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Chapter 1

Overview

The course has three parts. The �rst part is about eigenvalues, from classical to recent results in
spectral graph theory. The second part is about polynomials, mostly on the method of interlacing
polynomials and the theory of real-stable polynomials. The third part is about eigenvalues and
polynomials, on high-dimensional expanders and log-concave polynomials.

1.1 First Part

The classical spectral graph theory relates (i) the second eigenvalue of the adjacency/Laplacian
matrix and (ii) the graph expansion and (iii) the mixing time of random walks. We will start with
the fundamental Cheeger's inequality, and then see its applications in analyzing mixing time and in
constructing expander graphs.

Around 2010, there are a few interesting extensions/generalizations of Cheeger's inequality using
other eigenvalues of the matrix. In previous o�erings, we studied these generalizations in details. In
this o�ering, we will just have an overview of these results. Instead, we will study a new Cheeger's
inequality for vertex expansion from 2021.

Also around 2010, there are a few interesting results on a linear algebraic formulation of the graph
sparsi�cation problem. We will study a random sampling algorithm, and a deterministic algorithm
using barrier functions. Then we will also study a related concept called spectral rounding, and see
its applications in experimental design and network design.

To provide a more concrete idea, the graph sparsi�cation problem can be formulated as the following
pure linear algebraic problem. Given v1, . . . , vn ∈ Rd such that

∑n
i=1 viv

T
i = Id, �nd scalars

s1, . . . , sn with few nonzeros such that
∑n

i=1 siviv
T
i ≈ Id. The deterministic result says that it is

possible to have only O(d) non-zeros scalars to achieve a constant factor approximation, implying
that any undirected graph has a linear-sized sparsi�er. It is striking that this linear algebraic
formulation provides the best-known way to look at this combinatorial graph problem.

1.2 Second Part

The ideas and techniques developed in spectral sparsi�cation turned out to be surprisingly powerful.
It was observed that the deterministic spectral sparsi�cation result is reminiscent to a major open
problem in mathematics called the Kadison-Singer problem. This major problem is very remarkably
solved in 2013 by a novel probabilistic method and a multivariate extension of the barrier method.
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Eigenvalues and Polynomials

Interestingly, the new probabilistic method is based on viewing eigenvalues as roots of polynomials,
and exploiting interlacing properties of these roots. Besides this method of interlacing family and
the multivariate barrier method, the solution is also built on a beautiful theory for real-stable
polynomials.

In the second part of the course, we will take this polynomial perspective and study the theory of
real-stable polynomials to some extent. Then we will see how this is used in establishing interlacing
properties for the new probabilistic method. And then we will see the multivariate barrier method
and the solution to the Kadison-Singer problem.

Besides the Kadison-Singer problem, this method of interlacing family has several other interesting
applications, including the construction of Ramanujan graphs and even the traveling salesman
problem. To give one example, consider the following special case of the restricted invertibility
problem. Given v1, . . . , vn ∈ Rd such that

∑n
i=1 viv

T
i = Id and an integer k, the goal is to prove the

existence of a subset S of k vectors with large minimum non-zero eigenvalue λmin

(∑
i∈S viv

T
i

)
. It

turns out that the method of interlacing family allows us to reduce the problem to bounding the
maximum root of the polynomial ∂nxn(x− 1)n!

1.3 Third Part

In the third part, we will study an active research topic about high-dimensional expanders. This new
concept provides a local-to-global way to bound the second eigenvalue of the random walk matrix,
and it leads to an elegant solution to a long standing open problem called the matriod expansion
conjecture in 2019. Since then, lots of progress have been made in using this new approach to
analyze mixing time of random walks.

Interestingly, this approach of bounding eigenvalues for random walks is also closely related to
analytical properties of some associated polynomials. Consider the following natural algorithm for
sampling a random spanning tree of an undirected graph G = (V,E). Start with an arbitrary
spanning tree T0. In the i-th iteration, we add a random edge e to the tree and remove a random
edge f on the cycle created and set Ti := Ti−1 + e− f . And we simply repeat many iterations and
hope that the tree will look random very soon. Amazingly, the analysis of this algorithm depends
on the analytical properties of the following generating polynomials. Given an undirected graph
G = (V,E), we associate a variable xe for each edge e ∈ E, and consider the generating polynomial
of spanning trees p(x) =

∑
T∈T

∏
e∈T xe where T denotes the set of all spanning trees of G. For

spanning trees, we will see that this polynomial is completely log-concave and this implies that the
above random sampling algorithm is fast.

This polynomial approach has been extended very nicely to prove optimal bounds on mixing time
for several other problems, through the so-called log-Sobolev inequality. For these problems, a more
general property called fractionally log-concavity is used to prove strong bounds on log-Sobolev
inequality. This connection between polynomials and mixing time is very elegant.

High-dimensional expanders are also used in a recent breakthrough in constructing locally testable
codes. It is an exciting and very active research area that has shown great promise.
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Chapter 2

Linear Algebra

2.1 Eigenvalues and Eigenvectors

De�nition 2.1 (Eigenvalues and Eigenvectors). Let A be an n× n matrix. A nonzero vector v is
called an eigenvector of A if Av = λv for some scalar λ. A scalar λ is called an eigenvalue of A if
there exists an eigenvector v with Av = λv.

The multi-set of eigenvalues of A is given by the roots of the characteristic polynomial. This
viewpoint will not be used often in the �rst part of the course, but it will be of central importance
in the second part of the course.

De�nition 2.2 (Characteristic Polynomial). Let A be an n× n matrix. The characteristic polyno-
mial of A is pA(x) := det(xI −A).

Two matrices are said to be similar if one is obtained from another by a change of basis.

De�nition 2.3 (Similar Matrices). A matrix X is similar to another matrix Y if there exists a
non-singular matrix B so that X = BY B−1.

It is well known that similar matrices have the same spectrum.

Fact 2.4 (Spectrum of Similar Matrices). If X is similar to Y , then the multi-set of eigenvalues of
X and that of Y are the same.

Proof. One way to see it is that they have the same characteristic polynomial, as

pX(x) = det(xI −X) = det(xI −BY B−1) = det(B(xI − Y )B−1) = det(xI − Y ) = pY (x),

where the second last equality is by Fact 2.27.

Real Symmetric Matrices

In this course, we mostly work with real symmetric matrices, which have all eigenvalues being real
numbers.
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Theorem 2.5 (Spectral Theorem). Let A ∈ Rn×n be a symmetric matrix. Then all eigenvalues of
A are real numbers. Furthermore, there is an orthonormal basis of Rn consisting of eigenvectors of
A.

See L01 of 2019 for a proof, which is based on the proof given in the book by Godsil and Royle [GR].

Remark 2.6 (Undirected and Directed Graphs). Theorem 2.5 applies to the adjacency/Laplacian
matrices of undirected graphs, but not for directed graphs. This is the main reason that spectral
graph theory is much more devleoped in undirected graphs. It has been an open direction to develop
spectral graph theory for directed graphs.

Diagonalization: Using the spectral theorem, real symmetric matrices can be written in the
following form. Let A ∈ Rn×n be a symmetric matrix. Let v1, . . . , vn ∈ Rn be an orthonormal
basis of eigenvectors guaranteed by Theorem 2.5 with corresponding eigenvalues λ1, . . . , λn. Let V
be the n × n matrix with the i-th column being vi. Let D be the n × n diagonal matrix with the
(i, i)-th entry being λi. Then the conditions Avi = λivi for 1 ≤ i ≤ n can be compactly written as
AV = V D. Since the columns in V form an orthonormal basis, it follows that V TV = I and thus
V −1 = V T . So, we can rewrite AV = V D as

A = V DV −1 = V DV T .

Power of Matrices: Let A ∈ Rn×n be a symmetric matrix. The diagonalization form A = V DV T

is very convenient in computations. To compute Ak, observe that it is simply Ak = (V DV T )k =
V DkV T where Dk is readily computed as D is a diagonal matrix.

This is very useful in analyzing random walks, as P t is the transition matrix of the random walks
after t steps where P is the transition matrix in one step. We will use the eigenvalues of the
transition matrix to bound the mixing time of random walks.

Eigen-Decomposition: If v1, . . . , vn form an orthonormal basis, then any x ∈ Rn can be written
as a linear combination c1v1 + . . .+ cnvn. By orthonormality, for any 1 ≤ i ≤ n,

〈x, vi〉 = 〈c1v1 + . . .+ cnvn, vi〉 = 〈civi, vi〉 = ci.

Therefore, for any x ∈ Rn,

x = 〈x, v1〉v1 + . . .+ 〈x, vn〉vn = v1v
T
1 x+ . . . vnv

T
nx =

(
v1v

T
1 + . . .+ vnv

T
n

)
x.

Since this is true for all x ∈ Rn, it follows that

v1v
T
1 + . . .+ vnv

T
n = In.

Now, if v1, . . . , vn are also eigenvectors of a matrix A ∈ Rn×n, then for any x ∈ Rn,

Ax = A(v1v
T
1 + . . .+ vnv

T
n )x =

(
λ1v1v

T
1 + . . .+ λnvnv

T
n

)
x.

This implies that
A = λ1v1v

T
1 + . . .+ λnvnv

T
n .

Verify that we can also write the inverse using the eigen-decomposition as

A−1 =
1

λ1
v1v

T
1 + . . .+

1

λn
vnv

T
n .

Later, this form will also be used to de�ne the �psuedo-inverse� of a matrix A when A is not of full
rank.

8



Chapter 2

Positive Semide�nite Matrices

An important class of real symmetric matrices is the class of positive semide�nite matrices. A
real symmetric matrix is called positive semide�nite if all of its eigenvalues are nonnegative. This
can be seen as a matrix analog of a non-negative number. The following are some equivalent
characterizations of a positive semide�nite matrix.

Fact 2.7 (Positive Semide�nite Matrix). Let A ∈ Rn×n be a real symmetric matrix. The following
statements are equivalent.

1. A is positive semide�nite, i.e. all eigenvalues of A are non-negative.

2. For any x ∈ Rn, it holds that xTAx ≥ 0, i.e. all quadratic forms are non-negative.

3. A = UTU for some matrix U ∈ Rn×n.

The notation A < 0 will be used to denote that A is a positive semide�nite matrix.

It is a good exercise to prove this fact; see L01 from 2019 for a proof. A matrix is called pos-
itive de�nite if all eigenvalues of A are positive. It is left as an exercise to �nd the equivalent
characterizations for positive de�nite matrices as in Fact 2.7.

Check that the set of positive semide�nite matrices forms a convex set. Optimizing a linear func-
tion over the set of positive semide�nite matrices with linear constraints is called semide�nite
programming. This is a very important class of convex optimization problems that can be solved
in polynomial time. We will see it once in this course and we will explain more when we use it.

It is also a good exercise to prove the following useful fact.

Fact 2.8. For any two positive semide�nite matrices A,B ∈ Rn×n,

〈A,B〉 :=
n∑
i=1

n∑
j=1

AijBij ≥ 0.

Optimization Formulation for Eigenvalues

The main reason why eigenvalues are useful for optimization is through the following formulation,
which is basically the quadratic form but normalized by the vector length.

De�nition 2.9 (Rayleigh Quotient). The Rayleigh quotient of a vector x ∈ Rn with respect to a
matrix A ∈ Rn×n is de�ned to be

RA(x) :=
xTAx

xTx
=

∑n
i=1

∑n
j=1Aijxixj∑n
i=1 x

2
i

.

The largest eigenvalue is the maximum value of the Rayleigh quotient.

Lemma 2.10 (Optimization Formulation for α1). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

α1 = max
x∈Rn

xTAx

xTx
.

9
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Proof. Let v1, v2, . . . , vm be the corresponding orthonormal basis of eigenvectors guaranteed by
Theorem 2.5. As v1, . . . , vn forms a basis of Rn, any vector x ∈ Rn can be written as a linear
combination x = c1v1 + · · ·+ cnvn. Then, the numerator can be written as

xTAx = (c1v1+· · ·+cnvn)TA(c1v1+· · ·+cnvn) = (c1v1+· · ·+cnvn)T (c1α1v1+· · ·+cnαnvn) =
n∑
i=1

c2
iαi,

where the second equality is because v1, · · · , vn are eigenvectors and the last equality is because
v1, · · · , vn are orthonormal. Similarly, the denominator can be written as

xTx = (c1v1 + · · ·+ cnvn)T (c1v1 + · · ·+ cnvn) =
n∑
i=1

c2
i .

So, the Rayleigh quotient of x is

xTAx

xTx
=

∑n
i=1 c

2
iαi∑n

i=1 c
2
i

≤
α1
∑n

i=1 c
2
i∑n

i=1 c
2
i

= α1.

On the other hand, note that v1 attains the maximum, and the lemma follows.

This can be extended to characterize other eigenvalues. In particular, we will use the following
lemma for the second largest eigenvalue later.

Lemma 2.11 (Optimization Formulation for αk). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn and corresponding orthonormal eigenvectors v1, . . . , vn. Let
Tk be the set of vectors that are orthogonal to v1, v2, . . . , vk−1. Then

αk = max
x∈Tk

xTAx

xTx
.

Proof. Let x ∈ Tk. Write x = c1v1+· · ·+cnvn. Recall that ci = 〈x, vi〉 from the eigen-decomposition
subsubsection. Since x ∈ Tk, it follows that c1 = c2 = · · · = ck−1 = 0. Using the same calculation
as in Lemma 2.10,

xTAx

xTx
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤
αk
∑n

i=k c
2
i∑n

i=k c
2
i

= αk.

On the other hand, vk ∈ Tk and vTk Avk/v
T
k vk = αk, and the lemma follows.

The above result gives a characterization of αk, but it requires the knowledge of the previous eigen-
vectors. The Courant-Fischer theorem gives a characterization without knowing the eigenvectors,
and is more useful in giving bounds on eigenvalues. In words, the Courant-Fischer theorem says that
to prove a lower bound on αk, one needs to show a k-dimensional subspace in which every vector
has large Rayleigh quotient, and the best k-dimensional subspace gives the tight lower bound. And
to prove an upper bound on αk, one needs to show a (n − k + 1)-dimensional subspace in which
every vector has small Rayleigh quotient, and the best (n− k + 1)-dimensional subspace gives the
tight upper bound.

Theorem 2.12 (Courant-Fischer Theorem). Suppose A ∈ Rn×n is a real symmetric matrix with
eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

αk = max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
= min

S⊆Rn:dim(S)=n−k+1
max
x∈S

xTAx

xTx
.

10
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Proof. We prove the max-min equality. The min-max equality is similar and is left as an exercise.

Let Sk be the k-dimensional subspace spanned by the �rst k orthonormal eigenvectors v1, . . . , vk,
i.e. Sk = {x | x = c1v1 + · · ·+ ckvk for some c1, . . . , ck ∈ R}. Then, for any x ∈ Sk,

xTAx

xTx
=

(c1v1 + · · ·+ ckvk)
TA(c1v1 + · · ·+ ckvk)

(c1v1 + · · ·+ ckvk)T (c1v1 + · · ·+ ckvk)
=

∑k
i=1 c

2
iαi∑k

i=1 c
2
i

≥
αk
∑k

i=1 c
2
i∑k

i=1 c
2
i

= αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≥ min

x∈Sk

xTAx

xTx
≥ αk.

To prove that the maximum cannot be greater than αk, observe that any k-dimensional subspace
must intersect the (n − k + 1)-dimensional subspace Tk spanned by {vk, vk+1, . . . , vn}. For any
x ∈ Tk,

xTAx

xTx
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤ αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≤ min

x∈S∩Tk

xTAx

xTx
≤ αk.

One consequence of the Courant-Fischer theorem is the eigenvalue interlacing theorem, which will
be useful in the second part of the course.

Theorem 2.13 (Cauchy's Interlacing Theorem). Let A ∈ Rn×n be a real symmetric matrix and B
be a (n− 1)× (n− 1) principle submatrix of A. Then

α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ . . . ≥ αn are the eigenvalues of A and β1 ≥ β2 ≥ . . . ≥ βn−1 are the eigenvalues
of B.

Proof. Assume without loss of generality that B is in the top left corner of A, that is, the �rst n−1
coordinates.

It should be clear that αk ≥ βk because the search space for αk is larger than than for βk. More
precisely,

αk = max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≥ max

S⊆Rn−1:dim(S)=k
min
x∈S

xTAx

xTx
= max

S⊆Rn−1:dim(S)=k
min
x∈S

xTBx

xTx
= βk.

Next, we show βk ≥ αk+1. For any S ⊆ Rn with dim(S) = k + 1, its restriction to the �rst n − 1
coordinates (i.e. S ∩ Rn−1) is of dimension at least k. So, if there is a good (k + 1)-dimensional
subspace for A, then there is a good k-dimensional subspace for B, and so βk can do as well as
αk+1. More formally, let Sk+1 be the (k+ 1)-dimensional subspace that attains maximum for αk+1,

αk+1 = min
x∈Sk+1

xTAx

xTx
≤ min

x∈Sk+1∩Rn−1

xTAx

xTx
≤ max

S⊆Rn−1:dim(S)=k
min
x∈S

xTAx

xTx
= max

S⊆Rn−1:dim(S)=k
min
x∈S

xTBx

xTx
= βk.

11
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Perron-Frobenius Theorem

The Perron-Frobenius theorem is the most important result on the eigenvalues and eigenvectors on
non-negative matrices. To state it, we need the de�nitions of an irreducible matrix and the spectral
radius of a matrix.

De�nition 2.14 (Irreducible Matrix). A matrix A ∈ Rn×n is irreducible if its underlying directed
graph G = (V,E) is strongly connected, where the vertex set of G is V = [n] and the edge set of G
is E = {ij | Aij 6= 0}.

The spectral radius of a real symmetric matrix is simply the eigenvalue with largest absolute value.
The following is the more general de�nition for matrices with complex eigenvalues.

De�nition 2.15 (Spectral Radius). The spectral radius ρ(A) of a matrix A is the maximum of the
moduli of its eigenvalues.

The Perron-Frobenius theorem is about the largest eigenvalue and its corresponding eigenvectors,
which will be useful in the study of random walks. See chapter 8.8 in [GR] and chapter 8.4 in [HJ13]
for more details and proofs.

Theorem 2.16 (Perron-Frobenius Theorem). Let A ∈ Rn×n be a non-negative irreducible matrix.

1. The spectral radius ρ(A) is an eigenvalue of A with multiplicity one. In particular, for a real
symmetric matrix, the largest eigenvalue is of multiplicity one and its absolute value is the
largest.

2. If v is an eigenvector with eigenvalue ρ(A), then all the entries of v are nonzero and they have
the same sign.

Matrix Norms

De�nition 2.17 (Operator Norm). Let A be an m× n matrix. The operator norm ‖A‖op of A is
de�ned as

‖A‖op := sup
x∈Rn,x 6=0

‖Ax‖2
‖x‖2

.

This is also denoted by ‖A‖2 to denote that it is the ratio of the 2-norm of the vectors after and
before the linear transformation. But sometimes it is confused with the Schatten 2-norm of A which
is also denoted by ‖A‖2, so we use the notation ‖A‖op that is also a common notation.

Exercise 2.18 (Operator Norm of a Real Symmetric Matrix). Show that ‖A‖op is equal to the
largest eigenvalue of A when A is a real symmetric matrix.

The following are some simple properties that will be useful.

Fact 2.19 (Properties of Operator Norm). Let A ∈ Rm×n.

1. ‖A‖op ≥ 0 and ‖A‖op = 0 if and only if A = 0.

2. ‖cA‖op = |c|‖A‖op for every scalar c.

12



Chapter 2

3. ‖A+B‖op ≤ ‖A‖op + ‖B‖op.

4. ‖Ax‖2 ≤ ‖A‖op‖x‖2 for every x ∈ Rn.

5. ‖BA‖op ≤ ‖B‖op‖A‖op

2.2 Formulas and Inequalities

We record some useful formulas and inequalities in this section. A general reference is the book by
Horn and Johnson [HJ13].

Inverse

The following formulas are for updating the inverse of a matrix. See wiki for proofs.

Fact 2.20 (Sherman-Morrison Formula). Suppose A ∈ Rn×n is an invertible square matrix and
u, v ∈ Rn are column vectors. Then A + uvT is invertible if and only if 1 + vTA−1u 6= 0. In this
case,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Fact 2.21 (Woodbury Formula). Given a square invertible n× n matrix A, a n× k matrix U , and
a k × n matrix V , assuming (Ik + V A−1U) is invertible, then

(A+ UV )−1 = A−1 −A−1U
(
Ik + V A−1U

)−1
V A−1.

The following formula is for inverting a block matrix, and the Schur complement is a useful de�nition.

Fact 2.22 (Block Matrix Inversion). Let A and D be square matrices and

M =

(
A B
C D

)
.

If A and the Schur complement D − CA−1B are invertible, then

M−1 =

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

)
.

When a matrix A is not invertible, we can work with the Moore-Penrose pseudoinverse of A.

De�nition 2.23 (Pseudoinverse). Let A ∈ Rn×n be a real symmetric matrix with eigen-decomposition
A =

∑n
i=1 λiviv

T
i . The pseudoinverse of A, denoted by A†, is de�ned as

A† :=
∑
i:λi 6=0

1

λi
viv

T
i .

Check the following properties of pseudoinverse.

Fact 2.24 (Properties). Let A be a real symmetric matrix and A† be its pseudoinverse. Then

AA†A = A and A†AA† = A† and
(
A†
)†

= A.

13
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Determinant

These formulas about determinants will be used in the second part of the course.

Fact 2.25 (Laplace Co-Factor Expansion). Let A be a n× n matrix. For every 1 ≤ i ≤ n,

det(A) =

n∑
j=1

(−1)i+jAi,j det
(
A[n]\i,[n]\j

)
,

where AS,T is the submatrix with rows in S ⊆ [n] and columns in T ⊆ [n].

Applying Laplace expansion recursively gives the Leibniz formula.

Fact 2.26 (Leibniz Formula). Let A be a n× n matrix. Then

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aσ(i),i,

where Sn is the set of permutations of the set [n] = {1, . . . , n} and sgn(σ) is the sign function of
permutation σ which returns +1 and −1 for even and odd permutations.

The following is a simple fact.

Fact 2.27 (Product).

det(AB) = det(A) det(B).

The following result, sometimes known as Sylvester's determinant identity, can be used to deduce
that the nonzero eigenvalues of AB and BA are the same (with multiplicity).

Fact 2.28 (Weinstein-Aronszajn Identity).

det(I +AB) = det(I +BA).

The matrix determinant formula keeps track of how the determinant changes after a rank-one
update.

Fact 2.29 (Matrix Determinant Formula).

det
(
M − uvT

)
= det(M)

(
1− vTM−1u

)
.

The Cauchy-Binet formula will be very useful. One application is to compute the number of spanning
trees of a graph.

Fact 2.30 (Cauchy-Binet Formula). Let A be an m× n matrix and B be an n×m matrix. Then

det(AB) =
∑

S∈([n]
m)

det
(
A[m],S

)
det
(
BS,[m]

)

The following formula gives the coe�cients of the characteristic polynomials.
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Fact 2.31 (Characteristic Polynomial). Let A be an n× n matrix.

det(λIn −A) =
n∑
k=0

λn−k(−1)k
∑

S∈([n]
k )

det(AS,S).

Using Fact 2.31 and Cauchy-Binet formula in Fact 2.30, we have the following identity for the
characteristic polynomial of a sum of outer products.

Fact 2.32 (Characteristic Polynomial of Sum of Outer Products). Let u1, . . . , um ∈ Rn.

det
(
xI −

m∑
i=1

uiu
T
i

)
=

n∑
k=0

λn−k(−1)k
∑

S∈([m]
k )

det
k

(∑
i∈S

uiu
T
i

)
,

where detk(A) =
∑

S∈([n]
k ) det(AS,S).

Trace

De�nition 2.33 (Trace). The trace of a matrix A ∈ Rn×n, denoted by Tr(A), is de�ned as the sum
of the diagonal entries of A.

Fact 2.34 (Cyclic Property of Trace). For two matrices A ∈ Rm×n and B ∈ Rn×m,

Tr(AB) = Tr(BA).

By looking at the coe�cient of xn−1 of the characteristic polynomial det(xI − A) of A ∈ Rn×n in
two ways, one can obtain the following useful fact (see L01 from 2019 for a proof).

Fact 2.35 (Trace is Sum of Eigenvalues). Let λ1, . . . , λn be the eigenvalues of A ∈ Rn×n. Then

Tr(A) =

n∑
i=1

λi.

The following are two advanced results about traces; see [Bha97]. We may not need them explicitly
in this course.

Fact 2.36 (Golden-Thompson Inequality).

Tr(eA+B) ≤ Tr(eA) · Tr(eB)

Fact 2.37 (Lieb-Thirring Inequality). Let A and B be positive de�nite matrices and q ≥ 1. Then

Tr
(
(BAB)q

)
≤ Tr(BqAqBq).

Matrix Calculus

The formula for di�erenting the inverse is obtained by di�erentiating the identity AA−1 = I.

Fact 2.38 (Inverse).
d(A−1) = −A−1(dA)A−1.

Jacobi's formula is obtained by di�erentiating the cofactor expansion in Fact 2.25.

Fact 2.39 (Jacobi's Formula).

d

dt
detA(t) = Tr

(
adj(A(t)) · dA(t)

dt

)
=
(

detA(t)
)
· Tr

(
A(t)−1 · dA(t)

dt

)
.
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Graph Spectrum

The linear algebraic approach to algorithmic graph theory is to view graphs as matrices, and use
concepts and tools in linear algebra to design and analyze algorithms for graph problems. Spectral
graph theory uses eigenvalues and eigenvectors of matrices associated with the graph to study its
combinatorial properties. In this chapter, we consider the adjacency matrix and the Laplacian
matrix of a graph, and see some basic results in spectral graph theory. A general reference for this
chapter is the upcoming book by Spielman [Spi19].

3.1 Adjacency Matrix

De�nition 3.1 (Adjacency Matrix). Given an undirected graph G = (V,E) with V (G) = [n], the
adjacency matrix A(G) is an n × n matrix with Aij = Aji = 1 if ij ∈ E(G) and Aij = Aji = 0
otherwise.

The adjacency matrix of an undirected graph is symmetric. So, by the spectral theorem for real
symmetric matrices in Theorem 2.5, the adjacency matrix has an orthonormal basis of eigenvectors
with real eigenvalues. We denote the eigenvalues of the adjacency matrix by

α1 ≥ α2 ≥ · · · ≥ αn.

It is not clear that these eigenvalues should provide any useful information about the combinatorial
properties of the graph, but they do, and surprisingly much information can be obtained from them.
Let's start with some examples and compute their spectrum.

Example 3.2 (Complete Graphs). If G is a complete graph, then A(G) = J − I where J denotes
the all-one matrix. Any vector is an eigenvector of I with eigenvalue 1. Hence the eigenvalues of
A are one less than that of J . Since J is of rank 1, there are n − 1 eigenvalues of 0. The all-one
vector is an eigenvector of J with eigenvalue n. So, n − 1 is an eigenvalue of A with multiplicity
one, and −1 is an eigenvalue of A with multiplicity n− 1. The is the example with the largest gap
between the largest eigenvalue and the second largest eigenvalue.

Example 3.3 (Complete Bipartite Graphs). Let Kp,q be the complete bipartite graph with p vertices
on one side and q vertices on the other side. Its adjacency matrix A(Kp,q) is of rank 2, so 0 is
an eigenvalue with multiplicity p + q − 2, and there are two non-zero eigenvalues α and β. By
Fact 2.35, the sum of the eigenvalues is equal to the trace of A, which is equal to zero as there
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are no self-loops, and so α = −β. To determine α, we consider the characteristic polynomial
det(xI−A) = (x−α)(x+α)xp+q−2 = xp+q−α2xp+q−2. Using the Leibniz formula for determinant
in Fact 2.26, any term that contributes to xp+q−2 must have p + q − 2 diagonal entries, and the
remaining two entries must be −Aij and −Aji for some i, j. There are totally pq such terms, one
for each edge, where the sign of the corresponding permutation is −1 as it only has one inversion
pair. So, α2 = pq, and thus |α| = √pq. To conclude, the spectrum is (

√
pq, 0, . . . , 0,−√pq), where

0 is an eigenvalue with multiplicity p+ q − 2.

Bipartiteness

It turns out that bipartite graphs can be characterized by the spectrum of their adjacency matrix.
The following lemma says that the spectrum of a bipartite graph must be symmetric around the
origin on the real line.

Lemma 3.4 (Spectrum of Bipartite Graph is Symmetric). If G is a bipartite graph and α is an
eigenvalue of A(G) with multiplicity k, then −α is an eigenvalue of A(G) with multiplicity k.

Proof. If G is a bipartite graph, then we can permute the rows and columns of G to obtain the form

A(G) =

(
0 B
BT 0

)
.

Suppose u =

(
x
y

)
is an eigenvector of A(G) with eigenvalue α. Then

(
0 B
BT 0

)(
x
y

)
= α

(
x
y

)
=⇒ BTx = αy and By = αx.

It follows that (
0 B
BT 0

)(
x
−y

)
=

(
−By
BTx

)
=

(
−αx
αy

)
= −α

(
x
−y

)
,

and thus

(
x
−y

)
is an eigenvector of A(G) with eigenvalue −α. By this construction, note that k

linearly independent eigenvectors with eigenvalue α would give k linearly independent eigenvectors
with eigenvalue −α, and so their multiplicity is the same.

The next lemma shows that the converse is also true.

Lemma 3.5 (Symmetric Spectrum Implies Bipartiteness). Let G be an undirected graph and let
α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. If αi = −αn−i+1 for each 1 ≤ i ≤ n, then
G is a bipartite graph.

Proof. Let k be any positive odd number. Then
∑n

i=1 α
k
i = 0, by the symmetry of the spectrum.

Note that αk1 ≥ αk2 ≥ . . . ≥ αkn are the eigenvalues of Ak, because if Av = αv then Akv = αkv. By
Fact 2.35, it follows that Tr(Ak) =

∑n
i=1 α

k
i = 0. Observe that Aki,j is the number of length k walks

from i to j in G, which can be proved by a simple induction. So, if G has an odd cycle of length
k, then Aki,i > 0 for each vertex i in the odd cycle, and this would imply that Tr(Ak) > 0 as each

diagonal entry Aki,i is non-negative. Therefore, since Tr(Ak) = 0, G must have no odd cycles and is
thus a bipartite graph.
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Combining Lemma 3.4 and Lemma 3.5, a graph is bipartite if and only if the spectrum of its
adjacency matrix is symmetric around the origin.

Proposition 3.6 (Spectral Characterization of Bipartite Graphs). Let G be an undirected graph
and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then G is a bipartite graph if and
only if αi = −αn−i+1 for each 1 ≤ i ≤ n.

When the graph is connected, the characterization is even simpler.

Problem 3.7 (Spectral Characterization of Connected Bipartite Graphs). Let G be a connected
undirected graph and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Prove that G is
bipartite if and only if α1 = −αn.

You may need to use the result of Perron-Frobenius in Theorem 2.16 and also the optimization
formulation of eigenvalues in De�nition 2.9 to solve this problem.

Largest Eigenvalue

We see some upper and lower bounds on the largest eigenvalue of the adjacnecy matrix in this
subsection.

Lemma 3.8 (Max Degree Upper Bound). Let G = (V,E) be an undirected graph with maximum
degree d and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then α1 ≤ d.

Proof. Let v be an eigenvector with eigenvalue α1. Let j be a vertex with v(j) ≥ v(i) for all
i ∈ V (G). Then

α1 · v(j) = (Av)(j) =
∑

i:ij∈E(G)

v(i) ≤
∑

i:ij∈E(G)

v(j) = deg(j) · v(j) ≤ d · v(j),

which implies that α1 ≤ d.

Look at the proof more closely, we can characterize the connected graphs with α1 equal to the
maximum degree.

Exercise 3.9 (Tight Max Degree Upper Bound). Let G be a connected undirected graph with
maximum degree d and the largest eigenvalue α1 = d. Then G is d-regular and the eigenvalue α1 is
of multiplicity one.

The maximum degree upper bound can be far from tight. The following problem provides such an
example, whose bound is also important in the study of Ramanujan graphs in the second part of
the course.

Problem 3.10 (Largest Eigenvalue of a Tree). Prove that the maximum eigenvalue of the adjacency
matrix of a tree of maximum degree d is at most 2

√
d− 1.

On the other hand, the average degree is a lower bound on the largest eigenvalue. More generally,
the largest eigenvalue is at least the average degree of the densest induced subgraph. One corollary
of the following exercise is that the largest eigenvalue is at least the size of a maximum clique minus
one.
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Exercise 3.11 (Average Degree Lower Bound). Let G = (V,E) be an undirected graph with largest
eigenvalue α1. For a subset S ⊆ V and a vertex v ∈ S, let degS(v) :=

∣∣{u | uv ∈ E and u ∈ S}
∣∣ be

the degree of v induced in S. Then

α1 ≥ max
S:S⊆V

1

|S|
∑
v∈S

degS(v).

We remark that the largest eigenvalue of the adjacency matrix of a connected graph is always of
multiplicity one by the Perron-Frobenius Theorem 2.16, and the spectrum of the adjacency matrix
satis�es

d ≥ α1 > α2 ≥ . . . ≥ αn ≥ −d.

In general, I do not know of a nice combinatorial characterization of the largest eigenvalue of the
adjacency matrix.

Question 3.12 (Largest Eigenvalue of the Adjacency Matrix). Is there a better �combinatorial�
characterization of the largest eigenvalue of the adjacency matrix of an undirected graph?

3.2 Laplacian Matrix

The Laplacian matrix plays a more important role in spectral graph theory than the adjacency
matrix, as we will see some reasons soon.

De�nition 3.13 (Diagonal Degree Matrix). Let G = (V,E) be an undirected graph with V (G) = [n].
The diagonal degree matrix D(G) of G is the n × n diagonal matrix with Di,i = deg(i) for each
1 ≤ i ≤ n.

De�nition 3.14 (Laplacian Matrix). Let G be an undirected graph. The Laplacian matrix L(G) of
G is de�ned as L(G) := D(G)−A(G), where D(G) is the diagonal degree matrix in De�nition 3.13
and A(G) is the adjacency matrix in De�nition 3.1.

When G is a d-regular graph, the diagonal degree matrix D(G) is simply d ·In, and so the spectrums
of the adjacency matrix and the Laplacian matrix are basically the same. That is, let α1 ≥ α2 ≥
. . . ≥ αn be the eigenvalues of the adjacency matrix, and λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of
the Laplacian matrix. When G is d-regular, it holds that λi = d− αi for 1 ≤ i ≤ n, and so the i-th
largest eigenvalue of A corresponds to the i-th smallest eigenvalue of L. We will use this convention
throughout that the eigenvalues of A are denoted by αi and the eigenvalues of L are denoted by
λi, and also the eigenvalues of A are ordered in non-increasing order while the eigenvalues of L
are ordered in non-decreasing order. So, later on, when we say the k-th eigenvalue of a graph, we
either mean the k-th largest eigenvalue of the adjacency matrix or the k-th smallest eigenvalue of
the Laplacian matrix.

When the graph is not a regular graph, it may not be easy to relate the eigenvalues of the adjacency
matrix and the Laplacian matrix. On one hand, as we mentioned in the previous subsection, it is
not so easy to give a characterization of α1 when the graph is not regular. On the other hand, λ1 is
equal to zero for every graph as we will soon see. We de�ne a matrix for the proof which will also
be useful later.
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De�nition 3.15 (Edge Incidence Matrix). Let G = (V,E) be an undirected graph and with V (G) =
[n] and m = |E|. For each edge e = ij ∈ E, let be be an n-dimensional vector with the i-th position
equal to +1 and the j-th position equal to −1 and all other positions equal to 0. Let B(G) be the
n×m edge incidence matrix whose columns are {be | e ∈ E}.
For an edge e ∈ E, let Le be its Laplacian matrix with (Le)i,i = (Le)j,j = 1 and (Le)i,j = (Le)j,i =
−1. Note that the Laplacian Le of an edge e can be written as beb

T
e , and the Laplacian of the graph

G can be written as

L(G) =
∑
e∈E

Le =
∑
e∈E

beb
T
e = B(G) ·B(G)T .

With this de�nition in place, the proof that zero is the smallest eigenvalue of Laplacian matrix is
straightforward.

Lemma 3.16 (Smallest Eigenvalue of Laplacian Matrix). The Laplacian matrix L(G) of an undi-
rected graph G is positive semide�nite, and its smallest eigenvalue is zero with the all-one vector
being a corresponding eigenvector.

Proof. As L can be written as BBT as shown in De�nition 3.15, it follows that L is a positive
semide�nite matrix by Fact 2.7, and so all eigenvalues of L are non-negative. It is easy to check
that L~1 = 0, and so 0 is the smallest eigenvalue and ~1 is a corresponding eigenvector.

Having a trivial smallest eigenvalue and a simple corresponding eigenvector is one reason that
Laplacian matrix is easier to work with. Another reason is that the Laplacian matrix has a nice
quadratic form.

Lemma 3.17 (Quadratic Form for Laplacian Matrix). Let L be the Laplacian matrix of an undi-
rected graph G = (V,E) with V (G) = [n]. For any vector x ∈ Rn,

xTLx =
∑
ij∈E

(
x(i)− x(j)

)2
.

Proof. Using the decomposition of L in De�nition 3.15,

xTLx = xT
( ∑
ij∈E

Lij

)
x = xT

( ∑
ij∈E

bijb
T
ij

)
x =

∑
ij∈E

xT bijb
T
ijx =

∑
ij∈E

(
x(i)− x(j)

)2
.

We will use Lemma 3.16 and Lemma 3.17 to write a nice formulation for the second smallest
eigenvalue when we study Cheeger's inequality.

Connectedness

The second smallest eigenvalue of the Laplacian matrix can be used to determine whether the graph
is connected.

Proposition 3.18 (Spectral Characterization of Connected Graphs). Let G be an undirected graph
and let λ1 ≤ . . . ≤ λn be the eigenvalues of its Laplacian matrix L. Then G is a connected graph if
and only if λ2 > 0.
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Proof. Suppose G is disconnected. Then the vertex set can be partitioned into two sets S1 and S2

such that there are no edges between them. For a subset S ⊆ V , let χS ∈ Rn be the characteristic
vector of S. Check that both χS1 and χS2 are eigenvectors of L with eigenvalue 0. Since χS1 and
χS2 are linearly independent, it follows that 0 is an eigenvalue with multiplicity at least 2, and thus
λ2 = 0.

Suppose G is connected. Let x be an eigenvector with eigenvalue 0. Then its quadratic form
xTLx = 0, and so

∑
ij∈E(x(i)−x(j))2 = 0 by Lemma 3.17, which implies that x(i) = x(j) for every

edge ij ∈ E. Since G is connected, it follows that x = c · ~1 for some c, and thus the eigenspace
of eigenvalue 0 is of one dimension. Therefore, the eigenvalue 0 has multiplicity one and thus
λ2 > 0.

The proof of Proposition 3.18 can be extended to prove the following generalization.

Exercise 3.19 (Spectral Characterization of Number of Components). Prove that the Laplacian
matrix L(G) of an undirected graph G has 0 as its eigenvalue with multiplicity k if and only if the
graph G has k connected components.

3.3 Normalized Adjacency and Laplacian Matrix

Recall that the spectrum of the adjacency matrix satis�es

d ≥ α1 ≥ α2 ≥ . . . ≥ αn ≥ −d,

where the upper bound and the lower bound depend on the maximum degree d of the graph. So,
when we relate the eigenvalues of the adjacency matrix to some combinatorial parameters, there is
usually a dependency on the maximum degree of the graph.

To remove this dependency and state the Cheeger's inequality nicely, we will use the following
normalized version of the adjacency matrix and the Laplacian matrix.

De�nition 3.20 (Normalized Adjacency and Laplacian Matrix). Let G be an undirected graph
with no isolated vertices. The normalized adjacency matrix A(G) of G is de�ned as A(G) :=

D−
1
2AD−

1
2 , where D is the diagonal degree matrix in De�nition 3.13 and A is the adjacency matrix

in De�nition 3.1.

The normalized Laplacian matrix L(G) of G is de�ned as L(G) := D−
1
2LD−

1
2 , where L is the

Laplacian matrix in De�nition 3.14. Note that L(G) = I −A(G).

We will overload notations and still use α1 ≥ α2 ≥ . . . ≥ αn to denote the eigenvalues of A(G)
and λ1 ≤ λ2 ≤ . . . ≤ λn to denote the eigenvalues of L(G). Since L(G) = I − A(G) as stated in
De�nition 3.20, the spectrums of L(G) and A are basically equivalent such that λi = 1 − αi for
1 ≤ i ≤ n. After the normalization, the eigenvalues are bounded as follows.

Lemma 3.21 (Normalized Eigenvalues). Let G be an undirected graph with no isolated vertices.
Let α1 ≥ . . . ≥ αn be the eigenvalues of its normalized adjacency matrix and λ1 ≤ . . . ≤ λn be the
eigenvalues of its normalized Laplacian matrix. Then 1 = α1 ≥ αn ≥ −1 and 0 = λ1 ≤ λn ≤ 2.

Proof. First we prove that λ1 = 0. Note that 0 is an eigenvalue of L, as

L
(
D

1
2~1
)

=
(
D−

1
2LD−

1
2
)(
D

1
2~1
)

=
(
D−

1
2L~1

)
= 0.
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Note also that

L = D−
1
2LD−

1
2 = D−

1
2BBTD−

1
2 =

(
D−

1
2B
)(
D−

1
2B
)T

where B is the edge incidence matrix in De�nition 3.15. It follows that L = I − A is a positive
semide�nite matrix by Fact 2.7, and thus 0 is the smallest eigenvalue of L and hence λ1 = 0. This
implies that α1 = 1 as λ1 = 1− α1.

