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Abstract

We prove two generalizations of the Cheeger’s inequal-
ity. The first generalization relates the second eigen-
value to the edge expansion and the vertex expansion
of the graph G,

λ2 = Ω(φV (G) · φ(G)),

where φV (G) denotes the robust vertex expansion of G
and φ(G) denotes the edge expansion of G. The second
generalization relates the second eigenvalue to the edge
expansion and the expansion profile of G, for all k ≥ 2,

λ2 = Ω(
1

k
· φk(G) · φ(G)),

where φk(G) denotes the k-way expansion of G. These
show that the spectral partitioning algorithm has bet-
ter performance guarantees when φV (G) is large (e.g.
planted random instances) or φk(G) is large (instances
with few disjoint non-expanding sets). Both bounds are
tight up to a constant factor.

Our approach is based on a method to analyze so-
lutions of Laplacian systems, and this allows us to ex-
tend the results to local graph partitioning algorithms.
In particular, we show that our approach can be used
to analyze personal pagerank vectors, and to give a lo-
cal graph partitioning algorithm for the small-set ex-
pansion problem with performance guarantees similar
to the generalizations of Cheeger’s inequality. We also
present a spectral approach to prove similar results for
the truncated random walk algorithm. These show that
local graph partitioning algorithms almost match the
performance of the spectral partitioning algorithm, with
the additional advantages that they apply to the small-
set expansion problem and their running time could be
sublinear. Our techniques provide common approaches
to analyze the spectral partitioning algorithm and local
graph partitioning algorithms.
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1 Introduction

Let G = (V,E) be a complete weighted graph and
n := |V |. For simplicity, we assume that the graph
is regular and the total weight on each vertex is one
throughout1. Let w(S, T ) be the total weight of the
edges with one vertex in S and another vertex in T . The
edge expansion of a set S ⊆ V and the edge expansion
of a graph G are defined as

φ(S) :=
w(S, S)

|S|
and

φ(G) := min
S:|S|≤|V |/2

φ(S),

where S = V − S is the complement set of S. Let
L = I − A be the Laplacian matrix of G where I and
A are the identity and the adjacency matrix of G, with
eigenvalues of L being 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2.
Cheeger’s inequality [Che70, AM85, Alo86] bounds the
edge expansion of G using the second eigenvalue of L,

1

2
λ2 ≤ φ(G) ≤

√
2λ2.

It is useful in bounding the edge expansion of a
graph and also bounding the mixing time of random
walks [HLW06]. The proof of Cheeger’s inequality gives
an efficient algorithm to find a set with expansion at
most

√
2λ2, and we will refer to this algorithm as the

spectral partitioning algorithm (also known as the sweep
cut algorithm on the second eigenvector). A recent gen-
eralization [KLLOT13] of Cheeger’s inequality bounds
the edge expansion of G using the second and the k-th
eigenvalues of L for any k ≥ 2,

φ(G) = O(k)
λ2√
λk

.

This provides a better analysis of the spectral partition-
ing algorithm in practical instances of image segmenta-
tion and data clustering.

1By standard arguments, the results can be extended to handle
non-regular graphs using the notion of conductance and the
normalized Laplacian matrix.
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1.1 Our results We prove two new generalizations
of Cheeger’s inequality. These provide better analyses
of the spectral partitioning algorithm when some expan-
sion parameters of the graph are large. We also prove
similar bounds for the personal pagerank algorithm and
the truncated random walk algorithm. These give local
graph partitioning algorithms for the small-set expan-
sion problem with improved Cheeger’s guarantees. Our
techniques provide common approaches to analyze the
spectral partitioning algorithm and local graph parti-
tioning algorithms.

1.1.1 Vertex Expansion The first generalization
bounds the second eigenvalue of L by the edge expan-
sion and the vertex expansion of G. We define the ro-
bust vertex expansion following Kannan, Lovász and
Montenegro [KLM06]. For S ⊆ V , let

N1/2(S) := min{|T | | T ⊆ S and w(S, T ) ≥ 1

2
w(S, S)}.

Define

φV (S) :=
N1/2(S)

|S|
and

φV (G) := min
S:|S|≤|V |/2

φV (S)

as the robust vertex expansion2 of G. Also define

Ψ(S) := φ(S) · φV (S)

and

Ψ(G) := min
S:|S|≤|V |/2

Ψ(S)

as the minimum product of the edge expansion and the
robust vertex expansion. The following is a generaliza-
tion of Cheeger’s inequality using robust vertex expan-
sion.

Theorem 1.1.

λ2 = Ω(min{Ψ(G), φ(G)}).

Corollary 1.1.

λ2 = Ω(φV (G) · φ(G)).

2Note that the usual definition of vertex expansion, define as
minS:|S|≤|V |/2 N(S)/|S|, is too sensitive to edges of tiny weights
(e.g. adding a complete graph with tiny edge weight will change
φV (G) to one). One could replace the constant 1/2 in the
definition of N1/2(S) by other constant say 0.99 so that the
definition of robust vertex expansion is closer to the definition
of (ordinary) vertex expansion while we can still obtain similar
results.

Note that φV (S) ≥ 1
2φ(S) and so Corollary 1.1 is

a generalization of Cheeger’s inequality. Observe that
φV (S) could be much larger than φ(S) when the edges
crossing S spread out. For example, randomly gener-
ated instances such as those in the planted partition
model [Bop87, McS01] have φV (G) = Ω(1), and thus
Theorem 1.1 implies that the spectral partitioning al-
gorithm is a constant factor approximation algorithm
for those instances3. Another interesting example is the
hypercube4.

1.1.2 Expansion Profile The δ-small-set expansion
(0 < δ ≤ 1/2) of G and the k-way expansion (k ≥ 2) of
G are defined as

φδ(G) := min
S:|S|≤δ|V |

φ(S)

and

φk(G) := min
S1,...,Sk: Si∩Sj=∅ ∀i�=j

max
1≤i≤k

φ(Si).

The curve φδ(G) for 0 < δ ≤ 1/2 is defined by Lovász
and Kannan [LK99] and is called the expansion profile of
G. Note that φ(G) = φ1/2(G) = φ2(G). The following
is a generalization of Cheeger’s inequality using k-way
expansion.

Theorem 1.2. For all k ≥ 2,

λ2 = Ω(
1

k
· φk(G) · φ(G)).

Corollary 1.2. For all δ ≤ 1/2,

λ2 = Ω(δ · φδ(G) · φ(G)).

Both Theorem 1.1 and Theorem 1.2 are tight up
to a constant factor. Both proofs of Theorem 1.1
and Theorem 1.2 show that the spectral partitioning
algorithm achieves the performance guarantees, i.e. the

3For example, in a planted k-partition instance where there are
k subsets of size n/k with probability p having an edge between
two vertices in the same subset and probability q having an
edge between two vertices in different subsets for q � p, the
improved Cheeger’s inequality only proves a O(k)-approximation
while Theorem 1.1 proves a O(1)-approximation.

