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ABSTRACT
We derive Cheeger inequalities for directed graphs and hypergraphs

using the reweighted eigenvalue approach that was recently de-

veloped for vertex expansion in undirected graphs. The goal is to

develop a new spectral theory for directed graphs and an alternative

spectral theory for hypergraphs.

The first main result is a Cheeger inequality relating the vertex

expansion of a directed graph to the vertex-capacitated maximum

reweighted second eigenvalue. This provides a combinatorial char-

acterization of the fastest mixing time of a directed graph by ver-

tex expansion, and builds a new connection between reweighted

eigenvalued, vertex expansion, and fastest mixing time for directed

graphs.

The second main result is a stronger Cheeger inequality relating

the edge conductance of a directed graph to the edge-capacitated

maximum reweighted second eigenvalue. This provides a certificate

for a directed graph to be an expander and a spectral algorithm

to find a sparse cut in a directed graph, playing a similar role as

Cheeger’s inequality in certifying graph expansion and in the spec-

tral partitioning algorithm for undirected graphs.

We also use this reweighted eigenvalue approach to derive the

improved Cheeger inequality for directed graphs, and furthermore

to derive several Cheeger inequalities for hypergraphs that match

and improve the existing results. These are supporting results that

this provides a unifying approach to lift the spectral theory for

undirected graphs to more general settings.
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• Mathematics of computing → Spectra of graphs; Hyper-
graphs; Approximation algorithms; • Theory of computation→
Random projections and metric embeddings; Graph algorithms
analysis; Approximation algorithms analysis; Semidefinite pro-
gramming.
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1 INTRODUCTION
Cheeger’s inequality [3, 4, 11, 13] is a fundamental result in spectral

graph theory that connects the edge expansion property of an undi-

rected graph 𝐺 = (𝑉 , 𝐸) to the second eigenvalue of its associated

matrix:

𝜆2

2

≤ 𝜙 (𝐺) ≤
√︁
2𝜆2 (1.1)

where 𝜙 (𝐺) is the edge conductance of 𝐺 and 𝜆2 is the second

smallest eigenvalue of its normalized Laplacian matrix
1
. There

are two important applications of Cheeger’s inequality. One is to

use the second eigenvalue to study expander graphs [22] and its

eigenvector for graph partitioning [38, 40]. The other is to use the

edge conductance to bound the mixing time of randomwalks [2, 29].

Together, Cheeger’s inequality connects the second eigenvalue,

edge conductance, and mixing time. More recently, the spectral

theory for undirected graphs is enriched by several interesting

generalizations of Cheeger’s inequality [5, 25, 28, 34, 39], which

establish further connections between edge expansion properties of

the graph to other eigenvalues of its normalized Laplacian matrix.

In contrast, the spectral theory for directed graphs has not been

nearly as well developed. One issue is that the Laplacian matrix of

a directed graph is not Hermitian, and so its eigenvalues are not

necessarily real numbers. There are formulations [14, 19, 21, 32]

that associate certain Hermitian matrices to a directed graph, and

use the second eigenvalue of these matrices to bound the mixing

time of random walks [14, 19] (see Section 1.3 for details). But,

to our knowledge, there are no known formulations that relate

the expansion properties of a directed graph to the eigenvalues of

an associated matrix
2
. The main goal of this paper is to provide

such formulations using “reweighted eigenvalues” and to develop

a spectral theory for directed graphs that is comparable to that for

undirected graphs.

The notion of reweighted eigenvalue for undirected graphs was

first formulated in [7] for studying the fastest mixing time problem

on reversible Markov chains. In this formulation, we are given an

undirected graph 𝐺 = (𝑉 , 𝐸), and the task is to find a reweighted

graph 𝐺 ′ = (𝑉 , 𝐸,𝑤) with edge weight 𝑤 (𝑢𝑣) for 𝑢𝑣 ∈ 𝐸 and

weighted degree one for each vertex, that maximizes the second

1
See Section 2 for various definitions that are not stated in this introduction.

2
The only formulation that we know about expansion properties of a directed graph

is a nonlinear Laplacian operator in [41, 42]. See Section 1.3 for details.
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eigenvalue 𝜆∗
2
of its normalized Laplacian matrix. It was known [37]

that the vertex expansion𝜓 (𝐺) is an upper bound on 𝜆∗
2
, but only

recently [23, 26, 36] was it established that there is a Cheeger-type

inequality relating these two quantities:

𝜆∗
2
≲ 𝜓 (𝐺) ≲

√︃
𝜆∗
2
· logΔ (1.2)

where Δ is the maximum degree of a vertex in𝐺 . This inequality

connects the reweighted second eigenvalue and vertex expansion

and fastest mixing time, in a similar way that Cheeger’s inequality

connects the second eigenvalue and edge conductance and mixing

time. This reweighted eigenvalue approach was extended in [26]

to develop a spectral theory for undirected vertex expansion, by

proving that several generalizations of Cheeger’s inequality [25, 28,

34, 39] have close analogs in connecting vertex expansion properties

to other reweighted eigenvalues.

1.1 Our Results
We formulate reweighted eigenvalues for directed graphs and hyper-

graphs. The main idea is to reduce the study of expansion properties

in directed graphs and hypergraphs to the basic setting of edge

conductances in undirected graphs. We show that this provides

an intuitive and unifying approach to lift the spectral theory for

undirected graphs to more general settings.

1.1.1 Cheeger Inequality for Directed Vertex Expansion. Classical
spectral theory connects (i) undirected edge conductance, (ii) second

eigenvalue, and (iii) mixing time of random walks on undirected

graphs. We present a new spectral formulation that connects (i)

directed vertex expansion, (ii) reweighted second eigenvalue, and

(iii) fastest mixing time of random walks on directed graphs.

Definition 1.1 (Directed Vertex Expansion). Let 𝐺 = (𝑉 , 𝐸) be a
directed graph and 𝜋 : 𝑉 → R≥0 be a weight function on the vertices.
For a subset 𝑆 ⊆ 𝑉 , let 𝜕+ (𝑆) := {𝑣 ∉ 𝑆 | ∃𝑢 ∈ 𝑆 with 𝑢𝑣 ∈ 𝐸} be the
set of out-neighbors of 𝑆 , and 𝜋 (𝑆) := ∑

𝑣∈𝑆 𝜋 (𝑣) be the weight of 𝑆 .
The directed vertex expansion of a set 𝑆 ⊆ 𝑉 and of the graph 𝐺 are
defined as

®𝜓 (𝑆) :=
min

{
𝜋
(
𝜕+ (𝑆)

)
, 𝜋

(
𝜕+ (𝑆)

)}
min

{
𝜋 (𝑆), 𝜋 (𝑆)

} a𝑛𝑑 ®𝜓 (𝐺) := min

∅≠𝑆⊂𝑉
®𝜓 (𝑆) .

where 𝑆 := 𝑉 − 𝑆 is the complement set of 𝑆 . Note that ®𝜓 (𝑆) ≤ 1 for
all 𝑆 ⊆ 𝑉 as 𝜕+ (𝑆) ⊆ 𝑆 .

Remark 1.2. When specialized to undirected graphs (by considering
the bidirected graph), the current definitions are slightly different
from that in [26, 36]; see Section 2. We remark that the two definitions
of𝜓 (𝐺) are within a factor of 2 of each other. The current definitions
have the advantages that 𝜓 (𝑆) ≤ 1 and are more convenient in the
proofs.

To certify that a directed graph 𝐺 = (𝑉 , 𝐸) has large vertex

expansion, our idea is to find the best reweighted Eulerian sub-

graph 𝐺 ′ = (𝑉 , 𝐸,𝑤) of 𝐺 with edge weight𝑤 (𝑢𝑣) for 𝑢𝑣 ∈ 𝐸 and

weighted degrees

∑
𝑢∈𝑉 𝑤 (𝑢𝑣) =

∑
𝑢∈𝑉 𝑤 (𝑣𝑢) = 𝜋 (𝑣) for 𝑣 ∈ 𝑉 ,

and then use the edge conductance of 𝐺 ′
as a lower bound on the

vertex expansion of 𝐺 . Since the weighted directed graph 𝐺 ′
is

Eulerian, the edge conductance of 𝐺 ′
is equal to the edge conduc-

tance of the underlying undirected graph 𝐺 ′′
with edge weight

𝑤 ′′ (𝑢𝑣) = 1

2

(
𝑤 (𝑢𝑣) +𝑤 (𝑣𝑢)

)
. Now, as the graph 𝐺 ′′

is undirected,

we can use Cheeger’s inequality to lower bound the edge conduc-

tance of 𝐺 ′′
by the second smallest eigenvalue of its normalized

Laplacian matrix. This leads to the following formulation of the

reweighted second eigenvalue for directed vertex expansion (see

Proposition 3.1 for more about this reduction).

Definition 1.3 (Maximum Reweighted Spectral Gap with Vertex

Capacity Constraints). Given a directed graph 𝐺 = (𝑉 , 𝐸) and a
weight function 𝜋 : 𝑉 → R≥0, the maximum reweighted spectral
gap with vertex capacity constraints is defined as

®𝜆𝑣∗
2
(𝐺) := max

𝐴≥0
𝜆2

(
𝐼 − Π− 1

2

(𝐴 +𝐴𝑇

2

)
Π− 1

2

)
subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁

𝑣∈𝑉
𝐴(𝑢, 𝑣) =

∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉∑︁
𝑣∈𝑉

𝐴(𝑢, 𝑣) = 𝜋 (𝑢) ∀𝑢 ∈ 𝑉

where 𝐴 is the adjacency matrix of the reweighted Eulerian subgraph
and Π := diag(𝜋) is the diagonal degree matrix of𝐴. Then 1

2
(𝐴+𝐴𝑇 )

is the adjacency matrix of the underlying undirected graph of the
reweighted Eulerian subgraph, L := 𝐼 − 1

2
Π−1/2 (𝐴 + 𝐴𝑇 )Π−1/2 is

its normalized Laplacian matrix, and 𝜆2 (L) is the second smallest
eigenvalue of L.

To ensure that the optimization problem for ®𝜆𝑣∗
2
(𝐺) is always

feasible, we assume that the graph has a self-loop at each vertex. In
the context of Markov chains, this corresponds to allowing a non-zero
holding probability on each vertex.

Our first main result is a Cheeger-type inequality that relates

®𝜆𝑣∗
2
(𝐺) and ®𝜓 (𝐺), proving that the directed vertex expansion is

large if and only if the reweighted eigenvalue is large.

Theorem 1.4 (Cheeger Ineqality for Directed Vertex Ex-

pansion). For any directed graph𝐺 = (𝑉 , 𝐸) and any weight func-
tion 𝜋 : 𝑉 → R≥0,

®𝜆𝑣∗
2
(𝐺) ≲ ®𝜓 (𝐺) ≲

√︄
®𝜆𝑣∗
2
(𝐺) · log Δ

®𝜓 (𝐺)
≲

√︄
®𝜆𝑣∗
2
(𝐺) · log Δ

®𝜆𝑣∗
2
(𝐺)

,

where Δ is the maximum (unweighted) degree of a vertex of 𝐺 .

Since directed vertex expansion is more general than undirected

vertex expansion and (1.2) is tight up to a constant factor [26], we

know that the logΔ term in Theorem 1.4 is necessary. However,

we do not know whether the log(1/ ®𝜓 (𝐺)) term in Theorem 1.4 is

necessary or not.

The Fastest Mixing Time Problem: The notion of reweighted

eigenvalue for undirected graphs was first formulated in [7] for

studying the fastest mixing time problem on reversible Markov

chains. It turns out that the reweighted eigenvalue
®𝜆𝑣∗
2
(𝐺) in Defi-

nition 1.3 can be used to study the fastest mixing time problem on

general Markov chains.
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Definition 1.5 (Fastest Mixing Time on General Markov Chain).
Given a directed graph 𝐺 = (𝑉 , 𝐸) and a probability distribution 𝜋

on 𝑉 , the fastest mixing time problem is defined as

𝜏∗ (𝐺) := min

𝑃≥0
𝜏 (𝑃)

subject to 𝑃 (𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁
𝑣∈𝑉

𝑃 (𝑢, 𝑣) = 1 ∀𝑢 ∈ 𝑉∑︁
𝑢∈𝑉

𝜋 (𝑢) · 𝑃 (𝑢, 𝑣) = 𝜋 (𝑣) ∀𝑣 ∈ 𝑉

where 𝑃 is the transition matrix of the Markov chain. The constraints
are to ensure that 𝑃 has nonzero entries only on the edges of 𝐺 , that
𝑃 is a row stochastic matrix, and that the stationary distribution
of 𝑃 is 𝜋 . The objective is to minimize the mixing time 𝜏 (𝑃) to the
stationary distribution 𝜋 ; see Section 2 for definitions of random walks
and mixing times.