Next we prove that αn ≥ −1. We will show that D+A is also a positive semide�nite matrix. Then
the same argument as in the above paragraph can be used to show that I + A = D−

1
2 (D+A)D−

1
2

is also a positive semide�nite matrix, and this would imply that 1 + αn ≥ 0 and thus αn ≥ −1.
There are at least two ways to see that D+A is positive semide�nite. One way is to de�ne B̄ to be
the �unsigned� matrix of B where B̄ij = |Bij | for all i, j ∈ V , and go through the same argument
in De�nition 3.15 and check that D+A = B̄B̄T . Another way is to use a similar decomposition as
in De�nition 3.15 and see that the quadratic form of D +A can be written as

xT (D +A)x =
∑
ij∈E

(
xi + xj

)2
,

which is a sum of squares and thus non-negative. This implies that λn ≤ 2 as λn = 1− αn.

3.4 Robust Generalizations

So far we have used the graph spectrum to deduce some simple combinatorial properties of the graph,
such as bipartiteness and connectedness, which are easy to deduce directly by simple combinatorial
methods such as breadth �rst search and depth �rst search. So one may wonder why these spectral
characterizations are useful. The key feature of the spectral characterizations is that they can be
generalized quantitatively to prove the following robust generalizations of the basic results:

� λ2 is close to zero if and only if the graph is close to being disconnected. This is the content
of Cheeger's inequality.

� λn is close to 2 if and only if the graph has a structure close to a bipartite component. This
is an analog of Cheeger's inequality for λn.

� λk is close to zero if and only if the graph is close to having k connected components. This is
a generalization called the higher-order Cheeger's inequality.

We will make these statements precise in the next two chapters.

3.5 Problems

The following are some additional problems that are relevant and interesting.

Problem 3.22 (Cycles). Compute the Laplacian spectrum of Cn, the cycle with n vertices.

Problem 3.23 (Hypercubes). A hypercube of n-dimension is an undirected graph with 2n ver-
tices. Each vertex corresponds to a string of n bits. Two vertices have an edge if and only if their
corresponding strings di�er by exactly one bit.
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1. Given two undirected graphs G = (V,E) and H = (U,F ), we de�ne G×H as the undirected
graph with vertex set V × U and two vertices (v1, u1), (v2, u2) have an edge if and only if
either (1) v1 = v2 and u1u2 ∈ F or (2) u1 = u2 and v1v2 ∈ E. Let x be an eigenvector of
the Laplacian of G with eigenvalue α, and let y be an eigenvector of the Laplacian of H with
eigenvalue β. Show that we can use x and y to construct an eigenvector of the Laplacian of
G×H with eigenvalue α+ β.

2. Use (1), or otherwise, to compute the Laplacian spectrum of the hypercube of n dimension.

Problem 3.24 (Number of Spanning Trees). Let G = (V,E) be an undirected graph with V = [n].

1. Let B be the edge incidence matrix of G in De�nition 3.15. Prove that the determinant of
any (n− 1)× (n− 1) submatrix of B is ±1 if and only if the n− 1 edges corresponding to the
columns form a spanning tree of G.

2. Let L be the Laplacian matrix of G and let L′ be the matrix obtained from L by deleting the
last row and last column. Use (1), or otherwise, to prove that det(L′) is equal to the number of
spanning trees in G. You can use the Cauchy-Binet formula in Fact 2.30 to solve this problem.

Problem 3.25 (Wilf's Theorem). Let G be an undirected graph and α1 be the largest eigenvalue of
its adjacency matrix. Prove that χ(G) ≤ bα1c+ 1, where χ(G) is the chromatic number of G. You
may �nd the Cauchy interlacing Theorem 2.13 useful.

3.6 References

[Spi19] Daniel A. Spielman. Spectral and Algebraic Graph Theory. 2019. 17, 45
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Cheeger's Inequality

Cheeger's inequality is the fundamental result in spectral graph theory, which connects a combina-
torial property of a graph and an algebraic quantity of its associated matrix. This connection is
important in the theory of expander graphs and the theory of random walks, which we will see in
later chapters. The proof is also very useful in graph partitioning which we will see soon.

Cheeger [Che70] proved this inequality in the manifold setting, and the inequality in the graph
setting was proved in several works in the 80's [AM85, Alo86, SJ89] with motivations from expander
graphs and random walks.

4.1 Graph Conductance

Recall from Proposition 3.18 that a graph G is connected if and only if λ2 > 0 where λ2 is the
second smallest eigenvalue of the normalized Laplacian matrix. Cheeger's inequality is the robust
generalization that λ2 is large if and only if the graph is well-connected.

To state this formally, we need to de�ne a measure of how well a graph is connected. There are
di�erent natural de�nitions and we state two of them here.

De�nition 4.1 (Edge Expansion). Let G = (V,E) be an undirected graph. The expansion of a
subset S ⊆ V and the expansion of the graph G are de�ned as

Φ(S) :=
|δ(S)|
|S|

and Φ(G) := min
S:|S|≤|V |/2

Φ(S),

where δ(S) denotes the set of edges with one endpoint in S and one endpoint in V − S.

De�nition 4.2 (Edge Conductance). Let G = (V,E) be an undirected graph. The conductance of
a subset S ⊆ V and the conductance of the graph G are de�ned as

φ(S) :=
|δ(S)|
vol(S)

and φ(G) := min
S:vol(S)≤|E|

φ(S),

where vol(S) :=
∑

v∈S deg(v) is called the volume of the subset S. Note that for all S ⊆ V ,
0 ≤ φ(S) ≤ 1, as it is the ratio of the number of edges cut by S to the total degree in S.

For graph partitioning, a subset S ⊆ V corresponds to the partition of the vertex set V into two
parts (S, V − S). In the above de�nitions for Φ(G) and φ(G), note that we only consider the part

25



Eigenvalues and Polynomials

with smaller denominator. Both of these de�nitions try to identify the �bottleneck� in the graph.
When the graph G is d-regular, the two de�nitions are basically equivalent, with Φ(G) = d · φ(G).
When the graphG is non-regular, the relation between the edge conductance and the second smallest
eigenvalue is more elegant.

Theorem 4.3 (Cheeger's Inequality). Let G = (V,E) be an undirected graph and let λ2 be the
second smallest eigenvalue of its normalized Laplacian matrix L(G) in De�nition 3.20. Then

1

2
λ2 ≤ φ(G) ≤

√
2λ2.

The �rst inequality is called the easy direction, and the second inequality is called the hard direction.
We will see that the easy direction corresponds to using the second eigenvalue as a �relaxation� for
graph conductance, and the hard direction corresponds to �rounding� a fractional solution to graph
conductance to an integral solution.

We say that a graph is an expander graph if φ(G) is large (e.g. φ(G) ≥ c for a constant 0 < c < 1),
and we say that a subset S ⊆ V is a sparse cut if φ(S) is small. Both concepts are very useful.

An expander graph with linear number of edges is an e�cient object with diverse applications in
theoretical computer science and mathematics; see [HLW06] for an excellent survey. An important
implication of Cheeger's inequality is that the second eigenvalue of the normalized Laplacian matrix
can be used to certify that a graph is an expander graph, which provides an algebraic way to
construct expander graphs that turns out to be very fruitful.

Finding a sparse cut is useful in designing divide-and-conquer algorithms, with applications in image
segmentation, data clustering, community detection, VLSI design, among others. The algorithmic
implication of Cheeger's inequality is discussed in the following subsection.

Spectral Partitioning Algorithm

A popular heuristic in �nding a sparse cut in practice is the following spectral partitioning algorithm.

Algorithm 1 Spectral Partitioning Algorithm

Require: An undirected graph G = (V,E) with V = [n] and m = |E|.
1: Compute the second smallest eigenvalue λ2 of L(G) and a corresponding eigenvector x ∈ Rn.
2: Sort the vertices so that x1 ≥ x2 ≥ . . . ≥ xn.
3: Let Si = [i] if volG

(
[i]
)
≤ m and let Si = [n] \ [i] if volG

(
[i]
)
> m.

4: return mini:1≤i≤n−1{φ(Si)}.

The algorithm is strikingly simple, with only a few lines of code if we use some mathematical
software such as MATLAB, which is one reason why this heuristic is popular. The algorithm only
checks the linear number of solutions de�ned by the ordering in a second eigenvector, although there
are exponentially many subsets S ⊆ V .
There is a near-linear time randomized algorithm to compute an approximate eigenvector of the
second eigenvalue, using the power method and a fast Laplacian solver. So, the algorithm is also
fast theoretically, but we won't discuss the details in this chapter.

The main reason that it is popular is that it performs very well in various applications, especially
in image segmentation and clustering, and it was considered a breakthrough in image segmentation
about 20 year ago [SM00].
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The proof of Cheeger's inequality will provide a nontrivial performance guarantee of the spectral
partitioning algorithm, that it will always output a set S with conductance φ(S) ≤

√
2λ2 ≤ 2

√
φ(G).

When φ(G) is a constant, this is a constant factor approximation algorithm. When φ(G) is small,
say φ(G) ≤ 1/n, the approximation ratio could be as bad as Θ(

√
n). It has been an open problem

to explain the empirical success rigorously, and we will come back to this in the next chapter.

4.2 Easy Direction

In this section, we prove the easy direction of Cheeger's inequality. For simplicity of exposition, we
assume the graph is d-regular, so L(G) = 1

dL(G). We will outline the modi�cations needed for the
analysis of non-regular graphs in a subsection at the end of this chapter, but those are just some
additional manipulations where all the main ideas are already in the d-regular case.

First, we start with the nice optimization formulation of the second eigenvalue of the normalized
Laplacian matrix using the Rayleigh quotient in De�nition 2.9.

Lemma 4.4 (Optimization Formulation for λ2). Let G = (V,E) be an undirected d-regular graph
with V = [n] and λ2 be the second smallest eigenvalue of its normalized Laplacian matrix L(G).
Then

λ2 = min
x∈Rn:x⊥~1

RL(x) = min
x∈Rn:x⊥~1

xTLx

xTx
= min

x∈Rn:x⊥~1

xTLx

d · xTx
= min

x∈Rn:x⊥~1

∑
ij∈E

(
x(i)− x(j)

)2
d
∑

i∈V x(i)2
.

Proof. The �rst equality is by Lemma 2.11, although it was stated in the maximization form, the
same proof works for the minimization form. The last equality is by Lemma 3.17.

The observation is that the minimization problem of graph conductance can be formulated in a
similar way. The following lemma holds for non-regular graphs.

Lemma 4.5 (Optimization Formulation for Graph Conductance). Let G = (V,E) be an undirected
graph with V = [n]. Then

φ(G) = min
x∈{0,1}n

∑
ij∈E

(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

subject to
∑
i∈V

deg(i) · x(i)2 ≤ |E|.

Proof. Each feasible solution S ⊆ V with vol(S) ≤ |E| in the graph conductance problem cor-
responds to a feasible solution χS ∈ {0, 1}m with

∑
i∈V deg(i) · x(i)2 ≤ |E| in this formulation,

and vice versa. Note that the numerator counts the number of edges in δ(S) and the denominator
computes the volume vol(S) of S.

Note that for d-regular graphs, the constraint simpli�es to
∑

i∈V x(i)2 ≤ n/2.

Intuition: The main di�erence between these two formulations is that the former optimizes over the
continuous domain x ∈ Rn, while the latter optimizes over the discrete domain x ∈ {0, 1}n. A good
way to think of the relation between the two optimization problems is that the former problem is a
�relaxation� of the latter problem. This is a common idea in the design of approximation algorithms.
The latter problem is an NP-hard optimization problem, because of the discrete domain. The
relaxation idea is to optimize over a larger continuous domain, so that the problem can be solved in
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polynomial time. Since we optimize over a larger domain, the objective value of the former problem
could only be smaller than that of the latter problem, and so we expect that λ2 ≤ φ(G). This is
the main intuition for the easy direction. For these two formulations, however, there are also some
di�erences between the constraints, and it only holds that λ2 ≤ 2φ(G).

Proof of the Easy Direction in the d-Regular Case. To upper bound λ2, we just need to �nd a
vector x ⊥ ~1 and compute its Rayleigh quotient RL(x). Let S ⊆ V be a subset of vertices with

|S| ≤ |V |2 . Consider the following �binary� solution x ∈ Rn with

x(i) =

{
+1/|S| if i ∈ S
−1/|V−S| if i 6∈ S

.

By construction, x ⊥ ~1, and so

λ2 ≤ RL(x) =

∑
ij∈E

(
x(i)− x(j)

)2
d
∑

i∈V x
2
i

=
|δ(S)| ·

(
1
|S| + 1

|V−S|
)2

d
(
|S| · 1

|S|2 + |V − S| · 1
|V−S|2

) =
|δ(S)| · |V |

d · |S| · |V − S|
≤ 2φ(S),

where the last inequality uses the assumption that |S| ≤ |V |2 which implies that |V |
|V−S| ≤ 2.

4.3 Hard Direction

By optimizing over a larger domain, however, the objective value of the continuous problem will
typically be smaller than that of the discrete problem.

Tight Example

Consider the cycle of 4n vertices. One can compute the second eigenvector of the cycle exactly, but
we don't do it here. Recall that λ2 = minx⊥~1 x

TLx/xTx, so to give an upper bound we just need
to demonstrate a solution with small objective value. Consider

x =
(

1, 1− 1

n
, 1− 2

n
, . . . ,

1

n
, 0,− 1

n
, . . . ,−1 +

1

n
,−1,−1 +

1

n
, . . . ,− 1

n
, 0,

1

n
, . . . , 1− 1

n

)
.

Then x ⊥ ~1, and so

λ2 ≤
∑

ij∈E
(
x(i)− x(j)

)2
2
∑

i∈V x(i)2
= Θ

(
n
(

1
n

)2
n

)
= Θ

( 1

n2

)
.

On the other hand, it is easy to verify that the conductance of the cycle of 4n vertices is Θ( 1
n). This

is an example where the hard direction φ(G) ≤
√

2λ2 is tight up to a constant factor.

Rounding

For the discrete optimization problem of graph conductance, we would like the solution to be
a binary solution as in the proof of the easy direction. But once we relax the problem to the
continuous domain (so that it becomes polynomial time solvable), the optimal solution x could be
very �fractional� or �continuous� as the above example shown. For the hard direction, the task is
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to prove that there is always a binary solution z with objective value at most the square root of
the objective value of the continuous solution x. A typical way in approximation algorithms to do
this task is to �round� the �fractional/continuous� solution x to an �integral/binary� solution z and
bound the objective value of z in terms of the objective value of x. This is what we will do.

Intuition

Think of the optimizer x to the optimization problem in Lemma 4.4 as embedding the vertices of
the graph into the real line, so that for most edges |x(i)−x(j)| is small. A natural strategy is to do a
�threshold rounding�, where we pick a threshold t and set z(i) = 0 if x(i) < t and z(i) = 1 if x(i) ≥ t.
A simple analogy is that if most rows/edges have few nonzeros, then there is a column/threshold
with few nonzeros. This intuition can be made precise if the optimization problem is of the form

min
x∈Rn+

∑
ij∈E

∣∣x(i)− x(j)
∣∣

d
∑

i∈V x(i)
,

but the optimization problem in Lemma 4.4 is a sum of quadratic terms and this is basically where
the square root loss in the hard direction comes from.

Truncation

The proof of the hard direction has two steps. The �rst step is a preprocessing step that truncates an
optimizer x ∈ Rn to the continuous problem in Lemma 4.4 to a vector y ∈ Rn with vol(supp(y)) ≤
|E|, where supp(y) := {i | y(i) 6= 0}. This is to ensure that the solution S produced in the second
step satis�es vol(S) ≤ |E|, satisfying the constraint in the discrete problem in Lemma 4.5.

There are two ways to do this step. The �rst way requires that x is indeed an eigenvector, and the
proof is shorter and is enough for establishing Cheeger's inequality. The second way only requires
that x is perpendicular to the �rst eigenvector, which is important for algorithmic purpose, but the
proof is a bit longer. We will present the proof for the �rst way and outline the proof for the second
way in the problem subsection in the end. The following lemma is from [HLW06] and it holds for
general undirected graphs.

Lemma 4.6 (Truncating Eigenvector). Let G = (V,E) be an undirected graph and x ∈ Rn be
an eigenvector of L(G) with eigenvalue λ. Let x+ ∈ Rn be the vector with x+(i) = max{x(i), 0}
for 1 ≤ i ≤ n, and x− ∈ Rn be the vector with x−(i) = min{x(i), 0} for 1 ≤ i ≤ n. Then
RL(x+) ≤ RL(x) = λ and RL(x−) ≤ RL(x) = λ.

Proof. For each vertex i ∈ supp(x+), by the de�nition of normalized Laplacian matrix in De�ni-
tion 3.20 and the assumption that x is an eigenvector with eigenvalue λ,

(Lx+)(i) = x+(i)−
∑
j:ij∈E

x+(j)√
deg(i) deg(j)

≤ x(i)−
∑
j:ij∈E

x(j)√
deg(i) deg(j)

= (Lx)(i) = λ·x(i) = λ·x+(i).

This implies that

〈x+,Lx+〉 =
∑

i∈supp(x+)

x+(i) · (Lx+)(i) ≤
∑

i∈supp(x+)

λ · x+(i)2 = λ · ‖x+‖22.

Therefore, RL(x+) = 〈x+,Lx+〉/‖x+‖22 ≤ λ, and the proof is the same for x−.
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Let x be an eigenvector with eigenvalue λ2. Since x 6= 0 and x is perpendicular to the �rst eigenvector
which is a positive vector, both supp(x+) and supp(x−) are non-empty sets. By choosing either x+

or x− that has a smaller volume in its support and taking a proper normalization, we arrive at the
following corollary.

Corollary 4.7 (Preprocessed Vector). Let G = (V,E) be an undirected graph with V = [n] and
λ2 be the second eigenvalue of L(G). There exists a vector y ∈ Rn that satis�es (i) y ≥ 0, (ii)
RL(y) ≤ λ2, (iii) vol(supp(y)) ≤ 1

2 vol(V ) = |E|, and (iv) ‖y‖22 = 1.

For algorithmic purpose, we may not be able to compute an eigenvector exactly, but rather a vector
x that is perpendicular to the �rst eigenvector and RL(x) ≈ λ2. In the problem subsection in the
end, we describe how to truncate the vector to satisfy Corollary 4.7, which is similar but with an
additional shifting/centering step.

In the d-regular case, to summarize, the truncation step transforms a vector x with small Rayleigh
quotient that satis�es x ⊥ ~1 in the continuous problem in Lemma 4.4 into a vector y with
small Rayleigh quotient that satis�es | supp(y)| ≤ n/2 that is required in the discrete problem
in Lemma 4.5.

Threshold Rounding

The main step in the hard direction is the threshold rounding step hinted earlier, which takes
a vector y in Corollary 4.7 and outputs a set S ⊆ supp(y) with small conductance φ(S). As
described in the spectral partitioning algorithm, we will only consider those threshold/level sets
S′t := {i ∈ V | y(i) ≥ t} for t > 0, as in every proof of Cheeger's inequality. Our proof will
follow that of Trevisan [Tre16], whose idea is to choose a random t and considers the level set
St := {i ∈ V | y(i)2 ≥ t}, and to bound the conductance of St by computing the expectation of
the numerator and the expectation of the denominator separately. The idea of choosing a random
t is similar to the idea of randomized rounding in approximation algorithms, and his analysis of
computing the expectations separately simpli�es the proof.

Lemma 4.8 (Threshold Rounding). Let G = (V,E) be an undirected d-regular graph with V = [n].
Let y ∈ Rn+ be a vector with non-negative entries. There exists t > 0 such that the threshold set

St := {i ∈ [n] | y(i)2 ≥ t} is nonempty and satis�es φ(St) ≤
√

2RL(y).

Proof. For convenience, we scale y so that maxi y(i) = 1. Let t ∈ (0, 1] be chosen uniformly at
random. Note that the set St is nonempty by construction. In the following, we compute the
expected value of the numerator and of the denominator in Lemma 4.5 separately.

For an edge ij ∈ E, note that the probability that ij ∈ δ(St) is |y(i)2 − y(j)2|, when the random
threshold t falls between y(i)2 and y(j)2. By linearity of expectation,

Et
[
|δ(St)|

]
=
∑
ij∈E

Pr(ij ∈ δ(St)) =
∑
ij∈E

∣∣y(i)2 − y(j)2
∣∣ =

∑
ij∈E

∣∣y(i)− y(j)
∣∣ · ∣∣y(i) + y(j)

∣∣.
To relate this expected value to the numerator of the Rayleigh quotient in Lemma 4.4, the Cauchy-
Schwarz inequality is used as in every proof of Cheeger's inequality so that

Et
[
|δ(St)|

]
≤
√∑
ij∈E

∣∣y(i)− y(j)
∣∣2√∑

ij∈E

∣∣y(i) + y(j)
∣∣2 ≤√∑

ij∈E

∣∣y(i)− y(j)
∣∣2√2d ·

∑
i∈V

y(i)2,
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where the second inequality holds because
∑

ij∈E
∣∣y(i)+y(j)

∣∣2 ≤∑ij∈E 2
(
y(i)2+y(j)2

)
= 2d

∑
i∈V y(i)2

where the assumption that G is d-regular is used.

For a vertex i ∈ V , note that the probability that i ∈ St is y(i)2, when the random threshold t is
smaller than y(i)2. By linearity of expectation,

Et
[
d|St|

]
= d ·

∑
i∈V

Pr(i ∈ St) = d ·
∑
i∈V

y(i)2.

Therefore,

Et
[
|δ(St)|

]
Et
[
d|St|

] ≤
√√√√2

∑
ij∈E

∣∣y(i)− y(j)
∣∣2

d ·
∑

i∈V y(i)2
=
√

2RL(y).

Note that we cannot conclude from this that Et[φ(St)] = Et
[
|δ(St)|/d|St|

]
≤
√

2RL(y), but we can
conclude from this that

Et
[
|δ(St)| − d|St|

√
2RL(y)

]
≤ 0 =⇒ ∃t > 0 with φ(St) =

|δ(St)|
d|St|

≤
√

2RL(y).

Analysis of the Spectral Partitioning Algorithm

We summarize the proof of the hard direction, which also provides an analysis of the spectral
partitioning algorithm.

Proof of the Hard Direction in the d-Regular Case. Let x ∈ Rn be an eigenvector of L(G) with
eigenvalue λ2. First we apply the truncation step in Lemma 4.6 and Corollary 4.7 to obtain a vector
y ∈ Rn with RL(y) ≤ RL(x) = λ2 and | supp(y)| ≤ n/2. Then we apply the threshold rounding
step in Lemma 4.8 on y to obtain a nonempty set St = {i ∈ [n] | y(i)2 ≥ t} with t > 0 and
φ(St) ≤

√
2RL(y) ≤

√
2λ2. Since St ⊆ supp(y), it follows that 0 < |St| ≤ | supp(y)| ≤ n/2 and

thus φ(G) ≤ φ(St) ≤
√

2λ2. Finally, note that St is a threshold set of y, which is also a threshold
set of x by the construction in Lemma 4.6, as y is either x+ or x−. This implies that the spectral
partitioning algorithm has considered this set, and thus it will output a set S with φ(S) ≤

√
2λ2.

4.4 Discussions

We discuss more about the performance of the spectral partitioning algorithm and also outline the
modi�cations needed for general weighted graphs.

More Examples

Both sides of Cheeger's inequality are tight, even the constants are tight. For the easy direction,
one can check that it is tight for the hypercubes; see Problem 3.23. For the hard direction, we
have already seen that it is tight up to a constant factor for the cycles. It is possible to assign edge
weights to the cycle so that even the constant

√
2 is tight, and we leave it as a challenging example

to work out.
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These are the standard examples to show that both sides of Cheeger's inequality are tight, but they
do not yet provide much insights about how the spectral partitioning algorithm only outputs a set
S with φ(S) ≈

√
φ(G). For the cycle examples where the φ(G) ≈

√
λ2, the spectral partitioning

actually works perfectly to output a set S with φ(S) ≈ φ(G), because it outputs a set S with
φ(S) ≈

√
λ2 ≈ φ(G). Indeed, it is a general phenomenon that rounding algorithms work perfectly

for the worst integrality gap examples.

So, to �nd an example where the spectral partitioning algorithm performs poorly, we need to
look at the examples where the easy direction is tight but the algorithm outputs a set S with
φ(S) ≈

√
λ2 ≈

√
φ(G). Actually, for the hypercube examples where the easy direction is tight, there

are vectors in the second eigenspace where the spectral partitioning algorithm performs perfectly
and performs poorly.

Problem 4.9 (Spectral Partitioning for Hypercubes). Let G be the hypercube of dimension d with
2d vertices and L(G) be its normalized Laplacian matrix.

1. Show that there is an eigenvector vector x ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on x outputs a set S with φ(S) = RL(x) = 1

2λ2.

2. Show that there is an eigenvector vector y ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on y outputs a set S with φ(S) ≈

√
RL(y) =

√
λ2.

Since we do not have control over which eigenvector in the second eigenspace is returned, this
provides an example where the spectral partitioning algorithm could perform poorly. But perhaps
this example is not so satisfying as we do not see clearly how the spectral partitioning algorithm is
fooled.

We construct such an example in the following by tweaking the cycle example. Let G be the weighted
graph with vertices {v1, . . . , vn, vn+1, . . . , v2n}, and two cycles (v1, v2, . . . , vn) and (vn+1, vn+2, . . . , v2n)
where every edge in these cycles is of weight one, and a �hidden� matching {v1vn+1, v2vn+2, . . . , vnv2n}
where every edge in the matching is of weight say 100/n2. Then it is easy to see that the set of small-
est conductance is the set S := {v1, . . . , vn} with φ(S) = O(1/n2). However, the edges in the hidden
matching are so light that the spectral partitioning algorithm did not �feel� them, and still thinks
that the embedding of the cycle is the best embedding of the vertices onto the real line. Indeed,
one can verify that the second eigenvector x in this example is still the same as that in the cycle of
n vertices, with x(vi) = x(vn+i) for 1 ≤ i ≤ n. Therefore, λ2 is still O(1/n2) which is close to φ(G),
but the cut of smallest conductance is completely lost in x and every threshold set has conductance
Ω(1/n). This is a more insightful example to see how the spectral partitioning algorithm is fooled.
This example is a weighted graph, but one can also modify this example slightly to keep the same
structure while making the graph unweighted.

Cheeger's Inequality for General Weighted Graphs

Once we understand the proof for the d-regular case, it is not di�cult to extend it to general
weighted graphs.

Let G = (V,E) be an edge weighted graph with a non-negative weight w(e) ≥ 0 on each edge e ∈ E.
The weighted degree of a vertex i is de�ned as degw(i) =

∑
j:ij∈E w(ij), and the diagonal degree

matrix is denoted by Dw. The weighted adjacency matrix Aw is de�ned so that (Aw)i,j = w(ij)
for all i, j ∈ V . The weighted Laplacian matrix Lw is de�ned as Dw − Aw, and the weighted
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normalized Laplacian matrix Lw is de�ned asD
− 1

2
w LwD

− 1
2

w . Check that the quadratic form xTLwx =∑
ij∈E w(ij)

(
x(i)− x(j)

)2
. The following is a generalization of Lemma 4.4 for λ2 of Lw(G), which

can be obtained by a change of variable.

Exercise 4.10 (General Optimization Formulation for λ2). Let G = (V,E) be a weighted graph
with V = [n] and λ2 be the second smallest eigenvalue of Lw(G). Show that

λ2 = min
y∈Rn:

∑
i∈V degw(i)y(i)=0

yTLwy

yTDwy
= min

y∈Rn:
∑
i∈V degw(i)y(i)=0

∑
ij∈E w(ij)

(
y(i)− y(j)

)2∑
i∈V degw(i) · y(i)2

.

The weighted conductance of a subset is de�ned naturally as φw(S) := w(δ(S))/ volw(S) where
w(δ(S)) :=

∑
e∈δ(S)w(e) and volw(S) :=

∑
i∈S degw(i), and the weighted conductance of a graph is

de�ned as φw(G) := minS:volw(S)≤ 1
2

volw(V ) φ(S). Choosing an appropriate binary solution involving

volw(S), the easy direction can be shown similarly as in the d-regular case.

Exercise 4.11 (Easy Direction for General Weighted Graphs). Let G = (V,E,w) be an edge
weighted graph and λ2 be the second smallest eigenvalue of Lw(G). Show that 1

2λ2 ≤ φw(G).

The main changes are actually in the easy direction. For the hard direction, the proofs are basically
the same. The arguments in Lemma 4.6 and Corollary 4.7 work the same way. The analysis of the
threshold rounding is very similar to that in Lemma 4.8, but on the formulation in Exercise 4.10.

Exercise 4.12 (Hard Direction for General Weighted Graphs). Let G = (V,E,w) be an edge
weighted graph and λ2 be the second smallest eigenvalue of Lw(G). Prove that φw(G) ≤

√
2λ2.

4.5 Problems

Problem 4.13 (Truncation). We outline the truncation step which does not require that the vector
is an eigenvector. The following statements are for general weighted graphs. You may specialize the
problem to the d-regular case.

Let G = (V,E) be a weighted undirected graph with V = [n] and y ∈ Rn be a vector with∑
i∈V degw(i)y(i) = 0. Let Rw(y) := yTLwy/y

TDwy be the weighted Rayleigh quotient.

1. Let c be a value such that volw({i | y(i) < c}) ≤ 1
2 volw(V ) and volw({i | y(i) > c}) ≤

1
2 volw(V ). Let z := y − c~1. Prove that Rw(z) ≤ Rw(y). You may need to use the assumption
that

∑
i∈v degw(i)y(i) = 0.

2. Let z ∈ Rn be the vector obtained in the previous step. Let z+ ∈ Rn be the vector with
z+(i) := max{z(i), 0} for 1 ≤ i ≤ n, and z− ∈ Rn be the vector with z−(i) := min{z(i), 0} for
1 ≤ i ≤ n. Prove that min{Rw(z+), Rw(z−)} ≤ Rw(z).

3. Conclude with the suitable generalization of Corollary 4.7 that allows one to continue to prove
the hard direction for general weighted graphs.
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Generalizations of Cheeger's Inequality

We give an overview of some recent generalizations of Cheeger's inequality using other eigenvalues.
The presentation follows the chronological order.

5.1 Bipartiteness Ratio and Maximum Cut

Recall from Proposition 3.6 that a graph G is bipartite if and if the spectrum of its adjacency matrix
is symmetric around the origin, and from Problem 3.7 that a connected graph G is bipartite if and
only if α1 = −αn where αi is the i-th largest eigenvalue of the adjacency matrix. These results
are for the spectrum of the adjacency matrix, and the following is a corresponding result for the
spectrum of the normalized Laplacian matrix.

Exercise 5.1 (Spectral Characterization of Bipartiteness). Let G = (V,E) be an undirected graph
and λn be the largest eigenvalue of its normalized Laplacian matrix L(G). Then λn = 2 if and only
if G has a bipartite component, i.e. a connected component that is a bipartite graph.

Trevisan [Tre09] proved that λn is close to 2 if and only if G is close to having a bipartite component,
in the same style as in Cheeger's inequality in Theorem 4.3. To state the result, we write the
optimization formulation for 2−λn and then motivate the corresponding de�nition of bipartiteness
ratio of a subset of vertices S.

Exercise 5.2 (Optimization Formulation for 2 − λn). Let G = (V,E) be an undirected graph and
λn be the largest eigenvalue of L(G). Then

2− λn = min
x∈Rn

∑
ij∈E

(
x(i) + x(j)

)2∑
i∈V deg(i) · x(i)2

.

Let S ⊆ V (G) be a bipartite component with partition S = (L,R) such that all the edges in S are
between L and R. Then the vector x ∈ {−1, 0, 1}n where

x(i) =


+1 if i ∈ L
−1 if i ∈ R
0 otherwise

.

is a solution to the above optimization problem with objective value 0. Using this association
between a vector x ∈ {−1, 0, 1}n and a bipartition of a subset S = (L,R), Trevisan considered the
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following de�nition of the bipartiteness ratio of S = (L,R) where each edge within L and each edge
within R contributes 2 in the numerator while an edge in δ(S) contributes 1 in the numerator.

De�nition 5.3 (Bipartiteness Ratio). Let G = (V,E) be an undirected graph with V = [n]. The
bipartiteness ratio of a vector x ∈ {−1, 0, 1}n is de�ned as

β(x) :=

∑
ij∈E

∣∣x(i) + x(j)
∣∣∑

i∈V deg(i) · |x(i)|
.

The bipartiteness ratio of a graph G is de�ned as

β(G) := min
x∈{−1,0,1}n

β(x).

Trevisan proved the following analog of Cheeger's inequality for 2− λn and β(G).

Theorem 5.4 (Cheeger's Inequality for λn [Tre09]). Let G = (V,E) be an undirected graph and λn
be the largest eigenvalue of L(G). Then

1

2
(2− λn) ≤ β(G) ≤

√
2(2− λn).

The easy direction is left as an exercise and the hard direction is left as a problem. Trevisan used
the ideas in his proof of Cheeger's inequality as shown in Section 4.3 to de�ne Lt = {i | x(i) ≥

√
t}

and Rt = {i | x(i) ≤ −
√
t} and St = (Lt, Rt) for a uniformly random t to prove the hard direction.

Maximum Cut

In the maximum cut problem, we are given an undirected graph G = (V,E) and the task is to �nd
a set S ⊆ V that maximizes |δ(S)|. This is a classical NP-complete problem. It is an exercise that
there is always a subset S ⊆ V with |δ(S)| ≥ 1

2 |E|, and this gives a trivial
1
2 -approximation algorithm

for the problem. It was not known how to do better until Goemans and Williamson [GW95]
introduced semide�nite programming into approximation algorithms and used it to design a 0.878-
approximation algorithm for the maximum cut problem. Semide�nite programming was the only
approach to do better than 1

2 -approximation for the maximum cut problem until Trevisan used
Theorem 5.4 to design a spectral 0.531-approximation algorithm.

The power of the spectral method is that it gives a better upper bound on the optimal value than
the trivial upper bound |E|. Suppose the maximum cut (S, V −S) cuts at least 1−ε fraction of edges
Then check that β(G) ≤ ε, and thus 2 − λn ≤ 2β(G) ≤ 2ε by the easy direction of Theorem 5.4.
So, if we compute that 2− λn is large, then we know that the maximum cut only cuts at most 1

2λn
fraction of edges, and thus the trivial approximation algorithm of cutting 50% of edges would be
a 1/λn-approximation algorithm. To summarize, when λn is bounded away from 2, then there is a
better than 1/2-approximation algorithm for the maximum cut problem, using the easy direction of
Theorem 5.4.

On the other hand, when 2−λn is small, by the hard direction of Theorem 5.4, we can �nd a subset
S = (L,R) with small β(S), so that most edges with an endpoint in S are between L and R. So we
commit on putting vertices in L on one side and vertices in R on the other side. Then we solve the
maximum cut problem on V − S recursively. Suppose the returned partition is V − S = (L′, R′).
Then we return the best of (L′ ∪ L,R′ ∪R) and (L′ ∪R,R′ ∪ L) as our solution, to ensure that at
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least 50% of edges in δ(S) are cut. To summarize, when λn is close to 2, we can �nd a set S and
ensure that more than 50% of the edges with an endpoint in S will be cut in the returned solution,
using the hard direction of Theorem 5.4.

With these ideas, it should be clear that they can be combined to give a better than 1/2-approximation
algorithm for the maximum cut problem. Soto [Sot15] improved the analysis and gave a spectral
0.614-approximation algorithm for the maximum cut problem.

5.2 Small-Set Expansion

A more re�ned notion of expansion is to study the expansion of sets of di�erent size. We assume
the graph is d-regular in this section.

De�nition 5.5 (Expansion Pro�le). Let G = (V,E) be a d-regular graph. For any 0 < δ ≤ 1/2,
de�ne

φδ(G) := min
S⊆V :|S|≤δ|V |

φ(S)

to be the δ-small-set expansion of G. The curve φδ(G) for 0 < δ ≤ 1/2 is called the expansion pro�le
of the graph G.

The problem of �nding small sparse cuts is useful in applications such as community detection in
a social network. Also, this problem is of much theoretical interest because of its close connec-
tion to the unique games conjecture [RS10]. The small-set expansion conjecture by Steurer and
Raghavendra [RS10] states that for any ε > 0, there exists 0 < δ ≤ 1/2 such that it is NP-hard
to distinguish between φδ(G) ≤ ε and φδ(G) ≥ 1 − ε. This conjecture is still wide open, and if
true this would imply optimal inapproximability results for many well-known problems, including
Goemans-Williamson 0.878-approximation algorithm for the maximum cut problem!

Motivated by this connection, Arora, Barak and Steurer [ABS10] proved the following Cheeger's
inequality for small-set expansion, which roughly says that if λk is small for a large enough k, then
there is a set S with |S| ≈ |V |/k and φ(S) ≈

√
λk.

Theorem 5.6 (Cheeger's Inequality for Small-Set Expansion [ABS10]). Let G = (V,E) be a d-
regular graph and λk be the k-th smallest eigenvalue of L(G). For k ≥ n2β,

∃S ⊆ V with |S| . n1−β and φ(S) .

√
λk
β
.

They used this theorem to design a sub-exponential time algorithm for the small-set expansion
conjecture and the unique games conjecture, together with the ideas of subspace enumeration and
graph decomposition. This is an in�uential paper as it opens up the line of research about higher
eigenvalues of graphs.

Analytically Sparse Vectors from Random Walks

Using the threshold rounding in Lemma 4.8, if we could �nd a vector x with | supp(x)| ≤ δ|V | and
RL(x) . λk, then we can �nd a set S with |S| ≤ δ|V | and φ(S) .

√
λk. This is the starting point.

The constraint | supp(x)| ≤ δ|V | is combinatorial and not easy to work with directly. Note that any
vector satisfying this constraint satis�es the condition ‖x‖1 ≤

√
δ|V | · ‖x‖2 by Cauchy-Schwarz, an

analytical condition more suitable for spectral analysis.
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De�nition 5.7 (Combinatorial and Analytical Sparse Vectors). Let x ∈ Rn be a vector and δ ∈
[0, 1]. We say x is δ-combinatorially sparse if | supp(x)| ≤ δn, and x is δ-analytically sparse if
‖x‖1 ≤

√
δn‖x‖2.

By a truncation argument similar to that in Problem 4.13, we can reduce the problem to �nding a
δ-analytically sparse vector with small Rayleigh quotient.

Problem 5.8 (Combinatorial Sparse Vector from Analytical Sparse Vector). Let x ∈ Rn+ be a non-
negative vector that is δ-analytically sparse. Prove that there exists a non-negative vector y ∈ Rn+
that is 4δ-combinatorially sparse with RL(y) ≤ 2RL(x).

The main idea in [ABS10] is to �nd such a vector from random walks, a topic that we will study
in the next chapter. Let W = 1

2I + 1
2A = I − 1

2L be the lazy random walk matrix. Note that our

assumption λk ≤ λ translates to αk ≥ 1 − λ
2 where αk denotes the k-th largest eigenvalue of W .

The main argument using the spectrum is

n∑
i=1

‖W tχi‖22 =
n∑
i=1

χTi W
2tχi = Tr(W 2t) =

n∑
i=1

α2t
i ≥ k

(
1− λ

2

)2t
,

where the last equality is by Fact 2.35. Therefore, there exists i ∈ [n] such that

‖W tχi‖22 ≥
k

n

(
1− λ

2

)2t
,

and this gives an analytically sparse vector as ‖W tχi‖1 = 1 since it is a probability distribution.

On the other hand, by a relatively standard spectral argument using eigen-decomposition and the
power mean inequality, one can prove that the Rayleigh quotient R(W tχi) is small for every i ∈ [n].

Problem 5.9 (Rayleigh Quotient of RandomWalk Vector). Let G = (V,E) be a graph with V = [n],
L be its normalized Laplacian matrix, and W = I − 1

2L be its lazy random walk matrix. For any
i ∈ [n],

RL(W tχi) ≤ 2− 2‖W tχi‖1/t2 .

These two claims combine to give a vectorW tχi that has small Rayleigh quotient and is analytically
sparse. More precisely, by setting t = ln k

2λ and doing some calculations, one can check that there

exists i with W tχi being
1√
k
-analytically sparse and R(W tχi) ≤ 2λ lnn

ln k . Then Theorem 5.6 follows

when k ≥ n2β .

5.3 Higher-Order Cheeger Inequalities

Recall from Exercise 3.19 that λk = 0 if and only if G has at least k connected components. After
seeing Cheeger's inequality in Theorem 4.3 and its analogy for λn in Theorem 5.4, we now expect
that there is also a robust quantitative generalization of this fact.

Actually, the Cheeger inequality for small-set expansion in Theorem 5.6 can be seen as one such
generalization, because when λk = 0 there exists a component of size at most n/k, and Theorem 5.6
proves that there exists a sparse cut of size roughly n/k when k is large enough.

In the following, we see another generalization that λk is small if and only if G has at least k disjoint
subsets S1, . . . , Sk each is close to a connected component.
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De�nition 5.10 (k-Way Edge Conductance). Let G = (V,E) be a graph. The k-way edge conduc-
tance is de�ned as

φk(G) = min
S1,S2,...,Sk⊆V

max
1≤i≤k

φ(Si),

where the minimization is over pairwise disjoint subsets S1, . . . , Sk of V .

The following higher-order Cheeger inequalities were obtained independently by two research groups.

Theorem 5.11 (Higher-Order Cheeger Inequalities [LOT14, LRTV12]). Let G = (V,E) be a graph
and λk be the k-th smallest eigenvalue of its normalized Laplacian matrix. Then

1

2
λk ≤ φk(G) . k2 ·

√
λk.

Moreover,
φk(G) .

√
log k · λ2k.