4For hypercubes, it is known that the edge expansion is
Ω(1/ logn), the vertex expansion is Ω(1/

√
logn) [Har66], and

the product of the edge expansion and the vertex expansion is
Ω(1/ logn) [Mar74]. We believe that the same bounds hold for
robust vertex expansion, φV (G) = Ω(1/

√
logn) and Ψ(G) =

Ω(1/ logn) but we don’t know of a proof yet. If that’s true,
Corollary 1.1 will give a bound of Ω(1/ log3/2(n)) on the second
eigenvalue, and Theorem 1.1 will give the correct bound of
Ω(1/ log(n)), while Cheeger’s inequality only gives a bound of
Ω(1/ log2 n).
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algorithm would output a set S with Ψ(S) = O(λ2) and
φ(S) = O(kλ2/φk(G)) respectively. These imply that
the spectral partitioning algorithm is a O(1/φV (G))-
approximation and a O(k/φk(G))-approximation for
edge expansion.

1.1.3 Local Partitioning Algorithms for Small-

Set Expansion Our proof techniques allow us to use
the same approach to analyze the local partitioning
algorithm using personal pagerank vectors [ACL06].
Given a parameter α ∈ (0, 1] and a vertex s, the
personal pagerank vector rs,α ∈ R

n is the unique
solution to the equation rs,α = αχs + (1 − α)Wrs,α,
where W is the transition matrix of the lazy random
walks.

Theorem 1.3. For any (unknown target) set S ⊆ V ,
there is a polynomial time randomized algorithm to find
a set S′ with

1. φ(S′) = O(φ(S) log(|S|)/φV (G)) and |S′| =
O(|S| log |S|),

2. φ(S′) = O(kφ(S) log(|S|)/φk(G)) and |S′| =
O(|S| log |S|),

by computing rs,α for a random vertex s ∈ S with
α = O(φ(S)) and returning a level set of rs,α. For
unweighted d-regular graphs, there is a local imple-
mentation with running time O(d|S| log(|S|)/φ(S) +
|S| log2(|S|)).

Theorem 1.3 implies that the personal pagerank
algorithm is a O(log(|S|)/φV (G))-approximation and
a O(k log(|S|)/φk(G))-approximation for the small-set
expansion problem where the output set size is bounded
within a logarithmic factor of the target set size.

We also present a spectral approach to prove that
the local graph partitioning algorithm using truncated
random walks has similar performance guarantees as the
spectral partitioning algorithm. Let ps,t := W tχs be
the probability distribution vector after t steps of lazy
random walks starting from the vertex s.

Theorem 1.4. For any (unknown target) set S ⊆ V ,
there is a polynomial time randomized algorithm to find
a set S′ with

1. φ(S′) = O(kφ(S)/(εφk(G))) and |S′| = O(|S|1+ε),

2. φ(S′) = O(kφ(S) log(|S|)/φk(G)) and |S′| =
O(|S|),

by computing ps,t for a random vertex s ∈ S with
t = O(log(|S|)/φ(S)) for (1) and t = O(1/φ(S)) for
(2) and returning a level set of ps,t. For unweighted
d-regular graphs, there is a local implementation with
running time O(dε2|S|1+ε log2(|S|)/φ(S)3).

Theorem 1.4 implies that the truncated random
walks algorithm is a O(k/φk(G))-approximation or a
O(k log(|S|)/φk(G))-approximation for the small-set ex-
pansion problem, with different tradeoffs of the output
set size.

Our results provide improved analyses of local
graph partitioning algorithms when the vertex expan-
sion or the k-way expansion is large, and provide theo-
retical justification of their good empirical performances
in applications such as image segmentation and data
clustering (see [ZLM13] and the references therein). The
results show that the performances of local graph par-
titioning algorithms almost match that of Theorem 1.1
and Theorem 1.2 (within at most a O(log(|S|))-factor
in the approximation guarantee), with the additional
advantages that they apply to the small-set expansion
problem (giving bicriteria approximations for φδ(G))
and also that their running time could be sublinear in
the graph size (when d and |S| are small enough).

1.2 Comparisons with Related Work

1.2.1 Generalizations of Cheeger’s inequality

There are several recent generalizations of Cheeger’s
inequality using higher eigenvalues of the Laplacian
matrix. The first generalization by Arora, Barak and
Steurer [ABS10] relates higher eigenvalues to small-set
expansions:

φO(k−1/100)(G) = O(
√
λk logk n),

and they use it to design a subexponential time algo-
rithm for approximating unique games. The second
generalization by Louis et al. [LRTV12] and Lee et
al. [LOT12] relates higher eigenvalues to k-way expan-
sion (a stronger requirement than small-set expansion):

(1.1)
1

2
λk ≤ φk(G) ≤ O(

√
λ2k log k),

and this justifies the use of higher eigenvalues in k-way
graph partitioning. Then there is a generalization by
Kwok et al. [KLLOT13] relating higher eigenvalues to
the ordinary edge expansion:

(1.2) φ(G) ≤ O(k)
λ2√
λk

,

which shows that the spectral partitioning algorithm
performs better in instances with λk large for a small k.

Instead of using higher eigenvalues to give better
bounds on expansion parameters, our results use expan-
sion parameters to give better bounds on the second
eigenvalue. We remark that the techniques developed
in [KLLOT13] could be used to prove Theorem 1.2 (see
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Section A in the Appendix), but our approach is quite
different and could be used to prove Theorem 1.1 and to
extend Theorem 1.2 to analyze personal pagerank vec-
tors. We also note that our proof of Theorem 1.2 can
be used to prove (1.2) using a graph powering trick as
described in [KL14] (see Section A in the Appendix).

1.2.2 Local Graph Partitioning Algorithms Lo-
cal graph partitioning algorithms are useful in find-
ing a small non-expanding set in a large graph, as
their running times are only weakly dependent on
the graph size and could be sublinear time. All
known algorithms are based on some random walks
related processes. The first local graph partitioning
algorithm is a truncated random walk algorithm by
Spielman and Teng [ST13], which returns a set S′

with φ(S′) = O(
√
φ(S) log3 n) with work-to-volume

ratio O(polylog(n)/φ2(S)). The second algorithm is
a personal pagerank algorithm by Andersen, Chung
and Lang [ACL06], which returns a set S′ with
φ(S′) = O(

√
φ(S) log(|S|)) with work-to-volume ratio

O(polylog(n)/φ(S)). The evolving set process is used
by Andersen and Peres [AP09] to further improved the
work-to-volume ratio to O(polylog(n)/

√
φ(S)) while

having the same performance guarantee as in [ACL06].
Using a better analysis of the escaping probability
of random walks, Oveis Gharan and Trevisan [OT12]
(see also [KL12]) showed that the

√
log(|S|) factor in

the performance ratio can be removed, thereby almost
matching the guarantee of Cheeger’s inequality. They
combined this with the evolving set process to find a
set S′ with φ(S′) = O(

√
φ(S)/ε), |S′| = O(|S|1+ε) and

work-to-volume ratio O(|S|ε polylog(n)/√φ).
Our contribution is to show that the performance of

some simple local graph partitioning algorithms (trun-
cated random walks, personal pagerank) almost match
that of the improved Cheeger’s inequalities. These pro-
vide the first analyses showing that random walk based
algorithms perform better when φV (G), φk(G) or λk(G)
is large, with similar performances to the spectral parti-
tioning algorithm while having additional features. We
note that Zhu et al. [ZLM13] gave a better analysis of
the personal pagerank algorithm when the internal ex-
pansion of the target set is large; our results are related
but incomparable.

