
λk(G)

))
≥ φ(G)

80
√
λk(G)

,

where the second inequality is by Theorem A.2. On the other hand,

λ2(H) = 1−
(

1− λ2(G)

2

)1/λk(G)

≤ λ2(G)

2λk(G)
,

and the corollary follows by combining the two inequalities.

Now we show the improved Cheeger’s inequality in [KLLOT13] follows from Corol-
lary A.3 and Theorem 1.3. By the easy side of the higher order Cheeger’s inequality,
we have φk ≥ λk/2. Hence, for any graph G with λk ≥ 1/4, we have φk ≥ 1/8 and
Theorem 1.3 gives φ(G) = O(kλ2(G)). Therefore, we can apply Corollary A.3 (with
C = O(k)) and conclude that φ(G) = O(kλ2(G)/

√
λk(G)) is true for any graph G

and any λk, and the improved Cheeger’s inequality in [KLLOT13] follows.

Acknowledgments. We thank the organizers of the Simons program for the
support and the wonderful research environment. We also thank David Steurer for
suggesting the spectral approach to analyze random walks and Luca Trevisan for
pointing out that Theorem 1.3 can be derived from the proof of the improved Cheeger’s
inequality in [KLLOT13].
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