Note that Theorem 5.11 guarantees that there are disjoint sparse cuts and hence also a sparse cut of
size at most n/k, but Theorem 5.6 gives a stronger quantitative bound with no dependency on k which
is crucial for the small-set expansion and the unique games conjectures. In short, Theorem 5.11 and
Theorem 5.6 are incomparable, and it would be very interesting to obtain a common generalization
of these two results. The following is another open question.

Question 5.12. Is it true that φk(G) . polylog(k) ·
√
λk?

Spectral Embedding

The high level plan is to �nd k disjoint supported vectors x1, . . . , xk such that each has small
Rayleigh quotient RL(xi). Then we can apply the threshold rounding in Lemma 4.8 on each xi to
�nd Si ⊆ supp(xi) with small conductance φ(Si) .

√
RL(xi).

An interesting new idea in [LOT14, LRTV12] is to use the spectral embedding de�ned by the �rst
k eigenvectors to �nd the k disjoint sparse cuts.

De�nition 5.13 (Spectral Embedding). Let G = (V,E) be a graph with V = [n], λ1 ≤ . . . ≤ λk be
the k smallest eigenvalues of L(G), and v1, . . . , vk ∈ Rn be corresponding orthonormal eigenvectors.
Let U ∈ Rn×k be the n× k matrix where the j-th column is vj. The spectral embedding ui ∈ Rk of
a vertex i is de�ned as the i-th row of U .

The spectral embedding is used in practice to �nd disjoint sparse cuts. A popular heuristic is to
apply some well-known geometric clustering algorithms, in particular the k-means algorithm, to
partition the point set in the spectral embedding into k groups/clusters, and use this partitioning
to cut the graph into k sets. It is still an open problem to analyze this heuristic rigorously.

The proof in [LOT14] analyzed a slightly di�erent algorithm that clusters the points based on
directions. As v1, . . . , vk are orthonormal vectors, the matrix U in De�nition 5.13 satis�es UTU = Ik,
and this implies that the spectral embedding satis�es the following isotropy condition.

Exercise 5.14 (Isotropy Condition). Let u1, . . . , un ∈ Rk be the spectral embedding of the vertices
in De�nition 5.13. For any x ∈ Rk with ‖x‖2 = 1, prove that

n∑
i=1

〈x, ui〉2 = 1.
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Note that
∑n

i=1‖ui‖2 = k as UTU = Ik. The isotropy condition implies that the points u1, . . . , un ∈
Rk must be �well spread out� in di�erent directions.

De�nition 5.15 (Radial Projection Distance). Let u1, . . . , un ∈ Rk be the spectral embedding of the
vertices in De�nition 5.13. The radial projection distance between two vertices i and j is de�ned as

d(i, j) =

∥∥∥∥ ui
‖ui‖2

− uj
‖uj‖2

∥∥∥∥
if ‖ui‖ > 0 and ‖uj‖ > 0. Otherwise, if ui = uj = 0 then d(i, j) := 0, else d(i, j) :=∞.

Problem 5.16 (Spreading Property). Let G = (V,E) be a graph with V = [n]. Let u1, . . . , un ∈ Rk
be the spectral embedding of the vertices in De�nition 5.13. Let S ⊆ V be such that d(i, j) ≤ ∆ for
all i, j ∈ S. Then ∑

i∈S
‖ui‖2 ≤

1

1−∆2
.

Informally, the spreading property implies that the points cannot be concentrated in less than k
directions, as otherwise the spectral embedding cannot identify k clusters.

Suppose there are k clusters S1, . . . , Sk such that
∑

i∈Sj‖ui‖
2 ≈ 1 for 1 ≤ i ≤ k and the pair-

wise distance d(Si, Sj) := mina∈Si,b∈Sj d(a, b) is large. Then [LOT14] uses an idea called smooth
localization to �nd k disjoint supported vectors x1, . . . , xk ∈ Rn each with small Rayleigh quotient.

To achieve this condition, [LOT14] also uses a random partitioning idea to partition Rk and removes
all points close to boundaries so that the distances between di�erent parts are lower bounded. For
more details, see L04 in 2019 or the notes by Trevisan [Tre16] or the journal paper [LOT14].

Randomized Rounding Algorithm

The algorithm in [LRTV12] is elegant and simple to describe.

Algorithm 2 Randomized Rounding on Spectral Embedding [LRTV12]

Require: An undirected graph G = (V,E) with V = [n] and m = |E|, and a parameter k.
1: Compute the spectral embedding u1, . . . , un ∈ Rk in De�nition 5.13.
2: Pick k independent Gaussian vectors g1, . . . , gk ∈ N(0, 1)n. Construct disjointly supported

vectors h1, . . . , hk ∈ Rn as follows:

hi(j) =

{
〈uj , gi〉 if i = argmaxi∈[k]{〈uj , gi〉}
0 otherwise

.

3: Apply the threshold rounding in Lemma 4.8 on each hi to obtain a set Si ⊆ supp(hi) and
φ(Si) ≤

√
2RL(hi).

4: return all Si with φ(Si) .
√

log k · λk.

It is proved in [LRTV12] that this algorithm will return Ω(k) subsets with constant probability.
The proof is by computing the expectation and the variance of the numerator and the denominator,
using some properties of Gaussian random variables.
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5.4 Improved Cheeger Inequalities

Recall that it is an open question to explain the empirical performance of the spectral partitioning
algorithm. In practical instances for image segmentation and data clustering, it is reasonable to
expect that there are only a few outstanding objects/clusters in the input image/dataset. One way
to formalize this is to assume that the k-way conductance φk(G) of the input graph is large for a small
constant k. By the higher-order Cheeger inequality in Theorem 5.11, this is qualitatively equivalent
to λk is large for a small constant k, which is typically satis�ed in practical instances of image
segmentation. The following improved Cheeger's inequality shows that the spectral partitioning
algorithm performs better in these inputs.

Theorem 5.17 (Improved Cheeger's Inequality [KLL+13]). Let G = (V,E) be a graph and λk be
the k-th smallest eigenvalue of its normalized Laplacian matrix. For any k ≥ 2,

λ2

2
≤ φ(G) .

kλ2√
λk
.

The proof of Theorem 5.17 shows that the spectral partitioning algorithm achieves this guarantee.
Note that when λk = Ω(1) for a small constant k, Theorem 5.17 implies that the spectral partitioning
algorithm is a constant factor approximation algorithm for graph conductance. This provides some
rigorous justi�cation of the empirical success of the spectral partitioning algorithm.

Exercise 5.18 (Tight Example for Theorem 5.17). Check that the improved Cheeger's inequality is
tight up to a constant factor for the cycle examples.

There are also related improved Cheeger's inequalities which work with φk(G) directly and with the
robust vertex expansion of the graph [KLL17].

k-Step Functions

To see the main intuition in [KLL+13], consider the simpler scenario when λ2 is small but λ3 is big.
Since λ2 is small, the graph has a sparse cut (S, V −S) by Cheeger's inequality in Theorem 4.3. As
λ3 is big, φ3(G) is also big by the higher-order Cheeger's inequality in Theorem 5.11. This implies
that the induced graph in each S and V − S should be an expander graph, as otherwise there is
a good way to cut them into smaller pieces which would contradict that φ3(G) is big. Since the
induced graphs in S and V − S are expander graphs and (S, V − S) is a sparse cut, we expect that
the minimizer for the Rayleigh quotient in Lemma 4.4 should look like a binary solution and thus
λ2 ≈ φ(G).

The proof of Theorem 5.17 has two main steps. The �rst step is to show that if λk is large for a
small constant k, then any eigenvector of the second eigenvalue should look like a k-step function.

De�nition 5.19 (k-Step Function). Let G = (V,E) be a graph with V = [n]. Given y ∈ Rn and
1 ≤ k ≤ n, we say y is a k-step function if the number of distinct values in {y(i)}i∈V is at most k.

Lemma 5.20 (Constructing k-Step Approximation). Let G = (V,E) be a d-regular graph with
V = [n]. For any x ∈ Rn, there is a (2k + 1)-step function y such that

‖x− y‖22 ≤
4‖x‖22 ·RL(x)

λk
.
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The second step is to show that if the second eigenvector is close to a k-step function, then the
spectral partitioning algorithm performs better.

Lemma 5.21 (Rounding k-Step Approximation). Let G = (V,E) be a d-regular graph with V = [n].
Let x ∈ Rn with ‖x‖2 = 1 and let y ∈ Rn be a (2k + 1)-step function. The spectral partitioning
algorithm applied on x outputs a set S with |S| ≤ n/2 and

φ(S) ≤ 4kRL(x) + 4
√

2k · ‖x− y‖2 ·
√
RL(x).

Note that Theorem 5.17 follows immediately from Lemma 5.20 and Lemma 5.21.

To prove Lemma 5.20, the idea is that if x is far from being a k-step function, then x must be
�smooth/continuous�, and it is possible to decompose x into k disjoint supported vectors x1, . . . , xk ∈
Rn such that each has small Rayleigh quotient as shown in the following �gure.
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Figure 5.1: The �gure on the left is the function x. We cut x into three disjointly supported vectors
x1, x2, x3 by setting t0 = 0, t1 ≈ 0.07, t2 ≈ 0.175, and t3 = maxx(i). For each 1 ≤ i ≤ 3, we de�ne
xi(j) = min{|x(j)− ti−1|, |x(j)− ti|}, if ti−1 ≤ x(j) ≤ ti, and zero otherwise.

For Lemma 5.21, it is instructive to work out the special case when x is exactly a k-step function.

Problem 5.22 (Rounding k-Step Function). Prove Lemma 5.21 when x is a (2k+1)-step function.

The general idea is to choose a random threshold t with probability proportional to the distance to
the nearest step in y. See L05 in 2019 or [KLL+13] for details.
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Chapter 6

Random Walks on Graphs

Given an undirected graph G = (V,E), a random walk is a simple stochastic process where it starts
from a vertex, and in each step the walk moves to a uniformly random neighbor of the current
vertex. Some of the basic mathematical questions about random walks are:

1. (Stationary Distribution:) Is there a limiting distribution of the random walks?

2. (Mixing Time:) How long does it take for the current distribution to be close to the limiting
distribution?

3. (Hitting Time:) Starting from a vertex s, how long does it take to �rst reach a vertex t?

4. (Cover Time:) How long does it take to reach every vertex in the graph at least once?

There are two main approaches to questions (1) and (2). One is probabilistic and uses the idea
of �coupling� two random processes. Another is spectral and uses the eigenvalues of the transition
matrix. We study the spectral approach in this chapter and refer the reader to [Häg02, LPW06] for
the coupling approach.

Questions (3) and (4) are best answered by viewing the graph as an electrical network. This is a
topic that we used to study but probably not in this o�ering. We refer the reader to [DS84, AF02,
LP16, Spi19] for the interesting connection between random walks and electrical networks.

6.1 Markov Chains

In this section, we consider the more general setting of a �nite Markov chain and state the funda-
mental theorem.

A �nite Markov chain is de�ned by a �nite state space and a transition matrix.

De�nition 6.1 (Transition Matrix). Let [n] be the state space. A matrix P ∈ Rn×n is a probability
transition matrix if P is non-negative and

∑
j∈[n] Pi,j = 1 for each i ∈ [n]. For 1 ≤ i, j ≤ n, the

entry Pij is the transition probability from state i to state j.

De�nition 6.2 (Markov Chain). A sequence of random variables (X0, X1, . . .) is a Markov chain
with state space [n] and transition matrix P ∈ Rn×n if for all i, j ∈ [n] and t ≥ 1,

Pr
[
Xt+1 = j | Xt = i ∩Xt−1 = it−1 ∩ . . . ∩X0 = i0

]
= Pr

[
Xt+1 = j | Xt = i

]
= P (i, j).
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The �rst equality is called the Markov property, which states that the transition probability from i to
j is the same regardless of the states X0, . . . , Xt−1 that precedes the current state Xt.

We can simply think of a Markov chain as a random walk on a weighted directed graph G = ([n], w),
where the transition probability from state i to state j is proportional to the edge weight w(i, j)
such that Pi,j = w(i, j)/

∑
j∈[n]w(i, j).

Irreducibility and Aperiodicity

The following are two properties that will imply the existence of a unique limiting distribution.

De�nition 6.3 (Irreducibility). A Markov chain de�ned by transition matrix P ∈ Rn×n is called
irreducible if for any two states i, j, there exists an integer t such that Pr[Xt = j | X0 = i] > 0.

An equivalent de�nition is that the underlying directed graph G = ([n], E) where E(G) := {ij |
Pi,j > 0} of P is strongly connected.

This property is called irreducibility, because if it is not satis�ed then the Markov chain is reducible
to a smaller one for the study of the limiting distribution, as the limiting distribution if exists will
only have support on a strongly connected component.

De�nition 6.4 (Aperiodicity). The period of a state i is de�ned as gcd
{
t | Pr[Xt = i | X0 = i] > 0

}
,

the greatest common divisor of the set of times when it is possible to return to the starting state i.
A state i is called aperiodic if its period is equal to 1. A Markov chain is called aperiodic if all states
are aperiodic; otherwise it is called periodic.

For examples, random walks on an undirected bipartite graph is periodic as every state has period
2, and random walks on a directed cycle of length k > 1 is periodic as every state has period k. In
general, there is no limiting distribution if the Markov chain is periodic.

Irreducibility and aperiodicity together imply the following property that after enough number of
steps, the probability to transit from any state to any other state is positive.

Proposition 6.5 (Reachability). For any �nite, irreducible, and aperiodic Markov chain, there
exists an integer τ <∞ such that Pr[Xt = j | X0 = i] > 0 for all i, j and all t ≥ τ .

The proof uses aperiodicity and a simple number-theoretic argument to prove the statement for all
i = j, and then uses irreducibility to prove the statement for all i 6= j. See [Häg02, LPW06] for a
proof.

Stationary Distribution and Convergence

De�nition 6.6 (Stationary Distribution). For a Markov chain de�ned by transition matrix P ∈
Rn×n, a probability distribution ~π ∈ Rn is a stationary distribution if ~πP = ~π when ~π is represented
as a row vector.

Informally, a stationary distribution ~π is a steady distribution as ~πP t = ~π for any t ≥ 1, and a
limiting distribution if exists is a stationary distribution.

We measure how close are two probability distributions by the total variation distance.
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De�nition 6.7 (Total Variation Distance). Given two probability distributions ~p, ~q ∈ Rn, the total
variation distance of ~p and ~q is de�ned as

dTV(~p, ~q) :=
1

2

n∑
i=1

|p(i)− q(i)| = 1

2
‖~p− ~q‖1.

Consider the Markov chain de�ned by a transition matrix P ∈ Rn×n. Let ~p0 ∈ Rn be an initial
probability distribution on the states. Let ~pt ∈ Rn be the probability distribution ~pt := ~p0P

t after
t steps of random walks. We say that ~pt converges to a probability distribution ~q as t → ∞ if
limt→∞ dTV(~pt, ~q) = 0.

Fundamental Theorem of Markov Chains

One more de�nition before we state the fundamental theorem.

De�nition 6.8 (Hitting Time). For a Markov chain de�ned by transition matrix P ∈ Rn×n, the
hitting time from state i to state j is de�ned as

Hi,j := min{t ≥ 0 | Xt = j,X0 = i}.

The �rst return time to state i is de�ned as H+
i,i := min{t ≥ 1 | Xt = i,X0 = i}.

Given any �nite, irreducible, and aperiodic Markov chain de�ned by P , after we run it long enough,
then it is possible to reach any state from any other state by Proposition 6.5. If two Markov chains
(X1, X2, . . .) and (Y1, Y2, . . .) of P meet at the same state at some time t such that Xt = Yt, then
we cannot distinguish the probability distributions of Xτ and Yτ for τ > t anymore as the Markov
chains forget about the history. By Proposition 6.5, any two Markov chains of P will eventually
meet, and so they will converge to the same distribution as t → ∞, and thus a unique limiting
distribution exists. This is the intuition of the coupling proof of the following fundamental theorem.

Theorem 6.9 (Fundamental Theorem of Markov Chains). Consider the Markov chain de�ned by
a transition matrix P ∈ Rn×n. Let ~p0 ∈ Rn be an initial probability distribution on the states.
Let ~pt ∈ Rn be the probability distribution ~pt := ~p0P

t after t steps. If the Markov chain is �nite,
irreducible, and aperiodic, then the followings hold.

1. There exists a stationary distribution ~π.

2. The distribution ~pt converges to ~π as t→∞, no matter what is the initial distribution ~p0.

3. There is a unique stationary distribution.

4. π(i) = limt→∞(P t)i,i = (E[H+
i,i])
−1, the inverse of the expected �rst return time to i.

We will see a spectral proof of this theorem in the special case of random walks on undirected
graphs. For the general result, see [Häg02] for a probabilistic proof using coupling, [LPW06] for
a probabilistic and algebraic proof, and [HJ13] for a purely algebraic proof related to the Perron-
Frobenius Theorem 2.16.
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6.2 Random Walks on Undirected Graphs

We consider random walks on an unweighted undirected graph G = (V,E) with V = [n], where in
each step the walk moves to a uniformly random neighbor of the current vertex. The fundamental
theorem becomes simpler and easier in this special case, as there are simple characterizations of
irreducibility and aperiodicity and also the limiting distribution.

Matrix Formulation: The transition probability Pij from a vertex i to a vertex j is simply
1/deg(i), and so the transition matrix is P = D−1A where D is the diagonal degree matrix in
De�nition 3.13 and A is the adjacency matrix in De�nition 3.1. Let p0 : V → R be an initial
probability distribution, and pt be the probability distribution after t steps of random walks. By
de�nition, pt+1(i) :=

∑
j:ij∈E pt(j)/ deg(j) for all 1 ≤ i ≤ n. Note that these equations can be

written compactly as pt+1 = P T pt = (AD−1)pt, and by induction pt = (AD−1)tp0. We remark
that it is common to write a probability distribution as a row vector, but in these notes we use the
convention that pt is a column vector.

Stationary Distribution: Recall that a probability distribution π : V → R is a stationary
distribution of P if P Tπ = π. It is equivalent to saying that π is an eigenvector of P T with
eigenvalue 1. Given that P = D−1A for random walks on undirected graphs, it is not di�cult to
identify one such eigenvector.

Lemma 6.10 (Stationary Distribution of Undirected Graphs). Let G = (V,E) be an undirected
graph and P = D−1A be its transition matrix. The distribution π : V → R with

π(i) =
deg(i)∑
j∈V deg(j)

=
deg(i)

2|E|

for all i ∈ V is a stationary distribution of P .

Irreducibility: Is π in Lemma 6.10 the unique stationary distribution? Not necessarily. For
example, if the graph is disconnected, then the distribution after many steps depends on the ini-
tial distribution (e.g. which component does the starting vertex belongs to). This corresponds to
the irreducibility condition in the fundamental theorem. For undirected graphs, the irreducibility
condition is simply equivalent to the condition that the graph is connected.

Aperiodicity: Even if the graph is connected, a limiting distribution may not exist. For example,
in a connected bipartite graph, if the initial distribution p0 is on a single vertex, then the distribution
pt depends on the parity of t, as the support of pt oscillates between the two sides of the bipartite
graph. This corresponds to the aperiodicity condition in the fundamental theorem. For connected
undirected graphs, observe that the aperiodicity condition is equivalent to the condition that the
graph is non-bipartite.

Fundamental Theorem: Given the simple characterizations of the conditions in the fundamental
theorem, it reduces to the following statement for undirected graphs.
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Theorem 6.11 (Fundamental Theorem for Undirected Graphs). Let G be a connected, non-bipartite
undirected graph. Let P = D−1A be the transition matrix of random walks on G. The distribution
π in Lemma 6.10 is the unique stationary distribution. Furthermore, pt := (P T )tp0 converges to π
as t→∞ regardless of the initial distribution p0.

Lazy Random Walks: The non-bipartiteness condition is to ensure that the Markov chain is
aperiodic. There is a simple modi�cation of the random walks so that this assumption can be
removed, by adding self-loops in the graph.

De�nition 6.12 (Lazy Random Walks). Let G be an undirected graph. The transition matrix W
of the lazy random walks is de�ned as W = 1

2I + 1
2D
−1A. In words, the lazy random walks stay at

the current vertex with probability 1/2 and moves to a uniform random neighbor of the current vertex
with probability 1/2.

By doing the lazy random walks, we make the graph non-bipartite and obtain the following corollary
of Theorem 6.11.

Corollary 6.13 (Fundamental Theorem for Lazy Undirected Graphs). Let G be a connected undi-
rected graph. Let W = 1

2I + 1
2D
−1A be the transition matrix of lazy random walks on G. The

distribution π in Lemma 6.10 is the unique stationary distribution. Furthermore, pt := (W T )tp0

converges to π as t→∞ regardless of the initial distribution p0.

It will be clear from the spectral analysis why the constant 1/2 is used.

6.3 Spectral Analysis of Mixing Time for Undirected Graphs

In this section, we will prove the fundamental theorem for undirected graphs in Theorem 6.11 using
a spectral analysis. Besides that the spectral analysis is elegant, it has the very important feature
that it can also be used to analyze the mixing time, which is the rate of convergence to the unique
stationary distribution.

As in Chapter 4 for Cheeger's inequality, we will �rst assume the given undirected graph is d-regular
and prove Theorem 6.11 and then de�ne and bound the mixing time. After that, we outline the
modi�cations needed for general undirected graphs.

Spectrum for Regular Graphs

For d-regular graphs, the transition matrix P for random walks is simply P = D−1A = 1
dA = A, the

normalized adjacency matrix. And the transition matrixW for lazy random walks isW = 1
2I+ 1

2A.
This is the main simpli�cation from the d-regular assumption, as the matrices P and W are still
real symmetric. Another simpli�cation is that for d-regular graphs the stationary distribution π in
Lemma 6.10 is simply the uniform distribution ~1/n.

Our goal is to prove that limt→∞ P
tp0 = ~1/n regardless of the initial distribution p0, as long as the

graph is connected and non-bipartite. And, similarly, limt→∞W
tp0 = ~1/n, as long as the graph is

connected.

To compute P tp0 and W tp0, a repeated application of the same operator, it is very helpful to know
the spectrum of the matrices P and W as discussed in Chapter 2. Let α1 ≥ α2 ≥ . . . ≥ αn be the
eigenvalues of A and v1, . . . , vn be the corresponding orthonormal eigenvectors. Recall that
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� α1 = 1 and v1 = ~1/
√
n from Lemma 3.21,

� α2 < 1 if and only if G is connected from Proposition 3.18,

� and when G is connected, αn > −1 if and only if G is non-bipartite from Problem 3.7.

For the lazy random walk matrix W , the spectrum is 1
2(1 + α1) ≥ 1

2(1 + α2) ≥ . . . ≥ 1
2(1 + αn),

which implies that the smallest eigenvalue is at least 0 > −1. This is why the non-bipartitness
assumption can be removed when we consider lazy random walks.

Limiting Distribution

We translated the combinatorial conditions in the fundamental theorem into spectral conditions,
and the fundamental Theorem 6.11 for d-regular undirected graphs can be restated as follows and
the proof is relatively straightforward.

Proposition 6.14 (Limiting Distribution for Regular Graphs). Let G = (V,E) be a d-regular
undirected graph with V = [n]. Let P = A be the transition matrix of random walks on G and
1 = α1 ≥ α2 ≥ . . . ≥ αn be its eigenvalues. If α2 < 1 and αn > −1, then limt→∞ P

tp0 = ~1/n.

Proof. Let v1, v2, . . . , vn be the corresponding orthonormal eigenvectors. For any initial distribution
p0, as v1, . . . , vn forms an orthonormal basis, we can write p0 = c1v1 + . . . + cnvn as a linear
combination of v1, . . . , vn, where ci = 〈p0, vi〉 for 1 ≤ i ≤ n. Then,

P tp0 = At
( n∑
i=1

civi

)
=

n∑
i=1

ciA
tvi =

n∑
i=1

ciα
t
ivi.

The assumptions α2 < 1 and αn > −1 imply that |αi| < 1 for 2 ≤ i ≤ n. Hence,

lim
t→∞

P tp0 = lim
t→∞

n∑
i=1

ciα
t
ivi = c1v1,

as all but the �rst term go to zero as t→∞. Recall that in the d-regular case, v1 = ~1/
√
n and thus

c1 = 〈p0,~1/
√
n〉 = 1/

√
n as p0 is a probability distribution. Therefore, we conclude that

lim
t→∞

P tp0 = c1v1 =
1√
n
·
~1√
n

=
~1

n
.

Basically, the proof says that under the assumption |αi| < 1 for 2 ≤ i ≤ n, P tp0 converges to the
�rst eigenvector which is proportional to the all-one vector.

Check that the fundamental theorem for lazy random walks in Corollary 6.13 hold for d-regular
graphs as well.
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Mixing Time

The mixing time is to quantify how fast pt converges to the limiting distribution. The following
de�nition is for general Markov chains.

De�nition 6.15 (Mixing Time). Consider the Markov chain de�ned by a transition matrix P ∈
Rn×n. Let p0 ∈ Rn be an initial probability distribution on the states. Let pt ∈ Rn be the probability
distribution pt := (P T )tp0 after t steps. Suppose that the limiting distribution π = limt→∞ pt exists.
For any 0 < ε ≤ 1, the ε-mixing time τε(P ) of P is de�ned as the smallest t such that dTV(pt, π) ≤ ε
for any initial distribution p0, where dTV is the total variation distance in De�nition 6.7.

To bound the mixing time, we use the same approach and assume that α2 and |αn| are bounded
away from one for αti to converge to zero quickly for 2 ≤ i ≤ n.

Theorem 6.16 (Bounding Mixing Time by Spectral Gap). Let G = (V,E) be a d-regular undirected
graph with V = [n]. Let P = A be the transition matrix of random walks on G and 1 = α1 ≥ α2 ≥
. . . ≥ αn be its eigenvalues. Let g := min{1 − α2, 1 − |αn|} be the spectral gap. Then the ε-mixing
time of P is

τε(P ) .
1

g
ln
(n
ε

)
.

Proof. Recall from Proposition 6.14 that P tp0 =
~1
n +

∑n
i=2 ciα

t
ivi where v1, . . . , vn are the orthonor-

mal eigenvectors, and the limiting distribution is π = ~1/n. So,

dTV(pt, π) = dTV(P tp0, π) =
1

2

∥∥∥∥P tp0 −
~1

n

∥∥∥∥
1

=
1

2

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
1

.
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

.

Since v1, . . . , vn are orthonormal, it follows that from the spectral gap assumption that∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥2

2

=
n∑
i=2

c2
iα

2t
i ≤ (1− g)2t

n∑
i=2

c2
i .

Note that
∑n

i=2 c
2
i ≤

∑n
i=1 c

2
i = ‖p0‖22 ≤ ‖p0‖21 = 1, and thus

dTV(pt, π) .
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

≤

√√√√n(1− g)2t

n∑
i=2

c2
i ≤
√
n(1− g)t ≤

√
ne−gt.

Therefore, by setting t & 1
g ln(nε ), we have dTV(pt, π) ≤ ε for any initial distribution p0.

For the lazy random walk matrix W , recall that the smallest eigenvalue is at least 0, and so the
spectral gap for W is simply g = 1

2(1−α2). The following is an important corollary from Cheeger's
inequality in Theorem 4.3 that 1− α2 & φ(G)2

Corollary 6.17 (Bounding Mixing Time by Conductance). Let G = (V,E) be a d-regular undirected
graph with V = [n]. Let W = 1

2I + 1
2A be the transition matrix of lazy random walks on G. Then

the ε-mixing time of W is

τε(W ) .
1

φ(G)2
ln
(n
ε

)
.
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This provides a combinatorial condition that guarantees fast mixing. In particular, for expander
graph where φ(G) = Ω(1), the mixing time of lazy random walks is O(lnn), such that the random
walk reaches an almost uniformly random vertex after O(lnn) steps. For many applications, it
is important that the mixing time is polylogarithmic in the graph size, as we will discuss some
examples soon.

Corollary 6.17 is very useful in designing random sampling algorithms. For the purpose of uniform
random sampling, the analysis for regular graphs is usually enough, as we can design the Markov
chain (possibly by adding self-loops) so that the underlying graph is regular.

Spectrum for General Graphs

The random walk matrix for general graphs is P = D−1A and the lazy random walk matrix is
W = 1

2I + 1
2P . The main di�erence is that these matrices are not necessarily symmetric, and so

we cannot directy apply the spectral theorem in Theorem 2.5 to reason about their eigenvalues and
eigenvectors. A simple but important observation is that P and W are similar to a real symmetric
matrix (see De�nition 2.3 for the de�nition of similar matrices), and so the eignevalues of P and W
are still all real numbers.

Lemma 6.18 (Spectrum of Random Walk Matrices). Let G = (V,E) be a connected undirected
graph with V = [n] and A be its normalized adjacency matrix. Let the eigenvalues of A be α1 >
α2 ≥ . . . ≥ αn and v1, v2, . . . , vn be the corresponding orthonormal basis of eigenvectors. Then the
eigenvalues of the random walk matrix P = D−1A are α1 > α2 ≥ . . . ≥ αn, and the corresponding
eigenvectors of P T = AD−1 are D

1
2 v1, D

1
2 v2, . . . , D

1
2 vn. Also, the eigenvalues of the lazy random

walk matrix W = 1
2I + 1

2P are 1
2(1 + α1) > 1

2(1 + α2) ≥ . . . ≥ 1
2(1 + αn), and the corresponding

eigenvectors of W T are D
1
2 v1, D

1
2 v2, . . . , D

1
2 vn.

Proof. Note that P = D−1A = D−
1
2 (D−

1
2AD−

1
2 )D

1
2 = D−

1
2AD

1
2 , and so P is similar to A, as

D is non-singular when the graph is connected. By the same argument, W is similar to 1
2I + 1

2A.
So, by Fact 2.4, P and A have the same spectrum, and W and 1

2I + 1
2A have the same spectrum.

Note that D
1
2 vi is an eigenvector of P T with eigenvalue αi, as P

T
(
D

1
2 vi
)

=
(
D

1
2AD−

1
2

)(
D

1
2 vi
)

=

D
1
2Avi = αi

(
D

1
2 vi
)
, and similarly D

1
2 vi is an eigenvector of WT with eigenvalue 1

2(1 + αi).

Note that D
1
2 v1, . . . , D

1
2 vn are linearly independent as D is non-singular for a connected graph.

Therefore, any initial distribution p0 can be written as
∑n

i=1 ciD
1
2 vi, a linear combination of the

eigenvectors of P T and W T . With this setup, we can adapt the proof in Proposition 6.14 to prove
the following equivalent form of the fundamental theorem for undirected graphs in Theorem 6.11.

Problem 6.19 (Limiting Distribution for Undirected Graphs). Let G = (V,E) be an undirected
graph with V = [n]. Let P = D−1A be the transition matrix of random walks on G and 1 = α1 ≥
α2 ≥ . . . ≥ αn be its eigenvalues. If α2 < 1 and αn > −1, then limt→∞(P T )tp0 =

~d
2|E| where

~d is

the degree vector with ~d(i) = deg(i) for 1 ≤ i ≤ n.

Then the same approach as in Theorem 6.16 works to bound the mixing time for general undirected
graphs. To bound ‖(P T )tp0 − π‖2, it will be more convenient to bound ‖D−

1
2

(
(P T )tp0 − π

)
‖22, so

as to take advantage of the orthonormality of v1, . . . , vn. Then, one can bound ‖(P T )tp0 − π‖2 ≤√
n
√

dmax
dmin

(1− g)t where g is the spectral gap, and extend the results for d-regular graphs to general

undirected graphs.
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Problem 6.20 (Bounding Mixing Time). Prove Theorem 6.16 and Corollary 6.17 for general undi-
rected graphs.

The same arguments work for weighted undirected graphs basically without modi�cations, by gen-
eralizing the de�nitions as in Section 4.4.

We remark that this spectral approach can be extended to prove the fundamental theorem for
directed graphs as well, but it is more involved and requires the Perron-Frobenius theorem and the
Jordan normal form (see [HJ13] for proofs).

6.4 Random Sampling

An important application of random walks is in random sampling. Consider the following algorithm
for generating a random spanning tree of an undirected graph.

Algorithm 3 Random Exchange Algorithm for Sampling Random Spanning Trees

Require: An undirected graph G = (V,E).
1: Compute an arbitrary spanning tree T0 of the graph.
2: for 1 ≤ t ≤ τ do
3: Choose a uniform random edge e ∈ E − Tt−1 to Tt−1.
4: Choose a uniform random edge f in the unique cycle in Tt−1 + e.
5: Set Tt := Tt−1 + e− f .
6: end for

7: return Tτ .

To analyze this algorithm, it is equivalent to analyzing the random walks on a huge �spanning tree
exchange graph� H, in which there is a vertex in H for each spanning tree of the graph, and two
vertices in H have an edge if the corresponding spanning trees T and T ′ can be obtained from one
step of the algorithm (i.e. T ′ = T + e− f for some edges e, f in the input graph).

Note that if the original graph G has n vertices, then this exchange graph H could have as many as
Ω(nn−2) vertices. So, to prove that τ . poly(n) would work to return an almost uniform random
spanning tree, we must prove that the random walks in the exchange graph mix in polylogarithmic
time in the size of H. In other words, we need to prove that the spanning tree exchange graph H
is an expander graph.

This is usually a di�cult task. There are di�erent approaches to prove fast mixing of Markov
chains. One is called the coupling method, which is the most common and versatile probabilistic
technique in bounding mixing time (see [LPW06]). Another is called the canonical path method,
which is based on using multicommodity �ow to lower bound the graph conductance so as to use
Corollary 6.17 to upper bound the mixing time. A very important application of the canonical path
method is to approximate the permanent of a non-negative matrix [JSV04], which is equivalent to
counting the number of perfect matchings in a bipartite graph.

We won't discuss these methods in this course, but we will see how to analyze the random exchange
algorithm for sampling random spanning trees using the new techniques from high dimensional
expanders in the third part of the course.
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6.5 Local Graph Partitioning

Another useful application of random walks is in graph partitioning. As we have seen in the small-
set expansion problem in Section 5.2, the random walk distribution W tχi for some starting vertex i
can be used to �nd a small sparse cut of the graph. This idea was originally proposed by Spielman
and Teng [ST13]. They proved that the performance of the random walk algorithm for graph
partitioning is similar to that of the spectral partitioning algorithm in Chapter 4. Furthermore,
the random walk algorithm has the important advantage that it can be implemented locally, such
that the running time depends only on output size but not on the original graph size, and this
provides a sublinear time algorithm for graph partitioning for some instances. This idea can also be
used to design approximation algorithms for the small-set expansion problem [KL12]. Local graph
partitioning is an active research topic on its own, and there are several other algorithms such as
using PageRank vector [ACL06] and evolving sets [AOPT16]. We won't discuss these results further
in this course. This is a good project topic for those who are interested in these algorithms.

6.6 Problems

Problem 6.21 (Lower Bounding Mixing Time). Let G = (V,E) be an undirected graph with V =
[n]. Let W = 1

2I + 1
2D
−1A be the transition matrix of lazy random walks on G. Prove that the

ε-mixing time of W is

τε(W ) &
1

1− α2
ln
(1

ε

)
,

where α2 is the second largest eigenvalue of the normalized adjacency matrix A(G). A simpler
problem is to prove that

τε(W ) &
1

φ(G)
ln
(1

ε

)
,

where φ(G) is the edge conductance of G. You may also consider the special case when G is d-regular.

Problem 6.22 (Page Ranking). Suppose someone searches a keyword (e.g. �car�) and we would
like to identify the webpages that are the most relevant for this keyword and the webpages that are the
most reliable sources for this keyword (a page is a reliable source if it points to many most relevant
pages). First we identify the pages with this keyword and ignore all other pages. Then we run the
following ranking algorithm on the remaining pages. Each vertex corresponds to a remaining page,
and there is a directed edge from page i to page j if there is a link from page i to page j. Call this
directed graph G = (V,E). For each vertex i, we have two values s(i) and r(i), where intentionally
r(i) represents how relevant is this page and s(i) represents how reliable it is as a source (the larger
the values the better). We start from some arbitrary initial values, say s(i) = 1/|V | for all i, as we
have no ideas at the beginning. At each step, we update s and r (where s and r are vectors of s(i)
and r(i) values) as follows: First we update r(i) =

∑
j:ji∈E s(j) for all i, as a page is more relevant

if it is linked by many reliable sources. Then we update s(i) =
∑

j:ij∈E r(j) for all i (using the just
updated values r(j)), as a page is a more reliable source if it points to many relevant pages. To keep

the values small, we let R =
∑|V |

i=1 r(i) and S =
∑|V |

i=1 s(i), and divide each s(i) by S and divide
each r(i) by R. We repeat this step for many times to re�ne the values.

Let s, r ∈ R|V | be the vectors of the s and r values. Give a matrix formulation for computing s
and r. Suppose G is weakly connected (when we ignore the direction of the edges the underlying
undirected graph is connected) and there is a self-loop at each vertex. Prove that there is a unique
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limiting s and a unique limiting r for any initial s as long as s ≥ 0 and s 6= 0. You may use the
Perror-Frobenius Theorem 2.16 to solve this problem.
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Chapter 7

Expander Graphs

In this chapter, we �rst de�ne expander graphs and see some of their properties. Then, we study
a deterministic combinatorial construction of expander graphs, called the zig-zag products. Then,
we discuss various interesting and important applications of expander graphs. Most of the material
in this chapter is extracted from the excellent survey by Hoory, Linial, and Wigderson [HLW06].

There are several possible ways to de�ne regular expander graphs.

1. Combinatorically, expander graphs are graphs with very good �connectivity�, e.g. graphs with
good edge expansion or vertex expansion.

2. Probabilistically, expander graphs are graphs in which random walks mix rapidly.

3. Algebraically, expander graphs are graphs with a large spectral gap α1 − α2.

We have already seen in Chapter 4 and Chapter 6 that these de�nitions are closely related. Cheeger's
inequality in Theorem 4.3 states that a graph has a large spectral gap if and only if its edge expansion
is large. The spectral analysis in Corollary 6.17 and Problem 6.21 show that lazy random walks
mix quickly if and only if the spectral gap is large.

Note that complete graphs are the best expander graphs in each of the above de�nitions, but we are
interested in sparse expander graphs with linear number of edges, that is, d-regular expander graphs
with constant d. In constructions of expander graphs, the spectral de�nition is the most convenient,
and we will use the following stronger spectral de�ntion that also bounds the last eigenvalue.

De�nition 7.1 (Spectral Expanders). Let G be a d-regular graph and let d = α1 ≥ α2 ≥ . . . ≥
αn ≥ −d be the spectrum of its adjacency matrix. We say that G is an (n, d, ε)-graph if it has n
vertices, is d-regular, and with max{α2, |αn|} ≤ εd. The quantity α := max{α2, |αn|} is called the
spectral radius of the graph.

The smaller is the spectral radius, the stronger the graph is as a spectral expander. Probabilistically,
the spectral radius is small if and only if the non-lazy random walks mix rapidly, as shown in
Theorem 6.16. Combinatorically, |αn| is small if and only if there is no nearly bipartite component,
as shown in Theorem 5.4.
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7.1 Properties of Expander Graphs

We collect more combinatorial and probabilistic properties of a spectral expander in this section.

Expander Mixing Lemma

A well-known and useful property of expander graphs is that it behaves as a random d-regular
graph. Consider the number of edges between two subsets S, T of vertices.

De�nition 7.2 (Induced Edges). Given a graph G = (V,E) and S, T ⊆ V , de�ne E(S, T ) :=
{(u, v) | u ∈ S, v ∈ T, uv ∈ E} be the set of ordered pairs where u ∈ S and v ∈ T . Note that an edge
with u ∈ S ∩ T and v ∈ S ∩ T is counted twice, as both (u, v) and (v, u) are in E(S, T ).

In a random graph where every pair of vertices has an edge with probability d
n , we expect that

|E(S, T )| is close to d
n |S||T |. The expander mixing lemma says that in a spectral expander |E(S, T )|

is close to this expectation.

Theorem 7.3 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph with V = [n]. If
the spectral radius of G is α, then for every S ⊆ V and T ⊆ V ,∣∣∣∣∣∣E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α√|S||T |.
Proof. First, we write |E(S, T )| as an algebraic expression. Let χS and χT be the characteristic
vectors of S and T , such that χS(i) = 1 if i ∈ S and χS(i) = 0 if i /∈ S. Notice that |E(S, T )| =
χTSAχT , where A is the adjacency matrix of G.

Then, we use eigen-decompositions of χS and χT to relate |E(S, T )| to the eigenvalues of A. Let
v1, . . . , vn be an orthonormal basis of eigenvectors of A. Recall that α1 = d and v1 = 1√

n
~1. Write

χS =
∑n

i=1 aivi and χT =
∑n

i=1 bivi as linear combination of the eigenvectors. So, a1 = 〈χS , v1〉 =
|S|√
n
and b1 = 〈χT , v1〉 = |T |√

n
. Then, by orthonormality of v1, . . . , vn,

∣∣E(S, T )
∣∣ = χTSAχT =

n∑
i=1

αiaibi =
d|S||T |
n

+

n∑
i=2

αiaibi.

Therefore, by the de�nition of spectral radius and an application of the Cauchy-Schwarz inequality,∣∣∣∣∣∣E(S, T )
∣∣− d|S||T |

n

∣∣∣∣ ≤ ∣∣∣∣ n∑
i=2

αiaibi

∣∣∣∣ ≤ α n∑
i=2

|ai||bi| ≤ α‖~a‖2‖~b‖2 = α‖χS‖2‖χT ‖2 = α
√
|S||T |,

where ~a = (a1, . . . , an) and ~b = (b1, . . . , bn).

The following is a consequence of the expander mixing lemma.