1.2.3 Analysis of Mixing Time The notion of ex-
pansion profile was introduced by Lovász and Kan-
nan [LK99] in the study of mixing times of random
walks. They proved that the mixing time is upper
bounded by

∫
dx

xΦ(x)2 where Φ(x) = min0≤δ≤x φδ, which

is a better bound on the mixing time when the aver-

age conductance is large (e.g. small sets expand well in
geometric graphs).

Our work is inspired by their paper and some
subsequent work [KLM06, MP05], both in the proof
techniques (will be discussed in the next subsection)
and in the definitions. The robust vertex expansion
and its expansion profile are studied in [KLM06], where
better bounds on the mixing time are proved in a
similar form to the average conductance bound above.
In particular, it implies the mixing time is bounded
by O(log(n)/Ψ(G)), and thus λ2 ≥ Ω(Ψ(G)/ log(n)).
We note that Morris and Peres also proved a lower
bound on the second eigenvalue (Theorem 15 in [MP05])
using a parameter related to vertex expansion, but their
definition is incomparable to ours.

Our contribution is to directly bound the second
eigenvalue (not the mixing time) using the expansion
parameters and our bounds are independent of n. Also,
the bound that we prove using φk is considerably
stronger. Using φδ, the average conductance bound
only gives 1/λ2 ≤ O(log(δn)/φ2

δ + log(1/δ)/φ2), not
improving on Cheeger’s inequality even when φδ =
Ω(1) for constant δ, while Corollary 1.2 gives a O(1)-
approximation when φδ = Ω(1) for constant δ.

1.3 Technical Overview The proofs are inspired by
the work of Lovász and Kannan [LK99]. We observe
that their method is useful in analyzing the solution to
a Laplacian system (Lx = b), and can be extended to
study both the second eigenvectors (Lx = λx) and the
personal pagerank vectors.

The high-level approach is to look at the solution
vector x ∈ R

n with x1 ≥ x2 ≥ . . . ≥ xn, and relates
the (slow) decrease of xi to the (large) expansion of
the level sets in this vector. Similar to [LK99], we
define a jumping sequence of indices 1 = m0,m1,m2, . . .
such that xmi

− xmi+1
is inversely proportional to the

expansion of the level set [1,mi] (see Lemma 2.1). Using
the Laplacian equation of the second eigenvector, we use
an inductive argument to show that if the expansion of
all level sets is Ω(

√
λ2), then the values of xi decrease

slowly enough such that xn/2 > 0 (see Lemma 2.2),
contradicting that x is orthogonal to the all-one vector.
We remark that this gives a new and quite different
proof of Cheeger’s inequality (e.g. without using the
Cauchy-Schwarz inequality). To prove Theorem 1.1, we
use the robust vertex expansion to argue that each jump
can be made longer (mi+1 − mi made larger) and this
gives the improved bound. To prove Theorem 1.2, we
argue that given an ordering of the vertices, if φk is
large, then there are only a small number of indices
in the jumping sequence whose corresponding level sets
[1,mi] are of small expansion (see Lemma 2.3), and then
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we modify the induction hypothesis to obtain the result
(see Lemma 2.4). The inductive arguments and the
use of φk in arguing about expansions of level sets are
the new elements in the proofs that improve upon the
average conductance bound of Lovász and Kannan.

The previous analyses of both the truncated ran-
dom walk algorithm [ST13] and the personal pagerank
algorithm [ACL06] are based on the combinatorial tech-
nique introduced by Lovász and Simonovits [LS90] in
analyzing the mixing time of random walks. This tech-
nique is quite different from the analysis of spectral par-
titioning algorithms. It requires to consider the ran-
dom walk vectors for many different time steps, and
it is difficult to incorporate the notions of φk or λk in
the analyses as the ordering and level sets are chang-
ing in each time step5. Our techniques provide two
approaches to lift the analysis of the spectral graph
partitioning algorithm for local graph partitioning algo-
rithms, bringing closer the analyses of these two types
of algorithms. For the personal pagerank algorithm, we
use the Lovász-Kannan approach to directly analyze the
vector so that we can use φk to reason about the level
sets (Lemma 2.3). We note that this approach is consid-
ered by Andersen and Chung to give a simplified proof
of the personal pagerank algorithm [AC07], and we will
reuse some of their lemmas to obtain Theorem 1.3. For
the truncated random walk algorithm, we use the spec-
tral approach of Arora-Barak-Steurer [ABS10] to di-
rectly obtain a vector with small Rayleigh quotient and
small support, so that the improved Cheeger’s inequal-
ities can be applied to obtain results for approximating
small-set expansions6.

Finally, we remark that this approach can be ap-
plied to analyze the solutions to other Laplacian sys-
tems. Consider the following algorithm for approxi-
mating edge expansion. For an unknown target set S,
pick a random vertex s ∈ S, inject n units of current
to s and extracts one unit of current from every ver-
tex in the graph, sort the vertices by the voltages7,
and output the level set with the smallest expansion
among all level sets of size up to n/2. Our approach
implies that this algorithm always outputs a set S′ with
φ(S′) = O(

√
φ(S) log n). We believe that this approach

draws more connections to the mixing time literature
and will find further applications.

5We still don’t know how to do a better analysis for the
evolving set process because of this difficulty.

6We thank David Steurer for suggesting this spectral approach.
7Or equivalently, sort the vertices based on the expected

hitting time to s.

2 Spectral Partitioning

Let λ := λ2 and x be a second eigenvector such that
Lx = λx. Sort the vertices so that x1 ≥ x2 ≥ . . . ≥ xn.

2.1 Vertex Expansion The proof of Theorem 1.1
consists of two steps. The first step is to prove the drop
lemma and then define a jumping sequence to apply the
lemma. The second step is to use an inductive argument
to derive a contradiction if the expansion of all level sets
are large.

2.1.1 Drop Lemma and Jumping Sequence The
following lemma bounds the decrease of the values in
x to the expansion of the level sets of x. Recall that
w(S, T ) denotes the total weight of the edges with one
vertex in S and another vertex in T .

Lemma 2.1. (Drop Lemma) For 1 ≤ a < b ≤ n, we
have

xa − xb ≤ λ
∑a

i=1 xi

w([1, a], [b, n])
.

Proof. For each i,

xi −
∑
j

wijxj = λxi.