For the fastest mixing time problem on reversible Markov chains,

we are given an undirected graph 𝐺 = (𝑉 , 𝐸) and a probability

distribution 𝜋 , and the last set of constraints in Definition 1.5 is

replaced by the stronger requirement that 𝜋 (𝑢) · 𝑃 (𝑢, 𝑣) = 𝜋 (𝑣) ·
𝑃 (𝑣,𝑢) for all 𝑢𝑣 ∈ 𝐸. With this stronger requirement, 𝑃 has real

eigenvalues and it is well known that 𝜏 (𝑃) ≲ 1

1−𝛼2 (𝑃 ) · log(
1

𝜋min

),
where 𝛼2 (𝑃) is the second largest eigenvalue of 𝑃 and 𝜋min :=

min𝑣∈𝑉 𝜋 (𝑣). Thus, the reweighted eigenvalue formulation in [7]

is to find such a transition matrix 𝑃 that maximizes the spectral

gap 1 − 𝛼2 (𝑃), which can be solved by a semidefinite program and

can be used as a proxy to upper bounding the fastest mixing time.

For generalMarkov chains, 𝑃 may have complex eigenvalues, and

there was no known efficient formulation for the fastest mixing time

problem. We observe that the reweighted spectral gap
®𝜆𝑣∗
2
(𝐺) in

Definition 1.3 provides such a formulation through the results in [14,

19]. An interesting consequence of Theorem 1.4 is a combinatorial

characterization of the fastest mixing time of generalMarkov chains,

showing that small directed vertex expansion is the only obstruction

of fastest mixing time.

Theorem 1.6 (Fastest Mixing Time and Directed Vertex

Expansion). For any directed graph 𝐺 = (𝑉 , 𝐸) with maximum
total degree Δ, and for any probability distribution 𝜋 on 𝑉 ,

1

®𝜓 (𝐺)
· 1

log(1/𝜋min)
≲ 𝜏∗ (𝐺) ≲ 1

®𝜓 (𝐺)2
· log Δ

®𝜓 (𝐺)
· log 1

𝜋min

.

Together, Theorem 1.4 and Theorem 1.6 connect the reweighted

second eigenvalue, directed vertex expansion, and fastest mixing

time on directed graphs, in a similar way that classical spectral

graph theory connects the second eigenvalue, undirected edge

conductance, and mixing time on undirected graphs.

1.1.2 Cheeger Inequality for Directed Edge Conductance. Two key

applications of Cheeger’s inequality are to use the second eigen-

value to certify whether an undirected graph is an expander graph,

and to provide a spectral algorithm for graph partitioning that is

useful in many areas. We present a new Cheeger inequality for

directed graphs for these purposes.

Definition 1.7 (Directed Edge Conductance [41, 42]). Let 𝐺 =

(𝑉 , 𝐸) be a directed graph and𝑤 : 𝐸 → R≥0 be a weight function on

the edges. For a subset 𝑆 ⊆ 𝑉 , let 𝛿+ (𝑆) := {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆}
be the set of outgoing edges of 𝑆 and𝑤 (𝛿+ (𝑆)) be the total edge weight
on𝛿+ (𝑆), and vol𝑤 (𝑆) := ∑

𝑣∈𝑆
∑
𝑢∈𝑉 (𝑤 (𝑢𝑣)+𝑤 (𝑣𝑢)) be the volume

of 𝑆 . The directed edge conductance of a set 𝑆 ⊆ 𝑉 and of the graph
𝐺 are defined as

®𝜙 (𝑆) :=
min

{
𝑤
(
𝛿+ (𝑆)

)
,𝑤

(
𝛿+ (𝑆)

)}
min

{
vol𝑤 (𝑆), vol𝑤 (𝑆)

} a𝑛𝑑 ®𝜙 (𝐺) := min

∅≠𝑆⊂𝑉
®𝜙 (𝑆).

We use the same approach to prove a Cheeger-type inequality

for directed edge conductance
3
. To certify that a directed graph

𝐺 = (𝑉 , 𝐸) with a weight function 𝑤 : 𝐸 → R≥0 has large edge
conductance, we find the best reweighted Eulerian subgraph 𝐺 ′

with edge weight 𝑤 ′ (𝑢, 𝑣) ≤ 𝑤 (𝑢, 𝑣) for each 𝑢𝑣 ∈ 𝐸, and use the

edge conductance of 𝐺 ′
(with respect to the volumes using𝑤 ) to

provide a lower bound on the edge conductance of 𝐺 . Then, the

edge conductance of 𝐺 ′
is reduced to the edge conductance of

the underlying undirected graph 𝐺 ′′
with edge weight𝑤 ′′ (𝑢𝑣) =

1

2
(𝑤 ′ (𝑢𝑣) + 𝑤 ′ (𝑣𝑢)), and the second smallest eigenvalue of the

normalized Laplacian matrix of𝐺 ′′
is used to provide a lower bound

on the edge conductance of 𝐺 ′′
. See Proposition 3.2 for a proof.

Definition 1.8 (Maximum Reweighted Spectral Gap with Edge

Capacity Constraints). Given a directed graph 𝐺 = (𝑉 , 𝐸) and a
weight function 𝑤 : 𝐸 → R≥0, the maximum reweighted spectral
gap with edge capacity constraints is defined as

®𝜆𝑒∗
2
(𝐺) := max

𝐴≥0
𝜆2

(
𝐷− 1

2

(
𝐷𝐴 − 𝐴 +𝐴𝑇

2

)
𝐷− 1

2

)
subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁

𝑣∈𝑉
𝐴(𝑢, 𝑣) =

∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉

𝐴(𝑢, 𝑣) ≤ 𝑤 (𝑢𝑣) ∀𝑢𝑣 ∈ 𝐸

where 𝐴 is the adjacency matrix of the reweighted Eulerian subgraph,
𝐷𝐴 is the diagonal degree matrix of (𝐴 + 𝐴𝑇 )/2 with 𝐷𝐴 (𝑣, 𝑣) =∑
𝑢∈𝑉

1

2
(𝐴(𝑢, 𝑣) + 𝐴(𝑣,𝑢)), and 𝐷 is the diagonal degree matrix of

𝐺 with 𝐷 (𝑣, 𝑣) = ∑
𝑢∈𝑉 (𝑤 (𝑢𝑣) +𝑤 (𝑣𝑢)) equal to the total weighted

degree of 𝑣 in 𝐺 .

Our second main result is a stronger Cheeger-type inequality

that relates
®𝜆𝑒∗
2
(𝐺) and ®𝜙 (𝐺).

Theorem 1.9 (Cheeger Ineqality for Directed Edge Con-

ductance). For any directed graph 𝐺 = (𝑉 , 𝐸) and any weight
function𝑤 : 𝐸 → R≥0,

®𝜆𝑒∗
2
(𝐺) ≲ ®𝜙 (𝐺) ≲

√︄
®𝜆𝑒∗
2
(𝐺) · log 1

®𝜙 (𝐺)
≲

√︄
®𝜆𝑒∗
2
(𝐺) · log 1

®𝜆𝑒∗
2
(𝐺)

.

An important point about Theorem 1.9 is that there is no depen-

dence on the maximum degree of 𝐺 as in Theorem 1.4 or on the

number of vertices of𝐺 as in [1, 42]. As a consequence,
®𝜆𝑒∗
2
(𝐺) is a

polynomial time-computable quantity that can be used to certify

whether a directed graph has constant edge conductance. This is

similar to the role of the second eigenvalue in Cheeger’s inequality

3
The reader may wonder whether it is possible to reduce directed edge conductance to

directed vertex expansion, and use Theorem 1.4 to obtain a Cheeger-type inequality

for directed edge conductance. This is indeed possible, but the result obtained in this

way will have a dependency on the maximum total degree Δ as in Theorem 1.4, while

the result that we present in Theorem 1.9 has no such dependency.
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to certify whether an undirected graph has constant edge conduc-

tance.

Also, as in the proof of Cheeger’s inequality, the proof of The-

orem 1.9 provides a polynomial time algorithm to return a set 𝑆

with
®𝜙 (𝑆) ≤

√︃
®𝜙 (𝐺) log 1/ ®𝜙 (𝐺). Since many real-world networks

are directed (see [41]), we hope that this “spectral” algorithm will

find applications in clustering and partitioning for directed graphs,

as the classical spectral partitioning algorithm does in clustering

and partitioning for undirected graphs [38, 40].

1.1.3 Generalizations of Cheeger Inequality for Directed Graphs.
For undirected graphs, there are several interesting generalizations

of Cheeger’s inequality: Trevisan’s result [39] that relate 𝜆𝑛 to

bipartite edge conductance, the higher-order Cheeger’s inequal-

ity [28, 34] that relates 𝜆𝑘 to 𝑘-way edge conductance, and the

improved Cheeger’s inequality [25] that relates 𝜆2 and 𝜆𝑘 to edge

conductance. Using reweighted eigenvalues for vertex expansion,

close analogs of these results were obtained in [26], relating 𝜆∗𝑛 to

bipartite vertex expansion, 𝜆∗
𝑘
to 𝑘-way vertex expansion, and 𝜆∗

2

and 𝜆∗
𝑘
to vertex expansion.

We study whether there are close analogs of these results for

directed graphs, using reweighted eigenvalues for directed vertex

expansion in Definition 1.1 and directed edge conductance in Defi-

nition 1.7. Perhaps surprisingly, we show that the natural analogs

of Trevisan’s result and higher-order Cheeger’s inequality do not

hold, but we obtain analogs of the improved Cheeger’s inequality

for directed vertex expansion and directed edge conductance. See

the full version of the paper for more details.

1.1.4 Cheeger Inequalities for Hypergraph Edge Conductance. We

also formulate reweighted eigenvalues for hypergraphs and use

them to derive Cheeger-type inequalities for hypergraphs, as sup-

porting results that reweighted eigenvalues provide a unifying

approach to study expansion properties in different settings.

Definition 1.10 (Hypergraph Edge Conductance [8, 33]). Let 𝐻 =

(𝑉 , 𝐸) be a hypergraph and 𝑤 : 𝐸 → R≥0 be a weight function on
the hyperedges. For a subset 𝑆 ⊆ 𝑉 , let 𝛿 (𝑆) := {𝑒 ∈ 𝐸 | 𝑒 ∩ 𝑆 ≠

∅ and 𝑒 ∩ 𝑆 ≠ ∅} be the edge boundary of 𝑆 and𝑤 (𝛿 (𝑆)) be the total
edge weight of 𝛿 (𝑆), and let vol𝑤 (𝑆) :=

∑
𝑣∈𝑆

∑
𝑒 :𝑣∈𝑒 𝑤 (𝑒) be the

volume of 𝑆 . The hypergraph edge conductance of a set 𝑆 ⊆ 𝑉 and of
the graph 𝐺 are defined as

𝜙 (𝑆) :=
𝑤
(
𝛿 (𝑆)

)
min

{
vol𝑤 (𝑆), vol𝑤 (𝑆)

} a𝑛𝑑 𝜙 (𝐻 ) := min

∅≠𝑆⊂𝑉
𝜙 (𝑆) .

The idea is to consider the “clique-graph” of the hypergraph 𝐻 ,

and find the best reweighted subgraph of the clique-graph to certify

the edge conductance of 𝐻 , subject to the constraint that the total

weight of the “clique-edges” of a hyperedge 𝑒 is bounded by𝑤 (𝑒).
Definition 1.11 (Maximum Reweighted Spectral Gap for Hyper-

graphs). Given a hypergraph 𝐻 = (𝑉 , 𝐸) and weight function 𝑤 :

𝐸 → R≥0, the maximum reweighted spectral gap for 𝐻 is defined as

𝛾∗
2
(𝐻 ) := max

𝐴≥0
𝜆2

(
𝐷− 1

2

(
𝐷𝐴 −𝐴

)
𝐷− 1

2

)
subject to

∑︁
𝑢,𝑣∈𝑒

𝑐 (𝑢, 𝑣, 𝑒) ≤ 𝑤 (𝑒) ∀𝑒 ∈ 𝐸

𝐴(𝑢, 𝑣) =
∑︁

𝑒∈𝐸:𝑢,𝑣∈𝑒
𝑐 (𝑢, 𝑣, 𝑒) ∀𝑢, 𝑣 ∈ 𝑉 .