Exercise 7.4 (Maximum Independent Set of Spectral Expanders). Let G = (V,E) be a d-regular
graph with V = [n] with spectral radius α. Show that the size of a maximum independent set is at
most αn

d . Conclude that an (n, d, ε)-graph has chromatic number at least 1
ε .
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Converse of Expander Mixing Lemma

Interestingly, Bilu and Linial [BL06] proved a converse of the expander mixing lemma, showing that
it comes close in characterizing the spectral radius of a graph.

Theorem 7.5 (Converse of Expander Mixing Lemma [BL06]). Let G = (V,E) be a d-regular graph
with V = [n]. Suppose that for any subsets S, T ⊆ V with S ∩ T 6= ∅, it holds that∣∣∣∣∣∣E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α√|S||T |.
Then all but the largest eigenvalue of A(G) are bounded in absolute value by O

(
α(1 + log d

α)
)
.

The proof of Theorem 7.5 is based on the following linear algebraic lemma.

Lemma 7.6 (Bounding Spectral Radius [BL06]). Let A be an n × n real symmetric matrix such
that the `1-norm of each row of A is at most d, and all diagonal entries of A are with absolute value
O
(
α log( dα) + 1

)
. Suppose that for any two vectors u, v ∈ {0, 1}n with supp(u) ∩ supp(v) = ∅, it

holds that |uTAv| ≤ α‖u‖2‖v‖2. Then the spectral radius of A is O
(
α log( dα) + 1

)
.

The proof of Lemma 7.6 is based on linear programming duality and is not quite intuitive. It would
be very interesting if there is a proof of Theorem 7.5 which is of a similar style of Trevisan's proof
of Cheeger's inequality in Theorem 4.3.

Vertex Expansion

Cheeger's inequality proves that a d-regular spectral expander has large edge expansion. One could
lower bound the vertex expansion of a d-regular graph through edge expansion, but with a factor d
loss. Tanner's theorem proves a much stronger lower bound than that followed from edge expansion.

De�nition 7.7 (Vertex Boundary). Let G = (V,E) be an undirected graph. For S ⊆ V , the open
vertex boundary of S is de�ned as ∂(S) := {v ∈ V −S | ∃u ∈ S with uv ∈ E}, and the closed vertex
boundary of S is de�ned as ∂[S] := S ∪ ∂(S).

De�nition 7.8 (Vertex Expansion). Let G = (V,E) be an undirected graph. The vertex expansion
of a subset S ⊆ V and of a graph are de�ned as

ψ(S) :=
|∂(S)|
|S|

and ψ(G) := min
S:|S|≤|V |/2

ψ(S).

Theorem 7.9 (Tanner's Theorem). Let G = (V,E) be a d-regular graph with V = [n]. Suppose the
spectral radius of G is at most εd for some 0 < ε < 1. Then, for any 0 < δ ≤ 1/2, for any subset
S ⊆ V with |S| = δn,

ψ(S) ≥ 1

δ(1− ε2) + ε2
− 1.

Proof. The key is to consider the quantity ‖AχS‖22, where A is the adjacency matrix and χS is the
characteristic vector of S ⊆ V . For a vertex v ∈ V , let degS(v) := |{u ∈ S | uv ∈ E}| be the
number of neighbors of v in S. On one hand,

‖AχS‖22 =
∑
v∈V

degS(v)2 =
∑
v∈∂[S]

degS(v)2 ≥
(∑

v∈∂[S] degS(v)
)2∣∣∂[S]

∣∣ =

(
d|S|

)2∣∣∂[S]
∣∣ .
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On the other hand, we write χS =
∑n

i=1 civi as a linear combination of the orthonormal eigenvectors
of A, with v1 = ~1/

√
n and c1 = 〈χS , v1〉 = |S|/

√
n. Then

‖AχS‖22 =
∥∥∥ n∑
i=1

ciαivi

∥∥∥2

2
=

n∑
i=1

c2
iα

2
i ≤

d2|S|2

n
+ (εd)2

(
‖χS‖2 − c2

1

)
= d2|S|

(
δ + ε2(1− δ)

)
,

where the second equality is by orthonormality of v1, . . . , vn, the inequality is by the assumption
of the spectral radius and

∑n
i=1 c

2
i = ‖χS‖2, and the �nal equality is by plugging in |S| = δn.

Combining the inequalities yields the theorem.

Note that when δ � ε2, Tanner's theorem gives ψ(S) & 1/ε2, which implies that |∂(S)| is much
larger than |S| when |S| is small enough. Check that a straightforward application of Cheeger's
inequality only gives ψ(S) ≥ 1

2(1− ε) for |S| ≤ |V |/2.

Alon-Boppana Bound

How small can the spectral radius be? There are graphs, called Ramanujan graphs, with spectral
radius 2

√
d− 1. This is essentially tight, as the following theorem by Alon and Boppana showed.

Theorem 7.10 (Alon-Boppana Bound). Let G = (V,E) be a d-regular graph and α2 be the second
largest eigenvalue of its adjacency matrix. Then

α2 ≥ 2
√
d− 1− 2

√
d− 1− 1

bdiag(G)/2c
,

where diag(G) denotes the diameter of the graph G.

Note that the theorem implies that if we have an in�nite family of d-regular expander graphs each
has spectral radius at most α, then α ≥ 2

√
d− 1 as the diameter goes to in�nity as the size of the

graph grows.

There are two di�erent proofs of this result. One is by the trace method, which computes the
number of closed walks that starts and ends at some given vertex. Another is by constructing a
function with small Rayleigh quotient. These two methods can also be used to solve Problem 3.10,
which is closely related to the spectral radius of Ramanujan graphs as we will see later in the course.

We will not prove Theorem 7.10 and refer the reader to [HLW06] or Trevisan's blog posts for proofs.
We just present an easy proof that the spectral radius is at least

√
d
(
1− o(1)

)
, using a very simple

trace argument.

Claim 7.11 (Easy Lower Bound on Spectral Radius). Let G = (V,E) be a d-regular graph with

V = [n]. Then its spectral radius α is at least
√
d
√

n−d
n−1 .

Proof. Note that Tr(A2) ≥ nd, as each edge uv contributes one length-two walk from u to u and one
length-two walk from v to v. On the other hand, by Fact 2.35, Tr(A2) =

∑n
i=1 α

2
i ≤ d2 + (n− 1)α2.

Combining the two inequalities gives the claim.
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Random Walks on Expander Graphs

We know from Theorem 6.16 that random walks on a (n, d, ε)-graph converge to the uniform dis-
tribution in O(log n/(1 − ε)) steps. Interestingly, random walks on expander graphs not only give
good randomness properties for the �nal vertex in the walk, but also for the sequence of vertices
traversed in the walk. In some applications, the sequence of vertices of a walk can be used to replace
a sequence of indpendent uniform random variables.

The following result is not of the most general form, but it will be enough for the application
of probability amplication that we will see in Section 7.3. See [HLW06, Vad12] for more general
statements. To get an intuition, it is instructive to compare the probability bound below with the
probability bound when each Xi is an independent uniform random sample.

Theorem 7.12 (Concentration Property of RandomWalks on Spectral Expanders). Let G = (V,E)
be a d-regular graph with spectral radius εd for some ε ≤ 1/10. Let B ⊆ V with |B| ≤ 1

100 |V |. Let X0

be a uniform random vertex, and X1, . . . , Xt be the vertices produced by t steps of a random walk.
Let S = {i | Xi ∈ B} be the set of times when the random walk is in B. Then

Pr

(
|S| > t

2

)
≤
(

2√
5

)t+1

.

Proof. We �rst set up the matrix formulation of the problem. Let n = |V |. The initial distribution
p0 = ~1/n of X0 is the uniform distribution. Let χB and χB be the characteristic vectors of B and B
respectively, where B = V −B. Let IB be the diagonal matrix with a 1 in the i-th diagonal entry if
i ∈ B and zero otherwise, and similarly IB. Let p be a probability vector, i.e. p is non-negative and
the sum of its entries is at most one. Then IB · p is the probability vector that is the restriction of
p on B, such that (IB · p)(i) = p(i) if i ∈ B and (IB · p)(i) = 0 if i /∈ B. Check that the probability
the random walk is in B at precisely the time steps in S is

pS := ~1T (IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0,

where Zi = B if i ∈ S and Zi = B if i /∈ S, and A is the normalized adjacency matrix which is the
probability transition matrix of the random walks. We will prove that pS ≤ (1

5)|S|. The theorem
will then follow by a union bound as

Pr

(
|S| > t

2

)
≤

∑
S:|S|>t/2

pS ≤
∑

S:|S|>t/2

(
1

5

)|S|
≤

∑
S:|S|>t/2

(
1

5

) t+1
2

≤ 2t+1

(
1

5

) t+1
2

=

(
2√
5

)t+1

.

To prove pS ≤ (1
5)|S|, we use the concept of operator norm in De�nition 2.17. Check that ‖IB‖op =

‖IB‖op = ‖A‖op = 1. We will prove that ‖IBA‖op ≤ 1
5 , and this would imply that pS ≤ (1

5)|S|

because

pS = ~1T (IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0

≤ ‖~1‖2 ·
∥∥(IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0

∥∥
2

by Cauchy-Schwarz

≤ ‖~1‖2 ·
( t∏
i=1

‖IZiA‖op

)
· ‖p0‖2 by Fact 2.19

≤ ‖~1‖2 ·
(1

5

)|S|
· ‖p0‖2 as ‖IBA‖op ≤

1

5
and ‖IBA‖op ≤ 1

=
(1

5

)|S|
as ‖1‖2 =

√
n and ‖p0‖2 =

1√
n
.
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It remains to prove that ‖IBA‖op ≤ 1
5 . Let x be any nonzero vector. Write x = c1v1 + . . .+ cnvn,

where v1, . . . , vn are the orthonormal eigenvectors of A with eigenvalues α1 ≥ . . . ≥ αn. Then

‖IBAx‖22 = ‖IBA(c1v1 + . . .+ cnvn)‖22 =

∥∥∥∥IB n∑
i=1

ciαivi

∥∥∥∥2

2

≤ 2‖IBc1α1v1‖22 + 2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2

2

,

where the inequality is by ‖x + y‖22 ≤ 2‖x‖22 + 2‖y‖22. Recall that α1 = 1, v1 = ~1/
√
n and

c1 = 〈x, v1〉 = 1√
n
·
∑n

i=1 x(i). So, the �rst term on the RHS is

2
∥∥IBc1α1v1

∥∥2

2
= 2

∥∥∥∥ 1

n

( n∑
i=1

x(i)
)
IB~1

∥∥∥∥2

2

= 2|B|
(∑n

i=1 x(i)

n

)2

≤ 2|B| · ‖x‖
2
2

n
≤ 1

50
‖x‖22,

where the �rst inequality is by Cauchy-Schwarz and the second inequality is by the assumption that
|B| ≤ n

100 . The second term on the RHS is

2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2

2

≤ 2‖IB‖2op ·
∥∥∥∥ n∑
i=2

ciαivi

∥∥∥∥2

2

= 2

n∑
i=2

c2
iα

2
i ≤ 2ε2

n∑
i=2

c2
i ≤ 2ε2‖x‖22 ≤

1

50
‖x‖22,

where the equality is by orthnormality of v1, . . . , vn, the second inequality is by the assumption
that the spectral radius of the adjacency matrix A is at most εd and so the eigenvalues of A = A/d
satis�es max2≤i≤n{|αi|} ≤ ε, and the last inequality is by the assumption that ε ≤ 1

10 . Combining
the two terms,

‖IBAx‖22 ≤
1

25
‖x‖22 =⇒ ‖IBA‖op ≤

1

5
.

See [Gil98] for a well-known Cherno� bound for spectral expanders, and [GLSS18] for a recent
generalization to the matrix setting. See [CPT21] for an interesting recent paper showing that
many functions are fooled by expander random walks, in that they cannot distinguish independent
random samples from those obtained by expander random walks.

7.2 Constructions of Expander Graphs

It can be shown that a random d-regular graph is an expander graph with high probability using
the combinatorial de�nitions, by standard techniques using Cherno� bound and union bound. It is
a good problem to work out the details; see [HLW06, Vad12] for the precise statements and proofs.

Perhaps surprisingly, while almost every d-regular graph is an expander graph, it is very di�cult
to come up with a deterministic construction of expander graphs. One possible explanation is that
random graphs have high descriptive complexity, while in deterministic constructions the in�nite
family of expander graphs can be described in a succinct way.

There are explicit constructions of d-regular expander graphs, most of them are algebraic construc-
tions.

� A family of 8-regular graphs Gm for every integer m. The vertex set is V = Zm × Zm. The
neighbors of vertex (x, y) is (x, y±x), (x±y, y), (x, y+1±x), (x+1±y, y), where all additions
are mod m. Note that this family is very explicit, meaning that the neighbors of a vertex can
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be computed in O(logm) time, which is very useful for some applications such as probability
ampli�cation as we will see. This construction is due to Margulis whose proof did not give
any explicit bound. Gabber and Galil proved that its spectral radius is at most 5

√
2 < 8.

Their proof uses Fourier analysis; see [HLW06].

� A family of 3-regular p-vertex graph for every prime number p. The vertex set is Zp, and a
vertex is connected to x+ 1, x− 1 and its multiplicative inverse x−1 (for vertex 0 its inverse
is 0), where the additions are mod p. The proof uses some deep results in number theory.

� The main source of explicit deterministic construction is from Cayley graphs, which are graphs
de�ned by groups. Some of the stronger expanders, the Ramanujan graphs with spectral radius
2
√
d− 1, are from Cayley graphs and the proofs require sophisticated mathematical tools.

In the second part of the course, we will see a new way to show the existence of �bipartite� Ramanujan
graphs using combinatorial and probabilistic methods, through interlacing family of polynomials.

In the following, we will study a combinatorial construction of expander graphs, known as the zig-
zag product, whose proof is more elementary and intuitive, although the bound is not as sharp and
the construction is not as explicit.

Combinatorial Constructions

The general idea of the combinatorial constructions is to construct bigger expander graphs from
smaller expander graphs.

The base case could simply be a constant size complete graph. Let G be an (n, k, ε1)-graph and H
be an (k, d, ε2)-graph. A natural product of G and H is to replace each vertex v in G by a copy
of H, so that each edge incident on v is incident on a di�erent vertex of H. This is called the
replacement product of G and H.

De�nition 7.13 (Replacement Product). Let G be a k-regular graph on n vertices and H be a
d-regular graph on k vertices. The replacement product G r H is a graph where the vertex set is the
Cartesian product [n]× [k] of the vertex set of G and H, and two vertices (u, i) and (v, j) have an
edge if and only if (1) u = v and ij ∈ E(H) or (2) vu ∈ E(G) and v is the i-th neighbor of u in G
and u is the j-th neighbor of v in G.

Intuitively, G r H is a combinatorial expander if G and H are combinatorial expanders. Consider
a set S ⊆ V (G r H). If S has either large of small intersection with each �cloud� (copy of H), then
S should have large expansion because of the large expansion of G as S is basically a set of vertices
in G. If S has medium intersections with many clouds, then S should have large expansion because
of the large expansion of H as there are many crossing edges within each such cloud. However, it
is not clear how to make this intuition precise, as there seems to be no clean way to decompose
a subset's contribution into its contribution from G and its contribution from H. In a way, the
spectral proof that we are going to see soon can be thought of as a linear algebraic approach to
carry out this idea in a more general setting.

Zig-Zag Product

The actual construction by Reingold, Vadhan and Wigderson [RVW02] that we will analyze is
slightly more complicated.
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De�nition 7.14 (Zig-Zag Product). Let G be a k-regular graph on n vertices and H be a d-regular
graph on k vertices. The zig-zag product G z H is a graph with the same vertex set [n]× [k] as the
replacement product, and two vertices (u, i) and (v, j) have an edge if and only if u 6= v and there
exists a ∈ [k] such that (u, i)�(u, a), (u, a)�(v, b), and (v, b)�(v, j) are all edges in the replacement
product G r H, where (u, a)�(v, b) is the unique edge incident on (u, a) with v 6= u (i.e. the unique
edge incident on (u, a) that leaves the cloud of u in the replacement product).

In words, each edge in the zig-zag product G z H corresponds to a length three walk in the re-
placement product G r H, where the �rst step is within a cloud, the second step is the unique way
to leave a cloud, and the third step is within the other cloud.

The intuition that the zig-zag product is a spectral expander comes from random walks. Edge edge
in G z H corresponds to a random step in H, a deterministic step in G, and a random step in H.
We should think of the �rst two steps as going to random neighboring cloud, and the third step
corresponds to moving to a random neighbor within the neighboring cloud. Since both G and H are
spectral expanders and thus have the fast mixing property, after not many steps of random walks,
we won't know which cloud we are in and the location within the cloud, and so G z H also has the
fast mixing property and hence a spectral expander.

Theorem 7.15 (Zig-Zag Theorem). Let G be an (n, k, ε1)-graph and H be an (k, d, ε2)-graph. Then
G z H is an (nk, d2, ε1 + ε2 + ε22)-graph.

We will prove the theorem in the next subsection. Let us �rst see how zig-zag product can be used
to construct bigger and bigger constant degree expander graphs. The idea is to combine with the
following standard operation that decreases the spectral radius.

De�nition 7.16 (Graph Power). Let G be a graph with adjacency matrix A. The k-th power Gk

is the graph with the same vertex set as G and with (weighted) adjacency matrix Ak.

In words, the number of parallel edges between u and v in Gk is equal to the number of length k
walks between u and v in G. Note that the spectral radius of Gk has improved signi�cantly, but
the degree of Gk has also improved signi�cantly.

Exercise 7.17 (Spectral Radius of Graph Power). If G is an (n, d, ε)-graph, then Gk is an (n, dk, εk)-
graph.

The idea of the combinatorial construction is to use graph power to decrease the spectral radius,
and then use zig-zag product to decrease the degree while not increasing the spectral radius too
much.

Theorem 7.18 (Expanders from Zig-Zag Product). For large enough constant d, there is an in�nite
family of d2-regular with spectral radius at most 1

4d
2.

Proof. Let H be a (d4, d, 1/16)-graph. We can prove its existence by a probabilistic argument when d
is a large enough constant. Since d is a constant, one can �nd it by an exhaustive search in constant
time.

Using the building block H, we inductively de�ne Gi by G1 = H2 and Gi+1 = G2
i z H. We claim

that Gi is a (d4i, d2, 1/4)-graph for all i ≥ 1. The base case is clearly true by Exercise 7.17. Assume
Gi is a (d4i, d2, 1/4)-graph. Then G2

i is a (d4i, d4, 1/16)-graph by Exercise 7.17. And G2
i z H is a

(d4(i+1), d2, 1/4)-graph by Theorem 7.15.
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Proof of the Zig-Zag Theorem

Check that G z H has nk vertices and is d2-regular. We bound the spectral radius of G z H in
the rest of this subsection.

Matrix Formulation: The �rst step is to write down the walk matrix Z of the zig-zag product
G z H. Let W (H) be the k × k walk matrix of H, which is simply 1

kA(H) where A(H) is the
adjacency matrix of H. Let W be the nk × nk matrix with n copies of WH on the diagonal, which
is the transition matrix of one step of random walk within the clouds in G z H. The steps between
clouds are deterministic: the walk moves from a vertex (u, i) to a unique vertex (v, j) with v 6= u.
The transition matrix for this deterministic step is thus a permutation matrix P with P(u,i),(v,j) = 1
for each inter-cloud edge and zero otherwise. It follows from the de�nition of the zig-zag product
that

Z = WPW.

So the random walk matrix of G z H has a very nice form, which should be the reason for the
de�nition of zig-zag product in De�nition 7.14.

The graph G z H is a regular graph, and so ~1nk is an eigenvector of Z with eigenvalue 1. To prove
the zig-zag product theorem, we will prove that for all f ⊥ ~1nk the Rayleigh quotient

RZ(f) =
|fTZf |
‖f ‖22

≤ ε1 + ε2 + ε22,

and this will imply that the spectral radius of Z is at most ε1+ε2+ε22 by the optimization formulation
of the second eigenvalue in Lemma 2.11 and an analogous formulation for the last eigenvalue.

Vector Decomposition For any f ⊥ ~1nk, we decompose f to two vectors to apply the results in
G and in H. This is where the power of linear algebra comes from, as in the larger domain Rnk
there is a natural way to decompose the vector, while in the combinatorial setting it is not clear
how to decompose a set of vertices in G z H into a set of vertices in G and a set of vertices in H
to apply the expansion properties of G and of H as we discussed before.

De�ne fG as the average of f on clouds, such that fG(u, i) = 1
k

∑k
j=1 f(u, j) for all (u, i) ∈

V (G z H), so that two vertices in the same cloud have the same value in fG. De�ne fH = f − fG.
Note that fH sums to zero in each cloud, such that

∑k
j=1 fH(u, j) = 0 for each u ∈ G. Using

triangle inequality,

|fTZf | = |fTWPWf | = |(fG+fH)TWPW (fG+fH)| ≤ |fTGWPWfG|+2|fTGWPWfH |+|fTHWPWfH |.

Since W (H) · ~1k = ~1k as H is a regular graph, it follows that WfG = fG as vertices in the same
cloud have the same value in fG. Therefore,

|fTZf | ≤ |fTGPfG|+ 2|fTGPWfH |+ |fTHWPWfH |.

We will use the spectral expansion of G to prove |fTGPfG| ≤ ε1‖fG‖22 in Claim 7.21, the spectral
expansion of H to prove |fTHWPWfH | ≤ ε22‖fH ‖22 in Claim 7.19, and a simple argument to bound
2|fTGPWfH | ≤ 2ε2‖fG‖2‖fH ‖2 in Claim 7.20. Assuming these claims, then

|fTZf | ≤ ε1‖fG‖22 + 2ε2‖fG‖2‖fH ‖2 + ε22‖fH ‖22
≤ ε1‖fG‖22 + ε2

(
‖fG‖22 + ‖fH ‖22

)
+ ε22‖fH ‖22

≤ (ε1 + ε2 + ε22)‖f ‖22,
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where the last inequality holds because fG ⊥ fH and so ‖f ‖22 = ‖fG‖22 + ‖fH ‖22 and also ‖fG‖2 ≤
‖f ‖2 and ‖fH ‖2 ≤ ‖f ‖2. This will complete the proof of Theorem 7.15 and so it remains to prove
the three claims.

Spectral Expansion The following claim uses the spectral expansion of H and that fH sums to
zero in each cloud.

Claim 7.19 (Quadratic Term of H). |fTHWPWfH | ≤ ε22‖fH ‖22

Proof. As the spectral radius of W (H) is ε2, we claim that ‖W (H) · x‖2 ≤ ε2‖x‖2 for any x ⊥ ~1k.
To see this, let x =

∑k
i=1 civi where v1, . . . , vn is an orthonormal basis of eigenvectors of W (H)

with eigenvalues α1, . . . , αk. Note that c1 = 0 as v1 = ~1/
√
k and x ⊥ ~1. Then

‖W (H) · x‖22 =

∥∥∥∥W (H) ·
( k∑
i=2

civi

)∥∥∥∥2

2

=

∥∥∥∥ k∑
i=2

ciαivi

∥∥∥∥2

2

=
k∑
i=2

c2
iα

2
i ≤ ε22

k∑
i=2

c2
i ≤ ε22‖x‖22,

where the �rst inequality is by the spectral radius of W (H). This implies that ‖WfH ‖2 ≤ ε2‖fH ‖
as the sum of the entries in each cloud is zero in fH as we argued earlier. Therefore,

|fTHWPWfH | ≤ ‖WfH ‖2 · ‖PWfH ‖2 = ‖WfH ‖22 ≤ ε22‖fH ‖22,

where the �rst inequality is by Cauchy-Schwarz and the equality is because P is a permutation
matrix.

The second claim is straightforward.

Claim 7.20 (Cross Term). |fTGPWfH | ≤ ε2‖fG‖2‖fH ‖2.

Proof. By Cauchy-Schwarz,

|fTGPWfH | ≤ ‖fG‖2 · ‖PWfH ‖2 = ‖fG‖2 · ‖WfH ‖2 ≤ ε2‖fG‖2‖fH ‖2,

where the last inequality was established in the proof of Claim 7.19.

The �nal claim uses the spectral expansion of G and that f ⊥ ~1nk.

Claim 7.21 (Quadratic Term of G). |fTGPfG| ≤ ε1‖fG‖22.

Proof. The main point is to see that the LHS is equal to a corresponding quadratic form of the walk
matrix of G. To see this, we �contract� each cloud to a single vertex. De�ne g : V (G)→ R as g(v) =√
k · fG(v, i). Note that ‖g‖22 = ‖fG‖22. Note also that fTGPfG = gTW (G)g, where W (G) is the

random walk matrix of G, as each edge (u, i)-(v, j) in G z H contributes fG(u, i)·fG(v, j) to fTGPfG
while the corresponding edge uv ∈ G contributes

(√
kfG(u, i)

)(
1
k

)(√
kfG(v, j)

)
= fG(u, i) · fG(v, j)

to gTWg. Therefore,
fTGPfG
‖fG‖22

=
gTWg

‖g‖2
.

Since f ⊥ ~1, it follows that fG ⊥ ~1 and thus g ⊥ ~1. As G is an (n, k, ε1)-graph, we conclude that

fTGPfG
‖fG‖22

=
gTWg

‖g‖2
≤ ε1.
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This concludes the proof of Theorem 7.15. The idea of decomposing a vector into di�erent compo-
nents is useful in many proofs. We will use it again when we study high dimensional expanders in
the third part of the course.

7.3 Applications of Expander Graphs

We discuss some of the many interesting applications of expander graphs in this section, with
more details on expander codes as they are the basics of the recent breakthroughs in designing
asymptotically good codes that are locally testable [DEL+21, PK21].

Probability Ampli�cation

Suppose we have a randomized algorithm with error probability 1/100 requiring n random bits. To
decrease the failure probability, a standard way is to run the randomized algorithm independently k
times, and then take the majority answer as the output. By a standard Cherno� bound argument,
this decreases the failure probability to δk for some small constant δ. The number of random bits
used is kn.

We show how to achieve exponentially small error probability while using only n+ ck bits where c
is a constant. First, we see the above analysis in a slightly di�erent perspective. Let V be the set
of all n-bit strings. The randomized algorithm has error probability at most 1/100 is equivalent in
saying that among the 2n n-bit strings, at most 2n/100 of them are �bad� strings. Denote this set of
bad strings by B ⊆ V . The standard algorithm of taking the majority answer would fail if and only
if we choose more than k/2 random strings from B, which is highly unlikely as |B| ≤ 1

100 |V |. We
can interpret the standard algorithm as doing a random walk of length k on the complete graph on
V , and use the corresponding bit strings of the vertices X1, . . . , Xk on this walk.

The idea is to replace a random walk on the complete graph on V by a random walk on a constant
degree expander graph on V . Construct a d-regular expander graph G with 2n vertices with spectral
radius εd where d is a constant and ε ≤ 1/100. This can be done, say, by taking a large enough
constant power of a Margulis expander. In the �rst step of the random walk, we use an n-bit
random string, with error probability at most 1/100. In the subsequent steps, instead of using n
random bits to �nd the next n-bit string, we just choose a random neighbor of the current string in
G and use the corresponding string in this random neighbor. Since G is a d-regular graph, we just
need to use dlog2 de random bits to choose a random neighbor in each subsequent step. Thus, the
total number of bits used is n + (k − 1) · dlog2 de. Note that it is important that the neighbors of
a Margulis expander can be computed quickly, so that we can �nd out the corresponding strings in
this random walk quickly.

What is the error probability of this expander walk algorithm? This is exactly what Theorem 7.12
is formulated for, which shows that the error probability of taking the majority answer of a random
walk of length k on a spectral expander with ε ≤ 1/100 is at most (2/

√
5)k.

This is just one example of using expander graphs in derandomization; see [HLW06, Vad12, AB06]
for many more. The expander mixing lemma in Theorem 7.3 is very useful in derandomization.

Constructing E�cient Objects

We can think of a d-regular expander graph as a very e�cient, as it only has a linear number of
edges and it achieves very high connectivity. It should not be surprising that expander graphs are
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useful in constructing e�cient networks.

One interesting example is the construction of superconcentrators, which are directed graphs with n
input nodes and n output nodes, satisfying the strong connectivity property that for any k ≤ n there
are k vertex disjoint paths between any k input nodes and any k output nodes. For instance, the
complete bipartite graph Kn,n satis�es this property, but it has Θ(n2) edges. Valiant conjectured
that there is no superconcentrator with O(n) edges, in an attempt to prove circuit lower bound.
Later, he found a recursive construction of superconcentrator with O(n) edges using expander graphs
as building blocks. See [HLW06] for details.

Superconcentrators and expander graphs can be used to design e�cient algorithms as well. One
application is in designing fast algorithms for computing matrix rank [CKL13], where an expander
graph or a superconcentrator is used to �compress� a rectangular matrix A ∈ Fm×n with n � m
into a square matrix B ∈ Fm×m in linear time such that rank(A) = rank(B) with high probability.

A famous classical example of using expander graphs is to construct optimal sorting networks [AKS83],
with O(n log n) edges and depth O(log n).

Undirected Connectivity in Log-Space

A striking application of the zig-zag product in De�nition 7.14 is to solve the s-t connectivity
problem in an undirected graph in logarithmic space. If we are allow to use randomized algorithms,
then there is a very simple algorithm to solve the s-t connectivity problem in log-space, simply
running a random walk for O(n3) steps would do, as it is well-known that the expected cover time
for any undirected graph is at most O(n3). There is a deterministic algorithm by Savitch that solves
the more general problem of s-t connectivity in directed graphs in O(log2 n) space, by recursively
guessing the midpoint of a directed s-t path. It has been a long standing and important open
problem whether directed s-t connectivity can be solved in log-space. If such an algorithm exists,
then this would imply that NL = L, the complexity classes of non-deterministic log-space problems
and deterministic log-space problems are the same.

Reingold [Rei08] discovered a determinstic O(log n) space algorithm for s-t connectivity in undi-
rected graphs using zig-zag products. Suppose the input graph G is a d-regular expander graph for
a constant d. Then it can be shown that G has diameter O(log n). Then one can enumerate all
paths of length O(log n) in O(log n) space, since each neighbor can be described in dlog2 de space
as we have seen in the probability ampli�cation application above. Reingold's idea is to transform
any graph G into a d-regular expander graph H such that s, t are connected in G if and only if s, t
are connected in H. First, one can reduce G into a d-regular graph with constant d by replacing
each vertex of high degree by a constant degree expander graph (and adding self-loops to each low
degree vertex), similar to what was done in the replacement product in De�nition 7.13. To improve
the expansion, one can construct the graph (G z C)8, where C is a (d, d1/16, 1/2)-graph. Using a
variant of the zig-zag theorem in Theorem 7.15, it is possible to prove that the spectral gap doubles
in the resulting graph. Then, one just needs to repeat this construction O(log n) times to get a
graph H with constant spectral gap, as the initial spectral gap is at least Ω(1/n2) for any connected
undirected graph. Note that the size of H is at most a polynomial factor larger than the size of G,
and s, t are connected in G if and only if s, t are connected in H.

A technical di�culty in carrying out this approach is to compute a neighbor of a vertex in H in
log-space. The hope is that there are only O(log n) recursion levels for the zig-zag construction, and
in each level we only need constant space, as there are only three steps and the degree is constant.
Reingold proved that this can indeed be done; see [Rei08, Vad12] for details.
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Hardness Ampli�cation

Random walks on expander graphs can also be used for hardness ampli�cations, to take instances
that are hard to approximate and construct instances that are even harder to approximate. See
for example Chapter 22 of [AB06] for a simple application of expander random walks in proving
hardness of approximating maximum independent sets.

Dinur [Din07] found an amazing proof of the very important PCP theorem using expander random
walks. Her proof was inspired by Reingold's result, which involves many iterations of �powering� and
�degree reduction�, that makes the underlying constraint satisfaction problem harder and harder to
approximate. See [AB06] for a good exposition of the PCP theorem. This is a great project topic
especially for those who are interested in complexity theory.

Expander Codes

A main motivation for early developments in expander graphs is from coding theory.

A code C ⊆ {0, 1}n of length n is a subset of n-bit strings, where each string in C is called a
codeword. To design a good error correcting code, we would like to choose codewords that are
far from each other so as to correct more errors, but at the same time choose as many codewords
as possible so as to maximize the information rate. This can be thought of as a sphere packing
problem, where the objective is to �t in as many disjoint spheres of a certain radius as possible in
Fn2 .

De�nition 7.22 (Distance of Code). Given C ⊆ {0, 1}n, the distance of C is de�ned as dist(C) :=
minx 6=y∈C dH(x, y), where dH(x, y) is the Hamming distance between two codewords x and y. The
relative distance of C is de�ned as dist(C)/n.

De�nition 7.23 (Rate of Code). Given C ⊆ {0, 1}n, the rate of C is de�ned as log |C|/n, where
log |C| can be thought of as the number of bits of information sent.

De�nition 7.24 (Asymptotically Good Code). A family Cn ∈ {0, 1}n of codes is asymptotically
good if there are constants r > 0 and δ > 0 such that for all n both the relative distance of Cn is at
least δ and the rate of Cn is at least r.

The existence of an asymptotically good code can be proved a standard probabilistic method. For
the codes to be useful in practice, we would also like that encoding and decoding can be done
in polynomial time in n (and ideally linear time in n), but this makes the problem much more
challenging.

A common class of codes is the class of linear codes, where C is a linear subspace of Fn2 . Linear
codes have the advantage that they can be described by a basis and so encoding can be done in
O(n2) time. Also, a simple but useful property of linear codes is that the minimum distance of the
code is equal to the minimum `1-norm of a non-zero codeword, because dH(x, y) = ‖x − y‖1 and
x − y is a codeword. The natural decoding strategy is to �nd the nearest codeword of a received
word, but this is an NP-complete problem even for linear codes.

Low Density Parity Check Codes The idea of constructing codes from graphs was �rst sug-
gested by Gallager, who uses sparse bipartite graphs to design low-density parity check codes (LDPC
codes).
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Let A be a parity check matrix for code C, such that C = {x | Ax = 0} where A ∈ {0, 1}m×n
with m < n. Each row i of A is a parity-check constraint, requiring

∑n
j=1Aij · x(j) = 0 where the

addition is mod 2. Note that the rate of this code is 1− m/n, so we want m/n to be bounded away
from 1.

The matrix A can be viewed as a bipartite graph G = (L,R;E) with L = [n] and R = [m] between
the variables and the constraints, where there is a vertex in L for each variable and a vertex in R
for each constraint, and variable i and constraint j has an edge if and only if Aij = 1. We will see
that good expansion of G yields good LDPC codes.

De�nition 7.25 (Left Small-Set Vertex Expansion). Let G = (L,R;E) be a bipartite graph with
|L| = n and |R| = m and m < n. For any 0 < δ < 1, de�ne the left δ-small-set vertex expansion of
G as

ψLδ (G) := min
S⊆L:|S|≤δn

|∂(S)|
|S|

,

where ∂(S) is the vertex boundary in De�nition 7.7.

Note that ψLδ (G) ≤ k for any k-left-regular bipartite graph G and any δ. Kahale proved that a
Ramanujan graph satis�es ψLδ (G) ≈ 1

2k for some constant δ > 0 and this bound cannot be improved.
In the following, we will need a stronger requirement that ψLδ (G) ≥ 3

4k, which is satis�ed in a random
k-left-regular bipartite graph with high probability. Capalbo, Reingold, Vadhan, Wigderson gave
deterministic constructions of these �lossless expanders� satisfying ψLδ (G) ≥ 0.99k for some δ > 0
and m/n < 0.99 using some variant of the zig-zag product.

First we see that the relative distance of a lossless expander code is a constant. The proof uses the
unique neighbor property of a lossless expander.

Theorem 7.26 (Distance of Expander Code [SS96]). Let G = (L,R;E) be a left k-regular bipartite
graph with ψLδ (G) > 1

2k. Then the parity check code C(G) de�ned by G has relative distance greater
than δ.

Proof. Let S ⊆ L be a subset of left vertices with |S| ≤ δn. Then |∂(S)| > k
2 |S| by the left small-set

vertex expansion assumption of G. A simple counting argument shows that that there exists a
vertex v ∈ ∂(S) ⊆ R with only one neighbor in S. Let us call such a vertex a unique neighbor of S.

To lower bound the minimum distance, recall that it is equivalent to lower bounding the `1-
norm/support-size of a codeword x ∈ {0, 1}n. Let S be the support of x. If |S| ≤ δn, by the
previous paragraph, there exists a unique neighbor v ∈ R of S. This implies that the parity con-
straint on v is not satis�ed by x, and thus x is not a codeword of the parity check code de�ned by
G. Therefore, any codeword of this parity check code must have support size greater than δn, and
thus the minimum distance of this code is greater than δn.

The key feature of the LPDC codes de�ned by expander graphs is that there is a surprisingly simple
and e�cient decoding algorithm.
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Algorithm 4 Flip Algorithm for Expander Code

Require: A parity check matrix A ∈ {0, 1}m×n and a bit string x ∈ {0, 1}n.
1: Let x(0) := x and t = 0.
2: while there is an unsatis�ed parity check constraint do
3: Find a bit i such that �ipping it decreases the number of unsatis�ed parity constraints. That

is, an i ∈ [n] such that
∥∥A(x(t) + χi

)∥∥
1
<
∥∥Ax(t)

∥∥
1
, where χi is the characteristic vector of i

and the addition is under arithmetic mod 2. Set x(t+1) := x(t) + χi and t← t+ 1.
4: end while

5: return x(t).

The analysis of the �ip algorithm uses a stronger assumption about the left small-set vertex expan-
sion than than in Theorem 7.26.

Theorem 7.27 (E�cient Decoding of Expander Code [SS96]). Let G = (L,R;E) be a left k-regular
bipartite graph with L = [n] and R = [m] and ψLδ (G) > 3

4k. Let x be an n-bit string whose distance
from a codeword y is at most 1

2δn. Then 4 will return y in at most m iterations.

Proof. Let ∆(t) := {i ∈ [n] | x(t)(i) 6= y(i)} be the set of errors at the t-th iteration. The plan
is to argue that as long as distH

(
x(t), y

)
=
∣∣∆(t)

∣∣ ≤ δn, there exists a bit i such that �ipping

it decreases the number of unsatis�ed constraints, and also argue that distH
(
x(t), y

)
≤ δn for all

t if distH
(
x(0), y

)
≤ 1

2δn. These would imply that after at most τ ≤ m iterations, there will

be no unsatis�ed constraints and so x(τ) is a codeword, and thus x(τ) must be equal to y as
distH(x(τ), y) ≤ δn while the distance between y and other codewords is strictly bigger than δn.

For ease of notation, let ∆ := ∆(t) be the set of error at some iteration t. Assume that 0 < |∆| ≤ δn,
we would like to argue that there is a bit i that �ipping it decreases the number of unsatis�ed
constraints. Partition ∂(∆) into the set of satis�ed neighbors ∂+(∆) of ∆ and the set of unsatis�ed
neighbors ∂−(∆) of ∆. On one hand, since |∆| ≤ δn, by the left small-set vertex expansion of ∆,

|∂+(∆)|+ |∂−(∆)| = |∂(∆)| > 3

4
k|∆|.

On the other hand, when we consider the k|∆| number of edges between ∆ and ∂(∆), observe that
each vertex in ∂+(∆) has at least two such edges while each vertex in ∂−(∆) has at least one such
edge, and so

2|∂+(∆)|+ |∂−(∆)| ≤ k|∆|.
Combining these two inequalities gives that |∂−(∆)| > 1

2k|∆|. This implies that there must exist
a vertex i ∈ ∆ with strictly more unsatis�ed neighbors than satis�ed neighbors. Therefore, as
long as |∆| ≤ δn, there must exist a bit i such that �ipping it decreases the number of unsatis�ed
constraints.

To complete the proof, we argue that |∆| ≤ δn in any iteration. Suppose this is not true, then
since |∆| changes by one in each iteration, there is an (earliest) iteration such that |∆| = δn. Then,
by the argument in the previous paragraph, there are strictly more than 1

2k|∆| =
1
2kδn unsatis�ed

constraints in that iteration. However, since |∆(0)| ≤ 1
2δn, the number of unsatis�ed constraints in

the beginning is at most 1
2kδn. This contradicts with the previous paragraph that the number of

unsatis�ed constraints is decreasing when |∆| ≤ δn.

Spielman showed that it is possible to use expander codes to obtain asymptotically good codes that
are linear time encodable and decodable!
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Tanner Codes Tanner code is a generalization of LDPC code in which the �base code� can be
more general than just checking parity. Let C0 ⊆ {0, 1}k be the base code. Let G = (V,E) be a
k-regular graph with V = [n] and E = [m]. The Tanner code is de�ned as C(G) := {y ∈ {0, 1}m |
y|δ(i) ∈ C0 ∀i ∈ [n]}, where y|δ(i) is the vector y restricted on the k edges in δ(i) for a vertex i ∈ V .
That is, each bit y(j) of a codeword is on an edge j ∈ E of G, and a binary string y is a codeword
if y|δ(i) is a codeword of the base code C0 for every vertex i ∈ V of G.

The advantage of using Tanner code is that we could use a stronger base code with larger minimum
distance, rather than just the parity check code with minimum distance only two. With a base
code C0 of minimum distance d0, the requirement on the vertex expansion of G can be relaxed
to k/d0 to achieve the same distance as that of the corresponding LDPC code. In particular,
because of Tanner's theorem in Theorem 7.9, one can simply use a spectral expander as G to design
asymptotically good codes that are linear time encodable and decodable, without using lossless
expanders. The decoding algorithm is still an iterative ��xing� algorithm where we replace an
invalid codeword on a vertex by its nearest codeword. The analysis has a similar �avor that if
the decoding algorithm fails, then one argues that there must be a �denser� subgraph than what is
allowed by the expander mixing lemma.