Sum this equation for 1 ≤ i ≤ a, we have

a∑
i=1

∑
j

xiwij −
a∑

i=1

∑
j

xjwij = λ

a∑
i=1

xi.

Since wij = wji, this can be simplified to

∑
i≤a

∑
j>a

xiwij −
∑
i≤a

∑
j>a

xjwij = λ

a∑
i=1

xi.

Consider the edges from the set [1, a] to the set [b, n].
Each edge contributes (xi−xj)wij to the left hand side,
which is at least (xa − xb)wij . Therefore, we have

w([1, a], [b, n]) · (xa − xb) ≤ λ

a∑
i=1

xi

and thus

xa − xb ≤ λ
∑a

i=1 xi

w([1, a], [b, n])
.

We define a jumping sequence of indices to apply
the drop lemma. Let m0 = 1 and

mi+1 = �mi(1 + φV (mi))�,
where φV (mi), φ(mi),Ψ(mi) are shorthands for
φV ([1,mi]), φ([1,mi]),Ψ([1,mi]) respectively. Then,
for mi ≤ n/2, by the definition of φV (mi), we have

w([1,mi], [mi+1, n]) ≥ 1

2
mi · φ(mi).
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Putting it in the above inequality with a = mi and
b = mi+1, it follows that

(2.3) xmi − xmi+1
≤ 2λ

∑mi

i=1 xi

mi · φ(mi)
=

2λxmi

φ(mi)
,

where

xl :=
1

l

l∑
i=1

xi.

Note that xl is non-increasing over l.

2.1.2 Induction We will prove the following lemma
by induction.

Lemma 2.2. If Ψ(mi) ≥ 32λ and φ(mi) ≥ 32λ for all
mi ≤ n/2, then xmi+1

≤ 2xmi+1
for all mi ≤ n/2.

First we see how it implies Theorem 1.1. Let mj

be the first term in the jumping sequence such that
mj > n/2. Note that the assumptions of Lemma 2.2
would imply that xmj

≥ 1
2xmj

> 0, where the last
inequality follows because

∑n
i=1 xi = 0 (as the second

eigenvector is orthogonal to the all-one vector) and so
all partial sums are positive. But this implies that
xi > 0 for all 1 ≤ i ≤ n/2, and applying the same
argument to −x will give us a contradiction. Therefore,
the assumptions of Lemma 2.2 must not hold, and thus
there is anmi ≤ n/2 with Ψ(mi) ≤ 32λ or φ(mi) ≤ 32λ,
proving Theorem 1.1.

Now we proceed to prove Lemma 2.2.

Proof. It is clear that the inequality holds for m0.
Assume that xmi

≤ cxmi
where c = 2,8 we would like

to prove that xmi+1
≤ cxmi+1

. Note that

mi+1∑
i=1

xi =

mi∑
i=1

xi +

mi+1∑
i=mi+1

xi

≤ mixmi + (mi+1 −mi)xmi

≤ xmi(mi+1 + (c− 1)mi).

Dividing both sides of this inequality by mi+1, we have

xmi+1
≤ xmi

(1 + (c− 1)
mi

mi+1
)

≤ xmi
(1 +

(c− 1)

1 + φV (mi)
)

≤ xmi+1
(
c+ φV (mi)

1 + φV (mi)
)(

φ(mi)

φ(mi)− 2λc
)

≤ cxmi+1
,

8The variable c is used so that we can reuse the calculation
here for the proof of Theorem 1.2.

where the second inequality follows from the definition
of mi+1, the third inequality is by (2.3) and by the
induction hypothesis, and the last inequality follows
from the following claim by plugging in φV (mi) for h
and φ(mi) for ϕ. Note that the conditions of Claim 1
follows from the assumptions of Lemma 2.2, and this
completes the proof.

Claim 1. If 2 ≤ c ≤ 4, 32λ ≤ hϕ and 32λ ≤ ϕ, then
we have

(
c+ h

1 + h
)(

ϕ

ϕ− 2λc
) ≤ c.

Proof. The conclusion to check is

c ≥ (
c+ h

1 + h
)(

ϕ

ϕ− 2λc
) = (c− (c− 1)h

1 + h
)(1 +

2λc

ϕ− 2λc
),

which is equivalent to

0 >
−(c− 1)h

1 + h
+

2λc2

ϕ− 2λc
− (c− 1)h(2λc)

(1 + h)(ϕ− 2λc)
.

Since ϕ ≥ 32λ > 2cλ, this is equivalent to

0 > −(c− 1)h(ϕ− 2λc) + 2λc2(1 + h)− (c− 1)h(2λc),

which can be simplified to

c− 1

c2
>

2λ(1 + h)

hϕ
= 2λ(

1

hϕ
+

1

ϕ
).

Since 2 ≤ c ≤ 4, the left hand side is at least 1/8. We
consider two cases. The first case is when 1/(hϕ) ≥ 1/ϕ,
and so the right hand side is at most 4λ/(hϕ). We
have 1/8 ≥ 4λ/(hϕ), as long as hϕ ≥ 32λ, which is
satisfied by our assumption. The second case is when
1/(hϕ) ≤ 1/ϕ, and so the right hand side is at most
4λ/ϕ. We have 1/8 ≥ 4λ/ϕ, as long as ϕ ≥ 32λ, which
is also satisfied by our assumption.

2.2 Proof of Theorem 1.2 We follow the same ap-
proach to prove Theorem 1.2. The additional arguments
are in Lemma 2.3 to bound the number of terms in the
jumping sequence with small expansion using φk and in
Claim 2 to control the inductive bound dynamically.

For Theorem 1.2, we define the jumping sequence
as follows. Let m0 = 1 and

mi+1 = �mi(1 +
1

2
φ(mi))�.

Then, for mi ≤ n/2, we have

w([1,mi], [mi+1, n]) ≥ miφ(mi)− (mi+1 −mi − 1)

≥ 1

2
mi · φ(mi),

so that equation (2.3) still holds after applying the drop
lemma.
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2.2.1 k-way Expansion The assumption on φk al-
lows us to bound the number of terms in the jumping
sequence with small expansion. We note that the fol-
lowing lemma can be applied to any ordering of vertices
(not just for second eigenvector), and it will be applied
to personal pagerank vectors later.

Lemma 2.3. For any θ < φk/4, there are at most
16k/φk terms mi in the jumping sequence with θ ≤
φ(mi) ≤ 2θ.

Proof. Suppose by contradiction that there are at least
16k/φk such terms. Let y0 be the first such term and
let yi be the (16i/φk)-th such term. We claim that the
sets {[1, y0], [y0, y1], . . . , [yk−1, yk]} are all of expansion
less than φk, contradicting the definition of φk. Note
that

yi+1 ≥ yi(1 +
θ

2
)

16
φk ≥ yi(1 +

8θ

φk
),

and thus

yi+1 − yi ≥ 8θyi
φk

.