In this formulation, there is a clique-edge variable 𝑐 (𝑢, 𝑣, 𝑒) for each
pair of vertices 𝑢, 𝑣 in a hyperedge 𝑒 , with the constraints that the
total weight of the clique-edges in 𝑒 is bounded by𝑤 (𝑒). Then, 𝐴 is
the adjacency matrix of the reweighted subgraph of the clique-graph
with edge weight 𝐴(𝑢, 𝑣) equal to the sum of the weight of the clique-
edges involving 𝑢 and 𝑣 , 𝐷𝐴 is the diagonal degree matrix of 𝐴 with
𝐷𝐴 (𝑣, 𝑣) =

∑
𝑢∈𝑉 𝐴(𝑢, 𝑣), and 𝐷 is the diagonal degree matrix of 𝐻

with 𝐷 (𝑣, 𝑣) = ∑
𝑒∈𝐸:𝑣∈𝑒 𝑤 (𝑒) equal to the weighted degree of 𝑣 in

𝐻 .

There is a spectral theory for hypergraphs based on a continu-

ous time diffusion process with several Cheeger-type inequalities

proven [8, 33]. We show that the reweighted eigenvalue approach

can be used to provide a simpler and more intuitive way to obtain

similar results.

Theorem 1.12 (Cheeger Ineqality for Hypergraph Edge

Conductance). For any hypergraph 𝐻 = (𝑉 , 𝐸) and any weight
function𝑤 : 𝐸 → R≥0,

𝛾∗
2
(𝐻 ) ≲ 𝜙 (𝐻 ) ≲

√︃
𝛾∗
2
(𝐻 ) · log(𝑟 )

where 𝑟 is the maximum size of a hyperedge of 𝐻 .

We also obtain generalizations of Cheeger’s inequalities for hy-

pergraphs using other reweighted eigenvalues such as 𝛾∗
𝑘
(𝐻 ) and

a new result about improved Cheeger inequality for hypergraphs.

We will mention these results and compare the two approaches in

Section 1.3.

1.2 Techniques
Conceptually, our contribution is to come up with new spectral

formulations for expansion properties in directed graphs and hy-

pergraphs, and to show that the reweighted eigenvalue approach

provides a unifying method to reduce expansion problems in more

general settings to the basic setting of edge conductances in undi-

rected graphs.

Technically, the proofs are based on the framework developed

in [23, 26, 36] in relating reweighted eigenvalues to undirected

vertex expansion in (1.2). We briefly describe this framework and

then highlight some new elements in the proofs for directed graphs.

There are two main steps in proving (1.2). The first step is to con-

struct the dual SDP for the reweighted eigenvalue, and to do random

projection to obtain a 1-dimensional solution to the dual program.

The second step is to analyze the threshold rounding algorithm for

the 1-dimensional solution.

For directed graphs, we identify a key parameter for our analysis.

Definition 1.13 (Asymmetric Ratio of Directed Graphs). Given
an edge-weighted graph 𝐺 = (𝑉 , 𝐸,𝑤), the asymmetric ratio of a set
𝑆 ⊆ 𝑉 and of the graph 𝐺 are defined as

𝛼 (𝑆) := 𝑤 (𝛿+ (𝑆))
𝑤 (𝛿+ (𝑆))

and 𝛼 (𝐺) := max

∅≠𝑆⊂𝑉
𝛼 (𝑆) .

Given a vertex-weighted graph𝐺 = (𝑉 , 𝐸, 𝜋), we define the 𝜋-induced
weight of an edge 𝑢𝑣 ∈ 𝐸 as 𝑤𝜋 (𝑢𝑣) = min{𝜋 (𝑢), 𝜋 (𝑣)}, and the
asymmetric ratio of a set 𝑆 ⊆ 𝑉 and of the graph are defined as above
using the edge weight function𝑤𝜋 .



Cheeger Inequalities for Directed Graphs and Hypergraphs using Reweighted Eigenvalues STOC ’23, June 20–23, 2023, Orlando, FL, USA

We note that the asymmetric ratio of an edge-weighted graph

was defined in [18] with the name “𝛼-balanced” and was used in

the analysis of oblivious routing in directed graphs. The asym-

metric ratio is a measure of how close a directed graph is to an

undirected graph for our purpose, as when 𝛼 (𝐺) = 1 the directed

graph is Eulerian and so its edge conductance is the same as the

edge conductance of the underlying undirected graph.

This parameter is defined to satisfy two useful properties. The

first is that it can be used to prove more refined Cheeger inequalities

that

®𝜙 (𝐺) ≤
√︃
®𝜆𝑒∗
2
(𝐺) · log𝛼 (𝐺)

and
®𝜓 (𝐺) ≤

√︃
®𝜆𝑣∗
2
(𝐺) · log

(
Δ · 𝛼 (𝐺)

)
. (1.3)

The second is that it can be related to the directed edge conduc-

tance and directed vertex expansion such that 𝛼 (𝐺) ≤ 1/ ®𝜙 (𝐺) in
Lemma 3.5 and 𝛼 (𝐺) ≤ Δ/ ®𝜓 (𝐺) in Lemma 3.6. Combining the two

properties gives Theorem 1.9 and Theorem 1.4.

We highlight two new elements in the proofs of (1.3), one in

dimension reduction and one in threshold rounding. In the dimen-

sion reduction step, the Johnson-Lindenstrauss lemma can be used

to project to a 1-dimensional solution with a factor of log |𝑉 | loss
as in [36]. For undirected vertex expansion, this was improved to

a factor of logΔ loss in two ways: one is the Gauassian projection

method in [26, 35], while the other is a better analysis of dimen-

sion reduction for maximum matching in [23]. For directed edge

conductance and directed vertex expansion, the SDP is more com-

plicated and we do not know how to extend the Gaussian projection

method to improve on the log |𝑉 | loss; see the full paper for discus-
sions. Instead, we extend the approach in [23] to prove that random

projections only lose a factor of log𝛼 (𝐺) with high probability.

When the asymmetric ratio is small, we use Hoffman’s result in

Lemma 3.8 about bounded-weighted circulations to prove a “large

optimal property” of the SDPs (see Lemma 3.9), and use it to adapt

the proof in [23] for maximum weighted Eulerian subgraphs; see

Section 3.4 for details.

In the threshold rounding step of the 1-dimensional solution,

we consider the dual SDP of
®𝜆𝑣∗
2
(𝐺) and ®𝜆𝑒∗

2
(𝐺) as in [26]. Unlike

the dual SDP for undirected vertex expansion, these dual SDPs

(see Lemma 3.18) has some negative terms from some vertex poten-

tial function 𝑟 : 𝑉 → R. The new idea in our threshold rounding is

to not only consider the ordering defined by the vertex embedding

function 𝑓 : 𝑉 → R as usual, but to consider the two orderings

defined by 𝑓 ± 𝑟 and show that threshold rounding will work on

one of these two orderings. This idea also leads to a cleaner and

nicer proof of the hard directions than that in [26], e.g. without the

preprocessing and postprocessing steps; see Section 3.5 for details.

The generalizations of Cheeger inequalities for directed graphs

and all Cheeger-type inequalities for hypergraphs are based on

the same proofs of the corresponding results in [26] with no new

ideas involved. We believe these results show that the reweighted

eigenvalue approach provides a unifying method to lift the spectral

theory for undirected edge conductance to obtain new results in

more general settings in a systematic way.

Finally, we note that the maximum degree Δ for undirected

vertex expansion, the asymmetric ratio 𝛼 (𝐺) for directed edge

conductance and directed vertex expansion, and the maximum

hyperedge size 𝑟 for hypergraph edge conductance all play the same

role as a measure of how close the respective problem is to the basic

problem of undirected edge conductance. The trivial reductions

to undirected edge conductance lose a factor of Δ for undirected

vertex expansion, a factor of 𝛼 (𝐺) for directed edge-conductance

(by just ignoring the directions), and a factor of 𝑟 for hypergraph

edge conductance (by just considering the clique graph). But the

reductions through the reweighted eigenvalue approach only lose

a factor of logΔ in (1.2), a factor of log𝛼 (𝐺) in (1.3), and a factor

of log 𝑟 in Theorem 1.12 respectively.

1.3 Related Work
There has been considerable interest in developing a spectral theory

for directed graphs and hypergraphs, with many papers that we

cannot review them all here. We describe the most relevant ones

and compare to our work.

Nonlinear Laplacian for Directed Graphs: Yoshida [41] in-
troduced a nonlinear Laplacian operator for directed graphs and

used it to define the following second eigenvalue

𝜆𝐺 = inf

𝑥⊥𝜇𝐺

∑
𝑢𝑣∈𝐸

( [
𝑥𝑢/

√
𝑑𝑢 − 𝑥𝑣/

√
𝑑𝑣
]+)2∑

𝑢∈𝑉 𝑥2𝑢

where 𝜇𝐺 denotes the first eigenvector, [𝑎 − 𝑏]+ denotes max{𝑎 −
𝑏, 0}, and 𝑑𝑢 is the total degree of 𝑢. He considered the same di-

rected edge conductance as in Definition 1.7 and proved the Cheeger

inequality that 𝜆𝐺/2 ≤ ®𝜙 (𝐺) ≤ 2

√︁
𝜆𝐺 , but did not give an approxi-

mation algorithm for computing 𝜆𝐺 in [41]. Later, Yoshida [42]

gave an SDP approximation algorithm for computing 𝜆𝐺 , and

this gives a polynomial time computable quantity 𝜆𝐺 that satis-

fies 𝜆𝐺 ≲ ®𝜙 (𝐺) ≲
√︃
𝜆𝐺 · log |𝑉 |. We note that this is compara-

ble but improved by our result
4
for

®𝜙 (𝐺) in (1.3), and cannot be

used for certifying constant directed edge conductance as in Theo-

rem 1.9. We also note that this result is dominated by the SDP-based

𝑂 (
√︁
log |𝑉 |)-approximation algorithm for

®𝜙 (𝐺) in [1] that we de-

scribe below. To our knowledge, this is the only spectral formulation

known in the literature that relates to directed edge conductance,

and no spectral formulation was known for directed vertex expan-

sion. We also believe that the reweighted eigenvalue approach is

simpler and more intuitive than the nonlinear Laplacian operator

approach.

Approximation Algorithms Using Semidefinite Program-
ming: In [1], Agarwal, Charikar, Makarychev and Makarychev

gave an SDP-based 𝑂
(√︁

log |𝑉 |
)
-approximation algorithm for the

directed sparsest cut problem on a directed graph𝐺 = (𝑉 , 𝐸), where
the objective is to find a set 𝑆 that minimizes |𝛿+ (𝑆) |/min{|𝑆 |, |𝑆 |}.
We note that in the unweighted case, directed vertex expansion

and directed edge conductance can be reduced to directed sparsest

cut via standard reductions. In the weighted case, the SDP for di-

rected sparsest cut can be slightly modified to obtain a𝑂
(√︁

log |𝑉 |
)
-

approximation algorithm for directed edge conductance. To our

knowledge, it was not known that the SDP in [1] can be used to

certify whether a directed graph has constant edge conductance

4
We remark that we can use the Johnson-Lindenstrauss lemma to do the dimension

reduction step as in [36], and this would give
®𝜙 (𝐺 ) ≲

√︃
®𝜆𝑒∗
2
(𝐺 ) · log |𝑉 | as well.
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as in Theorem 1.9, as the analysis using triangle inequalities based

on [6] has a

√︁
log |𝑉 | factor loss. We show that the SDP in [1] is

stronger than the SDP for directed edge conductance in Proposi-

tion 3.4. Therefore, using the new analysis through asymmetric

ratio in this paper, we also prove that the SDP in [1] provides a

polynomial time computable quantity to certify constant directed

edge conductance as in Theorem 1.9. See the full paper for proofs

and discussion.

Cheeger Constant for Directed Graphs: Fill [19] and Chung

[14] defined some symmetric matrices for directed graphs, and re-

lated their eigenvalues to Cheeger’s constant and to mixing time.

Their formulations are similar to each other, but Chung’s formu-

lation is closer and more consistent with ours, as her work is also

based on an Eulerian reweighted subgraph (which was called a

circulation in [14]) that we describe below.

Given a directed graph 𝐺 = (𝑉 , 𝐸) with a weight function

𝑤 : 𝐸 → R≥0, let 𝑃 be the transition matrix of the ordinary ran-

dom walks on 𝐺 with 𝑃 (𝑢, 𝑣) = 𝑤 (𝑢𝑣)/∑𝑣∈𝑉 𝑤 (𝑢𝑣) for 𝑢𝑣 ∈ 𝐸.