The recent breakthroughs [DEL+21, PK21] in designing asymptotically good codes that are also
locally testable is a generalization of Tanner codes on 2-dimensional expanders (where graphs are
1-dimensional expanders). Hope we will have some time to discuss it in the third part of the course
when we study high-dimensional expanders.
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Chapter 8

Fastest Mixing and Vertex Expansion

We study a very recent result by Oleskar-Taylor and Zanetti [OZ21] relating the fastest mixing time
to the vertex expansion of a graph, proving a surprising and beautiful Cheeger inequality for vertex
expansion.

The fastest mixing time problem was proposed by Boyd, Diaconis and Xiao [BDX04]. In this
problem, we are given an undirected graph G = (V,E) and a target probability distribution π :
V → R. The task is to assign a transition probability P (u, v) on each edge uv ∈ E(G), so that
the stationary distribution of random walks with transition matrix P is π. The objective is to
�nd a transition matrix P that minimizes the mixing time to π, among all transition matrices
with stationary distribution π. We know from Chapter 6 that the mixing time to the stationary
distribution is approximately inversely proportional to the spectral gap 1− α2(P ) of the transition
matrix P , where 1 = α1(P ) ≥ α2(P ) ≥ · · · ≥ α|V |(P ) ≥ −1 are the eigenvalues of P . The fastest
mixing time problem is thus formulated in [BDX04] by the maximum spectral gap achievable through
a �reweighting� P of the adjacency matrix of G.

De�nition 8.1 (Maximum Reweighted Spectral Gap [BDX04]). Given an undirected graph G =
(V,E) and a probability distribution π on V , the maximum reweighted spectral gap is de�ned as

λ∗2(G) := max
P≥0

1− α2(P )

subject to P (u, v) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.

The last constraint is called the time reversible condition, which is to ensure that the stationary
distribution of P is π. Note that λ∗2(G) = maxP≥0(1 − α2(P )) = maxP≥0 λ2(I − P ), which is the
maximum reweighted second smallest eigenvalue of the normalized Laplacian matrix of G subject to
the above constraints.

Boyd, Diaconis and Xiao showed that this optimization problem can be written as a semide�nite
program and thus λ∗2(G) can be computed in polynomial time. Subsequently, the fastest mixing
time problem has been studied in various work (see the references in [OZ21]), but no general
characterization was known. Roch [Roc05] showed that the vertex expansion ψ(G) de�ned in
De�nition 7.8 is an upper bound on the optimal spectral gap λ∗2(G). Very recently, Olesker-Taylor
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and Zanetti [OZ21] proved that small vertex expansion is qualitatively the only obstruction for
fastest mixing time to the uniform distribution.

Theorem 8.2 (Cheeger Inequality for Vertex Expansion [OZ21]). For any undirected graph G =
(V,E) and the uniform distribution π = ~1/|V |,

ψ(G)2

log |V |
. λ∗2(G) . ψ(G).

In terms of the fastest mixing time τ∗(G) to the uniform distribution,

1

ψ(G)
. τ∗(G) .

log2 |V |
ψ2(G)

.

Note the analogy to the Cheeger's inequality in Theorem 4.3, where spectral gap is replaced by
maximum reweighted spectral gap and edge conductance is replaced by vertex expansion.

Unlike Cheeger's inequality for edge conductance where φ(G)2 . λ2(G) . φ(G), it is noted in [OZ21]
that the log |V | term may not be completely removed: Louis, Raghavendra and Vempala [LRV13]
proved that there is no polynomial time algorithm that can distinguish between ψ(G) ≤ ε and
ψ(G) &

√
ε log d for every ε > 0 where d is the maximum degree of the graph G, assuming the small-

set expansion conjecture of Raghavendra and Steurer [RS10]. So, if the log |V | factor in Theorem 8.2
can be completely removed, then λ∗2(G) is a polynomial time computable quantity that can be used
to distinguish between the two cases, disproving the small-set expansion conjecture.

Remark 8.3 (Uniform Distribution and Self-Loops). We will make two assumptions about the
problem. One is that the target distribution is the uniform distribution. Another is that the graph
has a self-loop on each vertex, so that the problem in De�nition 8.1 is always feasible. In the context
of Markov chains, this corresponds to allowing a non-negative holding probability on each vertex.

8.1 Dual Program for Fastest Mixing

To prove Theorem 8.2, Oleskar-Taylor and Zanetti use a dual minimization program obtained by
Roch [Roc05] of the primal maximization program in De�nition 8.1, to relate λ∗2(G) to the minimum
vertex expansion of the input graph. We will use Von Neumann's minimax theorem to derive Roch's
dual program.

Theorem 8.4 (Von Neumann's Minimax Theorem). Let X,Y be compact convex sets. If f is a
real-valued continuous function on X×Y with f(x, ·) concave on Y for all x ∈ X and f(·, y) convex
on X for all y ∈ Y , then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

In the proof, we will use the following semide�nite program for computing the second eigenvalue,
which is an extension of the spectral program in Lemma 4.4 to higher dimension but with the same
optimal value.

Lemma 8.5 (Semide�nite Program for the Second Eigenvalue). Let P ∈ Rn×n be a reweighted
matrix of a graph G = (V,E) satisfying the constraints in De�nition 8.1. Then

1− α2(P ) = min
f :V→Rn,

∑
v∈V f(v)=0

∑
uv∈E‖f(u)− f(v)‖2 · P (u, v)∑

v∈V ‖f(v)‖2
.

76



Chapter 8

Proof. As explained in De�nition 8.1, 1−α2(P ) = λ2(I−P ) where I−P is the normalized Laplacian
matrix of the weighted graph P with weighted degree one for each vertex. By Lemma 4.4,

1− α2(P ) = min
f :V→R,

∑
v∈V f(v)=0

∑
uv∈E |f(u)− f(v)|2 · P (u, v)∑

v∈V f(v)2
,

which is almost the same as in the statement, except that f : V → R instead of f : V → Rn as in
the statement. Clearly, by considering all f : V → Rn, the feasible set could only be bigger and so
the optimal value could only be smaller. On the other hand, given a solution f : V → Rn, by using
the inequality

min
1≤i≤n

ai
bi
≤
∑n

i=1 ai∑n
i=1 bi

on the coordinates of f : V → Rn, we see that the best coordinate gives a one-dimensional solution
f : V → R with objective value as good as that of the n-dimensional solution f : V → Rn. To
summarize, the relaxation from f : V → R to f : V → Rn is an exact relaxation.

To see that it is a semide�nite program, recall that a positive semide�nite matrix Y can be written
as F TF where F ∈ Rn×n by Fact 2.7. We associate each column v of F to f(v), so that Yu,v =
〈f(u), f(v)〉 for all u, v ∈ V . Then the above program can be rewritten as

min
∑
uv∈E

(Yu,u − 2Yu,v + Yv,v) · P (u, v)

subject to
∑
v∈V

Yv,v = 1∑
u,v∈V

Yu,v = 0

Y < 0,

where the objective function is the numerator in Lemma 8.5, the �rst constraint is normalizing the
denominator in Lemma 8.5 to one, the second constraint is equivalent to the constraint

∑
v∈V f(v) =

0, and the last constraint is to ensure the correspondence Yu,v = 〈f(u), f(v)〉 for all u, v ∈ V . So,
the program in Lemma 8.5 can be written as optimizing a linear function with linear constraints
on the entries of a positive semide�nite matrix Y , and this is a semide�nite program that can be
solved in polynomial time.

The reason that we use the above semide�nite program for the second eigenvalue instead of the
spectral program is that the set of feasible solutions is a convex set (while it is not the case for the
spectral program), and this would allow us to apply the Von-Neumann minimax theorem to derive
the following dual program by Roch.

Proposition 8.6 (Dual Program for Fastest Mixing [Roc05, OZ21]). Given an undirected graph
G = (V,E) with a self-loop on each vertex and the uniform distribution π = ~1/|V | on V , the
following semide�nite program is dual to the primal program in De�nition 8.1 with strong duality
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λ∗2(G) = γ(G) where

γ(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

g(v)

subject to
∑
v∈V
‖f(v)‖2 = 1∑

v∈V
f(v) = ~0

g(u) + g(v) ≥ ‖f(u)− f(v)‖2 ∀uv ∈ E.

Proof. For a �xed P , by Lemma 8.5,

1− α2(P ) = min
f :V→Rn,

∑
v∈V f(v)=0

∑
uv∈E‖f(u)− f(v)‖2 · P (u, v)∑

v∈V ‖f(v)‖2
.

The maximum reweighted spectral gap in De�nition 8.1 can thus be formulated as

λ∗2(G) = max
P≥0

(1− α2(P )) = max
P≥0

min
f :V→Rn,

∑
v∈V f(v)=0

∑
uv∈E‖f(u)− f(v)‖2 · P (u, v)∑

v∈V ‖f(v)‖2

subject to P (u, v) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

P = P T .

Check that the assumptions in the Von Neumann minimax Theorem 8.4 are satis�ed, and so we
can switch the order of the max and the min and obtain the dual program

γ(G) := min
f :V→Rn,

∑
v∈V f(v)=0

max
P≥0

∑
uv∈E‖f(u)− f(v)‖2 · P (u, v)∑

v∈V ‖f(v)‖2
,

subjected to the same constraints on P as above.

For a �xed f : V → Rn, note that the inner maximization problem is a linear program over the
entries of P , and so we can reformuate it using LP duality to obtain

γ(G) = min
f :V→Rn,

∑
v∈V f(v)=0

min
g≥0

∑
v∈V

g(v)

subject to g(u) + g(v) ≥ ‖f(u)− f(v)‖2∑
v∈V ‖f(v)‖2

∀uv ∈ E,

where g(u) is a dual variable for the constraint
∑

v∈V P (u, v) = 1. Note that the constraint g ≥ 0 is
from the assumption that there is a self-loop at each vertex. Normalizing so that

∑
v∈V ‖f(v)‖2 = 1

gives the statement.

We remark that the self-loop assumption is to ensure that the dual program has the inequality
g ≥ 0. This is a crucial but subtle condition that will be used only once, and we will point it out
when it is used.
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One-Dimensional Dual Program and Random Projection

The �rst step in the proof of Theorem 8.2 is to project the solution f : V → Rn to γ(G) into a
1-dimensional solution f : V → R as follows.

De�nition 8.7 (One-Dimensional Dual Program for Fastest Mixing [OZ21]). Given an undirected
graph G = (V,E), γ(1)(G) is de�ned to be the program:

γ(1)(G) := min
f :V→R, g:V→R≥0

∑
v∈V

g(v)

subject to
∑
v∈V

f(v)2 = 1∑
v∈V

f(v) = 0

g(u) + g(v) ≥ (f(u)− f(v))2 ∀uv ∈ E.

A very important result in metric embedding is the dimension reduction theorem by Johnson
and Lindenstrauss, which says that n high-dimensional vectors can be projected into O(log n)-
dimensional vectors so that the pairwise Euclidean distances are approximately preserved.

Theorem 8.8 (Johnson-Lindenstrauss Lemma). Given 0 < ε < 1, a set X of n points in Rm, there
is a linear map A : Rm → Rk for k . ln(n)/ε2 such that for all u, v ∈ X it holds that

(1− ε)‖u− v‖22 ≤ ‖Au−Av‖22 ≤ (1 + ε)‖u− v‖22.

Apply the Johnson-Lindenstrauss lemma to the n-dimensional solution f in Proposition 8.6 to
obtain a O(log n)-dimensional solution f ′ with only constant distortion, and then use the �best�
coordinate in f ′ as a solution to De�nition 8.7, one can prove the following bounds between the two
programs. Note that the log |V | factor in Theorem 8.2 is from this dimension reduction step.

Problem 8.9 (Dimension Reduction [OZ21]). For any undirected graph G,

γ(G) ≤ γ(1)(G) . log |V (G)| · γ(G).

The main step in the proof of Theorem 8.2 is the following Cheeger-type inequality between the
1-dimensional program in De�nition 8.7 and the vertex expansion of the graph.

Theorem 8.10 (Cheeger Inequality for Vertex Expansion [OZ21]). For any undirected graph G,

ψ(G)2 . γ(1)(G) . ψ(G).

Combining Proposition 8.6 and Problem 8.9 and Theorem 8.10 gives

ψ(G)2 . γ(1)(G) . log |V | · γ(G) = log |V | · λ∗2(G) and λ∗2(G) = γ(G) ≤ γ(1)(G) . ψ(G),

proving Theorem 8.2. Henceforth, our goal is to prove Theorem 8.10, although we will need to do
one more transformation described in the next section before getting to the main proof.

79



Eigenvalues and Polynomials

8.2 Matching Expansion

Instead of reasoning about the vertex expansion directly, Oleskar-Taylor and Zanetti de�ned an
interesting new concept called the matching expansion, and showed that it is closely related to the
vertex expansion and is easier to relate to the 1-dimensional dual program in De�nition 8.7.

De�nition 8.11 (Matching Expansion [OZ21]). Let G = (V,E) be an undirected weighted graph
with a weight w(e) on each edge e ∈ E. Given a subset of edges F ⊆ E, let the weight of a maximum
matching in F be

ν(F ) = max
matching M⊆F

∑
e∈M

w(e).

De�ne the matching expansion of a subset S ⊆ V and of the graph as

ψν(S) =
ν(δ(S))

|S|
and ψν(G) = min

S:0<|S|≤|V |/2
ψν(S).

Note that while vertex expansion of a set in De�nition 7.8 could be much larger than one, the
matching expansion of a set is always at most one (in the case when w(e) = 1 for all e ∈ E), as is
the edge conductance of a set in De�nition 4.2. However, it can be shown that the vertex expansion
of a graph is about the same as the matching expansion of a graph.

Problem 8.12 (Matching Expansion and Vertex Expansion). Let G be an undirected graph where
every edge is of weight one. Then

ψν(G) ≤ ψ(G) ≤ 4ψν(G).

The main technical work in [OZ21] is in proving the following Cheeger inequality for matching
expansion.

Theorem 8.13 (Cheeger Inequality for Matching Expansion [OZ21]). For any undirected graph G
where every edge is of weight one,

ψν(G)2 . γ(1)(G) . ψν(G).

It should be clear that Problem 8.12 and Theorem 8.13 imply Theorem 8.10, which in turn implies
Theorem 8.2. Our goal is then to prove Theorem 8.13.

Maximum Matching, Auxiliary Directed Graphs, and Directed Matching

The intuition that matching is relevant to the problem is from the constraints in the 1-dimensional
dual program in De�nition 8.7. The following lemma follows from weak duality of linear program-
ming and is easy to see directly. This is the only place that the constraint g ≥ 0 is used crucially,
so pay attention when the following lemma is used in the main proof.

Lemma 8.14 (Matching and Vertex Cover). Let G = (V,E) be an undirected graph with a weight
w(e) on each edge e ∈ E. The weighted matching number ν(E) is upper bounded by∑

v∈V
g(v)

subject to g(u) + g(v) ≥ w(u, v) ∀uv ∈ E
g(v) ≥ 0 ∀v ∈ V.
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From this perspective, a good way to interpret the solution to De�nition 8.7 is that g is a weighted
fractional vertex cover when each edge has weight (f(u) − f(v))2. The following auxiliary graphs
will be used in the main proof.

De�nition 8.15 (Auxiliary Graphs). Let G = (V,E) be an undirected graph and f, g be a solution
to the program in De�nition 8.7. De�ne Gf to be the weighted undirected graph where each edge uv

in E has weight |f(u)2 − f(v)2|. De�ne
−→
Gf to be the orientation of Gf where there is a directed

edge uv with weight f(u)2 − f(v)2 if and only if uv ∈ E(G) and f(u) > f(v).

A matching in an undirected graph is a subgraph in which every vertex is of degree at most one.
The following analog of directed matching will be used in the proof.

De�nition 8.16 (Directed Matching). Given a directed graph
−→
G = (V,

−→
E ) with a weight w(e) on

each edge e ∈
−→
E , a subset of edges

−→
F ⊆

−→
E is a directed matching if the indegree and the outdegree

of each vertex in
−→
F is at most one. Let ν(

−→
E ) be the maximum weight of a directed matching in

−→
E .

A simple combinatorial argument shows that the maximum weight of an undirected matching is
within a constant factor of the maximum weight of a directed matching.

Exercise 8.17. For any edge-weighted graph G = (V,E) and any orientation
−→
G = (V,

−→
E ),

ν(E) ≤ ν(
−→
E ) ≤ 4ν(E).

8.3 Cheeger Inequality for Matching Expansion

As in the proof of Cheeger's inequality in Theorem 4.3, one direction is the easy direction where we
see that γ(1)(G) is a relaxation for the matching expansion ψν(G), and another direction is the hard
direction where we round a fractional solution to γ(1)(G) to obtain an integral solution to ψν(G).

Easy Direction

There are two ways to see the easy direction. One way is to plug in a binary solution de�ned by a
set S minimizing the matching expansion to upper bound γ(1)(G).

Proposition 8.18 (Easy Direction for Matching Expansion [OZ21]). For any undirected graph G
where every edge is of weight one,

γ(1)(G) . ψν(G).

Proof. Given S ⊆ V , plug in

f(v) =
1

|S|

√
|S||V − S|√
|S|+ |V − S|

for v ∈ S, and f(v) = − 1

|V − S|

√
|S||V − S|√
|S|+ |V − S|

otherwise.

LetM be a maximum matching in δ(S). Set g(v) = 2/|S| for v ∈M and g(v) = 0 otherwise. Check
that it is a feasible solution to γ(1)(G) in De�nition 8.7 with objective value at most 4ψν(S).

Another way is to understand the easy direction of Theorem 8.2 directly, as to use the edge con-
ductance of a reweighted graph H of G to certify the vertex expansion of the input graph G.

81



Eigenvalues and Polynomials

Proposition 8.19 (Vertex Expansion through Edge Expansion). Let H be an edge-reweighted graph
of G = (V,E) with weighted adjacency matrix P satisfying the constraints in the primal program in
De�nition 8.1. Then φ(H) ≤ ψ(G) where φ(H) is the weighted edge conductance of H.

Proof. As the reweighted matrix P satis�es the constraints in De�nition 8.1, the graph H is a
weighted 1-regular graph and so its weighted edge conductance is simply

φ(H) = min
S:0<volw(S)≤ 1

2
volw(V )

w(δ(S))

volw(S)
= min

S:0<|S|≤ 1
2
|V |

w(δ(S))

|S|
,

where we denote w(u, v) = P (u, v) as the weight of an edge and w(δ(S)) =
∑

e∈δ(S)w(e). Observe
the important point that |∂(S)| ≥ w(δ(S)), because each edge in δ(S) has an endpoint in ∂(S)
and each vertex in ∂(S) has weighted degree one, and so |∂(S)| =

∑
v∈∂(S) degw(v) ≥ w(δ(S)).

Therefore,

φ(H) = min
S:0<|S|≤ 1

2
|V |

w(δ(S))

|S|
≤ min

S:0<|S|≤ 1
2
|V |

|∂(S)|
|S|

= ψ(G).

By Proposition 8.19, the edge conductance of any edge reweighted graph H of G satisfying the
constraints in De�nition 8.1 is a lower bound on the vertex expansion of G. To prove the best
lower bound on the vertex expansion of G, we thus maximum the edge conductance of an edge
reweighted graph H. Note that the edge conductance of the reweighted graph H is lower bounded
by the spectral gap of the reweighted matrix P by the easy direction of Cheeger's inequality in
Theorem 4.3. Therefore,

λ∗2(G) = max
H:H is a reweighting of G

λ2(H) ≤ max
H:H is a reweighting of G

2φ(H) ≤ 2ψ(G).

To summarize, a good way to understand the easy direction of the new Cheeger inequality for vertex
expansion in Theorem 8.2 is that it is a way to certify the vertex expansion of a graph through a
reduction to the edge conductance and spectral gap of a reweighted graph. Very interestingly, the
hard direction proves that there is always a reweighted graph so that this reduction works well to
certify the vertex expansion.

Hard Direction

The structure of the hard direction is similar to that for Cheeger's inequality in Chapter 4. The
�rst step is a truncation step to ensure that the output set S satis�es |S| ≤ |V |/2. Again, as
in the truncation step in Lemma 4.6 in the hard direction of Cheeger's inequality, the condition∑

v∈V f(v) = 0 is used to trade for the non-negativity condition and the support-size condition.

Problem 8.20 (Truncation). Let G = (V,E) be an undirected graph and π = ~1/|V | be the uniform
distribution. Given a solution f, g to γ(1)(G) in De�nition 8.7, there is a solution x, y with x ≥ 0
and y ≥ 0 and | supp(x)| ≤ |V |/2 such that∑

v∈V
y(v) . γ(1)(G)∑

v∈V
x(v)2 = 1

y(u) + y(v) ≥ (x(u)− x(v))2 ∀uv ∈ E.
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Again, the main step is to apply threshold rounding on the solution in Problem 8.20 to �nd a set S
with small matching expansion.

Proposition 8.21 (Hard Direction for Matching Expansion [OZ21]). Let G = (V,E) be an undi-
rected graph and π = ~1/|V | be the uniform distribution. Given a solution x, y satisfying the condi-
tions in Problem 8.20, there is a set S ⊆ supp(x) with ψν(S) .

√
γ(1)(G).

Proof. Let St := {v ∈ V | x(v)2 > t} be a level set for t ≥ 0. Choose t uniform randomly, Trevisan's
argument implies that

min
t
ψν(St) ≤

∫∞
0 ν(δ(St))dt∫∞

0 |St|dt
,

so that we can compute the numerator and the denominator separately.

The denominator is∫ ∞
0
|St|dt =

∫ ∞
0

∑
v∈V

1(v ∈ St)dt =
∑
v∈V

∫ ∞
0

1(x(v)2 > t)dt =
∑
v∈V

x(v)2 = 1.

To bound the numerator, Oleskar-Taylor and Zanetti consider the auxiliary graphs Gx and
−→
Gx in

De�nition 8.15. Using some combinatorial arguments about matchings, they proved a key lemma
in Lemma 8.22 that ∫ ∞

0
ν(δ(St))dt ≤ 8ν(Gx).

Assuming Lemma 8.22, let M be a maximum weighted matching in Gx, we further bound ν(Gx)
by standard Cauchy-Schwarz manipulation so that

ν(Gx) =
∑
uv∈M

∣∣x(u)2 − x(v)2
∣∣

=
∑
uv∈M

∣∣x(u)− x(v)
∣∣ · ∣∣x(u) + x(v)

∣∣
≤

√ ∑
uv∈M

(
x(u)− x(v)

)2√ ∑
uv∈M

(
x(u) + x(v)

)2
≤

√ ∑
uv∈M

(
x(u)− x(v)

)2√∑
v∈V

2x(v)2

=

√
2
∑
uv∈M

(
x(u)− x(v)

)2
.

where the last inequality holds because M is a matching so that each vertex is of degree one in M .

Next, we use the weak duality between matching and vertex cover stated in Lemma 8.14 to relate
the RHS to the solution y in Problem 8.20, so that∑

uv∈M

(
x(u)− x(v)

)2 ≤∑
v∈V

y(v) . γ(1)(G),

where the �rst inequality is where the constraint y ≥ 0 is crucially used. Therefore, we conclude
that

min
t
ψν(St) ≤

∫∞
0 ν(δ(St))dt∫∞

0 |St|dt
≤ 8ν(Gx) ≤ 8

√
2
∑
uv∈M

(
x(u)− x(v)

)2
.
√
γ(1)(G).
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It remains to prove the key lemma about the numerator. Let Mt be a maximum matching in δ(St).

Then
∫∞

0 ν(δ(St))dt =
∫∞

0 |Mt|dt. The main idea is to prove that a greedy directed matching
−→
M

in
−→
Gx satis�es |

−→
M ∩ δ(St)| ≥ 1

2 |Mt| for every t. That is, the �xed matching
−→
M is almost as good as

the maximum matching in every threshold set St.

Lemma 8.22. Let G = (V,E) be an undirected graph and π = ~1/|V | be the uniform distribution.
Given a solution x, y satisfying the conditions in Problem 8.20, let St := {v ∈ V | x(v)2 > t} for
t ≥ 0, then ∫ ∞

0
ν(δ(St))dt ≤ 8ν(Gx).

Proof. Using the de�nitions of Gx and
−→
Gx in De�nition 8.15, we will prove that

∫∞
0 ν(δ(St))dt ≤

2ν(
−→
Gx), and then the lemma follows from Exercise 8.17.

To prove
∫∞

0 ν(δ(St))dt ≤ 2ν(
−→
Gx), we consider a greedy directed matching

−→
M in

−→
Gf , which is

obtained by sorting the directed edges in non-increasing order of weights and greedily adding edges
to the directed matching whenever possible.

Let Mt be a maximum matching in δ(St). Note that there could be a di�erent maximum matching

for each t. The key observation is that the �xed greedy matching
−→
M satis�es |

−→
M ∩ δ(St)| ≥ |Mt|/2

for each t. To see this, let uv be an edge in Mt with x(u) > x(v). Suppose uv /∈
−→
M . Since

−→
M is

a greedy directed matching, when uv was considered and was not added to
−→
M , then either u has

outdegree one or v has indegree one at that time, as otherwise we could add the edge uv to
−→
M . In

either case, say uw ∈
−→
M , then it must hold that x(u)2 − x(w)2 ≥ x(u)2 − x(v)2, as the edges are

considered in a non-increasing order of weights. Since uw is at least as long as uv, the edge uw is

in every threshold cut that uv is in, and so uw ∈ δ(St)∩
−→
M . Using this argument, we can map each

edge uv ∈Mt to some other edge in δ(St) ∩
−→
M sharing an endpoint with uv. Crucially, since Mt is

a matching, each edge in
−→
M is mapped by at most two edges in Mt, one for each endpoint. This

establishes the claim that |
−→
M ∩ δ(St)| ≥ |Mt|/2. Then, we can conclude that∫ ∞

0
ν(δ(St))dt =

∫ ∞
0
|Mt|dt ≤ 2

∫ ∞
0
|
−→
M ∩ δ(St)|dt = 2

∑
uv∈
−→
M

(
x(u)2 − x(v)2

)
≤ 2ν(

−→
Gx).

Summary and Discussions

Starting from the primal program λ∗2(G) in De�nition 8.1, we construct the dual program γ(G)
in Proposition 8.6 using von-Neumann minimax theorem. Then we use the Johnson-Lindenstrass
lemma to reduce an n-dimensional solution to γ(G) to a 1-dimensional solution to γ(1)(G) in De�-
nition 8.7, where the log |V | factor in Theorem 8.2 is from this step. Then we consider the matching
expansion ψν(G) in De�nition 8.11 as a proxy to the vertex expansion ψ(G) in De�nition 7.8, and
reduce the Cheeger inequality for vertex expansion in Theorem 8.2 to the Cheeger inequality for
matching expansion in Theorem 8.13. The easy direction of Theorem 8.13 can be proved by plug-
ging in a binary solution from matching expansion. Also, there is a good way to understand the
easy direction of Theorem 8.2 as a reduction from vertex expansion to the edge conductance of the
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best reweighted graph. The hard direction of Theorem 8.13 is proved by a truncation step and a
threshold rounding step as in the proof for Cheeger's inequality in Theorem 4.3. A key Lemma 8.22
in the hard direction is proved by a combinatorial argument about greedy directed matching. After
�nding a set of small matching expansion, we can use Problem 8.12 to �nd a set of small vertex
expansion.

Oleskar-Taylor and Zanetti left open the problem of reducing the log |V | factor in Theorem 8.2 to
log d where d is the maximum degree of the input graph, and the problem of generalizing Theorem 8.2
to arbitrary target probability distribution π. It would also be interesting to construct an example
where Theorem 8.2 is nearly tight.

8.4 Problems

Problem 8.23 (λ∞ and Symmetric Vertex Expansion [BHT00]). Bobkov, Houdré and Tetali de�ned
an interesting quantity

λ∞(G) := min
x:V→R, x⊥~1

∑
u∈V maxv:(v,u)∈E (x(u)− x(v))2∑

u∈V x(u)2

and prove an analog of Cheeger's inequality that

ΦV (G)2 . λ∞(G) . ΦV (G),

where

ΦV (S) := |V | · |∂(S) ∪ ∂(V − S)|
|S| · |V − S|

and ΦV (G) := min
S⊂V

ΦV (S)

is called the symmetric vertex expansion of the graph. Give a proof of their theorem.
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Chapter 9

Spectral Sparsi�cation

In this chapter, we introduce the spectral sparsi�cation problem formulated by Spielman and
Teng [ST11], which is a generalization of the graph sparsi�cation problem formulated by Karger [Kar99].
Then we will see a random sampling algorithm to solve the problem by Spielman and Srivas-
tava [SS11], matching the result for the graph sparsi�cation problem by Benczur and Karger [BK15].

As we will see in later chapters, the study of spectral sparsi�cation has led to major breakthroughs,
and this is a striking example of using linear algebraic techniques to solve combinatorial problems.

9.1 Graph Sparsi�cation

The graph sparsi�cation problem is to �nd a sparse graph which approximates all cut values of a
given graph.

De�nition 9.1 (Cut Approximator [Kar99]). Let G = (V,E) be an undirected graph with a weight
wG(e) on each edge e ∈ E, and H = (V, F ) be an undirected graph on the same vertex set with a
weight wH(e) on each edge e ∈ F . For 0 ≤ ε ≤ 1, we say H is a (1 ± ε)-cut approximator of G if
for all S ⊆ V ,

(1− ε) · wG
(
δG(S)

)
≤ wH

(
δH(S)

)
≤ (1 + ε) · wG

(
δG(S)

)
.

This problem was formulated by Karger [Kar99], and the goal is to �nd a sparse graph H that is a
good cut approximator of the input graph G. Note that this de�nition does not require that H is
a subgraph of G (that is, F ⊆ E), but all constructions that we will see satisfy this property which
is useful in some applications.

Uniform Sampling

A �rst example to think about is when G is a complete graph. We know from Chapter 7 that a
random sparse graph H is an expander graph, which is a good approximation to the complete graph.
So it is a natural strategy to construct a sparsi�er H by sampling a uniform random subgraph of
G. Karger considered the following simple uniform random sampling algorithm, where the idea is
that the expected weight of each edge e in H is the same as the weight of e in G.
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Algorithm 5 Uniform Sampling Algorithm for Graph Sparsi�cation

Require: An unweighted undirected graph G = (V,E).
1: Set a sampling probability p. For each e ∈ E, with probability p, add e in F with weight 1/p.
2: return H = (V, F ).

Karger proved that the uniform sampling algorithm would work to sparsify the input graph G when
the minimum cut value of G is Ω(log n).

Theorem 9.2 (Uniform Sampling for Graph Sparsi�cation [Kar99]). Let G = (V,E) be an un-
weighted undirected graph with V = [n] and minimum cut value c. Set the sampling probability
p = 9 lnn

ε2c
. Then H produced by Algorithm 5 is a (1± ε)-cut approximator of G with O(p · |E|) edges

with probability at least 1− 4
n .

The well-known Cherno� bound is used to analyze the success probability.

Theorem 9.3 (Cherno� Bound for Heterogeneous Coin Flips). Let X1, X2, . . . , Xn be independent
random variables with Xi = 1 with probability pi and Xi = 0 otherwise. Let X =

∑n
i=1Xi and

µ = E [X] =
∑n

i=1 E [Xi] =
∑n

i=1 pi be the expected value of X. Then, for any 0 < δ < 1,

Pr
(
|X − µ| ≥ δµ

)
≤ 2e

−δ2µ/3.

The proof outline of Theorem 9.2 is as follows. With the assumption that the minimum cut value
is Ω(log n), Cherno� bound can be used to show that the probability that wH(δH(S)) is not a
(1± ε)-approximation of wG(δG(S)) for a particular subset S ⊆ V is at most 1/poly(n). While this
probability is quite small, this is not nearly small enough to apply a union bound on the exponential
number of subsets directly. Karger's observation is that there are only a polynomial number of small
cuts as stated below, and so a more careful union bound based on the cut value can be used to
prove Theorem 9.2.

Proposition 9.4 (Number of Approximate Minimum Cuts). Let G = (V,E) be an unweighted
undirected graph with V = [n] and minimum cut value c. For any α ≥ 1, the number of subsets S
with |δ(S)| ≤ αc is at most nd2αe.

An interesting way to prove Proposition 9.4 is to use Karger's random contraction algorithm for
solving the minimum cut problem. See [Kar99] or L03/L04 of CS761 for proofs of Theorem 9.3 and
Proposition 9.4.

Non-Uniform Sampling

Without the minimum cut assumption, then it is easy to see that the uniform sampling algorithm
could fail. For example, consider the dumbbell graph where there is a bridge connecting two complete
graphs.

In 1996, Benczur and Karger [BK15] designed a very clever non-uniform sampling algorithm, where
the sampling probability pe for each edge e = uv is proportional to the �connectivity� of u and
v. The idea is that edges with low connectivity are in H with higher probability pe and smaller
weight 1/pe because they are crucial and so we basically just keep them (with the right expectation),
while edges with high connectivity are in H with lower probability and larger weight to sparsify the
graph. They de�ned a notion called �strong connectivity� for the non-uniform sampling algorithm
and proved that every graph has a cut approximator with only O(n log n) edges.
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Theorem 9.5 (Benczur-Karger Cut Sparsi�cation [BK15]). For any edge-weighted undirected graph
G = (V,E) and any 0 < ε < 1, there is a reweighted subgraph H = (V, F ) on the same vertex set
with at most O(n logn

ε2
) edges such that H is a (1± ε)-cut approximator of G. Furthermore, H can

be computed in nearly linear time Õ(|E|).

The de�nition of �strong connectivity� is a bit unnatural, and Benczur and Karger conjecured that
it can be replaced by the more natural edge-connectivity between u and v. This conjecture is proved
by Fung, Hariharan, Harvey and Panigrahi in 2011 [FHHP19].

Applications of Graph Sparsi�cations

An important feature of Theorem 9.2 and Theorem 9.5 is that they provide a near-linear time
algorithm to �nd a cut sparsifer, and they become an important primitive in designing fast graph
algorithms. For example, suppose we would like to solve the minimum s-t cut problem in a graph
G. Standard algorithms have their time complexity depending on the number of edges in G, so
when G is dense with Ω(n2) edges the algorithms are quite slow. To design a fast approximation
algorithm, we can �rst use Theorem 9.5 to obtain a (1 ± ε)-cut approximator H of G with only
O(n log n/ε2) edges. Then, we just run the standard algorithms on H to �nd an optimal s-t cut in
H, and it can be shown that this is a (1 + 3ε)-approximate minimum s-t cut in G. More generally,
with these sparsi�cation algorithms, for many graph problems about cuts (e.g. graph conductance),
one could trade a small loss in the optimality of the solutions for a time complexity that is faster
by at least one order of n.

Truly remarkably, Karger [Kar00] used the uniform sampling algorithm in Theorem 9.2 to design a
near-linear time algorithm to solve the minimum cut problem optimally. It is actually crucial that
the sparsi�er is unweighted for this application, so for example the stronger Theorem 9.5 cannot
be used. It took more than 20 years for researchers to �nally �nd a deterministic near-linear time
algorithm for the minimum cut problem [KT19].

9.2 Spectral Sparsi�cation

On their way of designing a near-linear time algorithm for solving Laplacian systems of linear
equations, Spielman and Teng [ST11] de�ned the following stronger notion of spectral sparsi�cation
for Laplacian matrices.

De�nition 9.6 (Spectral Approximator). Let G = (V,E) be a weighted undirected graph and H =
(V, F ) be a weighted undirected graph on the same vertex set. For 0 ≤ ε ≤ 1, we say H is a
(1± ε)-spectral approximator of G if for all x : V → R,

(1− ε) · xTLGx ≤ xTLHx ≤ (1 + ε) · xTLGx,

where LG and LH are the weighted Laplacian matrices of G and H respectively. Equivalently, H is
a (1± ε)-spectral approximator of G if

(1− ε)LG 4 LH 4 (1 + ε)LG.

Exercise 9.7 (Spectrum of Spectral Approximator). Let G and H be weighted undirected graphs
with Laplacian spectrums λ1 ≤ λ2 ≤ . . . ≤ λn and γ1 ≤ γ2 ≤ . . . ≤ γn respectively. Prove that if H
is a (1± ε)-spectral approximator of G, then (1− ε)λi ≤ γi ≤ (1 + ε)λi for every 1 ≤ i ≤ n.
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Again, the goal is to �nd a sparse graph H that is a good spectral approximator of the input
graph G. Their original motivation is to use LH as a �preconditioner� for solving the equations
LG · z = b. Their de�nition is inspired by the result of Benczur and Karger [BK15] and is indeed a
more demanding one.

Lemma 9.8 (Spectral Approximator is Cut Approximator). If H is a (1± ε)-spectral approximator
of G, then H is a (1± ε)-cut approximator of G.

Proof. Let S be a subset of vertices and χS be the characteristic vector of S. Then, by Lemma 3.17,

χTSLGχS =
∑

ij∈E(G)

w(i, j)
(
χS(i)− χS(j)

)2
= wG

(
δG(S)

)
,

and similarly χTSLHχS = wH
(
δH(S)

)
. Since H is a (1 ± ε)-spectral approximator of G, it follows

that

(1−ε)·χTSLGχS ≤ χTSLHχS ≤ (1+ε)·χTSLGχS =⇒ (1−ε)·wG
(
δG(S)

)
≤ wH

(
δH(S)

)
≤ (1+ε)·wG

(
δG(S)

)
.

As this holds for any subset S ⊆ V , H is a (1± ε)-cut approximator of G.

Since spectral sparsi�cation is a strictly stronger requirement than cut sparsi�cation, one would
expect that it is a strictly harder problem to solve. Initially, Spielman and Teng [ST11] proved that
there is always a (1± ε)-spectral sparsi�er with O(n polylog(n)/ε2) edges and gave a fast algorithm
for constructing such sparsi�ers. This is enough for their grand goal of designing a nearly-linear
time algorithm for solving Laplacian equations, which has become the engine for a new generation
of fast algorithms for graph problems.

Reduction

In 2008, Spielman and Srivastava [SS11] revisited the spectral sparsi�cation problem and proved
that there is always a (1 ± ε)-spectral approximator with O(n log n/ε2) edges, thus by Lemma 9.8
generalizing the result of Benczur and Karger in Theorem 9.5 for cut sparsi�cation. They reduced
it to the following simpler statement where the objective is to bound only the maximum eigenvalue
and the minimum eigenvalue.

Theorem 9.9 (Sparse Spectral Approximator of Identity Matrix [SS11]). For any m vectors
u1, . . . , um ∈ Rn satisfying

∑m
i=1 uiu

T
i = In, there always exist scalars s1, . . . , sm with at most

O(n logn
ε2

) nonzeros such that

(1− ε)In 4
m∑
i=1

siuiu
T
i 4 (1 + ε)In.

For the reduction, we need the concept of pseudoinverse of a matrix in De�nition 2.23.

De�nition 9.10 (Pseudoinverse of Laplacian Matrix). Let G be a connected graph. Let 0 = λ1 <
λ2 ≤ . . . ≤ λn be the eigenvalues of L(G) and u1, . . . , un be the corresponding eigenvectors. Then the

pseudoinverse of L(G) is L†G =
∑n

i=2
1
λi
uiu

T
i . And the square root of L†G is L

†/2
G =

∑n
i=2

1√
λi
uiu

T
i
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Lemma 9.11 (Reduction to Identity). Suppose for any m vectors with
∑m

i=1 viv
T
i = In there are

always scalars with at most O(n log n/ε2) nonzeros such that (1 − ε)In 4
∑m

i=1 siviv
T
i 4 (1 + ε)In.

Then for any graph G = (V,E) with n vertices and m edges, there is always a graph H with
O(n log n/ε2) edges such that H is a (1± ε)-spectral approximator of G.

Proof. We assume without loss of generality that G is a connected graph. Let LG =
∑

e∈E beb
T
e be

the Laplacian matrix of G as written in De�nition 3.15. De�ne ve = UTL
†/2
G be where L

†/2
G is from

De�nition 9.10 and U is the n× (n− 1) matrix where the i-th column is the (i+ 1)-th eigenvector
ui+1 of L(G) for 1 ≤ i ≤ n− 1. Then

∑
e∈E

vev
T
e =

∑
e∈E

UTL
†/2
G beb

T
e L
†/2
G U = UTL

†/2
G LGL

†/2
G U = UT

( n∑
i=2

uiu
T
i

)
U = In−1.

By assumption, there are scalars s1, . . . , sm with at most O(n log n/ε2) nonzeros such that

(1− ε)In−1 4
∑
e∈E

sevev
T
e 4 (1 + ε)In−1.

Multiplying L
1/2
G U on the left and UTL

1/2
G on the right of the above inequalities, then L

1/2
G UUTL

1/2
G =

LG and thus

(1− ε)LG 4
∑
e∈E

sebeb
T
e 4 (1 + ε)LG.

Let H be the graph with weight se on edge e. Then LH =
∑

e∈E sebeb
T
e , and thus H is a (1 ± ε)-

spectral approximator of G with O(n log n/ε2) edges.

Random Sampling Algorithm

Isotropy Condition: We �rst get some intuition about the condition
∑m

i=1 viv
T
i = In. We have

discussed this isotropy condition before in Exercise 5.14 when we studied the higher-order Cheeger's
inequality. When m = n, then v1, . . . , vn must be an orthonormal basis. When m > n, we can think
of v1, . . . , vm as an �overcomplete� basis, as we can write any x ∈ Rn as x = Inx =

(∑m
i=1 viv

T
i

)
x =∑m

i=1〈x, vi〉vi, which has applications in communication theory. Also, as stated in Exercise 5.14, for
any unit vector y ∈ Rn, it holds that

∑m
i=1〈y, vi〉2 = 1. Informally, the vectors are �evenly spread

out� so that the projections of these vectors to any direction y are the same. Given
∑

i=1 viv
T
i = In,

we would like to �nd a small subset of vectors S ⊆ {1, . . . ,m} and some scaling factors so that∑
i∈S siviv

T
i ≈ In, and thus

∑
i∈S si〈y, vi〉2 ≈ 1. So, the subset should still be �evenly spread out�,

with the contribution in each direction about the same.