The expansion of the set [yi, yi+1] is

φ([yi, yi+1]) =
w([yi, yi+1], [1, yi] ∪ [yi+1, n])

yi+1 − yi

≤ w([1, yi], [1, yi]) + w([1, yi+1], [1, yi+1])

yi+1 − yi

≤ 2θyi+1 + 2θyi
yi+1 − yi

= 2θ(1 +
2yi

yi+1 − yi
).

Using the lower bound on yi+1 − yi, we have

φ([yi, yi+1]) ≤ 2θ +
φk

2
< φk,

where the last inequality is by our assumption that
θ < φk/4.

2.2.2 Induction In the following, we assume that
φ2
k ≥ 1024λ, as otherwise Theorem 1.2 holds trivially.

We will prove the following lemma by induction.

Lemma 2.4. If φ2
k ≥ 1024λ and φ(mi) ≥ 256kλ/φk for

all mi ≤ n/2, then xmi+1
≤ 4xmi+1

for all mi ≤ n/2.

As argued before, the assumptions of Lemma 2.4
would imply that xi > 0 for all 1 ≤ i ≤ n/2, leading
to a contradiction. So, the assumptions of Lemma 2.4
must not hold, and thus there is an mi with φ(mi) ≤
256kλ/φk, proving Theorem 1.2.

To prove Lemma 2.4, we will prove by induction
that xmi

≤ cixmi
where initially c0 = 2 and

ci+1 =

{
ci if φ(mi) ≥ φk/4,
ci/(1− εici) if φ(mi) < φk/4,

where εi = 2λ/φ(mi). We first assume this induction
step and show that c∞ ≤ 4 using Lemma 2.3. Then we
will verify the induction step.

Claim 2. c∞ ≤ 4.

Proof. First, we prove by induction that

ci =
c0

1−∑i−1
j=0 εjc0

.

Assume this is true for i. Then

ci+1 =
ci

1− εici

= (
c0

1−∑i−1
j=0 εjc0

)(
1

1− εi(
c0

1−∑i−1

j=0
εjc0

)
)

=
c0

1−∑i
j=0 εjc0

.

Next, we bound c∞ using Lemma 2.3. Recall that εi =
2λ/φ(mi) and we can assume that φ(mi) ≥ 256kλ/φk.
Let θ0 = 256kλ/φk and θi+1 = 2θi. By Lemma 2.3,
there are at most 16k/φk terms mi in the jumping
sequence with θ ≤ φ(mi) < 2θ when θ < φk/4.
Therefore,

∑
εj =

∑
i≥0

∑
j:θi≤φ(mj)≤2θi

εj

≤
∑
i≥0

∑
j:θi≤φ(mj)≤2θi

2λ

θi

≤
∑
i≥0

16k

φk

2λ

θi

=
∑
i≥0

32kλ

φk

φk

256kλ2i

=
1

4
.

Therefore,

c∞ =
c0

1−∑
j εjc0

≤ c0
1− c0

4

= 4.

We prove the induction step. There are two cases,
depending on whether φ(mi) < φk/4. We first consider
the case when φ(mi) < φk/4. In this case, just apply

1854 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
17

 to
 9

9.
25

3.
15

2.
19

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



equation (2.3) and we have

xmi+1
≥ xmi

− 2λcixmi

φ(mi)

= xmi
(1− εici)

≥ xmi
(
1− εici

ci
)

≥ xmi+1

ci+1
,

by the definition of εi and ci+1 and we are done in this
case.

It remains to consider the case when φ(mi) ≥ φk/4.
By induction, we assume that xmi

≤ cixmi
, and we

claim that xmi+1
≤ cixmi+1

. By the same calculation as
in the induction for Theorem 1.1, we have

mi+1∑
i=1

xi =

mi∑
i=1

xi +

mi+1∑
i=mi+1

xi ≤ xmi(mi+1 + (ci − 1)mi).

Similarly, dividing both sides of this inequality by mi+1,
we have

xmi+1
≤ xmi+1

(
ci +

1
2φ(mi)

1 + 1
2φ(mi)

)(
φ(mi)

φ(mi)− 2λci
) ≤ cixmi+1

,

where the last inequality follows from Claim 1 by
plugging in h = φ(mi)/2, ϕ = φ(mi), c = ci and
checking that the conditions 2 ≤ c ≤ 4 (Claim 2),
hϕ ≥ ϕ2/2 ≥ φ2

k/32 ≥ 32λ and ϕ ≥ 32λ are satisfied
by our assumptions. This completes the induction step
and thus the proof of Lemma 2.4.

3 Personal Pagerank

We show that a similar and simpler analysis applies
to the personal pagerank vector. Given a parameter
α ∈ (0, 1] and a vertex s, the personal pagerank vector
rs,α ∈ R

n is the unique solution to the equation rs,α =
αχs+(1−α)Wrs,α, where W is the transition matrix of
the lazy random walks. Note that rs,α is a probability
distribution vector. In the following, we assume S is an
unknown target set with 3|S| log(|S|) ≤ n.

3.1 Drop Lemma Let x := rs,α be the personal
pagerank vector and assume x1 ≥ x2 ≥ . . . ≥ xn.
Andersen and Chung proved a drop lemma for pagerank
vectors (see Lemma 1 of [AC07] and compared to our
Lemma 2.1), for 1 ≤ a < b ≤ n,

(3.4) xa − xb ≤ α

w([1, a], [b, n])
.

3.2 Escaping Probability Let S be an unknown
target set. Using a bound on the escaping probability

of random walks [ST13]9, Andersen and Chung proved
that for half of the vertices s in S, the personal pagerank
vector x := rs,α will have the property that (see
Lemma 5 of [AC07])

(3.5)
∑
i∈S

xi ≥ 1− φ(S)

α
.

Setting α = 3φ(S) makes sure that
∑

i∈S xi ≥ 2/3 and
it follows that (see Lemma 2 of [AC07]) there exists an
a ≤ |S| with

xa ≥ 2

3a log(|S|) .

3.3 Vertex Expansion For vertex expansion, we
start our jumping sequence by setting m0 = a and then
define

mi+1 = �mi(1 + φV (G))�.
By this definition, we have w([1,mi], [mi+1, n]) ≥ 1

2mi ·
φ(mi), and it follows that

xmi+1
≥ xmi −

2α

mi · φ(mi)

and

xm∞
≥ xa −

∑
i≥0

2α

mi · φ(mi)
.

Suppose by contradiction that φ(mi) ≥
36φ(S) log(|S|)/φV (G) for all mi ≤ 3|S| log(|S|).
Then∑
i≥0

2α

mi · φ(mi)
≤

∑
i≥0

2αφV (G)

36a(1 + φV (G))iφ(S) log(|S|)

≤ 1

3a log(|S|) ,

where the last inequality uses the bound that∑
i≥0 1/(1+φV (G))i ≤ (1+φV (G))/φV (G) ≤ 2/φV (G)

and our choice that α = 3φ(S). This implies that

x3|S| log(|S|) ≥
1

3a log(|S|)
and thus∑

j≥0

xj ≥
∑

0≤j≤3|S| log(|S|)

1

3a log(|S|) > 1,

since a ≤ |S|, contradicting that x is a probability dis-
tribution vector. Therefore, there must exist an mi ≤
3|S| log(|S|) with φ(mi) ≤ 36φ(S) log(|S|)/φV (G),
proving the first part of Theorem 1.3.