Suppose 𝐺 is strongly connected, then there is a unique stationary

distribution 𝜋 : 𝑉 → R+ of the random walks on 𝐺 such that

𝜋𝑇 𝑃 = 𝜋𝑇 . Let Π := diag(𝜋). Fill [19] defined the product and the

sum matrices as𝑀 (𝑃) := 𝑃Π−1𝑃𝑇Π and 𝐴(𝑃) := (𝑃 + Π−1𝑃𝑇Π)/2.
Chung [14] noted that if the weight of an edge 𝑢𝑣 is defined as

𝑓 (𝑢, 𝑣) = 𝜋 (𝑢) · 𝑃 (𝑢, 𝑣), then the weighted directed graph 𝐺 ′ =

(𝑉 , 𝐸, 𝑓 ) is Eulerian such that

∑
𝑢:𝑢𝑣∈𝐸 𝑓 (𝑢, 𝑣) = ∑

𝑤:𝑣𝑤∈𝐸 𝑓 (𝑣,𝑤)
for all 𝑣 ∈ 𝑉 . Then she used the underlying weighted undirected

graph to define the Laplacian of a directed graphs as

L̃ := 𝐼 −
(
Π1/2𝑃Π−1/2 + Π−1/2𝑃𝑇Π1/2)/2

= 𝐼 − Π− 1

2

(
𝐹 + 𝐹𝑇

)
Π− 1

2 /2 (1.4)

where 𝐹 = Π𝑃 is the adjacency matrix of 𝐺 ′
. Note that the spec-

trums of 𝐴(𝑃) and 𝐿̃ are essentially the same, as 𝑃 + Π−1𝑃𝑇Π and

Π1/2𝑃Π−1/2 + Π−1/2𝑃𝑇Π1/2
are similar matrices. Note also that L̃

is exactly the same as the normalized Laplacian matrix in the objec-

tive function in Definition 1.3. The Cheeger constant of a directed

graph [14, 19] is defined as

ℎ(𝐺) := min

𝑆 :𝑆≠∅,𝑆≠𝑉
ℎ(𝑆) where ℎ(𝑆) =

∑
𝑢,𝑣:𝑢∈𝑆,𝑣∉𝑆 𝜋 (𝑢)𝑃 (𝑢, 𝑣)
min{𝜋 (𝑆), 𝜋 (𝑆)}

,

(1.5)

and Chung [14] proved that 𝜆2 (L̃)/2 ≤ ℎ(𝐺) ≤
√︃
2𝜆2 (L̃).

The main difference between our formulations and Chung’s

formulation is that we search for an optimal reweighting while

Chung used a specific vertex-based reweighing by the stationary

distribution. We note that the Cheeger constant in (1.5) could be

very different from the directed edge conductance in Definition 1.7

and the directed vertex expansion inDefinition 1.1; see the full paper

for some examples. We remark that many subsequent works used

Cheeger constant as the objective for clustering and partitioning

for directed graphs, and these examples illustrate their limitations

in finding sets of small directed edge conductance or directed vertex

expansion, which are much more suitable notions for clustering

and partitioning (see [41] for related discussions).

Mixing Time and Fastest Mixing Time: A main result in [14,

19] is to use the second eigenvalue of 𝑀 (𝑃), 𝐴(𝑃), or 𝜆2 (L̃) to

bound the mixing time of the ordinary random walks on 𝐺 . We

state the result using Chung’s formulation as it is closer to our

formulation in Definition 1.1.

Theorem 1.14 (Bounding Mixing Time by Second Eigenvalue

of Directed Graphs [14, 19]). Let 𝐺 be a strongly connected di-
rected graph 𝐺 = (𝑉 , 𝐸) with a weight function 𝑤 : 𝐸 → R≥0, and
𝑃 be the transition matrix of the ordinary random walks on 𝐺 with
𝑃 (𝑢, 𝑣) = 𝑤 (𝑢𝑣)/∑𝑣∈𝑉 𝑤 (𝑢𝑣) for 𝑢𝑣 ∈ 𝐸. Then the mixing time of
the lazy random walks of 𝐺 with transition matrix (𝐼 + 𝑃)/2 to the
stationary distribution 𝜋 is

𝜏

( 𝐼 + 𝑃

2

)
≲

1

𝜆2 (L̃)
· log

(
1

𝜋min

)
where 𝜆2 (L̃) is the second smallest eigenvalue of the Laplacian in
(1.4) and 𝜋min = min𝑣∈𝑉 𝜋 (𝑣).

We will use Theorem 1.14 to bound the fastest mixing time for

general Markov chains in Theorem 1.6. The fastest mixing time

problem of reversible Markov chains was introduced by Boyd, Dia-

conis, and Xiao [7]. This is a well-motivated problem in the study

of Markov chains and has generated considerable interest (see the

references in [36]), but there were no known combinatorial charac-

terization of the fastest mixing time for quite some time. Recently,

Oleskar-Taylor and Zanetti [36] discovered a new Cheeger-type

inequality relating reweighted second eigenvalue 𝜆∗
2
and vertex

expansion, and used it to give a combinatorial characterization of

the fastest mixing time of reversible Markov chains by the vertex

expansion of the graph. Theorem 1.6 is a significant generalization

of their result to general Markov chains, and we believe it is of

independent interest.

OtherCheeger-Type Inequalities forDirectedGraphs: Chan,
Tang and Zhang [10] gave a higher-order Cheeger inequality for

directed graphs. Roughly speaking, they showed that there are 𝑘

disjoint subsets 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑉 with 𝜆𝑘 (L̃) ≲ ℎ(𝑆𝑖 ) ≲ 𝑘2 ·
√︃
𝜆𝑘 (L̃)

for 1 ≤ 𝑖 ≤ 𝑘 , where ℎ(𝑆𝑖 ) is the Cheeger constant in (1.5) and

𝜆𝑘 (L̃) is the 𝑘-th smallest eigenvalue of the Laplacian in (1.4). The

proof is a direct application of the higher-order Cheeger inequality

for undirected graphs on the reweighted subgraph by the stationary

distribution. We show an example (see the full paper) that rules

out the possibility of having a higher-order Cheeger inequality for

directed graphs relating 𝜆𝑘 (L̃) to 𝑘-way directed edge conductance.
Other Hermitian Matrices of Directed Graphs: Besides the

matrices in [14, 19], there are other Hermitian matrices associated

to a directed graph studied in the literature. Guo and Mohar [21]

and Liu and Li [32] defined the Hermitian adjacency matrix 𝐻 of a

directed graph as𝐻 (𝑢, 𝑣) = 1 if both𝑢𝑣, 𝑣𝑢 ∈ 𝐸,𝐻 (𝑢, 𝑣) = 𝚤 if𝑢𝑣 ∈ 𝐸

and 𝑣𝑢 ∉ 𝐸 where 𝚤 is the imaginary unit, 𝐻 (𝑢, 𝑣) = −𝚤 if 𝑢𝑣 ∉ 𝐸

and 𝑣𝑢 ∈ 𝐸, and 𝐻 (𝑢, 𝑣) = 0 if both 𝑢𝑣, 𝑣𝑢 ∉ 𝐸. There are also other

Hermitian matrices defined for clustering directed graphs [17, 27]

and for the Max-2-Lin problem [30]. We confirm that there are

no known relations between the eigenvalues of these Hermitian

matrices and the expansion properties of a directed graph.

Directed Laplacian Solver Using Eulerian Reweighting: We

note that the idea of reducing the problem for a directed graph

to an Eulerian directed graph was also used in directed Laplacian

solvers [15, 16]. As in [14], they also use the same reweighting

by the stationary distribution to obtain an Eulerian graph from a

directed graph. (Furthermore, they introduced a notion of spectral
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sparsification of Eulerian directed graphs.) We believe that the

idea of reducing to Eulerian directed graphs and the concept of

asymmetric ratio will find more applications in solving problems

on directed graphs.

Spectral Theory forHypergraphs: Louis [33] and Chan, Louis,
Tang, Zhang [8] developed a spectral theory for hypergraphs. They

defined a continuous time diffusion process on a hypergraph 𝐻 =

(𝑉 , 𝐸) and used it to define a nonlinear Laplacian operator and its

eigenvalues 𝛾1 ≤ 𝛾2 ≤ . . . ≤ 𝛾 |𝑉 | . Then they derived a Cheeger

inequality
1

2
𝛾2 ≤ 𝜙 (𝐻 ) ≤ √

2𝛾2, where 𝜙 (𝐻 ) is the hypergraph

edge conductance of 𝐻 in Definition 1.10. But the quantity 𝛾2 is

not polynomial time computable, and a semidefinite programming

relaxation of 𝛾2 was used to output a set of edge conductance

𝑂 (
√︁
𝜙 (𝐻 ) · log 𝑟 ) where 𝑟 is the maximum size of a hyperedge.

They also proved an analog of higher-order Cheeger inequality for

hypergraph edge conductance, such that for any 𝜖 ≥ 1/𝑘 there are

disjoint subsets 𝑆1, . . . , 𝑆 (1−𝜖 )𝑘 with

𝜙 (𝑆𝑖 ) ≲ 𝑘2.5 · 𝜖−1.5 · log𝑘 · log log𝑘 · log 𝑟 ·
√︁
𝛾𝑘 (1.6)

for all 𝑖 ≤ (1 − 𝜖)𝑘 , where 𝛾𝑘 can be thought of as a relaxation of

𝛾𝑘 . They also gave an improved approximation algorithm for the

small-set hypergraph edge conductance problem.

Using the reweighted eigenvalue approach, we can define the

maximum reweighted 𝑘-th eigenvalue 𝛾∗
𝑘
as in Definition 1.11, and

proved the following analog of higher-order Cheeger inequality for

hypergraph edge conductance: For any 𝜖 ≥ 1/𝑘 , there are disjoint
subsets 𝑆1, . . . , 𝑆 (1−𝜖 )𝑘 with

𝜙 (𝑆𝑖 ) ≲
√
𝑘 · 𝜖−4 · log𝑘 ·

√︁
log 𝑟 ·

√︃
𝛾∗
𝑘

for all 𝑖 ≤ (1 − 𝜖)𝑘 . This bound is comparable to that in [8] when

𝜖 ≈ 1/𝑘 , and is an improvement when 𝜖 = Θ(1) by a factor of

more than 𝑘2. This also improves the approximation algorithm for

the small-set hypergraph edge conductance problem in [8] by a

factor of more than 𝑘 . In addition, we also prove an analog of the

improved Cheeger’s inequality [25] for hypergraphs. See Section 5

of the full paper for these results.

Compared to the spectral theory in [8, 33] for hypergraphs

using the continuous time diffusion process, we believe that the

reweighted eigenvalue approach is simpler and more intuitive. The

definitions of the hypergraph diffusion process and its eigenvalues

are quite technically involved and required considerable effort to

make rigorous [9]. The reweighted eigenvalue approach allows

us to recover and improve their results on hypergraph partition-

ing, and also to obtain a new result. Since their spectral theory

for hypergraph partitioning is gaining more attention in machine

learning lately (e.g. [31]), we believe that it would be beneficial to

have an alternative approach that is easier to understand and to

prove new results and to have efficient implementations.

Finally, as a technical remark, we note that some careful reweight-

ing schemes are crucially used in the construction of the diffusion

process [8, 33], and also in recent exciting developments in hy-

pergraph spectral sparsification [12, 24] (called balanced weight

assignments). This suggests that the concept of reweighting is cen-
tral to these recent developments, and it would be very interesting

to find connections between the different reweighting methods

used in this work and these previous works.

2 PRELIMINARIES
Notations and basic facts about undirected graphs and hypergr-

pahs, directed graphs, random walks, spectral graph theory, and

semidefinite programming that are not present in Section 1 can be

found in the full paper.

3 CHEEGER INEQUALITIES FOR DIRECTED
GRAPHS

We prove the two main results Theorem 1.4 and Theorem 1.9 in

this section. First, we prove the easy directions of the two results in

Section 3.1, and write the semidefinite programs for the reweighted

eigenvalues in Section 3.2. Then, we show some properties of the

asymmetric ratio in Section 3.3, and use these properties and the

proof in [23] to analyze a random projection algorithm to construct

1-dimensional spectral solutions to the semidefinite programs in

Section 3.4. Then, we analyze a new threshold rounding algorithm

for a 1-dimensional solution to the dual programs, and prove the

hard direction of the two results in Section 3.5. Finally, we show

Theorem 1.6 about fastest mixing time using [14, 19] in Section 3.6.

We omit here a subsection in the full paper about the relations with

some previous work mentioned in Section 1.3.

3.1 Easy Directions by Reductions
There are two ways to prove the easy directions in Theorem 1.4

and Theorem 1.9. A standard way is to construct a solution to

®𝜆𝑣∗
2
(𝐺) or ®𝜆𝑒∗

2
(𝐺) with small objective value when the directed

vertex expansion or the directed edge conductance is small. Instead,

we use the reduction idea discussed in the introduction to prove the

easy directions, as this is how we came up with the formulations

and the reduction is the main theme in this paper.