Idea: As in the cut sparsi�cation case, uniform sampling may not work. For example, if some
vector vj has ‖vj‖ = 1, then we must include vj in the solution, as otherwise that direction will
not be covered in the solution and so it won't be a spectral sparsi�er. The analogy in the cut
sparsi�cation result is that a cut edge must be included in any cut sparsi�er. So, as in the cut
sparsi�cation case, we need to do non-uniform sampling if we do random sampling.

The idea is similar and very natural. For longer vectors, we should set the sampling probability pe
to be higher because they are crucial and so we basically just keep them. For shorter vectors, we
can a�ord to set the sampling probability pe to be lower and the weight 1/pe to be larger in order
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to reduce the number of vectors. Concretely, we sample each vector vi with probability ‖vi‖22, and
if it is chosen, we set the scalar si = 1

‖vi‖22
, so that the expected contribution is

E
[
siviv

T
i

]
=

viv
T
i

‖vi‖2
· Pr[vi is chosen] =

viv
T
i

‖vi‖2
· ‖vi‖2 = viv

T
i .

Algorithm: The actual algorithm is basically the same, but we need to repeat the experiment
Θ(log n) times and take the average, so that we can prove concentration.

Algorithm 6 Random Sampling Algorithm for Spectral Sparsi�cation

Require: Vectors v1, . . . , vm ∈ Rn satisfying
∑m

i=1 viv
T
i = In.

1: Initialization: ~s← ~0 and τ = 6 lnn
ε2

.
2: for 1 ≤ i ≤ m do

3: for 1 ≤ t ≤ τ do
4: Update si ← si + 1

τpi
with probability pi = ‖vi‖22.

5: end for

6: end for

7: return
∑m

i=1 siviv
T
i .

There are two steps in the analysis. One is to show that there are O(n log n/ε2) non-zero scalars.
Another is to show that the returned solution is a (1 ± ε)-spectral approximator to the identity
matrix.

Expectation

We bound the number of non-zero scalars by computing its expected value and using Markov's
inequality. The sampling probability is used to bound the expected value.

Lemma 9.12 (Number of Nonzeros). Let ~s be the output of Algorithm 6 and S = supp(~s) be the
set of vectors with non-zero scalars. Then |S| = O(n log n/ε2) with probability at least 0.9.

Proof. The expected value is

E [|S|] =

m∑
i=1

Pr[i ∈ S] =

m∑
i=1

(
1− (1− pi)τ

)
≤

m∑
i=1

(
1− (1− τpi)

)
= τ

m∑
i=1

pi,

where τ = 6 lnn
ε2

as de�ned in Algorithm 6. Note that

m∑
i=1

pi =
m∑
i=1

‖vi‖22 =
m∑
i=1

vTi vi =

m∑
i=1

Tr(vTi vi) =
m∑
i=1

Tr(viv
T
i ) = Tr

( m∑
i=1

viv
T
i

)
= Tr(In) = n,

where we used Tr(AB) = Tr(BA) in Fact 2.34. Therefore, E [|S|] ≤ τ
∑m

i=1 pi = τn = 6n lnn/ε2,
and the result follows from Markov's inequality that Pr

[
|S| ≥ 10E [|S|]

]
≤ 1/10.
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Matrix Cherno� Bound

There is an elegant generalization of the Cherno�-Hoe�ding bound to the matrix setting. The proof
uses the Golden-Thompson inequality in Fact 2.36.

Theorem 9.13 (Matrix Cherno� Bound [Tro12]). Let X1, . . . , Xk be independent, n× n real sym-
metric matrices with 0 4 X 4 rI. Suppose µmin · In 4

∑k
i=1 E [Xi] 4 µmax · In. Then, for any

0 ≤ ε ≤ 1,

Pr

[
λmax

( k∑
i=1

Xi

)
≥ (1+ε)µmax

]
≤ ne−

ε2µmax
3r and Pr

[
λmin

( k∑
i=1

Xi

)
≤ (1−ε)µmin

]
≤ ne−

ε2µmax
2r .

Note that it is almost an exact analog of the Cherno�-Hoe�ding bound in the scalar setting, by using
the maximum eigenvalue and the minimum eigenvalue to measure the �size� of a matrix. Informally,
it says that if we consider the sum of independent random matrices, when each matrix is not too
�big/in�uential�, the sum is concentrated around the expectation in terms of the eigenvalues.

Concentration

The algorithm was designed in a way such that the proof that the solution is a (1 ± ε)-spectral
sparsi�er is a direct application of the matrix Cherno� bound. The reweighting by the sampling
probability is set to ensure that no random variable is too in�uential.

Lemma 9.14 (Success Probability of Spectral Approximation). The output of Algorithm 6 satis�es
(1− ε)In 4

∑m
i=1 siviv

T
i 4 (1 + ε)In with probability at least 1− 2

n .

Proof. The random variables are

Xi,t =

{
viv

T
i

τpi
with probability pi

0 otherwise
,

for vector i in iteration t. The output of the algorithm is Y :=
∑m

i=1

∑τ
t=1Xi,t. The expected

output is

E [Y ] =
m∑
i=1

τ∑
t=1

E [Xi,t] =
m∑
i=1

τ∑
t=1

pi ·
viv

T
i

τpi
=

m∑
i=1

τ∑
t=1

viv
T
i

τ
=

m∑
i=1

viv
T
i = In.

So, the expected output is exactly the identity matrix, with µmax = µmin = 1. To apply the matrix
Cherno� bound in Theorem 9.13, it remains to �nd a bound r so that Xi,t 4 rI. Note that

Xi,t =
viv

T
i

τpi
=

viv
T
i

τ‖vi‖2
=

1

τ

(
vi
‖vi‖

)(
vi
‖vi‖

)T
,

which is a rank-one matrix of a unit vector, and so the maximum eigenvalue is just 1/τ and thus we
can set r = 1/τ . By Theorem 9.13, as τ = 6 lnn

ε2
,

Pr[λmax(Y ) ≥ 1 + ε] ≤ ne−
ε2τ
3 = ne−2 lnn =

1

n
.

The lower tail follows similarly. So, with probability at least 1 − 2
n , we have λmax(Y ) ≤ 1 + ε and

λmin(Y ) ≥ 1− ε, and thus (1− ε)In 4 Y 4 (1 + ε)I, proving that the solution is a (1± ε)-spectral
approximator of the identity matrix.

93



Eigenvalues and Polynomials

Combining Lemma 9.12 and Lemma 9.14 by a union bound, we know that a (1±ε)-spectral approx-
imator of the identity matrix with O(n log n/ε2) vectors exists, and indeed the random sampling
algorithm will succeed with constant probability. This proves Theorem 9.9, and the reduction in
Lemma 9.11 proves the theorem by Spielman and Srivastava that every graph has a (1± ε)-spectral
approximator with O(n log n/ε2) edges.

Discussions

By considering spectral sparsi�cation, there is an elegant and arguably simpler proof of Theorem 9.5
for cut sparsi�cation by Benczur and Karger. In the cut sparsi�cation problem, it was not very clear
that what is the right sampling probability, and the conjecture that edge-connectivity can be used
for sampling was only answered much later [FHHP19]. In the more general spectral sparsi�cation
problem, however, there seems to be only one natural choice for the sampling probability and the
analysis follows directly from the matrix Cherno� bound. This is a great example that a more
general problem can be easier to solve than a special case, where in the special case there seem to
be multiple reasonable approaches while the generalization points to the right approach.

Sampling Probability: For spectral sparsi�cation of graphs, the sampling probability of an edge
e = uv is proportional to

‖ve‖22 = ‖UTL†/2G be‖22 = bTe L
†/2
G UUTL

†/2
G be = bTe L

†
Gbe = Re�G(u, v),

where Re�G(u, v) is the e�ective resistance of the two endpoints u and v in the graph G, when we
view the graph as a resistor network with each edge being a resistor of resistance one. An equivalent
characterization of e�ective resistance is

Re�G(u, v) = min
f :E→R≥0

{∑
e∈E

f(e)2
∣∣∣ f is a unit �ow from u to v

}
.

This quantity can be thought of as an interpolation between the shortest path distance and the
maximum �ow value of a graph. E�ective resistance is known to be closely related to some quantities
in random walks such as the commute time and cover time. Recently, this concept has various
applications in designing fast graph algorithms where spectral sparsi�cation is an excellent example.

Fast Algorithm: Spielman and Srivastava also gave a nearly linear time algorithm to estimate
the e�ective resistances of all edges. The main tools are a nearly linear time algorithm to solve a
Laplacian system of equations (which is a breakthrough result by Spielman and Teng), and also the
dimension reduction result by Johnson and Lindenstrauss in Theorem 8.8. As a consequence, there
is a nearly linear time randomized algorithm for constructing a spectral sparsi�er of a graph, which
is important for designing fast algorithms for other graph problems.

Tight Example: The analysis of the random sampling algorithm is tight. In a complete graph,
the e�ective resistance of every edge is the same. So, the random sampling algorithm on a complete
graph is just the uniform sampling algorithm. A �coupon collector� argument can be used to prove
that random sampling won't work to �nd a cut sparsi�er with o(n log n) edges. It is a good exercise
to work out the details.
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Randomized Linear Algebra: Random sampling and dimension reduction are very useful in
designing fast algorithms for numerical linear algebra problems. We illustrate these ideas in a basic
problem, the least square problem. In the least square problem, we are given an n×d matrix A and
b ∈ Rn, and the objective is to �nd an x ∈ Rd that minimizes ‖Ax− b‖2. We are usually interested
in the case when n� d, so the problem is over-constrained. Exact algorithms require Ω(n poly(d))
time, which is too slow when n is large.

We would like to �nd an approximation algorithm with ‖Ax′ − b‖ ≤ (1 + ε) minx‖Ax − b‖2 in
Õ(nd + poly(dε )) time, which is near linear when n � d. The idea is to use a nearly linear time

algorithm to compress the matrix A into a k × d matrix B = SA with k = poly(dε ), and then solve
the least square problem on minx‖S(Ax−b)‖2 exactly as our approximate solution. The techniques
in spectral sparsi�cation can be used for the compression.

Given A ∈ Rn×d and b ∈ Rn, we �rst reduce the problem to the case when the columns of A
are orthonormal. This is reminiscent to the reduction to the identity matrix in Lemma 9.11, so
that ATA = Id or equivalently

∑n
i=1 aia

T
i = Id where ai is the i-th row of A. Then, we construct

a matrix B by sampling and rescaling each row proportional to its squared length, so that B =∑n
i=1 siaia

T
i ≈ Id with only O(d log d/ε2) nonzero scalars. Therefore, B has O(d log d/ε2) rows,

where each row of B is
√
siai so that (1− ε)ATA 4 BTB 4 (1 + ε)ATA. This is a good �subspace

embedding� as ‖Ax‖22 ≈ ‖Bx‖22 because xTATAx ≈ xTBTBx. All the technique details are similar
to those in spectral sparsi�cation, e.g. using matrix Cherno� bound. The sampling probability is
called the leverage score of a row, a generalization of e�ective resistance.
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Barrier Method

In Chapter 9, we have seen that spectral sparsi�cation is a stronger notion than cut sparsi�ca-
tion, but this provides a linear algebraic formulation that connects the problem to more general
mathematical phenomenon, which leads to an elegant solution that matches the best known result
in cut sparsi�cation. In this chapter, we will see that this stronger notion even leads to a sur-
prisingly strong solution that goes beyond what was known (or perhaps thought possible) for cut
sparsi�cation. The main theorem that we will study is by Batson, Spielman and Srivastava.

Theorem 10.1 (Linear-Sized Spectral Approximator of Identity Matrix [BSS14]). For any m vec-
tors v1, . . . , vm ∈ Rn satisfying

∑m
i=1 viv

T
i = In, there always exist scalars s1, . . . , sm with at most

dn nonzeros such that

(
1− 1√

d

)2
· In 4

m∑
i=1

siviv
T
i 4

(
1 +

1√
d

)2
· In.

It follows from the reduction in Lemma 9.11 that every graph has a linear-sized spectral sparsi�er.

Theorem 10.2 (Linear-Sized Spectral Sparsi�er [BSS14]). For any edge-weighted undirected graph
G = ([n], E) and any 0 < ε ≤ 1, there is a reweighted subgraph H = ([n], F ) on the same vertex set
with at most O(n/ε2) edges such that H is a (1± ε)-spectral approximator of G.

One corollary is that every graph has a (1 ± ε)-cut sparsi�er with at most O(n/ε2) edges, which
improves upon Theorem 9.5 by Benczur and Karger. It is quite remarkable that a harder problem
leads to a stronger solution in a well-studied special case. Up until now, there is no known alternative
way to obtain linear-sized cut sparsi�ers without going through the concept of spectral sparsi�cation.
It is an interesting challenge especially to those who prefer to see combinatorial algorithms to solve
combinatorial problems.

10.1 Deterministic Algorithm and Polynomial Perspective

The approach taken to prove Theorem 10.1 is di�erent from the random sampling approach used in
previous algorithms in Theorem 9.2, Theorem 9.5, and Theorem 9.9. It is a deterministic �greedy�
approach that uses a potential function to guide the algorithm to add one vector at a time.
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Intuition from Characteristic Polynomials

As discussed in [BSS14], the intuition of their approach is from a polynomial perspective to the
problem. Let A ∈ Rn×n be the current partial solution, where A = 0 initially. They considered
the characteristic polynomial pA(x) = det(xI −A) =

∏n
j=1(x− λj) whose roots are the eigenvalues

of A, and studied how it changes after adding one vector. By the matrix determinant formula in
Fact 2.29,

pA+vvT (x) = det(xI −A− vvT ) = det(xI −A) ·
(
1− vT (xI −A)−1v

)
= pA(x) ·

(
1−

n∑
j=1

〈v, uj〉2

x− λj

)
.

where λj are the eigenvalues of A and uj are the corresponding orthonormal eigenvectors. Suppose
we add a uniformly random vector v from v1, . . . , vm to A. Then, by the isotropy assumption,

E
[
〈v, uj〉2

]
=

1

m

m∑
i=1

〈vi, uj〉2 =
1

m
· uTj

( m∑
i=1

viv
T
i

)
uj =

‖uj‖2

m
=

1

m
.

This implies that the expected characteristic polynomial is

E
[
pA+vvT (x)

]
= pA(x)

(
1− 1

m

n∑
j=1

1

x− λj

)
= pA(x)− 1

m
∂xpA(x),

as ∂xpA(x)/pA(x) =
∑n

j=1 1/(x− λj). Since we start from A = 0, the initial polynomial is pA(x) =
xn. After t iterations, the expected characteristic polynomial becomes

pt(x) =
(

1− 1

m
∂x

)t
xn.

This generates a standard family of orthogonal polynomials, called the associated Laguerre polyno-
mials, whose roots are known. After t = dn iterations, the ratio of the largest root to the smallest
root of pdn(x) is known to be

d+ 1 + 2
√
d

d+ 1− 2
√
d
,

and this is the ratio of the maximum eigenvalue and the minimum eigenvalue in Theorem 10.1.

This is only a heuristic argument, as there may not be any vector v with its characteristic polynomial
pA+vvT (x) equal to the expected characteristic polynomial. The proof of Theorem 10.1 in [BSS14]
is also not based on this approach, but this foreshadows the polynomial approach that we will study
in the second part of this course.

Algorithm Structure

As discussed in Chapter 9, one advantage of the algebraic formulation for spectral sparsi�cation in
Theorem 9.9 is that we �only� need to keep track of the maximum eigenvalue and the minimum
eigenvalue of the current partial solution, instead of the exponentially many cut values as was done
in the cut sparsi�cation problem. So the general idea is to maintain an upper bound of the maximum
eigenvalue and a lower bound on the minimum eigenvalue of the current partial solution, and to
control how they evolve over time. This will be done using two potential functions Φu and Φl that
we will de�ne and study in the next section.
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Assuming the existence of the two potential functions, we �rst describe the structure of the deter-
ministic �greedy� algorithm. Initially, we start from the empty solution A0 = 0, some upper bound
u0 of the maximum eigenvalue of A0, some lower bound l0 of the minimum eigenvalue, so that
the potential values Φu0(A0) ≤ φu and Φl0(A0) ≤ φl for some values φu and φl that will be �xed
throughout the algorithm. In each iteration t, we �nd a vector vi and a scalar s and add s · vivTi
to the current solution so that At+1 ← At + sviv

T
i , and shift the upper bound ut+1 ← ut + δu and

the lower bound lt+1 ← lt + δl by some �xed amount δu and δl to maintain the invariants that
Φut+1(At+1) ≤ φu and Φlt+1(At+1) ≤ φl and also ut+1 and lt+1 are upper and lower bounds of the
maximum eigenvalue and the minimum eigenvalue of At+1 respectively.

Algorithm 7 Deterministic Greedy Algorithm for Spectral Sparsi�cation

Require: Vectors v1, . . . , vm ∈ Rn satisfying
∑m

i=1 viv
T
i = In.

1: Initialization: A0 = 0 and τ = dn.
2: Choose u0, l0, φu, φl so that Φu0(A0) ≤ φu and Φl0(A0) ≤ φl.
3: Choose two parameters δu and δl and set ut = u0 + tδu and lt = l0 + tδl for any t ≥ 1.
4: for 1 ≤ t ≤ τ do
5: Find vector v ∈ {v1, . . . , vm} and scalar s and set At = At−1+s·vvT to maintain the invariants

that Φut(At) ≤ φu and Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt.
6: end for

7: return Aτ .

There are many parameters u0, l0, φu, φl, δu, δl to be chosen, and we will only do so in the end.

10.2 Potential Functions

The magical element in this algorithm is the de�nition of the potential functions, that will make
everything works beautifully. Before we state the potential functions used in [BSS14], let us discuss
some natural attempts and see what we need.

Norm of Eigenvalues

A natural �rst attempt is to simply use the maximum eigenvalue and the minimum eigenvalue as
the potential functions (i.e. Φu(At) = λmax(At) and Φl(At) = λmin(At)), and then inductively prove
that λmax(At) ≤ λmax(At−1) + δu and λmin(At) ≤ λmin(At−1) + δl. This way of measuring progress
does not work well for this problem, as the matrix At is n-dimensional, and just focusing on the
maximum direction cannot distinguish between the case where every direction is large or where one
direction is large and all other orthogonal directions are small. Ideally, we hope to say something
such as after n iterations, every direction is increased by one unit. To prove it inductively, we would
need a potential function to let us argue that the maximum direction is increased by 1/n unit per
edge on average, but the maximum eigenvalue is not such a smooth/robust quantity for this.

By the above discussion, we would like to have a more global quantity that will take into considera-
tion of all directions. One possible parameter of this kind is 1

n Tr(A), which is the average eigenvalue
of the current solution. For this, we can easily argue that the average eigenvalue increases smoothly,
but the problem is that we cannot conclude that the maximum eigenvalue is small by using that
the average eigenvalue is small.
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So, we would like to have a more global quantity that is smooth enough to measure the progress made
in each iteration, and also that the maximum eigenvalue is small when this quantity is small. Let ~λ =(
λ1(A), λ2(A), . . . , λn(A)

)
be the spectrum of the current solution. Note that λmax(A) := ‖~λ‖∞ is

the in�nity norm of the spectrum, while Tr(A) := ‖~λ‖1 is the 1-norm of the spectrum. Interpolating

between these two extremes, we may consider the quantity
(

1
n

∑n
i=1 λ

p
i

)1/p
= n−1/p · ‖λ‖p. We know

that setting p ≈ log n would approximate ‖~λ‖∞ well, but the p-norm may not be so convenient for
calculations. In convex optimization, there is a softmax function that is de�ned as log

∑n
i=1 exp(λi),

which is known to be convex and di�erentiable and approximates the maximum well. In our setting,
the softmax function can be nicely written as log Tr(eA), where eA :=

∑∞
k=0

1
k!X

k is the matrix
exponential of A. So this seems to be a good potential function to be used for spectral sparsi�cation,
and indeed this function is used in the proof of the matrix Cherno� bound. I think this function can
be used in Algorithm 7 to give a deterministic algorithm with the same guarantee as the random
sampling algorithm by Spielman and Srivastava in Theorem 9.9 (please see [dCSHS16]), but it is
not enough for linear-sized spectral sparsi�cation.

Barrier Functions

Batson, Spielman, and Srivastava mentioned in [BSS14] that the de�nition of their potential func-
tions is inspired by the calculation of the expected characteristic polynomial in Section 10.1.

De�nition 10.3 (Barrier Functions). Given u, l ∈ R and a real symmetric matrix A ∈ Rn×n with
eigenvalues λ1, . . . , λn, the upper barrier function and the lower barrier function are de�ned as

ΦA(u) := Φu(A) := Tr(uIn−A)−1 =

n∑
i=1

1

u− λi
and ΦA(l) := Φl(A) := Tr(A−lIn)−1 =

n∑
i=1

1

λi − l
.

We will use the notations Φu(A) and Φl(A) when we �x u and l and see the barrier functions as a
function of the matrix A, and we will use the notations ΦA(u) and ΦA(l) when we �x A and see the
barrier functions as a function of u or l.

When u > λmax(A) and l < λmin(A), these functions measure how far the eigenvalues of A are from
the barriers u and l, and they blow up as any eigenvalue approaches a barrier. Suppose we could
maintain the invariant that say Φut(A) ≤ 1 for all t. This will ensure that ut is a �comfortable�
upper bound of the maximum eigenvalue, as there could be at most one eigenvalue with value at
least ut − 1, at most two eigenvalues with value at least ut − 2, and so on. This is a more global
quantity that takes all the eigenvalues into consideration, and has the property that it changes
smoothly to measure the progress made in each iteration.

The following properties of the barrier functions are simple but useful. We will see a generalization
in the multivariate setting in the second part of the course.

Exercise 10.4 (Monotonicity and Convexity). Let A ∈ Rn×n be a real symmetric matrix. For any
u > λmax(A) and any δ > 0, the upper barrier function satis�es

ΦA(u) ≥ ΦA(u+ δ) and ΦA(u) + δ ·
(
ΦA(u+ δ)

)′ ≥ ΦA(u+ δ).

For any l + δ < λmin(A) and any δ > 0, the lower barrier function satis�es

ΦA(l) ≤ ΦA(l + δ) and ΦA(l) + δ ·
(
ΦA(l + δ)

)′ ≥ ΦA(l + δ).
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The strategy in Algorithm 7 is to ensure that ut is increased slowly while maintaining the invariant
that the potential value Φut(At) is small. More explicitly, we can de�ne a family of �soft� bounds
on the max/min eigenvalue, parameterized by the value of the potential functions.

De�nition 10.5 (φ-Soft-Max and φ-Soft-Min). Given a real symmetric matrix A ∈ Rn×n and a
parameter φ > 0, the φ-max of A and the φ-min of A are de�ned as

φ-max(A) := max{u | ΦA(u) = φ} and φ-min(A) := min{l | ΦA(l) = φ}.

They can be understood as the inverse of the upper and lower barrier functions.

The parameter φ can be thought of as a sensitivity parameter, which controls the tradeo� between
how accurate the bound is and how smoothly it varies. The strategy in Algorithm 7 is to �x an φ
and then bound φ- max(At) and prove that φ- max(At) ≤ φ- max(At−1) + δu for all t ≥ 1.

The barrier functions are similar to the log-barrier functions used in the interior point method for
convex optimization.

Remark 10.6 (Log-Barrier Functions). Let pA(x) = det(xI − A) be the characteristic polynomial
of A. Note that

Φx(A) =
∂xpA(x)

pA(x)
= ∂x log

(
pA(x)

)
and Φx(A) = −∂x log

(
pA(x)

)
.

These functions blow up when x is getting close to a root.

10.3 Changes of Potential Values

There are nice formulas to analyze the change of the barrier functions when we add a vector and
do a rank-one update.

Upper Barrier Function

For the upper barrier function Φu(A), adding a vector s ·vvT would increase the potential value, but
increasing the upper bound u would compensate for it to maintain the invariant Φu+δu(A+s·vvT ) ≤
Φu(A).

Lemma 10.7 (Upper Barrier Change). Suppose u > λmax(A). For any vector v, if

1

s
≥
vT
(
(u+ δu)I −A

)−2
v

Φu(A)− Φu+δu(A)
+ vT

(
(u+ δu)I −A

)−1
v =: UA(v),

then

Φu+δu
(
A+ s · vvT

)
≤ Φu(A) and λmax

(
A+ s · vvT

)
< u+ δu.
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Proof. Let u′ := u+ δu. By the Sherman-Morrison rank-one update formula in Fact 2.20,

Φu+δu(A+ s · vvT ) = Tr
((
u′I −A− s · vvT

)−1
)

= Tr

((
u′I −A

)−1
+
s(u′I −A)−1vvT (u′I −A)−1

1− s · vT (u′I −A)−1v

)
= Φu+δu(A) +

s · vT (u′I −A)−2v

1− s · vT (u′I −A)−1v

= Φu(A)−
(
Φu(A)− Φu+δu(A)

)︸ ︷︷ ︸
gain

+
vT (u′I −A)−2v

1/s− vT (u′I −A)−1v︸ ︷︷ ︸
loss

Rearranging shows that Φu+δu
(
A + s · vvT

)
≤ Φu(A) when 1/s ≥ UA(v). This also implies that

λmax(A + s · vvT ) ≤ u + δu, as otherwise λmax(A + s′ · vvT ) = u + δu for some s′ ≤ s and thus
Φu+δu

(
A+ s′ · vvT

)
=∞, but this contradicts that Φu+δu

(
A+ s′ · vvT

)
≤ Φu(A) is bounded.

Lower Barrier Function

For the lower barrier function Φl(A), adding a vector s ·vvT would decrease the potential value, but
increasing the lower bound l would increase the potential value. Note that there is an additional
condition about the barrier value to ensure that we still have a lower bound on the minimum
eigenvalue.

Lemma 10.8 (Lower Barrier Change). Suppose λmin(A) > l and Φl(A) ≤ 1/δl. For any vector v, if

0 <
1

s
≤
vT
(
A− (l + δl)I

)−2
v

Φl+δl(A)− Φl(A)
− vT

(
A− (l + δl)I

)−1
v =: LA(v),

then

Φl+δl

(
A+ s · vvT

)
≤ Φl(A) and λmin

(
A+ s · vvT

)
> l + δl.

Proof. Note that λmin(A) > l and Φl(A) =
∑n

i=1 1/(λi − l) ≤ 1/δl imply that 1/(λmin − l) < 1/δl
and thus λmin > l + δl. So, λmin(A + s · vvT ) ≥ λmin(A) > l + δl. Then, by a similar calculation
using the Sherman-Morrison formula as in Lemma 10.7,

Φl+δl(A+ s · vvT ) = Φl(A) +
(
Φl+δl(A)− Φl(A)

)︸ ︷︷ ︸
loss

− vT (A− l′I)−2v
1/s + vT (A− l′I)−1v︸ ︷︷ ︸

gain

.

Rearranging shows that Φl+δl

(
A+ s · vvT

)
≤ Φl(A) when 1/s ≤ LA(v).

10.4 Averaging Argument

We need to prove that there exists a vector v and a scalar s such that both the assumptions in
Lemma 10.7 and Lemma 10.8 hold, so that we can conclude that the invariants Φu+δu

(
A+s ·vvT

)
≤

Φu(A) and λmax

(
A+s ·vvT

)
< u+ δu and Φl+δl

(
A+s ·vvT

)
≤ Φl(A) and λmin

(
A+s ·vvT

)
> l+ δl

in Algorithm 7 hold simultaneously.
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The idea in [BSS14] is to prove that
∑m

i=1 LA(vi) ≥
∑m

i=1 UA(vi), and so there exists a vector vi
such that LA(vi) ≥ UA(vi). Therefore, by setting s to be a scalar such that LA(vi) ≥ 1/s ≥ UA(vi),
then both the assumptions in Lemma 10.7 and Lemma 10.8 are satis�ed and thus all the invariants
hold simultaneously for A+ s · vivTi .
The calculations work out quite nicely using the isotropy condition

∑m
i=1 viv

T
i = In.

Upper Barrier Function

Lemma 10.9 (Total Upper Barrier Shift). Given v1, . . . , vm ∈ Rn such that
∑m

i=1 viv
T
i = In,

m∑
i=1

UA(vi) ≤
1

δu
+ Φu(A).

Proof. Using the isotropy assumption
∑m

i=1 viv
T
i = In, it follows that

m∑
i=1

vTi
(
(u+ δu)I −A

)−2
vi =

m∑
i=1

Tr
((

(u+ δu)I −A
)−2

viv
T
i

)
= Tr

((
(u+ δu)I −A

)−2
)
,

and similarly

m∑
i=1

vTi
(
(u+ δu)I −A

)−1
vi = Tr

((
(u+ δu)I −A

)−1
)

= Φu+δu(A).

By the convexity of the barrier function Φu(A) = ΦA(u) in terms of u in Exercise 10.4, the �gain� is

Φu(A)− Φu+δu(A) = ΦA(u)− ΦA(u+ δu) ≥ −δu ·
(

ΦA(u+ δu)
)′

= δu · Tr
((

(u+ δu)I −A
)−2
)
.

Therefore,

m∑
i=1

UA(vi) :=

m∑
i=1

(
vTi
(
(u+ δu)I −A

)−2
vi

Φu(A)− Φu+δu(A)
+ vTi

(
(u+ δu)I −A

)−1
vi

)

=
Tr
(
(u+ δu)I −A

)−2

Φu(A)− Φu+δu(A)
+ Φu+δu(A)

≤ 1

δu
+ Φu(A).

Lower Barrier Function

The calculations for the total lower barrier shift is similar, but is a bit trickier. Note that the
following lemma also requires the assumption that Φl(A) ≤ 1/δl as in Lemma 10.8.

Lemma 10.10 (Total Lower Barrier Shift). Given v1, . . . , vm ∈ Rn such that
∑m

i=1 viv
T
i = In, if

Φl(A) ≤ 1/δl, then
m∑
i=1

LA(vi) ≥
1

δl
− Φl(A).
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Proof. As in the proof of Lemma 10.9, using the isotropy assumption
∑m

i=1 viv
T
i = In,

m∑
i=1

vTi
(
A− (l + δl)I

)−2
vi = Tr

((
A− (l + δl)I

)−2
)

and
m∑
i=1

vTi
(
A− (l + δl)I

)−1
vi = Φl+δl(A).

Therefore,

m∑
i=1

LA(vi) :=
m∑
i=1

(
vTi
(
A− (l + δl)I

)−2
vi

Φl+δl(A)− Φl(A)
− vTi

(
A− (l + δl)I

)−1
vi

)

=
Tr
(
A− (l + δl)I

)−2

Φl+δl(A)− Φl(A)
− Φl+δl(A).

Using convexity in Exercise 10.4 as in the proof of Lemma 10.9,

Φl+δl(A)− Φl(A) = ΦA(l + δl)− ΦA(l) ≤ δl ·
(
ΦA(l + δl)

)′
= δl · Tr

(
A− (l + δl)I

)−2
.

This gives
∑m

i=1 LA(vi) ≥ 1
δl
− Φl+δl(A), which is slightly weaker than the statement and is not

enough for the invariants to hold throughout the algorithm. To prove the statement, we need to
work harder and show that

Tr
(
A− (l + δl)I

)−2

Φl+δl(A)− Φl(A)
− Φl+δl(A) ≥ 1

δl
− Φl(A),

which is equivalent to the following claim by rearranging.

Claim 10.11 (Lemma 4.3 of [MSS21]). If Φl(A) ≤ 1/δl, then(
Φl+δl(A)− Φl(A)

)2 ≤ Tr
(
A− (l + δl)I

)−2 − 1

δl

(
Φl+δl(A)− Φl(A)

)
.

Proof. By de�nition of the lower barrier function in De�nition 10.3

(
Φl+δl(A)− Φl(A)

)2
=

( n∑
i=1

1

λi − (l + δl)
− 1

λi − l

)2

=

( n∑
i=1

δl(
λi − (l + δl)

)
· (λi − l)

)2

Using Cauchy-Schwarz inequality and then the assumption δl · Φl(A) ≤ 1, the RHS is

≤
( n∑
i=1

δl
(λi − l)

)( n∑
i=1

δl(
λi − (l + δl)

)2 · (λi − l)
)
≤
( n∑
i=1

δl(
λi − (l + δl)

)2 · (λi − l)
)
.

Check that this is equal to the RHS of the statement of this claim.

The claim completes the proof of this lemma.

Both Barrier Functions

Combining Lemma 10.9 and Lemma 10.10 with the averaging argument in the beginning of this
section, we arrive at the following conditions for the invariants in Algorithm 7 to hold throughout.
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Lemma 10.12 (Invariants). Let A0 = 0. If we choose u0 > 0, l0 < 0, φu, φl, δu, δl so that

Φu0(A0) ≤ φu and Φl0(A0) ≤ φl and φl ≤
1

δl
and

1

δl
− φl ≥

1

δu
+ φu,

then Algorithm 7 can always �nd a vector v and a scalar s in each iteration t to maintain the
invariants that Φut(At) ≤ φu and Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt, where
ut = u0 + tδu and lt = l0 + tδl as de�ned in Algorithm 7.

Proof. The proof is by a simple induction. The induction hypothesis is that Φut(At) ≤ φu and
Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt. This holds at t = 0 by our assumptions. For
the induction step, by Lemma 10.9 and Lemma 10.10 and our assumption,

m∑
i=1

UAt(vi) ≤
1

δu
+ Φut(At) ≤

1

δu
+ φu ≤

1

δl
− φl ≤

1

δl
− Φlt(At) ≤

m∑
i=1

LAt(vi).

So there exists some v ∈ {v1, . . . , vm} such that UAt(v) ≤ LAt(v). Let s be a scalar such that
UAt(v) ≤ 1/s ≤ LAt(v). Then, it follows from Lemma 10.7 and Lemma 10.8 that the invariants hold
for t+ 1 with At+1 = At + s · vvT and ut+1 = ut + δu and lt+1 = lt + δl.

Wrapping Up

With Lemma 10.12, it remains to choose u0, l0, φu, φl, δu, δl to prove Theorem 10.1. Batson, Spielman
and Srivastava set

l0 := −
√
dn, u0 :=

(d+
√
d√

d− 1

)
n, φl := Φl0(A0) = −n

l0
=

1√
d
, φu := Φu0(A0) =

n

u0
=

√
d− 1

d+
√
d
,

so that the �rst three conditions in Lemma 10.12 are satis�ed. Then, they set

δl := 1 and δu :=

√
d+ 1√
d− 1

=⇒ 1

δl
− φl =

1

δu
+ φu,

and so the last condition in Lemma 10.12 is also satis�ed. Therefore, after dn iterations of Algo-
rithm 7,

λmax(Adn)

λmin(Adn)
≤ udn
ldn

=
u0 + dn · δu
l0 + dn · δl

=

d+
√
d√

d−1
+ d ·

√
d+1√
d−1

−
√
d+ d

=

(√
d+ 1√
d− 1

)2

,

completing the proof of Theorem 10.1.

10.5 Discussions

There are many subsequent work on spectral sparsi�cation and we discuss some of them here.

� Allen-Zhu, Liao, and Orecchia [ALO15] constructed linear-sized spectral sparsi�er using the
regret minimization framework in convex optimization. This provides a more systematic way
to derive the result and a di�erent interpretation of Batson, Spielman, Srivastava's result as
using a di�erent regularizer in the regret minimization framework. Their tools developed are
also more convenient in some applications as we will discuss more in the next chapter.
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� Lee and Sun gave an almost linear time algorithm [LS18] and then a nearly linear time
algorithm [LS17] to construct linear-sized spectral sparsi�ers. Their �rst algorithm in [LS18]
is an adaptive sampling algorithm that is interesting and easy to describe. In the �rst iteration,
the algorithm samples say n0.99 vectors using e�ective resistance as in Theorem 9.9. Then, it
will update the sampling probability using barrier functions, and repeat this process for n0.01

iterations. Their intuition is from balls-and-bins that the maximum load is only a constant
after throwing n0.99 balls to n bins.

� One may wonder whether there are other sampling algorithms for constructing spectral spar-
si�ers. An interesting result by Kyng and Song [KS18] is that the union of log n/ε2 random
spanning trees is an (1± ε)-spectral approximator, and this is tight.

� de Carli Silva, Harvey and Sato [dCSHS16] generalized the result in Theorem 10.1 to spar-
sifying sums of positive semide�nite matrices that have arbitrary rank, with applications in
hypergraph sparsi�cation.

A main open question is if every vector is of the same length (or more generally when every vector
is short), then is there an e�cient algorithm to construct an unweighted sparsi�er? This is closely
related to the Kadison-Singer problem that we will study in the second part of the course.
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Chapter 11

Spectral Rounding

In the spectral sparsi�cation problem in Chapter 9 and Chapter 10, we are given v1, v2, . . . , vm ∈ Rn,
and the goal is to �nd a �reweighting� s1, . . . , sm with few nonzeros so that

∑m
i=1 siviv

T
i ≈

∑m
i=1 viv

T
i .

In this chapter, we consider the following spectral rounding problem where the goal is to �nd an
�integral reweighting� that approximates the input.

De�nition 11.1 (Spectral Rounding). Given v1, v2, . . . , vm ∈ Rn and scalars x1, . . . , xm ∈ R≥0,
�nd integer scalars z1, . . . , zm ∈ Z≥0 such that

m∑
i=1

xiviv
T
i ≈

m∑
i=1

ziviv
T
i .

More generally, we are also given k linear constraints in a matrix A ∈ Rk×m≥0 and are required to
�nd integer scalars z1, . . . , zm ∈ Z≥0 that also satis�es

A~x ≈ A~z.

Note that there is no requirement on the number of nonzeros in ~z as in the spectral sparsi�cation
problem, rather the requirement is on the integrality of ~z.

The motivation of this problem is from designing approximation algorithms for some discrete op-
timization problems, where we should think of ~x as an optimal fractional solution to some convex
relaxation of a combinatorial problem, and our goal is to �nd an integer solution ~z that is almost as
good as ~x. The additional linear constraints can be used to incorporate the objective value of the
solutions, and/or some other constraints such as upper and lower bound on the size of the solutions.
We will see two concrete applications in the next section.

This problem in its strongest form is as general as the Kadison-Singer problem that we will study
in the second part of the course. In this chapter, we consider a simpler setting where the two-sided
approximation requirement is replaced by a one-sided approximation requirement. The main result
that we will study is by Allen-Zhu, Li, Singh and Wang [ALSW17], who formulated the following
minimum eigenvalue problem and used it to design approximation algorithms for experimental
design problems.

Theorem 11.2 (Minimum Eigenvalue Problem [ALSW17]). Given v1, . . . , vm ∈ Rn and scalars
x1, . . . , xm ∈ R≥0 satisfying

m∑
i=1

xiviv
T
i = In and

m∑
i=1

xi = k,
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there is a polynomial time algorithm to �nd integer scalars z1, . . . , zm ∈ Z≥0 satisfying

m∑
i=1

ziviv
T
i <

(
1−

√
n− 1

k

)2

· In and
m∑
i=1

zi = k.

To see its connection to the spectral rounding problem in De�nition 11.1, �rst we apply the same
reduction as in Lemma 9.11 to reduce to the case when

∑m
i=1 xiviv

T
i = In. Then the two-sided

approximation requirement in De�nition 11.1 becomes (1 − ε)In 4
∑m

i=1 ziviv
T
i 4 (1 + ε)In for

an ε as small as possible. In Theorem 11.2, the two-sided requirement is replaced by the one-
sided requirement

∑m
i=1 ziviv

T
i < (1− ε)In. And there is one linear �cardinality/budget� constraint∑m

i=1 xi ≈
∑m

i=1 zi to satisfy, without which the problem is trivial.

The proof of Theorem 11.2 in [ALSW17] is based on the regret minimization framework developed
for spectral sparsi�cation by Allen-Zhu, Liao, and Orecchia [ALO15]. It will take quite some time to
introduce this framework properly and we will not do so, but we will brie�y describe their framework
at the end of this chapter.

Instead, we will present a new proof of Theorem 11.2, following the (informal) polynomial perspec-
tive for spectral sparsi�cation from [BSS14] that we described in the beginning of Chapter 10. I
hope this proof serves better as a bridge to connect to the second part of the course, starting next
chapter.

11.1 Applications

Before we see the proof, let's �rst see some applications of Theorem 11.2, which is useful in designing
approximation algorithms for choosing a good subset of points/vectors/edges.

Experimental Design

In experimental design problems, we are given vectors v1, . . . , vm ∈ Rn and a parameter k ≥ n, and
the goal is to choose a (multi-)subset S of k vectors so that

∑
i∈S viv

T
i optimizes some objective

function. The most popular and well-studied objective functions are:

� D-design: Maximizing
(
det
(∑

i∈S viv
T
i

)) 1
n .

� A-design: Minimizing Tr
((∑

i∈S viv
T
i

)−1
)
.

� E-design: Maximizing λmin

(∑
i∈S viv

T
i

)
.

These problems of choosing a representative subset of vectors have a wide range of applications
(see [ALSW21, LZ21]), but these are all NP-hard. To design approximation algorithms, we consider
the following natural convex programming relaxations for D/A/E-design.

max

(
det
( n∑
i=1

xi · vivTi
)) 1

n
/

min Tr
( n∑
i=1

xi · vivTi
)−1

/
max λmin

( n∑
i=1

xi · vivTi
)

s.t.
m∑
i=1

xi ≤ k.

xi ≥ 0, for 1 ≤ i ≤ n.
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After we computed an approximately optimal solution x in polynomial time, we can apply the
transformation as in Lemma 9.11 to reduce to the case where

∑m
i=1 xiviv

T
i = In. Then we can

apply Theorem 11.2 to obtain an integral solution z, and then apply the reverse transformation in
Lemma 9.11 to see that z has the following performance guarantee.