9Actually, using a stronger result by Oveis Gharan and Tre-

visan [OT12], one can show that x(S) ≥ φ(S)(1+α)
α+φ(S)(1−α)

, but it does

not change the results in the following subsections.

1855 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
17

 to
 9

9.
25

3.
15

2.
19

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



3.4 k-way Expansion For k-way expansion, we de-
fine the jumping sequence by setting m0 = a and

mi+1 = �mi(1 + φ(mi))�.
As before, we have w([1,mi], [mi+1, n]) ≥ 1

2mi · φ(mi),
and it follows that

xmi+1
≥ xmi

− 2α

mi · φ(mi)

and

xm∞
≥ xa −

∑
i≥0

2α

mi · φ(mi)
.

We divide the summation into two parts∑
i:φ(mi)<φk/4

2α

mi · φ(mi)
+

∑
i:φ(mi)≥φk/4

2α

mi · φ(mi)
.

The second part is at most∑ 2α

miφk/4
≤

∑ 8α

aφk(1 + φk/4)i
≤ 64α

aφ2
k

.

The first part can be bounded by Lemma 2.3 as
follows. Suppose by contradiction that φ(mi) ≥
1152kφ(S) log(|S|)/φk for all mi ≤ 3|S| log(|S|). Let
θ0 = 1152kφ(S) log(|S|)/φk and θi = 2θi−1 for i ≥ 1.
By Lemma 2.3, there are at most 16k/φk terms in the
jumping sequence having conductance between θ and 2θ
when θ < φk/4. Therefore, the first part is at most

∑
j

∑
i:θj≤φ(mi)≤2θj

2α

aφ(mi)
≤

∑
j

32k

φk

α

aθj

=
∑
j

32k

φk

α

a2jθ0

=
64kα

aφkθ0
.

Putting these back into the first inequality, we have

xm∞
≥ xa − 64α

aφ2
k

− 64kα

aφkθ0

≥ 2

3a log(|S|) −
192φ(S)

aφ2
k

− 192φ(S)k

aφkθ0

≥ 2

3a log(|S|) −
384φ(S)k

aφkθ0

≥ 1

3a log(|S|) ,

where the second inequality is by the lower bound of xa

and the choice of α = 3φ(S), and the last inequality is
by our choice of θ0. This implies that

x3|S| log(|S|) ≥
1

3a log(|S|)

and thus∑
j≥0

xj ≥
∑

0≤j≤3|S| log(|S|)

1

3a log(|S|) > 1,

since a ≤ |S|, contradicting that x is a probability
distribution vector. Therefore, there must exist an
mi ≤ 3|S| log(|S|) with φ(mi) ≤ 1152kφ(S) log(|S|)/φk,
proving the second part of Theorem 1.3.

3.5 Local Algorithm Andersen and Chung [AC07]
show that the drop lemma (equation (3.4)) still holds
even for approximate personal pagerank vectors, which
can be computed efficiently in unweighted graphs. In
the following, we assume the graphs are unweighted d-
regular (in our setting, the edge weights are either 1/d
or 0). An ε-approximate vector for rs,α is a vector r′s,α
that satisfies r′s,α = α(χs− q)+ (1−α)Wr′s,α where the
vector q is non-negative and satisfies q(u) ≤ ε for every
vertex u in the graph.

Lemma 3.1. ([AC07]) There is an algorithm that com-
putes an ε-approximate vector r′s,α. The running time of
the algorithm is O(d/(εα)). Assume r′s,α(1) ≥ r′s,α(2) ≥
· · · ≥ r′s,α(n). The approximate vector r′s,α satisfies for
any 1 ≤ a < b ≤ n,

r′s,α(a)− r′s,α(b) ≤
α

w([1, a], [b, n])
.

Note that 0 ≤ q ≤ ε
1 implies

rs,α − r′s,α = α(I − (1− α)W )−1(χs − (χs − q))

= α(I − (1− α)W )−1q

≤ εα(I − (1− α)W )−1
1

= ε
1,

where the last equality holds since 
1 is an eigenvector of
both I and W with eigenvalue 1. Hence for any vertex
u, we have r′s,α(u) ≥ rs,α(u) − ε. We set ε = 1/(6|S|)
and α = 3φ(S) so that

∑
i∈S

r′s,α(i) ≥
∑
i∈S

rs,α(i)− ε|S| ≥ 1− φ(S)

α
− 1

6
≥ 1

2
,

for those vertices s that satisfy equation (3.5). Hence
there exists an a ≤ |S| with

r′s,α(a) ≥
1

2a log |S| .

Since r′s,α satisfies the drop lemma (equation (3.4))
and contains good initial value, both arguments in
vertex expansion and k-way expansion follow (with the
assumption 3|S| log(|S|) ≤ n replaced by 6|S| log(|S|) ≤
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n). The runtime of this algorithm is dominated by
the runtime for computing the approximate vector p′s,t
and sorting at most O(|S| log(|S|)) vertices after, and
hence the total complexity is O(d/(εα)+|S| log2(|S|)) =
O(d|S|/φ(S) + |S| log2(|S|)).

4 Random Walks

In this section, we present a spectral analysis of the
random walk local graph partitioning algorithm [ST13,
KL12]. The proof consists of three steps. The first step
is to show that the Rayleigh quotient of the random
walk vector ps,t = W tχs is small, by using the analysis
in the power method. The second step is to show
that the ‖ps,t‖2 is large for many vertices s in the
unknown target set, by using the bound on escaping
probability (or the staying probability). This allows us
to apply the argument in [ABS10] to ps,t to obtain a
vector with small Rayleigh quotient and small support.
Then we apply the improved Cheeger’s inequality to
prove Theorem 1.4. Finally, we show that the truncated
random walk vectors would also work, thereby proving
a local implementation of the algorithm.

4.1 Rayleigh Quotient Recall that the Rayleigh
quotient of a vector x is defined as R(x) = xTLx/‖x‖2.
The following lemma shows that the Rayleigh quotient
of the vector ps,t := W tχs becomes smaller when t
becomes larger. The proof follows the analysis of the
power method in computing the largest eigenvector.

Lemma 4.1. For any starting vertex s,

R(ps,t) ≤ 2− 2‖ps,t‖1/t2 .