Proposition 3.1 (Easy Direction for Directed Vertex Expansion).
For any directed graph𝐺 = (𝑉 , 𝐸) with weight function 𝜋 : 𝑉 → R≥0,
it holds that ®𝜆𝑣∗

2
(𝐺) ≤ 2

®𝜓 (𝐺).

Proof. The idea is to reduce directed vertex expansion of𝐺 to

the directed edge conductance of the reweighted Eulerian subgraph

defined by 𝐴 in Definition 1.3, and then reduce to the underlying

undirected graph defined by
1

2
(𝐴 +𝐴𝑇 ) and use classical Cheeger’s

inequality to lower bound its edge conductance by the second

eigenvalue of its normalized Laplacian matrix.

Let𝑤 (𝑢𝑣) := 𝐴(𝑢, 𝑣) be the edge weight in the Eulerian reweight-
ed subgraph for 𝑢𝑣 ∈ 𝐸. For any nonempty 𝑆 ⊂ 𝑉 , by Definition 1.1

of directed vertex expansion and Definition 1.7 of directed edge

conductance,

®𝜓 (𝑆) =
min

{
𝜋 (𝜕+ (𝑆)), 𝜋 (𝜕+ (𝑆))

}
min{𝜋 (𝑆), 𝜋 (𝑆)}

≥
2 ·min

{
𝑤 (𝛿+ (𝑆)),𝑤 (𝛿− (𝑆))

}
min{vol𝑤 (𝑆), vol𝑤 (𝑆)}

= 2
®𝜙 (𝑆)

where we use the degree constraints in Definition 1.3 to establish

that 𝑤 (𝛿+ (𝑆)) ≤ 𝜋 (𝜕+ (𝑆)) and 𝑤 (𝛿− (𝑆)) ≤ 𝜋 (𝜕+ (𝑆)) (note that
they are not necessarily equalities because of the self-loops), and

vol𝑤 (𝑆) = 2𝜋 (𝑆) for every nonempty 𝑆 ⊂ 𝑉 .

As the edge-weighted directed graph𝐺 ′ = (𝑉 , 𝐸,𝑤) is Eulerian,
it holds that 𝑤 (𝛿+ (𝑆)) = 𝑤 (𝛿− (𝑆)) for every nonempty 𝑆 ⊂ 𝑉 ,
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and thus the directed edge conductance of 𝐺 ′
is equal to half the

edge conductance of the underlying undirected graph𝐺 ′′
with edge

weight𝑤 ′′ (𝑢𝑣) = 1

2

(
𝑤 (𝑢𝑣) +𝑤 (𝑣𝑢)

)
, because

2
®𝜙 (𝑆) =

min

{
𝑤 (𝛿+ (𝑆)),𝑤 (𝛿− (𝑆))

}
1

2
·min{vol𝑤 (𝑆), vol𝑤 (𝑆)}

=
𝑤 ′′ (𝛿 (𝑆))

min{vol𝑤′′ (𝑆), vol𝑤′′ (𝑆)}
= 𝜙 (𝑆) .

As the graph 𝐺 ′′
is undirected, we can use Cheeger’s inequality

in (1.1) to lower bound the edge conductance of𝐺 ′′
by the second

smallest eigenvalue of its normalized Laplacian matrix L(𝐴) :=

𝐼 − 1

2
Π−1/2 (𝐴 + 𝐴𝑇 )Π−1/2

. Therefore, for any nonempty 𝑆 ⊂ 𝑉 ,

®𝜓 (𝑆) ≥ 2
®𝜙 (𝑆) = 𝜙 (𝑆) ≥ 𝜆2 (L(𝐴))/2. Since this holds for any

nonempty 𝑆 ⊂ 𝑉 and any weighted Eulerian subgraph defined

by 𝐴 satisfying the constraints in Definition 1.3, we conclude that

2𝜓 (𝐺) ≥ max𝐴 𝜆2 (L(𝐴)) = ®𝜆𝑣∗
2
(𝐺). □

The proof of the easy direction of Theorem 1.9 is similar, but

with a subtle difference in handling the denominator. Refer to the

full paper for the proof.

Proposition 3.2 (Easy Direction for Directed Edge Conductance).
For any directed graph𝐺 = (𝑉 , 𝐸) with weight function𝑤 : 𝐸 → R≥0,
it holds that ®𝜆𝑒∗

2
(𝐺) ≤ 2

®𝜙 (𝐺).

3.2 Semidefinite Programs
We show that the optimization problems of reweighted eigenvalues

can be formulated exactly as semidefinite programs, and so they can

be approximated arbitrarily well in polynomial time. The construc-

tion is similar to that of the semidefinite program for undirected

vertex expansion in [7, 37], but von Neumann minimax theorem is

used instead of SDP duality.

Proposition 3.3 (SDP for Reweighted Second Eigenvalue with

Vertex Capacity Constraints). Given a directed graph 𝐺 = (𝑉 , 𝐸)
and a weight function 𝜋 : 𝑉 → R≥0, the optimization problem in
Definition 1.3 can be written as

®𝜆𝑣∗
2
(𝐺) := min

𝑓 :𝑉→R𝑛
max

𝐴≥0
1

2

∑︁
𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2

subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁
𝑣∈𝑉

𝐴(𝑢, 𝑣) =
∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) = 𝜋 (𝑢) ∀𝑢 ∈ 𝑉∑︁
𝑣∈𝑉

𝜋 (𝑣) · 𝑓 (𝑣) = ®0∑︁
𝑣∈𝑉

𝜋 (𝑣) · ∥ 𝑓 (𝑣)∥2 = 1.

Proof. Let L := 𝐼 − 1

2
Π−1/2 (𝐴 + 𝐴𝑇 )Π−1/2

be the normalized

Laplacian matrix in the objective function max𝐴 𝜆2 (L) in Defini-

tion 1.3. By Rayleigh quotient,

𝜆2 (L) = min

𝑓 ⊥Π®1

∑
(𝑢,𝑣) ∈(𝑉

2
)
1

2

(
𝐴(𝑢, 𝑣) +𝐴(𝑣,𝑢)

)
· |𝑓 (𝑢) − 𝑓 (𝑣) |2∑

𝑣 𝜋 (𝑣) 𝑓 (𝑣)2
.

Then we write 𝑓 ⊥ Π®1 as the second last constraint and normal-

ize the denominator to 1 as the last constraint. Note that the SDP

relaxation where we replace 𝑓 : 𝑉 → R by 𝑓 : 𝑉 → R𝑛
is an

exact relaxation. Moreover, after the SDP relaxation, the feasible

domain becomes convex and so we can apply von Neumann mini-

max theorem to switch the order of max𝐴 min𝑓 in Definition 1.3 to

min𝑓 max𝐴 as in the statement of this lemma. □

The same construction is used for
®𝜆𝑒∗
2
(𝐺) in Definition 1.8 and

the proof is omitted.

Proposition 3.4 (SDP for Reweighted Second Eigenvalue with

Edge Capacity Constraints). Given a directed graph 𝐺 = (𝑉 , 𝐸)
and a weight function 𝑤 : 𝐸 → R≥0, the optimization problem in
Definition 1.8 can be written as

®𝜆𝑒∗
2
(𝐺) := min

𝑓 :𝑉→R𝑛
max

𝐴≥0
1

2

∑︁
𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2

subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁
𝑣∈𝑉

𝐴(𝑢, 𝑣) =
∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉

𝐴(𝑢,𝑢) ≤ 𝑤 (𝑢𝑣) ∀𝑢𝑣 ∈ 𝐸∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · 𝑓 (𝑣) = ®0∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · ∥ 𝑓 (𝑣)∥2 = 1.

We will use these semidefinite programs to prove the two main

results.

3.3 Asymmetric Ratio
A key parameter in our proofs is the asymmetric ratio 𝛼 (𝐺) in
Definition 1.13. This parameter satisfies two useful properties. One

is that 𝛼 (𝐺) can be used to bound the directed edge conductance

and directed vertex expansion. Another is that directed graphs

with bounded asymmetric ratio satisfy the “large optimal property”

that we will describe in Section 3.3.2, which can be used in the

proof in [23] to provide a better analysis of the random projection

algorithm for dimension reduction of the SDP solutions.

3.3.1 Asymmetric Ratio and Expansion Properties. The relation

between asymmetric ratio of edge-weighted graph and directed

edge conductance is simple.

Lemma 3.5 (Asymmetric Ratio and Directed Edge Conductance).
For any directed graph 𝐺 = (𝑉 , 𝐸) and any weight function𝑤 : 𝐸 →
R≥0, it holds that 𝛼 (𝐺) ≤ 1/ ®𝜙 (𝐺).

The relation between asymmetric ratio of vertex-weighted graph

and directed vertex expansion is less trivial and has a dependency

on the maximum total degree Δ.

Lemma 3.6 (Asymmetric Ratio and Directed Vertex Expansion).
For any directed graph 𝐺 = (𝑉 , 𝐸) and any weight function 𝜋 : 𝑉 →
R≥0, it holds that 𝛼 (𝐺) ≲ Δ/ ®𝜓 (𝐺).

The proofs of Lemma 3.5 and Lemma 3.6 can be found in the full

paper.
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3.3.2 Asymmetric Ratio and Large Optimal Property. Consider the
semidefinite programs for

®𝜆𝑣∗
2
(𝐺) and ®𝜆𝑒∗

2
(𝐺) in Proposition 3.3

and Proposition 3.4. When the geometric embedding 𝑓 : 𝑉 → R𝑛

in the outer minimization problem is fixed, the inner maximization

problem is simply to find a maximum weighted Eulerian subgraph

𝐴 with vertex capacity constraints in Proposition 3.3 and with edge

capacity constraints in Proposition 3.4. The following are trivial

upper bounds on the optimal values of the inner maximization

problems.

Claim 3.7 (Maximum Weighted Eulerian Subgraph with Capacity

Constraints). Given a directed graph 𝐺 = (𝑉 , 𝐸) and an embedding
𝑓 : 𝑉 → R𝑛 , let 𝜈𝑣∗

𝑓
(𝐺) and 𝜈𝑒∗

𝑓
(𝐺) be the objective values of the

inner maximization problem in Proposition 3.3 and Proposition 3.4
respectively. Then

𝜈𝑣∗
𝑓
(𝐺) ≤ 1

2

∑︁
𝑢𝑣∈𝐸

𝑤𝜋 (𝑢𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2

and 𝜈𝑒∗
𝑓
(𝐺) ≤ 1

2

∑︁
𝑢𝑣∈𝐸

𝑤 (𝑢𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2 ,

where 𝑤𝜋 (𝑢𝑣) = min{𝜋 (𝑢), 𝜋 (𝑣)} be the 𝜋-induced edge weight
function defined in Definition 1.13.

In the undirected vertex expansion problem [23, 36], when𝜋 (𝑣) =
1 for all 𝑣 ∈ 𝑉 , the inner maximization problem is exactly the

maximum weighted fractional matching problem. Jain, Pham and

Vuong [23] used the fact that any graph with maximum degree Δ
has an edge coloring with at most Δ + 1 colors to show that the

inner maximization problem has a solution with weight at least

1/(Δ + 1) fraction of the trival upper bound. They then used this

“large optimal property” to analyze a dimension reduction algorithm

for maximum weighted matching; see Section 3.4.

We observe that the asymmetric ratio 𝛼 (𝐺) in Definition 1.13

can be used to play the same role as Δ to establish the large optimal

property for the maximum weighted Eulerian subgraph problems

in Claim 3.7. The proof uses the following characterization of asym-

metric ratio by Hoffman (see also [18, Theorem 2.3]), rephrased

using our terminologies.

Lemma 3.8 (Hoffman’s Circulation Lemma). Let 𝐺 = (𝑉 , 𝐸) be
a directed graph with a weight function 𝑤 : 𝐸 → 𝑅≥0. Then 𝐺 has
asymmetric ratio at most 𝛼 if and only if there exists an Eulerian
reweighting 𝐴 of 𝐺 such that∑︁

𝑣:𝑢𝑣∈𝐸
𝐴(𝑢, 𝑣) =

∑︁
𝑣:𝑣𝑢∈𝐸

𝐴(𝑣,𝑢) for all 𝑢 ∈ 𝑉

and 𝑤 (𝑢𝑣) ≤ 𝐴(𝑢, 𝑣) ≤ 𝛼 ·𝑤 (𝑢𝑣) for all 𝑢𝑣 ∈ 𝐸.

The large optimal property in terms of asymmetric ratio is a

simple consequence of Hoffman’s circulation lemma.