Problem 11.3 (Experimental Design). Prove that Theorem 11.2 can be used to obtain a (1 ± ε)-
approximation algorithm for D/A/E-design when k & n/ε2.

This approach is used in [ALSW21, LZ21] to provide a unifying algorithmic framework for designing
the best known approximation algorithms for a large class of experimental design problems. We
will discuss some ideas of these work in the end of this chapter.

Network Design

The general setting of network design is to �nd a minimum cost subgraph satisfying certain re-
quirements. The most well-studied problem is the survivable network design problem, where the
requirement is to have at least a speci�ed number fu,v of edge-disjoint paths between every pair of
vertices u, v. Linear programming is the default approach in designing approximation algorithms
for network design problems. It is observed in [LZ20] that spectral techniques can also be used for
survivable network design problems, as well as to incorporate additional spectral constraints. For
example, consider the following convex relaxation:

min
x

∑
e∈E

cexe∑
e∈δ(S)

xe ≥ max
u∈S,v /∈S

{
fu,v

}
∀S ⊆ V (connectivity constraints)

λ2(Lx) ≥ λ (algebraic connectivity constraint)

0 ≤ xe ≤ 1 ∀e ∈ E (capacity constraints)

where ce is the given cost of an edge e ∈ E, and Lx is the Laplacian matrix where each edge e has
weight xe. The algebraic connectivity constraint can be used to lower bound the edge expansion of
the solution.

Exercise 11.4 (Second Laplacian Eigenvalue and Edge Expansion). Let G = (V,E) be an undirected
graph. Prove that

λ2(LG) ≤ 2 min
0≤|S|≤|V |/2

|δ(S)|
|S|

.

Without the algebraic connectivity constraint, the above is a linear program and there is an elegant
iterative rounding 2-approximation algorithm by Jain to solve the problem. With the algebraic con-
nectivity constraint, the above becomes a convex program and it was not known how to handle both
connectivity constraints and the algebraic connectivity constraint simultaneously. The observation
in [LZ20] is that the one-sided spectral rounding result in Theorem 11.2 can be adapted to design
an approximation algorithm for this problem.

Exercise 11.5 (Spectral Rounding for Network Design). Let x ∈ [0, 1]m be a fractional solution
to the above convex program and Lx be its Laplacian matrix. Show that if z ∈ {0, 1}m is an
integral solution satisfying Lz < Lx, then z satis�es the connectivity constraints and the algebraic
connectivity constraint simultaneously.
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In [LZ20], Theorem 11.2 is extended to �nd z ∈ {0, 1}m satisfying Lz < Lx with∑
e∈E

ceze ≤ (1 +O(ε)) ·
∑
e∈E

cexe +O
(n · cmax

ε

)
for any 0 < ε < 1/4, where cmax := maxe∈E{ce} is the maximum cost of an edge. This spectral
rounding approach enlarges the set of constraints that one could handle in designing approximation
algorithms for network design problems. We will discuss some technical ideas in the end of this
chapter.

11.2 Barrier Method with Polynomials

The goal of this section is to present a proof of Theorem 11.2 using the polynomial perspective
from [BSS14]. First, we will rephrase the barrier functions in De�nition 10.3 in terms of polynomials.
Then, we will present the plan following the intuition in the beginning of Chapter 10. Finally, we
will proceed with the analysis and introduce some ideas about interlacing polynomials.

Soft-Max and Soft-Min of Polynomials

Recall the φ-soft-max and φ-soft-min in De�nition 10.5 using the barrier functions in De�nition 10.3.
The strategy in the deterministic greedy Algorithm 7 in Chapter 10 is to �x φu, φl and then prove
that φu- max(At) ≤ φu- max(At−1) + δu and φl- min(At) ≥ φl- min(At−1) + δl for all t ≥ 1.

There are natural interpretations of the barrier functions from the polynomial perspective.

Remark 11.6 (Soft-Max and Soft-Min of Polynomials). Let pA(y) = det(yI −A) be the character-
istic polynomial of A. Note that

φ- max(pA) := φ- max(A) = max

{
u
∣∣∣ ΦA(u) =

p′A(u)

pA(u)
= φ

}
= λmax

(
pA −

1

φ
p′A

)
and

φ- min(pA) := φ- min(A) = min

{
l
∣∣∣ ΦA(l) = −

p′A(l)

pA(l)
= φ

}
= λmin

(
pA +

1

φ
p′A

)
.

So, using the φ-soft-min to lower bound λmin(p) can be understood as using the minimum root a
related polynomial p+ 1

φp
′ to lower bound λmin(p). Actually, slightly more can be said.

Exercise 11.7 (Soft-Min). Let A be a real symmetric matrix. Show that λmin(pA) ≥ φ- min(pA)+ 1
φ

for any φ > 0.

Proof Plan

Given v1, . . . , vm ∈ Rn and scalars x1, . . . , xm ∈ R≥0 such that
∑m

i=1 xiviv
T
i = In and

∑m
i=1 xi = k,

our goal is to �nd z1, . . . , zm ∈ Z≥0 with
∑m

i=1 zi ≤ k and λmin

(∑m
i=1 ziviv

T
i

)
as large as possible.

Initially, we start with A0 being the n× n zero matrix. In each iteration 1 ≤ t ≤ k, we would like
to �nd a vector v ∈ {v1, . . . , vm} and set At = At−1 + vvT . This will ensure that At =

∑m
i=1 ziviv

T
i

for integers z1, . . . , zm for any t ≥ 0.
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As in Section 10.1, we consider the expected characteristic polynomial when we add a random
vector with probability proportional to xi. The following lemma is by the same calculation as in
Section 10.1.

Exercise 11.8 (Expected Rank-One Update). The expected characteristic polynomial after we add
a vector vi with probability xi/k is

E
[
pA+vvT

]
:=

m∑
i=1

xi
k
· pA+vivTi

= pA −
1

k
p′A.

Now, instead of considering the roots of (1− 1
k∂)kxn after k iterations as in Section 10.1, we would

like to use φ- min to show that (i) the �expected progress� after one iteration is good and (ii) there
is a vector v which achieves this expected progress. Concretely, the plan is to prove that there exists
a vector v with

φ- min(pA+vvT ) ≥ φ- min
(
Ex[pA+vvT ]

)
= φ- min

(
pA −

1

k
· p′A

)
≥ φ- min(pA) +

1

k + φ
. (11.1)

The equality is from Exercise 11.8. We will prove the last inequality in the next subsection, and
then the �rst inequality in the subsection after. Assume the two inequalities in Equation 11.1 always
hold. Then, by induction, after k iterations,

λmin(pAk) ≥ 1

φ
+ φ- min(pAk) ≥ 1

φ
+ φ- min(pA0) +

k

k + φ
= −n− 1

φ
+

k

k + φ
,

where the �rst inequality is from Exercise 11.7. Some calculations show that choosing

φ =
(n− 1)k√

(n− 1)k − (n− 1)
=⇒ λmin

(∑
i∈S

viv
T
i

)
≥
(

1−
√
n− 1

k

)2

.

This proves Theorem 11.2. It remains to prove the two inequalities in Equation 11.1 in the following
two subsections.

Shifting Lower Barrier

It turns out that the techniques developed for the barrier functions in Chapter 10 can be used to
bound the maximum and minimum root of a real-rooted polynomial as well. The following lemma is
from Lemma 4.3 of [MSS21], proving the last inequality in Equation 11.1. The proof is very similar
to the proofs in Lemma 10.8 and Lemma 10.10 for the lower barrier function, just rephrased in the
language of polynomials.

Lemma 11.9 (Lower Barrier Shift [MSS21]). If p is real-rooted and s, φ > 0, then p − sp′ is real
rooted and

φ- min
(
p− sp′

)
≥ φ- min(p) +

1
1
s + φ

.

Proof. It is well known and we will prove it in the next chapter that p − sp′ is real-rooted if p is.
Let l = φ- min(p) such that l is the minimum value with Φp(l) = φ. Let

δ :=
1

1
s + φ

.
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To prove the lemma, we will prove that (i) l+ δ < λmin(p− sp′) and (ii) Φp−sp′(l+ δ) ≤ φ, and this
would imply that φ- min(p− sp′) ≥ l + δ = φ- min(p) + δ.

For (i), we claim that

λmin(p− sp′) ≥ λmin(p) ≥ φ- min(p) +
1

φ
> l + δ.

The second inequality is from Exercise 11.7 and the third inequality is from the de�nition of δ.
To see the �rst inequality, note that p(y) and −s · p′(y) with s > 0 have the same sign for all
y < λmin(p), and thus any y < λmin(p) cannot be a root of p(y) − s · p′(y), which implies that
λmin(p− sp′) ≥ λmin(p).

For (ii), we write Φp−sp′ in terms of Φp = −p′/p so that

Φp−sp′ = −(p− sp′)′

p− sp′
= −((1 + sΦp)p)

′

(1 + sΦp)p
= −p

′

p
−

sΦ′p
1 + sΦp

= Φp −
Φ′p

1
s + Φp

,

whenever all the quantities are �nite, which happens everywhere except at the roots of p and p−sp′.
Since l + δ is below the roots of p and p− sp′, it follows that

Φp−sp′(l + δ) = Φp(l + δ)−
Φ′p(l + δ)

1
s + Φp(l + δ)

= Φp(l) + (Φp(l + δ)− Φp(l))︸ ︷︷ ︸
loss

−
Φ′p(l + δ)

1
s + Φp(l + δ)︸ ︷︷ ︸

gain

.

Therefore,

Φp−sp′(l + δ) ≤ Φp(l) = φ ⇐⇒ Φp(l + δ)− Φp(l) ≤
Φ′p(l + δ)

1
s + Φp(l + δ)

. (11.2)

As in Lemma 10.10, using convexity of Φp(l) will get us close but not enough; see Remark 11.10. So
we need to work a bit harder as in Lemma 10.10. Using 1

s = 1
δ − φ and rearranging, the condition

in Equation 11.2 is equivalent to(
Φp(1 + δ)− Φp(l)

)2 ≤ Φ′p(l + δ)− 1

δ

(
Φp(1 + δ)− Φp(l)

)
.

This is exactly what Claim 10.11 proved, which completes the proof of (ii) that Φp−sp′(l+δ) ≤ φ.

Remark 11.10 (Convexity Not Enough). Using convexity Φp(l + δ) − Φp(l) ≤ δ · Φ′p(l + δ) in
Exercise 10.4, the condition in Equation 11.2 holds if

δ · Φ′p(l + δ) ≤
Φ′p(l + δ)

1
s + Φp(l + δ)

⇐⇒ δ ≤ 1
1
s + Φp(l + δ)

,

but we cannot conclude that δ being 1/
(

1
s +Φp(l)

)
= 1/

(
1
s +φ

)
su�ces to maintain the nonincreasing

potential. This is the same situation as in Lemma 10.10.

Common Interlacing

Now we would like to prove the �rst inequality in Equation 11.1. In general, given real-rooted
polynomials p1, . . . , pm and a convex combination q :=

∑m
i=1 µipi of them, there may not be any
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useful relations between the roots of p1, . . . , pm and q. For example, q may not have real roots even if
p1, . . . , pm are all real-rooted, so we cannot hope to prove inequalities such as max1≤i≤m{λmin(pi)} ≥
λmin(q). We will discuss more in the next chapter.

An important observation of Marcus, Spielman, and Srivastava is that if p1, . . . , pm have a �common
interlacing�, then we can relate the roots of p1, . . . , pm and the roots of q and prove the inequality
max1≤i≤m{λmin(pi)} ≥ λmin(q) and more. We will introduce interlacing polynomials properly in
the next chapter. After reading the next chapter, it will be a good exercise to prove that the
polynomials

p1 := pA+v1vT1
+

1

φ
p′
A+v1vT1

, . . . , pm := pA+vmvTm
+

1

φ
p′A+vmvTm

have a common interlacing, to establish the �rst inequality in Equation 11.1.

Problem 11.11 (Interlacing Property of φ-min). If p1, . . . , pm are real-rooted polynomials that have
a common interlacing, then for any expected polynomial q =

∑m
i=1 µipi with

∑m
i=1 µi = 1 and µi ≥ 0

for 1 ≤ i ≤ m, there exists i ∈ [m] with

φ- min(pi) ≥ φ- min(q).

Assuming Problem 11.11, we have completed the proof of Theorem 11.2 using polynomials.

11.3 Regret Minimization

The original proof of Theorem 11.2 is based on the regret minimization framework developed
in [ALO15]. The general idea in regret minimization is to �nd some distributions of experts that are
almost as good as the best experts. I won't be able to introduce regret minimization properly, but
let me try to give an informal high level idea of the regret minimization framework in the speci�c
setting of spectral rounding.

In the minimum eigenvalue problem in Theorem 11.2, the objective is to �nd a (multi-)subset S
with large λmin

(∑
i∈S viv

T
i

)
, or equivalently a (multi-)subset S such that xT

(∑
i∈S viv

T
i

)
x is large

for all vectors x ∈ Rn on the unit sphere. In this problem, we think of each direction x on the
unit sphere as an expert. In each iteration t, given the current solution At, the regret minimization
framework would maintain a �smart� probability distribution µt on the unit sphere, which puts
higher probability on x if xTAtx is small and a lower probability on x if xTAtx is large. In words,
the probability distribution puts more focus on the directions that the current solution At has not
covered well. The distribution is summarized succinctly by a density matrix Pt =

∫
xxTdµt. This

density matrix guides us naturally to add a vector vt that maximizes the inner product 〈vivTi , Pt〉
to At, to cover the directions that are not covered well. The analysis in the regret minimization
framework proves that if the probability distributions µt are smart, then the �regret�∑

t≥1

〈vtvTt , Pt〉 − min
x∈Rn:‖x‖=1

∑
t≥1

〈vtvTt , xxT 〉

of using Pt over time instead of focusing on the worst directions (or best experts) is small. So, if
we could always �nd a vector vt in each iteration with a large inner product with Pt, which we
can because of the isotropy condition, then we can conclude that

∑
t〈vtvTt , Pt〉 is large and hence

minx
∑

t≥1〈vtvTt , xxT 〉 = minx x
T
(∑

t≥1 vtv
T
t

)
x = λmin

(∑
t≥1 vtv

T
t

)
is also large.
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A versatile and commonly used approach to maintain the distributions is by the multiplicative
weight update method. If we use it for spectral sparsi�cation, then we can recover the O(n log n/ε2)
result by Spielman and Srivastava in Theorem 9.9.

The insight in [ALO15] is that the barrier functions used by Batson, Spielman and Srivastava in
De�nition 10.3 can be interpreted as a new way of updating the probability distributions, by setting
Pt = (φAt− ltI)−2 where At is the current solution and lt is chosen such that Pt < 0 and Tr(Pt) = 1.
This can be integrated into the regret minimization framework to give the following regret bound:

λmin

(
τ∑
t=1

vtv
T
t

)
≥ −2

√
n

φ︸ ︷︷ ︸
initial lower bound

+
τ∑
t=1

〈
vtv

T
t , Pt

〉
1 + φ

〈
vtvTt , P

1/2
t

〉︸ ︷︷ ︸
increase of φ-soft-min

(11.3)

where we should interpret φ as the same parameter in soft-min, the negative term is the initial lower
bound in the barrier method, and each term in the summation as the increase of the φ-soft-min.
Using the isotropy condition

∑m
i=1 viv

T
i = In, it is possible to show that there always exists a vector

with a large increase of φ-soft-min to prove Theorem 11.2.

Local Search

In applications of spectral rounding or the minimum eigenvalue problem, often we are given x ∈
[0, 1]m and we would like to �nd z ∈ {0, 1}m instead of just z ∈ Zm. This is called the �without
repetition� setting, where each vector can be chosen at most once, which is a more general setting
than the �with repetition� setting, where each vector can be chosen more than once. In [ALSW17],
it was shown that the same greedy algorithm can only achieve a constant factor approximation
algorithm, not the (1± ε)-approximation algorithm in Problem 11.3 when k ≥ n/ε2.
An interesting new idea in [ALSW21] is to analyze a local search algorithm, where we start from
an arbitrary subset S0 with k vectors, and in each iteration t ≥ 1 we �nd a pair it−1 ∈ St−1 and
jt−1 /∈ St−1 and set St := St−1 − it−1 + jt−1. This guarantees that each vector is chosen at most
once. They developed the following rank-two update formula for regret minimization:

λmin

(∑
l∈St

vlv
T
l

)
≥ −2

√
n

φ
+

τ∑
t=1

( 〈
vjtv

T
jt
, Pt
〉

1 + 2φ
〈
vjtv

T
jt
, P

1/2
t

〉 − 〈
vitv

T
it
, Pt
〉

1− 2φ
〈
vitv

T
it
, P

1/2
t

〉), (11.4)

and used it to get the same result as in Theorem 11.2 in the more challenging without repetition
setting. It would be interesting to recover this result using the polynomial approach in Section 11.2.
See Problem 11.14 for a possible starting point.

Randomized Local Search

The local search approach in [ALSW21] is extended in [LZ20] to handle linear constraints as de-
scribed in De�nition 11.1. The idea is to randomly choose a vector vit to remove from St−1 with

probability proportional to (1 − xi) ·
(
1 + 2α

〈
vjtv

T
jt
, P

1/2
t

〉)
, where xi is the fractional value of the

i-th vector and the other term is in the denominator in Equation 11.4, and similarly choose a vector

vjt to add to St−1 with probability proportional xj ·
(
1 − 2φ

〈
vitv

T
it
, P

1/2
t

〉)
. Informally, the terms

(1−xi) and xj are to ensure that the linear constraints are approximately preserved, and the terms
from the denominators in Equation 11.4 are to ensure that the minimum eigenvalue is improving.
The proof is by showing that these sums are concentrated around their expected values.
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In [LZ21], it was shown that this randomized local search approach gives the best known algorithms
for experimental design problems, where for D/A-design the randomized local search algorithm
achieves a (1± ε)-approximation when k & n/ε, better than the requirement k & n/ε2 for E-design.

Again, it would be interesting to recover these results using the polynomial approach in Section 11.2.

Two-Sided Spectral Rounding

We will study the two-sided spectral rounding problem in De�nition 11.1 in the second part of the
course.

11.4 Problems

Problem 11.12 (Total E�ective Resistance). Let LG be the Laplcian matrix of a graph G = (V,E).

Recall that Re�G(u, v) = (χu−χv)TL†G(χu−χv) is the e�ective resistance between vertices u, v ∈ V .
Show that |V | · Tr(L†G) = 1

2

∑
u,v∈V Re�G(u, v). Use this fact with Theorem 11.2 to obtain an

approximation algorithm for minimizing the total e�ective resistance subject to the constraint that
the (multi-)subgraph has at most k edges.

Problem 11.13 (Upper Barrier Shift). Prove the following analog of Lemma 11.9 for the upper
barrier function. If p has real roots and s, φ > 0, then p− sp′ is real-rooted and

φ- max
(
p− sp′

)
≤ φ- max(p) +

1
1
s − φ

.

Problem 11.14 (Expected Polynomial After Removal). This problem might be helpful in obtaining
the bound in Theorem 11.2 in the more challenging without repetition setting using the polynomial
approach. Suppose the current solution A has k vectors say v1, . . . , vk ∈ Rn. Show that the expected
characteristic polynomial after removing a uniformly random vector is

E
[
pA−vvT (y)

]
:=

1

k

k∑
i=1

pA−vivTi
(y) =

(
1− n

k

)
· pA(y) +

y

k
· p′A(y).

Question 11.15 (Improved Approximation Ratio when k = n). Is it possible to improve the
Θ(1/n2) minimum eigenvalue bound in Theorem 11.2 when k = n?
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Method of Interlacing Polynomials

Marcus, Spielman, and Srivastava [MSS14] turned the heuristic argument from [BSS14] about ex-
pected characteristic polynomial described in Section 10.1 into a powerful probabilistic method. We
have already previewed this method in a simple form in Section 11.2 without seeing the details.
In this chapter, we will go through the relevant concepts and describe the method in its general
form. Then we will see an interesting and relatively simple application to the restricted invertibility
problem, in two di�erent ways.

12.1 New Probabilistic Method

In standard probabilistic method, we compute the expectation of a random variable E [X], and
then conclude that there is an outcome in the sample space with value at least or at most E [X].
Consider the minimum eigenvalue problem in Theorem 11.2, in which the quantity of interest is
λmin(

∑
i∈S viv

T
i ) for some multi-subset S with |S| = k. To prove that there is a multi-subset with

large minimum eigenvalue, the standard way is to compute µ := ES:|S|=k
[
λmin

(∑
i∈S viv

T
i

)]
and

then conclude that there is a mult-subset S with |S| = k and λmin(
∑

i∈S viv
T
i ) ≥ µ.

Marcus, Spielman, and Srivastava took an unusual route to solve this kind of problems. First,
instead of working with the random matrix A =

∑
i∈S viv

T
i directly, they consider the characteristic

polynomial pA(x) = det(xI −A) of the random matrix. Note that λmin(A) is simply the minimum
root of the characteristic polynomial λmin(pA). Then, quite surprisingly, instead of computing the
expected minimum eigenvalue of a random characteristic polynomial EA[λmin(pA)], they compute
the minimum eigenvalue of the expected polynomial λmin

(
EA[pA]

)
. The following is an instantiation

of their new probabilistic method for the minimum eigenvalue problem, when each vector is chosen
independently and uniformly randomly.

Proposition 12.1 (Probabilistic Method for Minimum Eigenvalue). Suppose v1, . . . , vm ∈ Rn are
vectors with

∑m
i=1 viv

T
i = In. For any k ≥ n, suppose r1, . . . , rk are independent uniformly random

vectors in {v1, . . . , vm} and let A :=
∑k

i=1 rir
T
i be a random matrix. Then, with positive probability,

λmin(pA) ≥ λmin

(
E[pA]

)
.

In general, E [λmin(pA)] 6= λmin(E [pA]), and in fact the latter term could be bigger than the former
term, and so this proposition is not trivial at all.

Characteristic polynomials have not played an important role in much of spectral graph theory. One
disadvantage for instance is that the information about the eigenvectors is lost. Very interestingly,

117



Eigenvalues and Polynomials

the method by Marcus, Spielman, and Srivastava showed that they often satisfy a number of very
nice algebraic identities and are amenable to a set of very elegant analytic tools that do not naturally
apply to matrices.

12.2 Interlacing Polynomials

Let p1, . . . , pm be real-rooted polynomials and q =
∑m

i=1 µipi be a convex combination of p1, . . . , pm
where

∑m
i=1 µi = 1 and µi ≥ 0 for 1 ≤ i ≤ m. Under what conditions can we conclude that say

maxi λmin(pi) ≥ λmin(q)? In general, it could be far from true. For example, p1 = (x − 1)(x − 2)
and p2 = (x− 3)(x− 4) are both real-rooted, but their average 1

2(p1 + p2) is not even real-rooted.
Even if assume p1 + p2 is real-rooted, there is in general no simple relationship between the roots
of two polynomials and the roots of their average.

The main insight of Marcus, Spielman and Srivastava is that in several problems of interest, the
(characteristic) polynomials satisfy some interlacing properties that would allow us to conclude that
maxi λmin(pi) ≥ λmin(q).

De�nition 12.2 (Interlacing Polynomials). Let p be a degree n polynomial with real roots α1 ≥
. . . ≥ αn and let q be a degree n or n− 1 polynomial with real roots β1 ≥ . . . ≥ βn (ignoring βn in
the degree n− 1 case). We say that q interlaces p if their roots alternate and the largest root belongs
to p such that

α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . βn−1 ≥ αn ≥ βn.

De�nition 12.3 (Common Interlacing). A set of degree n real-rooted polynomials p1, . . . , pm is said
to have a common interlacing if there is a polynomial q that interlaces each pi for 1 ≤ i ≤ m.

Equivalently, p1, . . . , pm have a common interlacing if there are inner-disjoint intervals I1 ≥ I2 ≥
. . . ≥ In on the real line such that the k-th largest root of each pi for 1 ≤ i ≤ m is contained in Ik

An important class of interlacing polynomials are characteristic polynomials of matrices under rank-
one updates. The following is also called Cauchy's interlacing theorem, and one can prove it in a
similar way as in Cauchy's interlacing Theorem 2.13, using Courant-Fischer Theorem 2.12.

Exercise 12.4 (Cauchy's Interlacing Theorem). Let A ∈ Rn×n be a real symmetric matrix and
v ∈ Rn. Then pA interlaces pA+vvT .

Note that Exercise 12.4 implies that if A ∈ Rn×n is a symmetric matrix and v1, . . . , vm ∈ Rn, then
pA+v1vT1

, . . . , pA+vmvTm
have a common interlacing.

Common Interlacing and Probabilistic Method

If p1, . . . , pm have a common interlacing, then any convex combination q of p1, . . . , pm is also real-
rooted and we can compare the roots of p1, . . . , pm with the roots of q. The proof is a simple
application of the intermediate value theorem in the interval Ij for the j-th root for each j.

Theorem 12.5 (Probabilistic Method for Common Interlacing Polynomials). Suppose p1, . . . , pm
are real-rooted polynomials of degree n with positive leading coe�cients. Let λk(pj) be the k-th largest
root of pj. If p1, . . . , pm have a common interlacing, then for any non-negative numbers µ1, . . . , µm
with

∑m
i=1 µi = 1 and for any 1 ≤ k ≤ n,

min
j
λk(pj) ≤ λk

(
Ej∼µ[pj ]

)
≤ max

j
λk(pj)
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Proof. Let q =
∑m

i=1 µipi. Let u = maxj λmax(pj) and l = minj λmax(pj). We would like to argue
that λmax(q) is contained in [l, u].

First, we argue that λmax(q) ≤ u. As p1, . . . , pm all have positive leading coe�cients, all polynomials
are positive in the range (u,∞). As q is a convex combination of p1, . . . , pm, so q is also positive in
the range (u,∞). Therefore, q cannot have a root in the range (u,∞), and thus λmax(q) ≤ u.

Next, we argue that λmax(q) ≥ l. If l = u, then pj(u) = 0 for all 1 ≤ j ≤ m, and thus q(u) = 0
and hence λmax(q) = u ≥ l. Henceforth we assume l < u. On one hand, note that q(u) > 0 as
each pj(u) ≥ 0 and there exists i with pi(u) > 0 (e.g. the one with λmax(pi) = l < u). On the
other hand, since p1, . . . , pm have a common interlacing, λ2(pj) ≤ l for each j, and since p1, . . . , pm
all have positive leading coe�cients, each polynomial pj is non-positive in the range [λ2(pj), λ1(pj)]
with λ2(pj) ≤ l and λ1(pj) ≥ l for all 1 ≤ j ≤ m. Therefore, pj(l) ≤ 0 for all 1 ≤ j ≤ m, and thus
q(l) ≤ 0. Since q(u) > 0 and q(l) ≤ 0, by the intermediate value theorem, there exists r ∈ [l, u)
such that q(r) = 0, and therefore λmax(q) ≥ l.

A similar argument works for any 1 ≤ k ≤ n and is left to the reader (see Lemma 2.11 of [MSS21]).
It may be more convenient for the argument to �rst reduce to the case when p1, . . . , pm have no
common roots.

So, if we could show that a set of polynomials have a common interlacing, then we can apply
Theorem 12.5 to show that there exists a polynomial with large/small k-th largest root by showing
that some weighted average polynomial has large/small k-th largest root.

Common Interlacing and Real-Rootedness

We are thus interested in some general techniques to prove that a set of polynomials have a common
interlacing. Note that Theorem 12.5 proves that if p1, . . . , pm are real-rooted and have a common
interlacing, then any convex combination of p1, . . . , pm is also real-rooted. It turns out that the
converse is also true. This gives us a characterization when a set of real-rooted polynomials have a
common interlacing. We use the following simple fact in the proof.

Exercise 12.6 (Common Interlacing is a Pairwise Property). A set of polynomials p1, . . . , pm have
a common interlacing if and only if each pair of polynomials pi, pj have a common interlacing for
all 1 ≤ i 6= j ≤ n.

We also use the following well-known result from elementary complex analysis without proof.

Theorem 12.7 (Continuity of Roots). The roots of a polynomial are continuous functions of its
coe�cients.

Theorem 12.8 (Common Interlacing and Real-Rootedness). If p1, . . . , pm are degree n polynomials
and all of their convex combinations

∑m
i=1 µipi are real-rooted, then p1, . . . , pm have a common

interlacing.

Proof. By Exercise 12.6, we only need to prove the lemma for two polynomials. We assume without
loss of generality that p1 and p2 have no common roots, as otherwise we can just divide both poly-
nomials by their common factors, prove that the resulting polynomials have a common interlacing,
and conclude that the original polynomials also have a common interlacing.
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Let qµ = (1− µ) · p1 + µ · p2 for µ ∈ [0, 1]. If we keep track of the roots of qµ from µ = 0 and µ = 1
as a continuous function of µ, then each root of qµ is a continuous curve on the complex plane as µ
varies from 0 to 1 by Theorem 12.7. Since each qµ is real-rooted by assumption, the curve of each
root j is an interval Jj on the real line, with one endpoint being a root of p1 and the other endpoint
being a root of p2.

We would like to argue that these intervals are pairwise inner-disjoint (i.e. they are disjoint except
possibly at the endpoints). Suppose to the contrary that this is not the case, that one endpoint of
an interval is contained in the interior of some other interval. This implies that some root r of a
polynomial, say p1, is a root of qµ for some 0 < µ < 1, but then

0 = qµ(r) = (1− µ) · p1(r) + µ · p2(r) = µ · p2(r) =⇒ p2(r) = 0,

contradicting that p1 and p2 have no common roots. Therefore, these intervals are pairwise inner-
disjoint. This implies that the intervals can be arranged so that J1 ≥ J2 ≥ . . . ≥ Jn, and thus p1

and p2 have a common interlacing.

By Theorem 12.8, to prove a set of polynomials have a common interlacing (in order to apply
the probabilistic method), it is equivalent to proving that all convex combinations of any two
polynomials are real-rooted. In the next chapter, we will study methods to prove that a polynomial
is real-rooted.

Di�erential Operators and Common Interlacing

In Section 10.1 and in Section 11.2, the expected characteristic polynomials are of the form (1−s∂)p
for some scalar s. With the results in the previous subsections, we can show that this di�erential
operator preserves real-rootedness and also common interlacing.

Problem 12.9 (Di�erential Operators and Common Interlacing). Prove that if p is real-rooted, then
(1− s∂)p is also real-rooted. Furthermore, prove that if p1, . . . , pm have positive leading coe�cients
and a common interlacing, then (1− s∂)p1, . . . , (1− s∂)pm also have a common interlacing.

With Problem 12.9, it should be straightforward to solve Problem 11.11, and thus completing the
proof of Theorem 11.2 using a simple version of the method of interlacing polynomials.

12.3 Interlacing Family

Recall that in Proposition 12.1, the goal is to prove that there is a positive probability that a random
matrix A =

∑k
i=1 rir

T
i satis�es λmin(pA) ≥ λmin

(
E[pA]

)
, where there are mk possibilities of A. To

prove this statement by directly applying the probabilistic method in Theorem 12.5, we need to
prove that these mk di�erent characteristic polynomials have a common interlacing. A moment of
thought reveals that this is clearly not true in general.

The idea of Marcus, Spielman, and Srivastava is to build a tree structure among these polynomials
and show that the children of each internal node have a common interlacing. This idea is similar
to the method of conditional expectations used in derandomization.

De�nition 12.10 (Interlacing Family). An interlacing family consists of a �nite rooted tree T and
a labeling of the nodes v ∈ T by monic real-rooted polynomials pv(x) ∈ R[x], with two properties:
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1. Every polynomial pv(x) corresponding to a non-leaf node v is a convex combination of the
polynomials corresponding to the children of v.

2. For all nodes v1, v2 ∈ T with a common parent, all convex combinations of pv1(x) and pv2(x)
are real-rooted.

We say that a set of polynomials is an interlacing family if they are the labels of the leaves of such
a tree.

Note that, by Theorem 12.8 and Exercise 12.6, the second condition implies that all the children
have a common interlacing, and it follows from Theorem 12.5 that all convex combinations of all
children are real-rooted.

The above de�nition may look a bit abstract, but in applications the root polynomial will usually
simply be the average polynomial of all the leaves, while the internal nodes will usually simply be
the average polynomial of the leaves of the corresponding subtrees. Let us see a concrete example
that is useful for the minimum eigenvalue problem in Theorem 11.2.

Example 12.11 (Interlacing Family of Multi-Subset of k Vectors). Let v1, . . . , vm ∈ Rn. For any
s1, . . . , sk ∈ [m], de�ne

ps1,...,sk(x) := det

(
xIn −

k∑
i=1

vsiv
T
si

)
.

The tree T is a complete m-ary tree, with depth k, and thus mk leaves. Each leaf of the tree is
labeled by a sequence s1, . . . , sk, representing a path from the root to the leaf, where si represents
the si-th child of the internal node in the (i− 1)-th level, with the root being in the 0-th level. The
polynomials in the internal nodes are de�ned inductively as

ps1,...,st(x) =
1

m

m∑
j=1

ps1,...,st,j(x) =
1

mk−t

∑
st+1,...,sk

ps1,...,sk(x)

for any t < k and the root polynomial is

p∅(x) =
1

mk

∑
s1,...,sk∈[m]k

ps1,...,sk(x).

We will prove in the next chapter that these polynomials P :=
{
ps1,...,sk(x)

}
s1,...,sk∈[m]k

form an

interlacing family.

It may not be easy to establish that a set of polynomials forms an interlacing family, and in some
applications the theory of real stable polynomials is needed to prove so, which we will study in the
next chapter.

But once we have established that a family is an interlacing family, we can then easily relate the
roots of the root-polynomial to the roots of the polynomials in the leaves. The following theorem
follows from a simple induction using Theorem 12.5.

Theorem 12.12 (Probabilistic Method for Interlacing Family). Let P be an interlacing family of
degree n polynomials with root labeled by p∅(x) and leaves by {pl(x)}l∈L where L is the set of leaves.
Then, for any 1 ≤ j ≤ n, there exist leaves a ∈ L and b ∈ L such that

λj(pa) ≤ λj(p∅) ≤ λj(pb).
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Proof. The proof is by a simple induction on the depth of the internal node. By Theorem 12.8,
the second condition in De�nition 12.10 implies that every pair of children of the root node have
a common interlacing. By Exercise 12.6, it follows that all the children of the root node have a
common interlacing. Then, Theorem 12.5 proves that there is a child a1 of the root node with
λj(pa1) ≤ λj(p∅) and there is a child b1 of the root node with λj(pb1) ≥ λj(p∅). By induction, there
is a leaf node a in the subtree of a1 with λj(pa) ≤ λj(pa1) ≤ λj(p∅), and there is a leaf node b in
the subtree of b1 with λj(pb) ≥ λj(pb1) ≥ λj(p∅).

12.4 Restricted Invertibility

In this section, we see an interesting application of the techniques developed so far to the restricted
invertibility problem. This is not the �rst application of the method of interlacing family, but it is
the simplest as it only involves univariate polynomials, and so we present it �rst to separate the
ideas of the interlacing family method from the theory of real-stable (multivariate) polynomials.

The restricted invertibility problem is a well-studied problem in functional analysis, which says
that a matrix of high stable rank has a large column submatrix with large smallest singular value.
We consider an equivalent formulation that is very close to the minimum eigenvalue problem in
Theorem 11.2.

De�nition 12.13 (Restricted Invertibility Problem). Given v1, . . . , vm ∈ Rn and an integer k < n,
�nd a subset S ⊆ [m] with |S| = k to maximize λk

(∑
i∈S viv

T
i

)
, where λk(A) denotes the k-th

largest eigenvalue of matrix A.

To illustrate the method of interlacing family, we only consider the special �isotropy� case when∑m
i=1 viv

T
i = In. We remark that, unlike the minimum eigenvalue problem, it is no longer true

that the general case can be reduced to this special case, because of k < n. Marcus, Spielman, and
Srivastava [MSS21] used the method of interlacing family to derive a sharp result in the isotropy
case.

Theorem 12.14 (Restricted Invertibility in the Isotropy Case). Suppose v1, . . . , vm ∈ Rn are vectors
with

∑m
i=1 viv

T
i = In. Then, for every integer k ≤ n, there exists a subset S ⊂ [m] with |S| = k and

λk

(∑
i∈S

viv
T
i

)
≥
(

1−
√
k

n

)2 n

m
.

Although this result is sharp for a large regime of k, we do not know whether it is tight when k ≈ n.
The following question is closely related to Question 11.15

Question 12.15 (Restricted Invertibility when k ≈ d). When m = O(n) and k = n− 1, the lower
bound in Theorem 12.14 is Ω(1/n2). Is this tight? To my knowledge, the best lower bound that we
can hope for in this regime is Ω(1/n).

Ravichandran [Rav18] presented a di�erent way to use the interlacing family method to derive the
results in [MSS21], with an additional application of proving a quantitative Gauss-Lucas theorem
which we may mention later. We will present both approaches, as this will allow us to see two
di�erent interlacing families for the problem.
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Interlacing Family of Multi-Subset of Vectors

The proof in [MSS21] uses the interlacing family that we described in Example 12.11. We have not
proved that it is indeed an interlacing family yet, but we assume it is in this subsection. Then,
to apply the probabilistic method in Theorem 12.12, we just need to compute the polynomial in
the root of the tree and bound its k-th eigenvalue. The calculations for the expected characteristic
polynomial in Section 10.1 and in Exercise 11.8 can be used to compute the root polynomial from
the leaves up.

Exercise 12.16 (Root Polynomial in Example 12.11). When
∑m

i=1 viv
T
i = In, the root polynomial

p∅ in Example 12.11 is

p∅(x) =

(
1− 1

m
∂x

)k
xn

Note that the k-th largest root of p∅(x) is simply the smallest root of the polynomial x−(n−k)p∅(x) =

x−(n−k)
(
1− 1

m∂x
)k
xn. Marcus, Spielman, and Srivastava observed that it is a slight transformation

of an associated Laguerre polynomial and a known result by Krasikov implies that

λk(p∅) ≥
(

1−
√
k

n

)2 n

m
.

Therefore, we can conclude from Theorem 12.12 that there is a leaf with the k-th largest eigenvalue
at least λk(p∅), proving Theorem 12.14.

It is quite amazing that the method of interlacing family reduces the restricted invertibility problem
to a pure mathematical problem of bounding the smallest root of a well-known polynomial. So,
the heuristic argument in Section 10.1 can indeed be made precise, using the method of interlacing
family, at least for the restricted invertibility problem.

Question 12.17 (Polynomial Proof for Spectral Sparsi�cation). Can you prove the spectral spar-
si�cation result in Theorem 10.1 by turning the heuristic argument in Section 10.1 into a precise
proof (possibly using the method of interlacing family of polynomials)?

Interlacing Family of Principle Submatrices

Ravichandran's approach is based on the family of characteristic polynomials of principal submatri-
ces of a matrix. Let A ∈ Rn×n be a real symmetric matrix. For 1 ≤ i ≤ n, let A{i} ∈ R(n−1)×(n−1)

be the principal submatrix of A obtained by deleting the i-th row and i-th column of A. Note
that the characteristic polynomials pA{1} , . . . , pA{n} of A{1}, . . . , A{n} have a common interlacing by
Cauchy's interlacing Theorem 2.13. So, by Theorem 12.5,

max
i

{
λmax

(
A{i}

)}
≥ λmax

( m∑
i=1

pA{i}

)
≥ min

i

{
λmax

(
A{i}

)}
.

Ravichandran noted that there is a very nice formula for
∑m

i=1 pA{i} and observed that it can be
used to de�ne an interlacing family of the characteristic polynomials of principal submatrices.

Theorem 12.18 (Thompson's Theorem [Tho66]). Let A ∈ Rn×n be a real symmetric matrix, and
let A{1}, . . . , A{n} be the (n− 1)× (n− 1) principal submatrices of A. Then

m∑
i=1

pA{i} = p′A.
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Theorem 12.19 (Interlacing Family of Principal Submatrices [Rav18]). Let A ∈ Rn×n be a real
symmetric matrix. For S ⊆ [n], let AS be the principal submatrix of A obtained by deleting the rows
and columns of S. For any 0 ≤ k ≤ n, the set of characteristic polynomials {pAS}|S|=k forms an

interlacing family, with the root polynomial being p
(k)
A (x) which is the k-th derivative of pA(x).

Proof. There are
(
n
k

)
polynomials in this family. We organize them as the leaves of a tree T of depth

k, where each node in T at depth i corresponds to a subset S ⊆ [n] of size i and a principle matrix
AS of size (n − i) × (n − i). The root is at depth 0, and it corresponds to the empty set and the
original matrix A∅ = A. The i-th node at depth 1 corresponds to the singleton subset {i} and the
principal submatrix A{i}. Inductively, given a node of T at depth i which corresponds to a subset
X ⊆ [n] of size i, it has n− i children which correspond to the subsets X ∪{j} for each j ∈ [n] \X.
The tree then has n × (n − 1) × . . . × (n − k + 1) = k! ·

(
n
k

)
leaves, where each subset of size k is

associated with k! leaves of T (one for each permutation).

Next we de�ne the polynomials in the nodes of T . For a leaf node, let S be the corresponding subset
of size k, the polynomial is simply pAS which is the characteristic polynomial of AS . Inductively,
from the leaves to the root, the polynomial of an internal node of T is de�ned as the sum of the
polynomials of its children.