Proof. Let χs =
∑n

i=1 civi where vi are eigenvectors
of L. Note that the lazy random walk matrix is
W = I − L/2, and thus the vector ps,t = W tχs =∑n

i=1 ci(1 − λi/2)
tvi. Hence, the Rayleigh quotient of

ps,t is

R(ps,t) =
pTs,tLps,t

‖ps,t‖2

=

∑n
i=1 c

2
i (1− λi/2)

2tλi∑n
i=1 c

2
i (1− λi/2)2t

= 2− 2

∑n
i=1 c

2
i (1− λi/2)

2t+1∑n
i=1 c

2
i (1− λi/2)2t

.

Note that
∑

i c
2
i = ‖χs‖22 = 1, and thus c2i can be viewed

as a probability distribution. Let X be the random
variable having value 1−λi/2 with probability c2i . Then
we can write R(ps,t) = 2 − 2E[X2t+1]/E[X2t]. By the
power mean inequality and the non-negativity of X, we
have

E[X2t+1]1/(2t+1) ≥ E[X2t]1/(2t).

Hence

R(ps,t) ≤ 2− 2E[X2t]1/2t

= 2− 2

(
n∑

i=1

c2i (1− λi/2)
2t

)1/2t

= 2− 2‖ps,t‖1/t2 .

4.2 Small Support Vector with Small Rayleigh

Quotient A vector x is called spectrally δ-sparse if
‖x‖21 ≤ δn‖x‖22. First, by using a result by Oveis
Gharan and Trevisan on escaping probability (or staying
probability), we bound the spectral sparsity of the
random walk vector. Then, we use a result used by
Arora, Barak and Steurer to turn a spectrally sparse
vector into a small support vector with similar Rayleigh
quotient.

The following lemma by Oveis Gharan and Trevisan
shows that if φ(S) is small, there is a large subset U ⊆
S, such that the random walk starting at any vertex
s ∈ U stays entirely inside S with good probability. In
particular, the probability that the walk ends inside S
is large.

Theorem 4.1. ([OT12]) For any subset S ⊆ V , there
is a subset U ⊆ S, such that |U | ≥ |S|/2, and for any
s ∈ U we have

∑
v∈S

ps,t(v) ≥ 1

200

(
1− 3φ(S)

2

)t

.

This provides a bound on the spectral sparsity of ps,t.

Lemma 4.2. For any subset S ⊆ V , there is a subset
U ⊆ S such that |U | ≥ |S|/2, and for any s ∈ U we
have

‖ps,t‖21 ≤ 40000|S|
(1− 3φ(S)/2)2t

‖ps,t‖22.

Proof. By Cauchy-Schwarz and Theorem 4.1, we have

‖ps,t‖22 ≥
∑
v∈S

ps,t(v)
2

≥ 1

|S|

(∑
v∈S

ps,t(v)

)2

≥ 1

|S|

(
1

200

(
1− 3φ(S)

2

)t
)2

=
1

40000|S|
(
1− 3φ(S)

2

)2t

.

Since ‖χs‖1 = 1 and W preserves 1-norm, we have
‖ps,t‖21 = ‖W tχs‖2 = 1, and the result follows.
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The following lemma in [ABS10] shows how to ob-
tain a vector y with small support and similar Rayleigh
quotient from a spectrally δ-sparse vector x. The proof
is by choosing an appropriate threshold t and set y =
max(x− t, 0).

Lemma 4.3. ([ABS10]) Let x ∈ R
|V |
≥0 be a non-

negative vector with ‖x‖21 ≤ δn‖x‖22. Then there exists
a vector y with supp(y) = O(δn) and R(y) = O(R(x)).

We will apply Lemma 4.3 on ps,t and obtain a vector
with small Rayleigh quotient (Lemma 4.1) and small
support (Lemma 4.2).

4.3 Improved Cheeger’s Guarantees We are
ready to prove Theorem 1.4. In the following we assume
φ(S) ≤ 1/4 and |S| ≥ 2. We set t = ε log |S|/(6φ(S)) so
that (

1− 3φ(S)

2

)2t

≥ exp(−3φ(S))2t

= exp(−6tφ(S))

= exp(−ε log |S|)
= |S|−ε.

By Lemma 4.2, we have

‖ps,t‖21 ≤ 40000|S|1+ε‖ps,t‖22.
On the other hand, since |S| ≥ 2,

(40000|S|)−1/(2t) ≥ exp

(
−17 log |S|

2t

)

= exp

(
−51φ(S)

ε

)

≥ 1− 51φ(S)

ε
.

Therefore, by Lemma 4.1, we have

R(ps,t) ≤ 2− 2(1− 3φ(S)

2
)(1− 51φ(S)

2ε
) = O

(
φ(S)

ε

)
.

Now, we apply Lemma 4.3 by plugging the vector ps,t
for x and obtain a vector y with supp(y) ≤ O(|S|1+ε)
and R(y) = O(φ(S)/ε). Finally, by the proof of the
improved Cheeger’s inequality (1.2) (see Section A in
Appendix), we find a level set S′ with |S′| ≤ | supp(y)| =
O(|S|1+ε) and

φ(S′) = O

(
kφ(S)

εφk

)
or

φ(S′) = O

(
kφ(S)

ε
√
λk

)
.

Since a level set of y is a level set of ps,t, this proves the
approximation guarantee of Theorem 1.4.

4.4 Local Algorithm Computing the vector ps,t =
W tχs exactly requires at least linear time. In the
following, we assume the graph is an unweighted d-
regular graph (in our setting, the edge weight is either
1/d or 0). To obtain a local algorithm, we can compute
a good approximation to ps,t by repeatedly applying the
operator W (initially we compute Wχs) and truncating
the small values to zero.

Lemma 4.4. ([ST13, KL12]) Let ps,t = W tχs be the
exact random walk vector starting at vertex s. There
is an algorithm that compute a vector p′s,t such that

ps,t ≥ p′s,t ≥ ps,t − α
1 and p′s,t ≥ 0 in time O(dt2/α).

We set t = ε log |S|/φ(S) and α =
φ(S)/(160000|S|1+ε), so that the time complexity
of our local algorithm is O(dε2|S|1+ε log2 |S|/φ(S)3). It
remains to show that p′s,t is still spectrally sparse and
has small Rayleigh quotient.

Lemma 4.5. For ps,t that satisfies the conclusion in
Lemma 4.2, we have

‖p′s,t‖21 ≤ 1

80000|S|1+ε
‖p′s,t‖22.

Proof. In the proof, we let x := ps,t and y := p′s,t.
By Lemma 4.4, we have y(i)2 ≥ x(i)2 − 2αx(i) since
y(i) ≥ max(x(i)− α, 0). Therefore,

‖y‖22 =
∑
i

y(i)2 ≥
∑
i

x(i)2 − 2α
∑
i

x(i) = ‖x‖22 − 2α.

By Lemma 4.2, we have ‖x‖22 ≥ 1/(40000|S|1+ε). From
our choice of α, we have 2α = φ(S)/(80000|S|1+ε) ≤
φ(S)‖x‖22/2. Therefore,

‖x‖22 − 2α ≥ ‖x‖22
(
1− φ(S)

2

)

≥ 1

80000|S|1+ε

≥ 1

80000|S|1+ε
‖y‖21,

where the last inequality holds as ‖y‖21 ≤ ‖x‖21 = 1.