Lemma 3.9 (Large Optimal Property). Given a directed graph 𝐺 =

(𝑉 , 𝐸) and an embedding 𝑓 : 𝑉 → R𝑛 , let 𝜈𝑣∗
𝑓
(𝐺) and 𝜈𝑒∗

𝑓
(𝐺) be the

objective values of the inner maximization problem in Proposition 3.3
and Proposition 3.4 respectively. Then

𝜈𝑣∗
𝑓
(𝐺) ≥ 1

2Δ · 𝛼 (𝐺)
∑︁
𝑢𝑣∈𝐸

𝑤𝜋 (𝑢𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2

and 𝜈𝑒∗
𝑓
(𝐺) ≥ 1

2𝛼 (𝐺)
∑︁
𝑢𝑣∈𝐸

𝑤 (𝑢𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2 .

Proof. First, consider 𝜈𝑒∗
𝑓
(𝐺) in Proposition 3.4 with weight

function 𝑤 : 𝐸 → R≥0. Let 𝐴 be an Eulerian reweighting of 𝐺

with weight function𝑤 given in Lemma 3.8. As𝑤 (𝑢𝑣) ≤ 𝐴(𝑢, 𝑣) ≤
𝛼 (𝐺) · 𝑤 (𝑢𝑣) for 𝑢𝑣 ∈ 𝐸, the scaled-down subgraph 𝐴/𝛼 (𝐺) sat-
isfies the edge capacity constraints and is a feasible solution to

the inner maximization problem in Proposition 3.4, with objec-

tive value
1

2

∑
𝑢𝑣∈𝐸

𝐴(𝑢,𝑣)
𝛼 (𝐺 ) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2 ≥ 1

2𝛼 (𝐺 )
∑
𝑢𝑣∈𝐸 𝑤 (𝑢𝑣) ·

∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2.
The lower bound on 𝜈𝑣∗

𝑓
(𝐺) can be similarly proven. □

Wewill use Lemma 3.9 in the analysis of the dimension reduction

step in the next subsection.

3.4 Dimension Reduction
The goal in this subsection is to obtain a good low-dimensional

solution to the semidefinite programs in Proposition 3.3 and Propo-

sition 3.4. See the full paper for omitted proofs and discussions.

Definition 3.10 (Low-Dimensional Solutions to Semidefinite Pro-

grams). Define

®𝜆 (𝑘 )𝑣 (𝐺) := min

𝑓 :𝑉→R𝑘
max

𝐴≥0
1

2

∑︁
𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) · ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2

to be the objective value of the SDP in Proposition 3.3 when restricting
𝑓 to be a 𝑘-dimensional embedding and subjecting to the same con-
straints. Define ®𝜆 (𝑘 )𝑒 (𝐺) similarly as the objective value of the SDP in
Proposition 3.4 when restricting 𝑓 to be a 𝑘-dimensional embedding
subjecting to the same constraints.

The main result that we will prove in this subsection is that there

is a good 1-dimensional solution when the asymmetric ratio of the

graph is small.

Theorem 3.11 (One Dimensional Solutions to Semidefinite

Programs). Let ®𝜆 (𝑘 )𝑣 (𝐺) and ®𝜆 (𝑘 )𝑒 (𝐺) be as defined in Definition 3.10.
Then
®𝜆 (1)𝑣 (𝐺) ≲ log

(
Δ ·𝛼 (𝐺)

)
· ®𝜆𝑣∗

2
(𝐺) and ®𝜆 (1)𝑒 (𝐺) ≲ log𝛼 (𝐺) · ®𝜆𝑒∗

2
(𝐺) .

The proof consists of two stages. First, by adapting the dimension

reduction theorem for maximum matchings in [23], we obtain the

following main technical result. The main ingredient of the proof

is the Large Optimal Property in Lemma 3.9.

Theorem 3.12 (Dimension Reduction forMaximumWeighted

Eulerian Subgraphs). Let ®𝜆 (𝑘 )𝑣 (𝐺) and ®𝜆 (𝑘 )𝑒 (𝐺) be as defined in
Definition 3.10. There exists a constant 𝐶 such that

®𝜆
(
𝐶 ·log(Δ·𝛼 (𝐺 ) )

)
𝑣 (𝐺) ≲ ®𝜆𝑣∗

2
(𝐺) and

®𝜆
(
𝐶 ·log𝛼 (𝐺 )

)
𝑒 (𝐺) ≲ ®𝜆𝑒∗

2
(𝐺) .

Next, by choosing the best coordinate from a 𝑘-dimensional

embedding, one can achieve the following bound.

Lemma 3.13 (One Dimensional Solution from 𝑘-Dimensional So-

lution). Let ®𝜆 (𝑘 )𝑣 (𝐺) and ®𝜆 (𝑘 )𝑒 (𝐺) be as defined in Definition 3.10.
Then

®𝜆 (1)𝑣 (𝐺) ≤ 𝑘 · ®𝜆 (𝑘 )𝑣 (𝐺) and
®𝜆 (1)𝑒 (𝐺) ≤ 𝑘 · ®𝜆 (𝑘 )𝑒 (𝐺)

Theorem 3.11 follows immediately fromTheorem 3.12 and Lemma

3.13.



STOC ’23, June 20–23, 2023, Orlando, FL, USA Lap Chi Lau, Kam Chuen Tung, and Robert Wang

3.5 Rounding Algorithms
Themain goal in this subsection is to show how to find a set of small

directed vertex expansion (respectively directed edge conductance)

from a solution to
®𝜆 (1)𝑣 (𝐺) (respectively ®𝜆 (1)𝑒 (𝐺)).

Theorem 3.14 (Rounding One Dimensional Solution). For
any vertex-weighted directed graph 𝐺 = (𝑉 , 𝐸, 𝜋),

®𝜓 (𝐺) ≲
√︃
®𝜆 (1)𝑣 (𝐺).

For any edge-weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑤),

®𝜙 (𝑆) ≲
√︃
®𝜆 (1)𝑒 (𝐺) .

Assuming Theorem 3.14, we can complete the proofs of the two

main results.

Proof of Theorem 1.4 and Theorem 1.9. The easy directions are proved
in Proposition 3.1 and Proposition 3.2. For the hard directions, first

we solve the semidefinite programs for
®𝜆𝑣∗
2
(𝐺) in Proposition 3.3

and
®𝜆𝑒∗
2
(𝐺) in Proposition 3.4. Then, we use the dimension reduc-

tion result in Theorem 3.11 to obtain 1-dimensional solutions to the

semidefinite programs with
®𝜆 (1)𝑣 (𝐺) ≲ log(Δ · 𝛼 (𝐺)) · ®𝜆𝑣∗

2
(𝐺) and

®𝜆 (1)𝑒 (𝐺) ≲ log𝛼 (𝐺) · ®𝜆𝑒∗
2
(𝐺). Then, we apply the rounding result

in Theorem 3.14 to establish that

®𝜓 (𝐺) ≲
√︃
log(Δ · 𝛼 (𝐺)) · ®𝜆𝑣∗

2
(𝐺) and ®𝜙 (𝐺) ≲

√︃
log𝛼 (𝐺) · ®𝜆𝑒∗

2
(𝐺) .
(3.1)

Finally, we use the inequality 𝛼 (𝐺) ≲ Δ/ ®𝜓 (𝐺) in Lemma 3.6 and

𝛼 (𝐺) ≤ 1/ ®𝜙 (𝐺) in Lemma 3.5 to obtain the final forms in Theo-

rem 1.4 and Theorem 1.9. □

We remark that all the steps in the proofs of the two main results

can be implemented in polynomial time, and so these give efficient

“spectral” algorithms to find a set of small directed vertex expansion

or small directed edge conductance.

3.5.1 Proof Structure and Auxiliary Programs. The programs
®𝜆 (1)𝑣

and
®𝜆 (1)𝑒 can be considered “ℓ2

2
programs” because the embedded

distance across an edge is the squared ℓ2 distance ∥ 𝑓 (𝑢) − 𝑓 (𝑣)∥2.
To prove Theorem 3.14, we first obtain a solution to the following

ℓ1 versions of ®𝜆 (1)𝑣 and
®𝜆 (1)𝑒 .

Definition 3.15 (ℓ1 Version of
®𝜆 (1)𝑣 ). Given a vertex-weighted di-

rected graph 𝐺 = (𝑉 , 𝐸, 𝜋), let

𝜂𝑣 (𝐺) := min

𝑓 :𝑉→R
max

𝐴≥0
1

2

∑︁
𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) · |𝑓 (𝑢) − 𝑓 (𝑣) |

subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁
𝑣∈𝑉

𝐴(𝑢, 𝑣) =
∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) = 𝜋 (𝑢) ∀𝑢 ∈ 𝑉∑︁
𝑣∈𝑉

𝜋 (𝑣) · 𝑓 (𝑣) = 0∑︁
𝑣∈𝑉

𝜋 (𝑣) · |𝑓 (𝑣) | = 1.

Definition 3.16 (ℓ1 Version of
®𝜆 (1)𝑒 ). Given an edge-weighted di-

rected graph 𝐺 = (𝑉 , 𝐸,𝑤), let

𝜂𝑒 (𝐺) := min

𝑓 :𝑉→R
max

𝐴≥0
1

2

∑︁
𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) · |𝑓 (𝑢) − 𝑓 (𝑣) |

subject to 𝐴(𝑢, 𝑣) = 0 ∀𝑢𝑣 ∉ 𝐸∑︁
𝑣∈𝑉

𝐴(𝑢, 𝑣) =
∑︁
𝑣∈𝑉

𝐴(𝑣,𝑢) ∀𝑢 ∈ 𝑉

𝐴(𝑢,𝑢) ≤ 𝑤 (𝑢𝑣) ∀𝑢𝑣 ∈ 𝐸∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · 𝑓 (𝑣) = 0∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · |𝑓 (𝑣) | = 1.

We will prove in Section 3.5.2 that there is a square root loss by

going from ℓ2
2
to ℓ1.

Proposition 3.17 (Reductions from ℓ2
2
to ℓ1). For any vertex-weighted

directed graph 𝐺 = (𝑉 , 𝐸, 𝜋),

𝜂𝑣 (𝐺) ≲
√︃
®𝜆 (1)𝑣 (𝐺) .

For any edge-weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑤),

𝜂𝑒 (𝐺) ≲
√︃
®𝜆 (1)𝑒 (𝐺) .

For threshold rounding, we construct the duals of 𝜂𝑣 (𝐺) and
𝜂𝑒 (𝐺) using linear programming duality in the inner maximization

problems.

Lemma 3.18 (Dual Program of 𝜂𝑣 (𝐺)). Given a vertex-weighted
directed graph 𝐺 = (𝑉 , 𝐸, 𝜋), let 𝜉𝑣 (𝐺) be defined as

min

𝑓 :𝑉→R
min

𝑞:𝑉→R≥0
𝑟 :𝑉→R

∑︁
𝑣∈𝑉

𝜋 (𝑣) · 𝑞(𝑣)

subject to 𝑞(𝑣) ≥ |𝑓 (𝑢) − 𝑓 (𝑣) | − 𝑟 (𝑢) + 𝑟 (𝑣) ∀𝑢𝑣 ∈ 𝐸∑︁
𝑣∈𝑉

𝜋 (𝑣) · 𝑓 (𝑣) = 0∑︁
𝑣∈𝑉

𝜋 (𝑣) · |𝑓 (𝑣) | = 1.

Then 𝜉𝑣 (𝐺) = 2𝜂𝑣 (𝐺).

Proof. To write the dual program, we consider the equivalent

program of
®𝜆 (1)𝑣 (𝐺), where we remove the self-loops and replace the

constraint

∑
𝑣∈𝑉 𝐴(𝑣,𝑢) = 𝜋 (𝑢) by ∑

𝑣∈𝑉 𝐴(𝑣,𝑢) ≤ 𝜋 (𝑢). Then we

multiply the objective of 𝜂𝑣 (𝐺) by a factor of 2 (to avoid the factor

1/2 carrying around). Then we associate a dual variable 𝑞(𝑢) ≥ 0

to each constraint

∑
𝑣∈𝑉 𝐴(𝑣,𝑢) ≤ 𝜋 (𝑢), and a dual variable 𝑟 (𝑢)

to each constraint

∑
𝑣∈𝑉 𝐴(𝑢, 𝑣) = ∑

𝑣∈𝑉 𝐴(𝑣,𝑢). The result follows
from standard linear programming duality. □

The dual program of 𝜂𝑒 (𝐺) is constructed in the same way and

the proof is omitted.

Lemma 3.19 (Dual Program of 𝜂𝑒 (𝐺)). Given an edge-weighted
directed graph 𝐺 = (𝑉 , 𝐸,𝑤), let 𝜉𝑒 (𝐺) be defined as
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min

𝑓 :𝑉→R
min

𝑞:𝐸→R≥0
𝑟 :𝑉→R

∑︁
𝑢𝑣∈𝐸

𝑤 (𝑢𝑣) · 𝑞(𝑢𝑣)

subject to 𝑞(𝑢𝑣) ≥ |𝑓 (𝑢) − 𝑓 (𝑣) | − 𝑟 (𝑢) + 𝑟 (𝑣) ∀𝑢𝑣 ∈ 𝐸∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · 𝑓 (𝑣) = 0∑︁
𝑣∈𝑉

𝑑𝑤 (𝑣) · |𝑓 (𝑣) | = 1.

Then 𝜉𝑒 (𝐺) = 2𝜂𝑒 (𝐺).
In Section 3.5.3, we will present a threshold rounding algorithm

to return a set of small directed vertex expansion (respectively

directed edge conductance) from a solution to 𝜉𝑣 (𝐺) (respectively
𝜉𝑒 (𝐺)), with only a constant factor loss.

Proposition 3.20 (Threshold Rounding). For any vertex-weighted
directed graph 𝐺 = (𝑉 , 𝐸, 𝜋),

®𝜓 (𝐺) ≲ 𝜉𝑣 (𝐺) .
For any edge-weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑤),

®𝜙 (𝐺) ≲ 𝜉𝑒 (𝐺).
Note that Theorem 3.14 follows immediately fromProposition 3.17

and Proposition 3.20, so it remains to prove the two propositions

in Section 3.5.2 and Section 3.5.3.

3.5.2 Reduction from ℓ2
2
to ℓ1. We prove the first inequality in

Proposition 3.17 about directed vertex expansion.

Let 𝐺 = (𝑉 , 𝐸, 𝜋) be a vertex-weighed directed graph. Let 𝑓 :

𝑉 → R be a solution to
®𝜆 (1)𝑣 (𝐺) with objective value 𝜆𝑓 , with

𝐴 being an optimal solution to the inner maximization problem

(which can be computed by linear programming). Our goal is to

construct a solution to 𝜂𝑣 (𝐺) in Definition 3.15 with objective value

𝑂
(√︃

𝜆𝑓
)
.

To this end, define 𝑔 : 𝑉 → R by

𝑔(𝑢) :=
{
(𝑓 (𝑢) + 𝑐)2 if 𝑓 (𝑢) + 𝑐 > 0

−(𝑓 (𝑢) + 𝑐)2 otherwise ,

where 𝑐 ∈ R is chosen so as to satisfy the constraint

∑
𝑢 𝜋 (𝑢) ·𝑔(𝑢) =

0 in Definition 3.15. Note that such 𝑐 exists and is unique.

We would like to prove that 1 ≤ ∑
𝑢 𝜋 (𝑢) · |𝑔(𝑢) | ≤ 2, so that

scaling 𝑔 down by a factor of at most 2 will satisfy the constraint∑
𝑢 𝜋 (𝑢) · |𝑔(𝑢) | = 1 in Definition 3.15. The argument uses the

normalization constraints

∑
𝑢 𝜋 (𝑢) 𝑓 (𝑢) = 0 and

∑
𝑢 𝜋 (𝑢) |𝑓 (𝑢) | = 1

and we defer the details to the full paper.

Now we bound the objective value of the ℓ1 program in Defini-

tion 3.15 using 𝑔 as a solution. Let 𝐵 be an optimal solution to the

inner maximization problem in Definition 3.15 after fixing𝑔. Assum-

ing the inequality |𝑔(𝑢) −𝑔(𝑣) |2 ≤ 2(𝑓 (𝑢) − 𝑓 (𝑣))2
(
|𝑔(𝑢) | + |𝑔(𝑣) |

)
(the proof is technical yet straightforward, so we defer it to the full

version), the objective value to the ℓ1 program is

1

2

∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣) · |𝑔(𝑢) − 𝑔(𝑣) |

≲
∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣)
√︃
(𝑓 (𝑢) − 𝑓 (𝑣))2

(
|𝑔(𝑢) | + |𝑔(𝑣) |

)

≤
√︄ ∑︁

𝑢𝑣∈𝐸
𝐵(𝑢, 𝑣) (𝑓 (𝑢) − 𝑓 (𝑣))2 ·√︄ ∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣)
(
|𝑔(𝑢) | + |𝑔(𝑣) |

)
=

√︄ ∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣) (𝑓 (𝑢) − 𝑓 (𝑣))2 ·√︄∑︁
𝑢∈𝑉

|𝑔(𝑢) | ·
( ∑︁
𝑣:𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣) +
∑︁

𝑣:𝑣𝑢∈𝐸
𝐵(𝑣,𝑢)

)
=

√︄ ∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣) (𝑓 (𝑢) − 𝑓 (𝑣))2 ·
√︄
2

∑︁
𝑢∈𝑉

𝜋 (𝑢) · |𝑔(𝑢) |

≲

√︄ ∑︁
𝑢𝑣∈𝐸

𝐵(𝑢, 𝑣) (𝑓 (𝑢) − 𝑓 (𝑣))2

≤
√︄ ∑︁

𝑢𝑣∈𝐸
𝐴(𝑢, 𝑣) (𝑓 (𝑢) − 𝑓 (𝑣))2

≲
√︃
𝜆𝑓 ,

where the second inequality is by Cauchy-Schwarz, the second

equality is by the degree constraints in Definition 3.15, and the

second last inequality is because𝐴 is an optimal solution to the inner

maximization problem when 𝑓 is fixed. Therefore, we conclude that

𝑔 (after normalizing to satisfy

∑
𝑢∈𝑉 𝜋 (𝑢) · |𝑔(𝑢) | = 1) is a solution to

𝜈𝑣 (𝐺) with objective value𝑂
(√︃

𝜆𝑓
)
. This completes the proof of the

first inequality about directed vertex expansion in Proposition 3.17.

The proof of the second inequality about directed edge conduc-

tance is the same (with 𝜋 (𝑢) replaced by 𝑑𝑤 (𝑢)) and is omitted.

3.5.3 Threshold Rounding. Finally, we prove Proposition 3.20. Again,
we first prove the first inequality in Proposition 3.20 about directed

vertex expansion. Let𝐺 = (𝑉 , 𝐸, 𝜋) be a vertex-weighted directed

graph. Let (𝑓 , 𝑞, 𝑟 ) be a feasible solution to 𝜉𝑣 (𝐺) in Lemma 3.18

with objective value 𝜉 𝑓 . Our goal is to construct a nonempty set

𝑆 ⊂ 𝑉 with𝜓 (𝑆) ≲ 𝜉 𝑓 .

The algorithm is a threshold rounding algorithm, where each

vertex 𝑢 is mapped to some 𝑔(𝑢) ∈ [0,∞) and the output is a

set 𝑆𝑡 := {𝑢 ∈ 𝑉 | 𝑔(𝑢) > 𝑡} for some threshold 𝑡 . In previous

threshold rounding algorithms for Cheeger-type inequalities, only

the embedding function 𝑓 : 𝑉 → R is used as the function 𝑔 to

produce the output set, so in particular only one ordering of the

vertices is considered.

The new twist in our algorithm is that we would consider a few

candidate choices for 𝑔(𝑢). They will all ensure that the threshold

rounding would produce a set with small expected directed vertex

boundary, and we will choose one that gives large expected set size.

To this end, define the following four functions:

• 𝑔1 (𝑢) := max{0, 𝑓 (𝑢) + 𝑟 (𝑢) − 𝑐1}
• 𝑔2 (𝑢) := max{0, 𝑓 (𝑢) − 𝑟 (𝑢) − 𝑐2}
• 𝑔3 (𝑢) := max{0,−𝑓 (𝑢) + 𝑟 (𝑢) + 𝑐2}
• 𝑔4 (𝑢) := max{0,−𝑓 (𝑢) − 𝑟 (𝑢) + 𝑐1},

where 𝑐1 is a 𝜋-weighted median of 𝑓 (𝑢) + 𝑟 (𝑢), chosen so that

max(𝜋 (supp(𝑔1)), 𝜋 (supp(𝑔4))) ≤ 𝜋 (𝑉 )/2.



STOC ’23, June 20–23, 2023, Orlando, FL, USA Lap Chi Lau, Kam Chuen Tung, and Robert Wang

Similarly, 𝑐2 is a 𝜋-weighted median of 𝑓 (𝑢) − 𝑟 (𝑢), chosen so

that max(𝜋 (supp(𝑔2)), 𝜋 (supp(𝑔3))) ≤ 𝜋 (𝑉 )/2.

Numerator:Webound the size of the outer boundary of either 𝑆𝑡

or 𝑆𝑡 for uniformly random 𝑡 , depending on whether the coefficient

of 𝑟 (𝑢) is −1 or +1 in the function 𝑔𝑖 .

On the one hand, if we consider𝑔1 (similar for𝑔3), then wewould

bound the expected outer boundary size of 𝑆𝑡 as:∫ ∞

0

𝜋 (𝜕+ (𝑆𝑡 )) 𝑑𝑡

=
∑︁
𝑣

𝜋 (𝑣)
∫ ∞

0

1[𝑣 ∈ 𝜕+ (𝑆𝑡 )] 𝑑𝑡

=
∑︁
𝑣

𝜋 (𝑣)
∫ ∞

0

1[∃𝑢 with 𝑢𝑣 ∈ 𝐸 and 𝑔1 (𝑢) ≤ 𝑡 < 𝑔1 (𝑣)] 𝑑𝑡

=
∑︁
𝑣

𝜋 (𝑣) max

𝑢:𝑢𝑣∈𝐸
{𝑔1 (𝑣) − 𝑔1 (𝑢)}

≤
∑︁
𝑣

𝜋 (𝑣) max

𝑢:𝑢𝑣∈𝐸
{(𝑓 (𝑣) + 𝑟 (𝑣)) − (𝑓 (𝑢) + 𝑟 (𝑢))}

≤
∑︁
𝑣

𝜋 (𝑣) max

𝑢:𝑢𝑣∈𝐸
{|𝑓 (𝑢) − 𝑓 (𝑣) | + 𝑟 (𝑣) − 𝑟 (𝑢)}

≤
∑︁
𝑣

𝜋 (𝑣) · 𝑞(𝑣).

On the other hand, if we consider the function 𝑔2 (similar for 𝑔4),

then we similarly bound the expected outer boundary size of 𝑆𝑡 as∫ ∞

0

𝜋 (𝜕+ (𝑆𝑡 )) 𝑑𝑡 ≤
∑︁
𝑣

𝜋 (𝑣) · 𝑞(𝑣) .

To summarize, when we do threshold rounding with respect to any

of 𝑔1, 𝑔2, 𝑔3, 𝑔4, it holds that∫ ∞

0

min

{
𝜋 (𝜕+ (𝑆𝑡 )), 𝜋 (𝜕+ (𝑆𝑡 ))

}
𝑑𝑡 ≤

∑︁
𝑣

𝜋 (𝑣)𝑞(𝑣) .

Denominator: For the function 𝑔𝑖 , the expected size of 𝑆𝑡 is

given by∫ ∞

0

𝜋 (𝑆𝑡 ) 𝑑𝑡 =
∑︁
𝑢

𝜋 (𝑢)
∫ ∞

0

1[𝑔𝑖 (𝑢) > 𝑡] 𝑑𝑡 =
∑︁
𝑢

𝜋 (𝑢) · 𝑔𝑖 (𝑢).

Therefore, our goal is to show that there exists 1 ≤ 𝑖 ≤ 4 with∑
𝑢 𝜋 (𝑢)𝑔𝑖 (𝑢) ≥ Ω(1). To do so, we will show that

4∑︁
𝑖=1

∑︁
𝑢

𝜋 (𝑢) · 𝑔𝑖 (𝑢) ≥ Ω(1) .

By the definitions of 𝑔𝑖 , for any 𝑢 ∈ 𝑉 ,

𝑔1 (𝑢) + 𝑔4 (𝑢) = | (𝑓 (𝑢) + 𝑟 (𝑢)) − 𝑐1 |
and 𝑔2 (𝑢) + 𝑔3 (𝑢) = | (𝑓 (𝑢) − 𝑟 (𝑢)) − 𝑐2 |.