Lemma 4.6.

R(p′s,t) ≤ O(
φ(S)

ε
).

Proof. Again, we let x := ps,t and y := p′s,t in the proof.
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Let r = x− y ≥ 0. Then we have

R(y) =
yTLy

yT y

=
(x− r)TL(x− r)

yT y

=
xTLx+ rTLr − 2xTLr

yT y

≤ 2xTLx+ 2rTLr

yT y
.

By the calculation in Lemma 4.5, ‖y‖22 ≥ (1 −
φ(S)/2)‖x‖22. Hence, using r ≥ 0 and y ≥ 0, we have
‖r‖22 ≤ ‖x‖22 − ‖y‖22 ≤ φ(S)‖x‖22/2 and rTLr ≤ 2rT r ≤
φ(S)‖x‖22. So, we have

R(y) = O

(
xTLx

yT y
+

rTLr

yT y

)

= O

(
xTLx

xTx
+

rTLr

xTx

)
= O(R(x) + φ(S))

= O

(
φ(S)

ε

)
.

With Lemma 4.5 and Lemma 4.6, we can use the
same proof in Section 4.3 to prove Theorem 1.4 with the
time complexity claimed.

To prove Theorem 1.4(2), we only need to set
ε = 1/ log(|S|) so that |S|1+ε = O(|S|).

4.5 Local Eigenvalue We remark that if we do
not care about local implementations, we can find a
particular good starting vertex u such that the random
walk algorithm starting at u gives a better performance
guarantee φ(S′) = O(kλS/(εφk)), where λS is the
smallest eigenvalue of the matrix LS which is the
restriction of L on the subset S. Chung [Chu07] shows
the following local Cheeger’s inequality:

λS ≤ min
T⊆S

φ(T ) ≤
√
2λS .

Hence λS is at most φ(S) and could be much smaller, for
instance when a subset of S has very small expansion.
The idea is similar to that in [KL12] and we just give a
quick sketch. Let vS be the corresponding eigenvector
with eigenvalue λS . We choose our starting vertex
to be u = argmaxi |vS(i)|. Then we show that the
spectral sparsity of the t-steps random walk is at most
|S|/(1− λS)

2t < |S|/(1−O(φ(S)))2t. This allows us to
set t to be larger so as to improve the Rayleigh quotient
of the random walk vector.
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A Relations between Improved Cheeger’s

Inequality and Theorem 1.2

First, we show that Theorem 1.2 can be derived from the
proof of the improved Cheeger’s inequality, as pointed
out to us by Luca Trevisan. Then, we show that
the improved Cheeger’s inequality can be derived from
Theorem 1.2, using a graph powering trick as described
in [KL14].

A.1 Improved Cheeger’s inequality implies

Theorem 1.2 The following stronger statement was
shown in [KLLOT13].

Theorem A.1. (Theorem 3.5 of [KLLOT13], restated)
For any non-negative vector x with supp(x) ≤ n/2, let
φsweep(x) be the minimum expansion of the level sets of
x. At least one of the following holds:

1. φsweep(x) ≤ O(k)R(x).

2. There exists k disjointly supported vectors
x1, . . . , xk such that for all 1 ≤ i ≤ k, supp(xi) ⊆
supp(x) and R(xi) ≤ O(k2R(x)2/φsweep(x)

2).

We apply the theorem with x = max(v2, 0) or
x = max(−v2, 0), whichever of smaller support. Note
that R(x) ≤ λ2 by standard argument [HLW06]. When
the first case of Theorem A.1 holds, it is clear that

φ(G) ≤ φsweep(x) ≤ O(k)R(x) ≤ O(kλ2) ≤ O(
kλ2

φk
).

Otherwise, there exist k disjointly supported vec-
tors, each with Rayleigh quotient not larger than
O(k2λ2

2/φ
2
sweep(x)). Apply (the original) Cheeger’s ar-

guments on these vectors, we can find k disjoint subsets
Si, each of them satisfies φ(Si) ≤ O(kλ2/φsweep(x)).
This implies that

φk ≤ O(
kλ2

φsweep(x)
),

or

λ2 = Ω(
φkφsweep(x)

k
) = Ω(

φkφ(G)

k
),

and Theorem 1.2 follows.

A.2 Theorem 1.2 implies improved Cheeger’s

inequality In [KL14], the authors proved a lower
bound on the expansion of graph powers and used it
to show some reductions on Cheeger’s inequalities. We
show that the same approach can be used to prove im-
proved Cheeger’s inequality by Theorem 1.2.
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Theorem A.2. (Theorem 1 of [KL14], restated)
Let H denote the graph with adjacency matrix W t where
W is the lazy random walk matrix of G. Then we have

φ(H) ≥ 1

20
(1− (1− φ(G)

2
)
√
t).

The following corollary is a generalization of Corol-
lary 12 of [KL14], which shows that general cases of im-
proved Cheeger’s inequality can be reduce to the cases
where λk is constant.

Corollary A.1. Suppose one could prove
that φ(H) ≤ Cλ2(H) for some C ≥ 1/10
whenever λk(H) ≥ 1/4, then it implies that
φ(G) ≤ 40Cλ2(G)/

√
λk(G) for any G and any

λk(G).

Proof. We assume that φ(G) ≤ √
λk, as otherwise,

by Cheeger’s inequality, 2λ2(G) ≥ φ(G)2 ≥ φ(G)
√
λk

and the statement is true. Consider H with adjacency
matrix W 1/λk(G). Then

λk(H) = 1− (1− λk(G)

2
)1/λk ≥ 1− exp(−1

2
) ≥ 1/4.

Therefore, if one could prove that φ(H) ≤ Cλ2(H), then

Cλ2(H) ≥ φ(H)

≥ 1

20
(1− (1− φ(G)

2
)
√

1/λk(G))

≥ 1

20
(1− exp(− φ(G)

2
√
λk(G)

))

≥ φ(G)

80
√
λk(G)

,

where the second inequality is by Theorem A.2. On the
other hand,

λ2(H) = 1− (1− λ2(G)

2
)1/λk(G) ≤ λ2(G)

2λk(G)
,

and the corollary follows by combining the two inequal-
ities.

Now we show the improved Cheeger’s inequality
in [KLLOT13] follows from Corollary A.1 and Theo-
rem 1.2. By the easy side of the higher order Cheeger’s
inequality, we have φk ≥ λk/2. Hence, for any graph
G with λk ≥ 1/4, we have φk ≥ 1/8 and Theo-
rem 1.2 gives φ(G) = O(kλ2(G)). Therefore, we can
apply Corollary A.1 (with C = O(k)) and conclude
that φ(G) = O(kλ2(G)/

√
λk(G)) is true for any graph

G and any λk, and the improved Cheeger’s inequality
in [KLLOT13] follows.
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