Thus it suffices to show that∑︁
𝑢

𝜋 (𝑢) · ( | (𝑓 (𝑢) + 𝑟 (𝑢)) − 𝑐1 | + |(𝑓 (𝑢) − 𝑟 (𝑢)) − 𝑐2 |) ≥
1

2

. (3.2)

To this end, we note that either

∑
𝑢 𝜋 (𝑢) |𝑓 (𝑢) + 𝑟 (𝑢) | ≥ 1 or∑

𝑢 𝜋 (𝑢) |𝑓 (𝑢) − 𝑟 (𝑢) | ≥ 1, because∑︁
𝑢

𝜋 (𝑢) ( |𝑓 (𝑢) + 𝑟 (𝑢) | + |𝑓 (𝑢) − 𝑟 (𝑢) |)

=
∑︁
𝑢

𝜋 (𝑢) · 2max( |𝑓 (𝑢) |, |𝑟 (𝑢) |) ≥ 2

∑︁
𝑢

𝜋 (𝑢) |𝑓 (𝑢) | = 2.

Assume without loss that

∑
𝑢 𝜋 (𝑢) · 𝑟 (𝑢) = 0 (as we can shift every

𝑟 (𝑢) by the same amount without changing anything). Then both∑
𝑢 𝜋 (𝑢) (𝑓 (𝑢) + 𝑟 (𝑢)) = 0 and

∑
𝑢 𝜋 (𝑢) (𝑓 (𝑢) − 𝑟 (𝑢)) = 0.

Consider first the case where

∑
𝑢 𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) | ≥ 1; the other

case is treated similarly. Then, since

∑
𝑢 𝜋 (𝑢) ((𝑓 + 𝑟 ) (𝑢)) = 0 and∑

𝑢 𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) | ≥ 1, it follows that∑︁
𝑢:(𝑓 +𝑟 ) (𝑢 )≤0

𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) | =
∑︁

𝑢:(𝑓 +𝑟 ) (𝑢 )≥0
𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) | ≥ 1

2

.

If 𝑐1 ≥ 0, then∑︁
𝑢

𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) − 𝑐1 | ≥
∑︁

𝑢:(𝑓 +𝑟 ) (𝑢 )≤0
𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) − 𝑐1 |

≥
∑︁

𝑢:(𝑓 +𝑟 ) (𝑢 )≤0
𝜋 (𝑢) | (𝑓 + 𝑟 ) (𝑢) | ≥ 1

2

;

similar if 𝑐1 < 0. (3.2) follows.

Conclusion: There exists 𝑔 = 𝑔𝑖 for some 1 ≤ 𝑖 ≤ 4, such that if

we use this function for threshold rounding,

•
∫ ∞
0

min

{
𝜋 (𝜕+ (𝑆𝑡 )), 𝜋 (𝜕+ (𝑆𝑡 ))

}
𝑑𝑡 ≤ ∑

𝑣 𝜋 (𝑣) · 𝑞(𝑣) = 𝜉 𝑓 ;

•
∫ ∞
0

𝜋 (𝑆𝑡 ) 𝑑𝑡 ≥ 1/8;
• 𝜋 (𝑆𝑡 ) ≤ 𝜋 (𝑉 )/2 always.

Hence, we can return some 𝑆 = 𝑆𝑡 , whence 0 < 𝜋 (𝑆) ≤ 𝜋 (𝑉 )/2
and

®𝜓 (𝑆) =
min

{
𝜋 (𝜕+ (𝑆)), 𝜋 (𝜕+ (𝑆))

}
min

{
𝜋 (𝑆), 𝜋 (𝑆)

}
=

min(𝜋 (𝜕+ (𝑆)), 𝜋 (𝜕+ (𝑆)))
𝜋 (𝑆) ≤ 8𝜉 𝑓 .

The proof of the second inequality about directed edge conduc-

tance is essentially the same and is omitted.

3.6 Fastest Mixing Time
The goal of this subsection is to prove Theorem 1.6 that

1

®𝜓 (𝐺)
· 1

log(1/𝜋min)
≲ 𝜏∗ (𝐺) ≲ 1

®𝜓 (𝐺)2
· log Δ

®𝜓 (𝐺)
· log 1

𝜋min

.

There are two parts of the proof. First, we upper bound the fastest

mixing time using Theorem 1.14 by Fill [19] and Chung [14]. Second,

we lower bound the fastest mixing time using a combinatorial

argument and the ∞-norm mixing time that we will define.

Proof of Theorem 1.6. Recall that in the setting of the theorem, 𝜋

is not only a weight function, but a probability distribution. We

assume the graph is strongly connected and so
®𝜆𝑣∗
2
(𝐺) > 0.

To prove the upper bound, we prove that 𝜏∗ (𝐺) ≲
(
®𝜆𝑣∗
2
(𝐺)

)−1
·

log(𝜋−1
min

), and then the result will follow from Theorem 1.4. Let

𝐴 be an optimal reweighted Eulerian subgraph in Definition 1.3.

Let 𝑃 := Π−1𝐴 be the transition matrix of the ordinary random

walk corresponding to the reweighted subgraph 𝐴. Observe that

𝑃 := Π−1𝐴 is a feasible solution to Definition 1.5, and so is (𝐼 +𝑃)/2.
Therefore, by Theorem 1.14,

𝜏∗ (𝐺) ≤ 𝜏

( 𝐼 + 𝑃

2

)
≲

1

𝜆2 (L̃)
· log

(
1

𝜋min

)
=

1

®𝜆𝑣∗
2
(𝐺)

· log
(

1

𝜋min

)
,
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where the last inequality is because L̃ = 𝐼 − Π− 1

2 (𝐴 +𝐴𝑇 )Π− 1

2 /2
as defined in (1.4) and 𝜆2 (L̃) = ®𝜆𝑣∗

2
(𝐺) by Definition 1.1.

To prove the lower bound, we consider the ∞-norm 𝜖-mixing

time defined as

𝜏∞𝜖 (𝑃) := min

{
𝑡 : max

𝑝0:𝑉→R≥0
max

𝑣∈𝑉

{
1 − 𝑝𝑡 (𝑣)

𝜋 (𝑣)

}
< 𝜖

}
,

where 𝑝0 is an initial distribution on 𝑉 and 𝑝𝑡 denotes 𝑝0𝑃
𝑡
. We

will prove that for any feasible solution 𝑃 to Definition 1.5,

1

®𝜓 (𝐺)
≲ 𝜏∞

1/𝑒 (𝑃), (3.3)

and this would imply that

1

®𝜓 (𝐺)
≲ max

𝑃
𝜏∞
1/𝑒 (𝑃) ≤ max

𝑃
𝜏
1/𝑒 (𝑃)·log

(
1

𝜋min

)
= 𝜏∗ (𝐺)·log

(
1

𝜋min

)
,

proving the lower bound, where the second inequality is by [20,

Proposition 2.47(f)] relating 𝜏∞𝜖 and 𝜏𝜖 using sub-multiplicity of

mixing time.

To prove (3.3), let 𝑃 be an arbitrary feasible solution to Defini-

tion 1.5, and 𝑆 ⊂ 𝑉 be a nonempty subset such that
®𝜓 (𝐺) = ®𝜓 (𝑆).

We will use 𝑆 to define an initial distribution 𝑝0 : 𝑉 → R≥0 such
that

Δ∞ (𝑝𝑡 , 𝜋) := max

𝑣∈𝑉

{
1 − 𝑝𝑡 (𝑣)

𝜋 (𝑣)

}
>

1

𝑒

for any 𝑡 ≤ 1/(4 ®𝜓 (𝑆)), and this would imply that𝜏∞
1/𝑒 (𝑃) > 1/(4 ®𝜓 (𝑆)).

To define 𝑝0, we assume without loss of generality that 𝜋 (𝑆) ≤
1/2 and consider two cases.

(1) 𝜋 (𝜕+ (𝑆)) ≤ 𝜋 (𝜕+ (𝑆)). In this case, we set

𝑝0 (𝑢) =
{
𝜋 (𝑢)/𝜋 (𝑆), if 𝑢 ∈ 𝑆 ;

0, otherwise.
.

We will show that 𝑝𝑡 (𝑆) :=
∑

𝑣∈𝑆 𝑝𝑡 (𝑣) ≥ 1 − 𝑡 · ®𝜓 (𝑆) for
all 𝑡 ≥ 0. Note that, by induction, 𝑝𝑡 (𝑣) ≤ 𝜋 (𝑣)/𝜋 (𝑆) for all
𝑣 ∈ 𝑉 and 𝑡 ≥ 0, as

𝑝𝑡+1 (𝑣) =
∑︁
𝑢∈𝑉

𝑝𝑡 (𝑢) · 𝑃 (𝑢, 𝑣) ≤
∑︁
𝑢∈𝑉

𝜋 (𝑢)
𝜋 (𝑆) · 𝑃 (𝑢, 𝑣) = 𝜋 (𝑣)

𝜋 (𝑆) .

It follows that at step 𝑡 + 1, the total amount of probability

mass escaping from 𝑆 is at most∑︁
𝑣∈𝜕+ (𝑆 )

𝑝𝑡 (𝑣) ≤
𝜋 (𝜕+ (𝑆))
𝜋 (𝑆) = ®𝜓 (𝑆) .

Hence, for any 𝑡 ≤ 1/(4 ®𝜓 (𝑆)), we have 𝑝𝑡 (𝑆) ≤ 1

4
≤ 1

2
·𝜋 (𝑆),

and so

Δ∞ (𝑝𝑡 , 𝜋) ≥ max

𝑣∈𝑆

{
1 − 𝑝𝑡 (𝑣)

𝜋 (𝑣)

}
≥ 1 − 𝑝𝑡 (𝑆)

𝜋 (𝑆)
≥ 1

2

>
1

𝑒
.

(2) 𝜋 (𝜕+ (𝑆)) > 𝜋 (𝜕+ (𝑆)). In this case, we define

𝑝0 (𝑢) =
{
𝜋 (𝑢)/𝜋 (𝑆), if 𝑢 ∉ 𝑆 ;

0, otherwise.
.

We will show that 𝑝𝑡 (𝑆) ≤ 2𝑡 · 𝜋 (𝑆) · ®𝜓 (𝑆). Again, by induc-

tion, 𝑝𝑡 (𝑣) ≤ 𝜋 (𝑣)/𝜋 (𝑆) for all 𝑣 ∈ 𝑉 and 𝑡 ≥ 0.

It follows that in step 𝑡 + 1, the total amount of probability

mass entering 𝑆 is at most∑︁
𝑣∈𝜕+ (𝑆 )

𝑝𝑡 (𝑣) ≤
𝜋 (𝜕+ (𝑆))
𝜋 (𝑆)

≤ 2𝜋 (𝑆) · 𝜋 (𝜕
+ (𝑆))

𝜋 (𝑆) = 2𝜋 (𝑆) · ®𝜓 (𝑆).

Hence, for 𝑡 ≤ 1/(4 ®𝜓 (𝑆)), we have 𝑝𝑡 (𝑆) ≤ 𝜋 (𝑆)/2, and so

Δ∞ (𝑝𝑡 , 𝜋) ≥ max

𝑣∈𝑆

{
1 − 𝑝𝑡 (𝑣)

𝜋 (𝑣)

}
≥ 1 − 𝑝𝑡 (𝑆)

𝜋 (𝑆) ≥ 1

2

>
1

𝑒
.

This completes the proof of the lower bound and hence Theorem 1.6.

□

4 CONCLUDING REMARKS
In this paper, we show that the reweighted eigenvalue approach

can be extended substantially to derive Cheeger inequalities for

directed graphs and hypergraphs. Most notably, this develops into

an interesting new spectral theory for directed graphs, which is

much closer to the spectral theory for undirected graphs than what

are previously known. We hope that this spectral theory will find

more applications in practice, in clustering and partitioning of

directed graphs and hypergraphs.

Technically, the reweighted eigenvalue approach provides an

intuitive and unifying method to reduce the study of expansion

properties in more general settings to the basic setting of edge con-

ductance in undirected graphs. We believe that this approach can

be used to lift more results in spectral graph theory for undirected

graphs to more general settings, as the ideas are consistent with

recent works on directed Laplacian solvers and hypergraph spectral

sparsification that we mentioned in Section 1.3.

There are some concrete open problems. The most obvious one

is to prove tight bounds for the two main results Theorem 1.4 and

Theorem 1.9, to settle whether the dependency on the asymmet-

ric ratio can be completely removed or not
5
. Another one is to

formulate and prove higher-order Cheeger inequality and bipar-

tite Cheeger inequality for directed graphs. An important one for

applications is to design fast algorithms (ideally near-linear time

algorithms) for computing reweighted eigenvalues.
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5
Note that the dimension reduction result for directed edge conductance is tight, and so

a positive result removing the log𝛼 (𝐺 ) factor in Theorem 1.9 would probably need

substantial new ideas. We incline to believe that the log𝛼 (𝐺 ) factor in Theorem 1.9

cannot be completely removed, but we do not have an example supporting this belief.

We are less sure about what the right bound should be for Theorem 1.4.
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