Now we compute the polynomials in the nodes of T . The leaves at depth k are the base cases. For
a node at depth k − 1, it corresponds to a subset X ⊆ [n] of size k − 1, with the polynomials in its
children being pAX∪{j} for j ∈ [n] \X. By Thompson's Theorem 12.18,∑

j∈[n]\X

pAX∪{j} = p′AX .

For a node at depth l which corresponds to a subset Y ⊆ [n] of size l, the induction hypothesis is

that the polynomials at its children are p
(k−l−1)
AY ∪{j}

for j ∈ [n] \Y . Then, by Thompson's theorem, the

polynomial at this node is

∑
j∈[n]\Y

p
(k−l−1)
AY ∪{j}

=

( ∑
j∈[n]\Y

pAY ∪{j}

)(k−l−1)

=
(
p′AY

)(k−l−1)
= p

(k−l)
AY

,

proving the induction step. Therefore, for the root node, the polynomial is p
(k)
A as stated.

Finally, we check that these polynomials satisfy the conditions in De�nition 12.10. Property (1) is
satis�ed as the polynomial at a non-leaf node is the sum of the polynomials of its children, which
is the same as the average polynomial up to a scalar which does not change the locations of the
roots. For property (2), �rst we consider the case that the non-leaf node is at depth k− 1, then the
polynomials at its children have a common interlacing by Cauchy's interlacing Theorem 2.13, and
thus the second property is satis�ed by Theorem 12.8. Note that common interlacing is preserved
by the di�erential operator ∂x, using the same proof as in Problem 12.9. Therefore, for a node at

depth l which corresponds to a subset Y ⊆ [n] of size l, the polynomials p
(k−l−1)
AY ∪{j}

for j ∈ [n]−Y at its

children have a common interlacing, because pAY ∪{j} for j ∈ [n]− Y have a common interlacing by
Cauchy's interlacing theorem and applying the di�erential operator ∂x at each of these polynomials
(multiple times) preserves the common interlacing property. We conclude that the polynomials at
the leaves form an interlacing family, with the root polynomial being p(k)(A).

As a consequence, the method of interlacing family in Theorem 12.12 implies the following bound.
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Theorem 12.20 (Ravichandran's Theorem [Rav18]). Let A ∈ Rn×n be a real symmetric matrix.
There exists a subset S ⊂ [n] with |S| = k and

λmax(AS) ≤ λmax

(
p

(k)
A

)
.

Ravichandran applies Theorem 12.20 to the restricted invertibility problem in the following way.
Given v1, . . . , vm ∈ Rn with

∑m
i=1 viv

T
i = In, let V ∈ Rn×m be the matrix with the i-th column be

vi. Consider the m×m matrix B = Im − V TV . For a subset S ⊆ [m] with |S| = k, check that

λk

(∑
i∈S

viv
T
i

)
= 1− λmax

(
B[m]\S

)
.

So the restricted invertibility problem is reduced to �nding a subset X of size m − k with small
maximum eigenvalue λmax(BX). Using Theorem 12.20,

max
S:|S|=k

λk

(∑
i∈S

viv
T
i

)
= 1− min

X:|X|=m−k
λmax

(
BX
)
≥ 1−λmax

(
p

(m−k)
B

)
= 1−λmax

(
∂m−kx (x−1)m−nxn

)
,

as the matrix B has eigenvalue 1 with multiplicity m − n and eigenvalue 0 with multiplicity n,
because V TV has the same spectrum as V V T = In by Fact 2.28. Therefore, once again, we have
reduced the bound in the restricted invertibility problem to a pure mathematical problem about
the maximum root of a well-studied polynomial.

Discussions

We end with two concluding remarks. One is that instead of looking up the known results for
the roots of the speci�c polynomial in Exercise 12.16 and ∂m−kx (x − 1)m−nxn in Ravichandran's
approach, we can use the results in Lemma 11.9 and Problem 11.13 from the barrier method to
bound the roots of these polynomials. So, combining the method of interlacing family with the
barrier method would give self-contained proofs of Theorem 12.14.

Another is that the proofs are constructive in that they give polynomial time algorithms to �nd
such a subset. We leave this to the reader to check.
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Real Stable Polynomials

To use the method of interlacing family of polynomials in Chapter 12, we need to check whether a
set of polynomials p1, . . . , pm have a common interlacing, and this is reduced to checking whether
all convex combinations q =

∑m
i=1 µipi are real-rooted polynomials by Theorem 12.8. In this

chapter, we will see some characterizations of real-rooted polynomials. The main object that we
will study is the class of real-stable polynomials, a multivariate generalization of the class of real-
rooted polynomials. We will use the techniques in the theory of real-stable polynomials to prove
that the family in Example 12.11 is an interlacing family.

13.1 Real-Rooted Polynomials

A polynomial is real-rooted if all of its roots are real numbers. One important example of real-rooted
polynomials is the characteristic polynomial of a real symmetric matrix (more generally Hermitian
matrix), as the roots are the eigenvalues of the matrix and they are real numbers by Theorem 2.5.

Besides computing all the roots of a polynomial, there is a general characterization for checking
whether a given polynomial is real-rooted.

Theorem 13.1 (Hermite-Sylvester). A polynomial p(x) =
∏n
l=1(x−λl) is a real-rooted polynomial

if and only if the n× n matrix H with Hij =
∑n

l=1 λ
i+j−2
l is a positive semide�nite matrix.

Given a polynomial in the coe�cient form p(x) =
∑n

i=0 cix
i, note that the entries of H (which

are moments of the roots) can be computed from the coe�cients e�ciently by Newton's identities,
and thus Hermite-Sylvester's theorem provides a polynomial time algorithm to check whether a
polynomial is real-rooted. We will not use this theorem to check whether a polynomial is real-
rooted, and we leave the proof as an interesting problem to solve for the reader.

Another approach to show that a polynomial p(x) is real-rooted is to start with a known real-rooted
polynomial q(x) (e.g. the characteristic polynomial of a real symmetric matrix) and show that p(x)
can be obtained from q(x) by some real-rootedness preserving operations.

Exercise 13.2 (Real-Rootedness Preserving Operations). Prove that the following operations are
real-rootedness preserving operations:

1. (Scaling:) If p(x) is real-rooted, then p(cx) is real-rooted for any c ∈ R.
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2. (Inversion:) If p(x) =
∑n

i=0 ci·xi is a degree n real-rooted polynomial, then so is the polynomial
xn · p

(
1
x

)
=
∑n

i=0 cn−i · xi.

3. (Di�erentiation:) If p(x) is a real-rooted polynomial, then so is p′(x), the derivative of p(x).

We will use this approach to prove that a polynomial is real-rooted, but in the more general multi-
variate setting which we will de�ne in the next section.

In the remainder of this section, we collect some nice properties of real-rooted polynomials. They
will not be used for the method of interlacing family of polynomials, and we refer the reader to the
course notes of Oveis Gharan [Ove20] for proofs.

Gauss-Lucas Theorem

The following theorem is a generalization of item (3) in Exercise 13.2. The proof is by considering
p′/p and writing a root of p′ but not p as a convex combination of the roots of p.

Problem 13.3 (Gauss-Lucas Theorem). If p ∈ C[x] is a non-constant polynomial with complex
coe�cients, then all roots of p′ are in the convex hull of the set of roots of p.

Ravichandran used the techniques developed for the restricted invertibility problem in Section 12.4
to prove the following quantitative generalization of the Gauss-Lucas theorem, which bounds the
area of the convex hull after many di�erentiations.

Theorem 13.4 (Quantitative Gauss-Lucas Theorem [Rav18]). Let p ∈ C[x] be a degree n polynomial
with complex coe�cients. Then, for any c ≥ 1/2,∣∣K(pdcne)∣∣ ≤ 4(c− c2)

∣∣K(p)
∣∣,

where K(p) denotes the convex hull of the roots of p and |S| denotes the area of the convex set S in
the plane.

Note that there are examples where taking the (n2 − 1)-th derivative does not decrease the area yet.

One such example is (x+ 1)n/2(x− 1)n/2.

Generating Polynomials

Given a probability distribution µ over [n], we de�ne its generating polynomial as

pµ(x) =
n∑
i=1

µi · xi.

The following is an interesting characterization of when such a generating polynomial is real-rooted.

Proposition 13.5 (Real-Rooted Generating Polynomials). The generating polynomial pµ(x) is
real-rooted if and only if µ is the distribution of a sum of independent Bernoulli random variables.

We will study in a later chapter about probability distributions with real-stable generating polyno-
mials, and we may discuss the proof of Proposition 13.5 there.

One consequence of Proposition 13.5 is that we can use Cherno� bounds to bound the coe�cient
ai = Pr[X = i] with i far away from the mean E [X] =

∑n
i=1 i · ai. From this connection, we

expect to see a Bell curve when we plot the numbers a1, . . . , an of a real-rooted polynomial with
non-negative coe�cients. This intuition can be made precise by the notion in the next subsection.
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Log-Concavity

The following is an analog of a log-concave function for a sequence.

De�nition 13.6 (Log-Concave Sequence). A sequence a0, . . . , an of non-negative numbers is said
to be log-concave if for all 0 < i < n,

ai−1 · ai+1 ≤ a2
i ⇐⇒ 1

2

(
log(ai−1) + log(ai+1)

)
≤ log(ai).

A sequence a0, . . . , an of non-negative numbers is said to be ultra log-concave if for all 0 < i < n,

ai−1(
n
i−1

) · ai+1(
n
i+1

) ≤ ( ai(
n
i

))2

We can use the operations in Exercise 13.2 to reduce a degree n real-rooted polynomial to a quadratic
real-rooted polynomial involving only ai−1, ai, ai+1, and then consider the discriminant of the re-
sulting quadratic real-rooted polynomial to prove the following result.

Problem 13.7 (Newton Inequalities). For any real-rooted polynomial p(x) =
∑n

i=0 ai · xi with
non-negative coe�cients, the sequence a0, . . . , an is ultra log-concave.

In the third part of the course, we will study log-concave polynomials and see that some sequences
from combinatorial problems are log-concave (such as the number of matchings of size i).

13.2 Real Stable Polynomials

The class of real-stable polynomials is a multivariate generalization of real-rooted polynomials.

De�nition 13.8 (H-Stable Polynomials). A multivariate polynomial p ∈ C[x1, . . . , xn] is H-stable
if p(x1, . . . , xn) 6= 0 whenever (x1, . . . , xn) ∈ Hn where H = {y ∈ C | =(y) > 0} is the upper-half of
the complex plane.

In the third part of the course, we may see some other stable polynomials where the root-free region
is di�erently speci�ed (e.g. sector-stable polynomials).

De�nition 13.9 (Real Stable Polynomials). A multivariate polynomial p is called real stable if p
is H-stable and all coe�cients of p are real numbers.

Some simple examples of real stable polynomials are p(x1, . . . , xn) = x1x2 · · ·xn and p(x1, . . . , xn) =
a1x1 + . . .+ anxn where ai > 0 for 1 ≤ i ≤ n. Some simple non-examples of real stable polynomials
are p(x1, x2) = x1 − x2 and p(x1, x2, x3, x4) = x1x2 − x3x4.

Note that it is a generalization of real-rooted univariate polynomials, using that complex roots of a
polynomial with real coe�cients come in conjugate pairs.

Exercise 13.10 (Univariate Real-Stable Polynomials). A univariate polynomial p ∈ R[x] is real
stable if and only if it is real-rooted.

Sometimes it is more convenient to check whether a multivariate polynomial is real-stable by check-
ing whether certain derived univariate polynomials are real-rooted.
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Exercise 13.11 (Univariate Restrictions). A polynomial p ∈ R[x1, . . . , xn] is real stable if and only
if for any b ∈ Rn+ and a ∈ Rn, the univariate polynomial p(a + yb) in y is not identically equal to
zero and is real-rooted.

Using Exercise 13.11, one can draw some pictures to see that the polynomial 1 − xy is real-stable
while the polynomial 1 + xy is not real-stable.

In this course, the source of all real-stable polynomials comes from determinants.

Proposition 13.12 (Source of Real-Stable Polynomials). If A1, . . . , Am ∈ Rn×n are positive semidef-
inite matrices, then p(x0, x1, . . . , xm) := det(x0I +

∑m
i=1 xiAi) is a real stable polynomial.

Proof. The plan is to show that if =(xi) > 0 for all 0 ≤ i ≤ m, then the matrix x0I +
∑m

i=1 xiAi is
of full rank, and hence det(x0I +

∑m
i=1 xiAi) 6= 0, implying real stability.

Let v ∈ Cn, and write v = c+ ıd where c ∈ Rn is the real part and d ∈ Rn is the imaginary part of
v. Let X = x0I +

∑m
i=1 xiAi, and write X as R(X) + ı=(X) where R(X) is the real part and =(X)

is the imaginary part of X. Note that if =(xi) > 0 for all 0 ≤ i ≤ m, then =(X) � 0, as Ai < 0 for
0 ≤ i ≤ m and I � 0.

We claim that Xv = 0 only if v = 0, and hence X is of full rank. To prove this, we show that
v∗Xv = (c − ıd)T (R(X) + ı=(X))(c + ıd) = 0 only if c = d = 0. Note that the imaginary part of
v∗Xv is

=
[
(c− ıd)T (R(X) + ı=(X))(c+ ıd)

]
= cT=(X)c+ dT=(X)d,

and this is equal to zero only if c = d = 0, because =(X) � 0 when =(xi) > 0 for 0 ≤ i ≤ m.

One could also prove Proposition 13.12 using the univariate restrictions in Exercise 13.11; see Oveis
Gharan's notes [Ove20].

Later, we will start from the multivariate real-stable polynomials from Proposition 13.12, and then
apply the real-stability preserving operations in the next section to prove that a univariate polyno-
mial is real-stable, and hence real-rooted by Exercise 13.10.

13.3 Real Stability Preserving Operations

There are several real-stability preserving operations, with some deep characterizations. We just
present the proofs of two operations that we need in this course, and state others without proofs.

The following operation will be useful in reducing the number of variables in the multivariate
polynomial.

Proposition 13.13 (Specialization). Let p(x1, . . . , xm) be a non-zero real-stable polynomial. For
any c ∈ R, p(c, x2, . . . , xm) is a real-stable polynomial.

Proof. It is clear that p(c, x2, . . . , xm) has real coe�cients as p has real coe�cients and c ∈ R. For
stability, consider the sequence of polynomials pk = p(c + ı2−k, x2, . . . , xm) for k ≥ 1. Note that
each pk is a H-stable polynomial (but may have complex coe�cients) as p is H-stable. The sequence
{pk}k≥1 is converging uniformly to the polynomial p(c, x2, . . . , xm).

Suppose, by contradiction, that p(c, x2, . . . , xm) has a root z2, . . . , zm with =(zi) > 0 for 2 ≤ i ≤ m.
By Hurwitz's Theorem 13.14, for any small enough ε > 0 and for every large enough k (depending
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on ε), the polynomial pk also has a root y2, . . . , ym with |yi − zi| < ε for 2 ≤ i ≤ m. By choosing
ε small enough, we still have =(yi) > 0 for 2 ≤ i ≤ m, but this means that pk has a root with all
imaginary parts positive, contradicting the H-stability of pk.

Hurwitz's theorem is from complex analysis. The following statement is from Wikipedia.

Theorem 13.14 (Hurwitz's Theorem). Let {fk}k≥1 be a sequence of holomorphic functions on a
connected open set G that converge uniformly on compact subsets of G to a holomorphic function
f which is not constantly zero on G. If f has a zero of order l at z0, then for every small enough
ρ > 0 and for su�ciently large k ∈ N (depending on ρ), fk has precisely l zeros in the disk de�ned
by |z − z0| < ρ including multiplicity. Furthermore, these zeroes converge to z0 as k →∞.

The other operation that we need is the di�erential operator that we have seen a couple of times
already. The following proposition is for univariate polynomials.

Proposition 13.15 (Partial Di�erentiation). If p ∈ C[x] is H-stable, then p+ s · p′ is H-stable for
any s ∈ R.

Proof. Since p(x) is stable, it can be written as c
∏n
j=1(x−wj) with =(wj) ≤ 0 for 1 ≤ j ≤ n. Then

p(x) + s · p′(x) = p(x)

(
1 +

n∑
j=1

s

x− wj

)
.

For z with =(z) > 0, p(z) 6= 0 as p is H-stable. Furthermore, since =(z) > 0 and =(wj) ≤ 0 for
1 ≤ j ≤ n, it follows that =

(
1

z−wj

)
< 0 for 1 ≤ j ≤ n, and thus 1 +

∑n
j=1

s
x−wj 6= 0. This proves

that g(z) + s · g′(z) 6= 0 if =(z) > 0, establishing H-stability.

This result can be generalized to multivariate polynomials easily by univariate restriction.

Corollary 13.16 (Partial Di�erentiation). If p ∈ R[x1, . . . , xm] is real-stable, then (1 + s · ∂x1)p is
real-stable for any s ∈ R.

Proof. It is clear that (1 + s · ∂x1)p has real coe�cients if p has. For any y2, . . . , ym with =(yi) > 0
for 2 ≤ i ≤ m, the polynomial q(x1) := p(x1, y2, . . . , ym) is stable by de�nition. Proposition 13.15
proves that (1 + s · ∂x1)q(x1) is also stable. This implies that (1 + s · ∂x1)p has no roots in which all
of the variables have positive imaginary part, proving stability.

The following are some other operations that preserve real-stability, whose proofs are elementary.

Exercise 13.17 (Real-Stability Preserving Operations). Let p(x1, x2, . . . , xm) and q(x1, . . . , xm) be
real-stable polynomials. Then

1. (Product:) p · q is real stable.

2. (Symmetrization:) p(x1, x1, x3, . . . , xm) is real stable.

3. (External Field:) p(c1x1, c2x2, . . . , cmxm) is real stable for any c1, . . . , cm ≥ 0.

4. (Inversion:) p
(
− 1

x1
, x2, . . . , xm

)
· xd1

1 is real stable where d1 is the degree of x1 in p.
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5. (Di�erentiation:) ∂x1p is real stable.

Borcea and Brändén characterized a class of di�erential operators that preserve real stability.

Theorem 13.18 (Borcea-Brändén Theorem). For vectors α, β ∈ Nm, let xα = xα(1) · · ·xα(n) and

∂β = ∂
β(1)
x1 · · · ∂

β(m)
xm and let D =

∑
α,β∈Nm cα,β · xα · ∂β be a di�erential operator with cα,β ∈ R

for all α, β ∈ Nm. Then D is a stability preserving operator (i.e. it maps any real-stable poly-
nomial to a real-stable polynomial) if and only if the polynomial

∑
α,β∈Nm cα,β · xα · (−w)β ∈

R[x1, . . . , xm, w1, . . . , wm] on 2m variables is real-stable.

For examples, 1 − ∂x1∂x2 is stability preserving because 1 − (−w1)(−w2) = 1 − w1w2 is a real
stable polynomial, and similarly 1 + x1∂x2 is stability preserving. For non-examples, 1 + ∂x1∂x2 is
not stability preserving as 1 + w1w2 is not a stable polynomial, and similarly 1 − ∂x1∂x2∂x3 is not
stability preserving.

Problem 13.19 (Real Stability Preserving Operators). Use Theorem 13.18, or otherwise (both are
possible), to prove the following results.

1. For any 1 ≤ k ≤ n, the k-th elementary symmetric polynomial
∑

S⊆([n]
k ) x

S is real stable.

2. Let MAP be the operator that only retains the multia�ne monomials of a given polynomial,
e.g. MAP(1 + x+ 3x3y + 2xy) = 1 + x+ 2xy. Prove that MAP is stability preserving.

See [Wag11] for a survey on real-stable polynomials, with a proof of Theorem 13.18.

13.4 Multilinear Formula, Mixed Characteristic Polynomials, and

Interlacing Family

In this section, we use the tools from real stable polynomials to prove that a generalization of the
family in Example 12.11 is an interlacing family, which will be a key component in constructing
bipartite Ramanujan graphs and resolving the Kadison-Singer problem in the next two chapters.

Mixed Characteristic Polynomial and Multilinear Formula

We consider the setting where each Ai is a random symmetric rank-one matrix with �nite sup-
port (e.g. Ai is aa

T with probability 0.6, bbT with probability 0.3, ccT with probability 0.1), and
A =

∑m
i=1Ai is a sum of independent rank-one matrices. We are interested in proving that the set

of all possible characteristic polynomials det(xI −
∑m

i=1Ai) forms an interlacing family. The fol-
lowing identity of the expected characteristic polynomial is at the heart of the approach by Marcus,
Spielman, and Srivastava.

Theorem 13.20 (Multilinear Formula). If A1, A2, . . . , Am are independent random symmetric rank-
one matrices, then

EA1,...,Am

[
det

(
λI −

m∑
i=1

Ai

)]
=

m∏
i=1

(
1− ∂xi

)
det

(
λI +

m∑
i=1

xi · E [Ai]

)∣∣∣∣
x1=x2=···=xm=0

.
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The right hand side of the multilinear formula is called the mixed characteristic polynomial of the
expected matrices E [A1] , . . . ,E [Am], which are not of rank one in general.

De�nition 13.21 (Mixed Characteristic Polynomial). The mixed characteristic polynomial of n×n
matrices B1, . . . , Bm (not necessarily rank-one) is de�ned as

µ[B1, . . . , Bm](λ) =

m∏
i=1

(
1− ∂xi

)
det

(
λI +

m∑
i=1

xi ·Bi
)∣∣∣∣

x1=x2=···=xm=0

There are di�erent proofs of Theorem 13.20. We �rst present the proof from [MSS15a] (suggested by
James Lee), and then discuss a proof by Tao [Tao13] which shows more clearly why it is a multilinear
formula. The original proof by Marcus, Spielman, and Srivastava used the Cauchy-Binet formula
in Fact 2.30.

Inductive Proof: The base case is similar to the calculations in Section 10.1 and in Exercise 11.8,
with the only di�erence that E [Ai] is not necessarily a scaled identity matrix.

Lemma 13.22 (Expected Rank-One Update). For any square matrix M and a random vector v,

Ev
[

det(M − vvT )
]

= (1− ∂x) det
(
M + x · E

[
vvT

] )∣∣∣
x=0

.

Proof. First, we assume M is invertible. By the matrix determinantal formula in Fact 2.29,

det(M − vvT ) = det(M) ·
(
1− vTM−1v

)
= det(M)

(
1− Tr

(
M−1vvT

))
.

Taking expectation on both sides,

Ev
[

det(M − vvT )
]

= det(M)− det(M) Tr
(
M−1E

[
vvT

] )
.

On the other hand, by the Jacobi's formula in Fact 2.39,

∂x det
(
M + x · E

[
vvT

] )∣∣
x=0

= det
(
M
)

Tr
(
M−1E

[
vvT

] )
,

and so the lemma follows whenM is invertible. WhenM is not invertible, we can choose a sequence
of invertible matrices that approach M . Since the lemma holds for each matrix in the sequence and
the two sides are polynomials in the entries of the matrix, a continuity argument implies that the
lemma also holds for M as well.

Then Theorem 13.20 can be proved by applying Lemma 13.22 repeatedly.

Exercise 13.23 (Inductive Proof of Multilinear Formula). Complete the proof of Theorem 13.20
by using Lemma 13.22 inductively and the assumption that A1, . . . , Am are independent random
variables.
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Multilinear Proof: The proof presented by Tao [Tao13] also starts from the matrix determinantal
formula, which shows that det(λI −

∑m
i=1Ai) is multilinear in terms of Ai, when each Ai is a rank

one matrix. Then we can understand that the RHS of Theorem 13.20 is just a Taylor expansion of
the LHS.

Lemma 13.24 (Taylor Expansion of Multilinear Polynomial). Let p(x1, . . . , xm) be a multilinear
polynomial in x1, . . . , xm. Then

p(x1, . . . , xm) =

m∏
i=1

(
1 + xi∂yi

)
p(y1, . . . , ym)

∣∣∣
y1=...=ym=0

.

Proof. As p is a multilinear polynomial, it can be written as p(x1, . . . , xm) =
∑

S⊆[m] cS
∏
i∈S xi,

where cS is the coe�cient of the monomial
∏
i∈S xi. Note that cS =

∏
i∈S ∂yip(y1, . . . , ym)

∣∣
y1=...=ym=0

,
as di�erentiation and substitution kill all the terms except cS . Therefore,

p(x1, . . . , xm) =
∑
S⊆[m]

(∏
i∈S

xi

)(∏
i∈S

∂yip(y1, . . . , ym)
∣∣
y=0

)
=

m∏
i=1

(
1 + xi∂yi

)
p(y1, . . . , ym)

∣∣∣
y=0

.

Putting in p(x1, . . . , xm) = det(B+x1A1+. . .+xmAm) in Lemma 13.24 gives the following corollary.

Corollary 13.25 (Determinant of Sum of Rank One Matrices). If A1, . . . , Am are symmetric rank-
one matrices, then

det(B + x1A1 + . . .+ xmAm) =
m∏
i=1

(
1 + xi∂yi

)
det(B + y1A1 + . . .+ ymAm)

∣∣∣
y1=...=ym=0

.

To prove Theorem 13.20, we set B = λI and x1 = . . . = xm = −1 in Corollary 13.25. Then, we take
the expectation on both sides using the sum of monomials form, and move the expectation inside
the summation by linearity of expectation, and then move the expectation inside the products by
independence of the random variables A1, . . . , Am to obtain the following result.

Exercise 13.26 (Expansion Proof of Multilinear Formula). Complete the proof of Theorem 13.20
by proving that

EA1,...,Am

[
det

(
λI −

m∑
i=1

Ai

)]
= µ

[
E [A1] , . . . ,E [Am]

]
(λ),

the mixed characteristic polynomial of E [A1] , . . . ,E [Am] in De�nition 13.21.

Interlacing Family of Independent Rank-One Matrices

With the multilinear formula in Theorem 13.20, we are now ready to prove that the set of all possible
characteristic polynomials {det(λI −

∑m
i=1Ai)} form an interlacing family. The following lemma

will be useful in showing that all conditional expectation polynomials are real-rooted.

Proposition 13.27 (Expected Characteristic Polynomial is Real-Rooted). The expected character-
istic polynomial EA1,...,Am

[
det
(
λI−

∑m
i=1Ai

)]
is real-rooted for any independent random symmetric

rank-one matrices A1, . . . , Am.
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Proof. We start from the RHS of the multilinear formula in Theorem 13.20. Since each Ai is
a random symmetric rank-one matrix, the expected matrix E [Ai] =

∑
j pjvjv

T
j < 0 is a positive

semide�nite matrix. So, by Proposition 13.12, the multivariate polynomial det(λI+
∑m

i=1 xi ·E [Ai])
is a real-stable polynomial. By the results in stability preserving operations in Corollary 13.16 and
Proposition 13.13, applying the di�erential operator 1− ∂xi and substituting real numbers preserve
stability. Therefore, the LHS of the multilinear formula is a real-stable univariate polynomial in λ,
and thus real-rooted by Exercise 13.10.

The following interlacing family plays a major role in the sequence of papers by Marcus, Spielman
and Srivastava [MSS15b, MSS15a, MSS21].

Theorem 13.28 (Interlacing Family of Independent Rank-One Matrices). Let A1, A2, . . . , Am be
random symmetric rank-one matrices, where each Ai has li possibilities vi,1v

T
i,1, . . . , vi,liv

T
i,li
. The

set of all
∏m
i=1 li polynomials in {det(λI −

∑m
i=1 vi,jiv

T
i,ji

)} form an interlacing family, where each
ji ∈ {1, . . . , li} for 1 ≤ i ≤ m. Furthermore, the root polynomial of the interlacing family can be
EA1,...,Am

[
det
(
λI −

∑m
i=1Ai

)]
for any independent distributions on A1, . . . , Am.

Proof. The tree has depth m, with the root at depth 0. At depth 0 ≤ i ≤ m− 1, each node has li+1

children. Each leaf of the tree is labeled by a sequence (j1, j2, . . . , jm), representing a path from
the root to the tree, where ji ∈ [li] represents the ji-th child of an internal node in the (i − 1)-th
level. The polynomial in the leaf node corresponding to (j1, j2, . . . , jm) is det(λI −

∑m
i=1 vi,jiv

T
i,ji

),

a choice vjiv
T
ji
for each Ai for 1 ≤ i ≤ m.

Given the independent distributions onA1, . . . , Am, the polynomial in an internal node (j1, j2, . . . , jk)
at depth k is de�ned as EAk+1,...,Am

[
det
(
λI −

∑k
i=1 vi,jiv

T
i,ji
−
∑m

i=k+1Ai
)]
, the conditional ex-

pectation polynomial where Ai = vjiv
T
ji

is �xed for 1 ≤ i ≤ k. The root polynomial is then

EA1,...,Am

[
det
(
λI −

∑m
i=1Ai

)]
.

We need to check that the two conditions of an interlacing family in De�nition 12.10 are satis�ed.
The �rst condition is satis�ed by construction, that the polynomial in each non-leaf node at depth
k is a convex combination of the polynomials in its children, where the convex combination is based
on the given probability distribution of Ak, which is independent of other random variables.

For the second condition, we need to prove that the polynomials in the children of a non-leaf node
have a common interlacing. By Theorem 12.8, it su�ces to prove that all convex combinations
of the polynomials in the children of a non-leaf node are real-rooted. Consider an internal node
(j1, . . . , jk) at depth k, with lk children (j1, . . . , jk, 1), . . . , (j1, . . . , jk, lk). Given any convex combi-
nation µ1, . . . , µlk with µa ≥ 0 for 1 ≤ a ≤ lk and

∑lk
a=1 µa = 1, we need to prove that

lk∑
a=1

µa · EAk+2,...,Am

[
det

(
λI −

k∑
i=1

vi,jiv
T
i,ji − vk+1,av

T
k+1,a −

m∑
i=k+2

Ai

)]

is real-rooted. Observe that this is just the expected characteristic polynomial EB1,...,Bm det(λI −∑m
i=1Bi) for a related set of independent random symmetric rank-one matrices, where B1, . . . , Bk

are just the (deterministic) random variables with Bi = vi,jiv
T
i,ji

with probability one, Bk+1 is the

random variable with Bk+1 = vk+1,av
T
k+1,a with probability µa for 1 ≤ a ≤ lk+1, and Bk+2, . . . , Bm

are just the same as the random variables Ak+2, . . . , Am. By Proposition 13.27, any such convex
combination is real-rooted, and hence the children have a common interlacing by Theorem 12.8. We
conclude that the polynomials in the leaves form an interlacing family.
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Note that this generalizes the family in Example 12.11, and thus completes the proof for the re-
stricted invertibility result in Theorem 12.14.

We will use this interlacing family for constructing bipartite Ramanujan graphs and resolving the
Kadison-Singer problem in the next two chapters.
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Chapter 14

Bipartite Ramanujan Graphs

We will see how Marcus, Spielman, and Srivastava [MSS15] used the method of interlacing family
of polynomials to prove the existence of bipartite Ramanujan graphs, using the 2-lift construction
proposed by Bilu and Linial [BL06].

The expected characteristic polynomials in this problem are exactly the matching polynomials of
graphs, and we will see some classical results of these polynomials.

14.1 Combinatorial Constructions of Ramanujan Graphs

Recall the de�nition of Ramanujan graphs from Chapter 7.

De�nition 14.1 (Ramanujan Graphs). Let G = ([n], E) be a d-regular graph and α1 ≥ α2 ≥ . . . ≥
αn be the eigenvalues of its adjacency matrix. We say G is a Ramanujan graph if max{α2, |αn|} ≤
2
√
d− 1.

We are interested in constructing an in�nitely family of d-regular graphs that are all Ramanujan.
This is best possible, as Alon-Boppana Theorem 7.10 proved that for any ε > 0, every large engouh
d-regular graph has max{α2, |αn|} ≥ 2

√
d− 1− ε. There is a meaning of the value 2

√
d− 1, which

is the bound on the absolute value of the eigenvalues of the in�nite d-regular tree, the best possible
d-regular expander graphs in the combinatorial sense.

There are known constructions of Ramanujan graphs of constant degree from Cayley graphs. All
known graphs are (q + 1)-regular where q is a prime power. The analyses of these constructions
use deep mathematical results and in particular some by Ramanujan (and hence the name). They
are explicit in that the neighbors of a vertex can be computed in O(log n) time. See the survey by
Hoory, Linial, and Wigderson [HLW06] for more details.

2-Lifts

It is of interest to �nd combinatorial constructions of Ramanujan graphs. Bilu-Linial [BL06] pro-
posed a method to construct Ramanujan graphs using 2-lifts.

De�nition 14.2 (2-Lift). Let G = ([n], E) be an undirected graph. A signing of the edges of G is
a function s : E(G)→ {−1,+1}. The 2-lift Ĝs = (V̂ , Ê) of G associated with a signing s is de�ned
as follows. The vertex set V̂ of Ĝs is V̂ = {1, . . . , n, 1′, . . . , n′}, where each vertex i ∈ V (G) has two
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copies i and i′ in Ĝs. For each edge ij ∈ E(G), if s(ij) = 1, then the edges ij and i′j′ are in Ê;
otherwise, if s(ij) = −1, then the edges ij′ and i′j are in Ê.

Bilu and Linial conjectured that ifG is Ramanujan, then there is a 2-lift ofG that is also Ramanujan.
Note that if G is d-regular, then any 2-lift of G is also d-regular with the number of vertices doubled.
So, if the conjecture is true, then it implies the existence of an in�nite family of d-regular Ramanujan
graphs for any degree d. Just start with the complete graph on d+ 1 vertices, which is Ramanujan,
and keep doing a good 2-lift to double the graph size. Bilu and Linial used probabilistic method
(Lovász local lemma) and the techniques in proving the converse of expander mixing lemma in

Theorem 7.5 to prove that there exists a 2-lift with max{α2, |αn|} .
√
d log3 d.

Spectrum of 2-Lift

There is a nice formulation to analyze the spectrum of a 2-lift of a graph.

De�nition 14.3 (Signed Matrix). Given a graph G = ([n], E) and a signing s : E(G)→ {−1,+1} of
the edges, the signed matrix As ∈ Rn×n is de�ned as follows. If ij ∈ E, then (As)ij = (As)ji = s(ij),
otherwise (As)ij = 0.

The proof of the following statement is left as a homework problem.

Problem 14.4 (Spectrum of 2-Lift). Given a graph G = ([n], E) and a signing s : E(G)→ {−1,+1}
of the edges, the spectrum of the adjacency matrix A(Ĝs) of the 2-lift Ĝs is equal to the disjoint union
of the spectrum of the adjacency matrix A(G) of G (called the old eigenvalues) and the spectrum of
the signed matrix As (called the new eigenvalues). That is, the multiplicity of an eigenvalue α of
A(Ĝs) is equal to the sum of the multiplicity of α of A(G) and the multiplicity of α of As.

With this statement, to prove that there is a Ramanujan 2-lift of a d-regular Ramanujan graph
G = (V,E), it is equivalent to proving that there is a signing s : E(G) → {−1,+1} so that the
maximum absolute eigenvalue of the signed matrix As is at most 2

√
d− 1. Bilu and Linial made

the following stronger conjecture which does not assume that G is a Ramanujan graph.

Conjecture 14.5 (Bili-Linial [BL06]). For any d-regular graph G = (V,E), there is a signing
s : E(G)→ {−1,+1} so that all eigenvalues of As have absolute value at most 2

√
d− 1.

14.2 Bipartite Ramanujan Graphs from Interlacing Family

Marcus, Spielman, Srivastava [MSS15] proved Conjecture 14.5 for bipartite graphs.

Theorem 14.6 (Bili-Linial Conjecture for Bipartite Graphs [MSS15]). Any d-regular bipartite graph
G = (V,E) has a signing s : E(G) → {−1,+1} so that the maximum eigenvalue of As is at most
2
√
d− 1.

Note that for a bipartite graph, bounding the maximum eigenvalue is enough because the spectrum
is symmetric (see Lemma 3.4), even for the signed matrix. This is the reason that Theorem 14.6
only holds for bipartite graph, because the new probabilistic method using interlacing polynomials
can only bound the maximum eigenvalue (or one eigenvalue), but not the maximum eigenvalue and
the minimum eigenvalue at the same time.
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As the spectrum of a bipartite graph is symmetric, any d-regular bipartite graph has the maxi-
mum eigenvalue equal to d and the minimum eigenvalue equal to −d, which are called the trivial
eigenvalues. A bipartite graph is Ramanujan if all its non-trivial eigenvalues are at most 2

√
d− 1.

De�nition 14.7 (Bipartite Ramanujan Graphs). Let G = ([n], E) be a d-regular graph and α1 ≥
α2 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. We say G is a bipartite Ramanujan graph
if max{α2, |αn−1|} ≤ 2

√
d− 1.

A corollary of Theorem 14.6 and Problem 14.4 is that any bipartite Ramanujan graph G has a 2-lift
that is Ramanujan. Note that a 2-lift of a bipartite graph is bipartite. So, starting from a complete
bipartite graph with 2d vertices, which is Ramanujan (see Example 3.3), repeatedly applying a good
2-lift proves the following theorem.

Theorem 14.8 (Bipartite Ramanujan Graphs of Every Degree [MSS15]). For every d, there is an
in�nite family of d-regular bipartite Ramanujan graphs.

Probabilistic Method

Theorem 14.6 is proved by the method of interlacing family of polynomials developed in Chapter 12
and Chapter 13. Given a d-regular graph G = (V,E) with m := |E| edges, there are totally 2m

di�erent signed matrices of G and we consider the uniform distribution on these 2m signed matrices.
The plan is to prove that there exists a signing s : E(G)→ {−1,+1} such that

λmax

(
det(xI −As)

)
≤ λmax

(
Es∈{±1}m

[
det(xI −As)

])
≤ 2
√
d− 1. (14.1)

The �rst inequality is a relatively straightforward application of Theorem 13.28 and we will prove it
in this subsection. For the second inequality, it turns out that the expected characteristic polynomial
is exactly the �matching polynomial� of the graph, a well-studied object in the literature, and the
upper bound 2

√
d− 1 is already proved by Heilmann and Lieb in the 70s. We will compute the

expected polynomial in the next subsection, and then review some classical results about matching
polynomials in Section 14.3.

Theorem 14.9 (Probabilistic Method for Signed Matrices). For any d-regular graph G = (V,E),
there exists a signing s : E(G)→ {±1} such that λmax

(
det(xI − As)

)
≤ λmax

(
Es
[

det(xI − As)
])
,

where the expectation is over the uniform distribution of all the signings of the edges.

Proof. To apply Theorem 13.28, we would like to write As as a sum of independent random rank
one symmetric matrices. Note that we can write As =

∑
e∈E Ae, where each Ae is a random

variable with (Ae)ij = (Ae)ji = s(ij) if e = ij and all other entries zero. The issue is that Ae is
a rank two matrix, not rank one. Instead, we consider the random variable Le = De + Ae, where
(De)ii = (De)jj = 1 if e = ij with all other entries zero. So, each Le is the signed Laplacian matrix
of an edge, which is a rank one matrix. Denote Ls =

∑
e∈E Le, which is a sum of independent

random rank one symmetric matrices. Note that Ls = dI + As as the graph is d-regular, and thus
det(xI−As) can be written as det((x+d)I−Ls). Applying Theorem 13.28 on the random variables
{Le}e∈E , there exists a signing s : E(G)→ {±1} such that

λmax

(
det(yI − Ls)

)
≤ λmax

(
Es
[

det(yI − Ls)
])

By doing a change of variable y = x+d, the same signing s satis�es the statement of the theorem.

Theorem 14.9 proves the �rst inequality in Equation 14.1.
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Expected Characteristic Polynomial

Perhaps surprisingly, the expected characteristic polynomial is already known to be equal to the
matching polynomial of a graph, a well-studied polynomial in Combinatorics.

De�nition 14.10 (Matching Polynomials). Given an undirected graph G = ([n], E), let mi be the
number of matchings in G with i edges with m0 = 1, the matching polynomial of G is de�ned as

µG(x) :=
∑
i≥0

(−1)i ·mi · xn−2i.

The following identity is by Godsil and Gutman (see [God93]).

Theorem 14.11 (Expected Characteristic Polynomial is Matching Polynomial). Given an undi-
rected graph G = ([n], E), the expected characteristic polynomial of the signed matrices is

Es∈{±1}|E|
[

det(xI −As)
]

= µG(x),

where the expectation is over the uniform distribution of all the signings of the edges.

Proof. LetMs = xI−As. We expand the determinant ofMs as sum of permutations as in Fact 2.26,
so that

Es det(xI −As) = Es
∑
σ∈Sn

sgn(σ)

n∏
i=1

(Ms)i,σ(i) =
∑
σ∈Sn

sgn(σ) · Es
[ n∏
i=1

(Ms)i,σ(i)

]
,

where sgn(σ) = (−1)inv(σ) and inv(σ) :=
∣∣{(i, j) | i < j and σ(i) > σ(j)

}∣∣ is the number of
inversion pairs of the permutation σ. Since each edge is independent and E [(Ms)i,j ] = 0 as each
edge is equally likely to be ±1, all the permutations with at least one variable with degree one
vanished. Therefore, for the permutations remained, each edge (Ms)ij appears exactly twice and

Es
[ n∏
i=1

(Ms)i,σ(i)

]
= xn−2k ·

k∏
l=1

(Ms)
2
il,jl

= xn−2k

for some k. So, each matching of size k will contribute sgn(σ) to the coe�cient of xn−2k. Check
that each matching of size k has the same sign, with sgn(σ) = −1 if k is odd and sgn(σ) = +1 if k
is even. We conclude that Es det(xI −As) =

∑
k≥0(−1)k ·mk · x2n−k = µG(x).

14.3 Matching Polynomials

Quite amazingly, the maximum root of the matching polynomial was studied by Heilmann and Lieb
in 1972 and their result is exactly what is needed for bipartite Ramanujan graphs.

Theorem 14.12 (Heilmann-Lieb). For any undirected graph G of maximum degree d, the matching
polynomial µG(x) is real-rooted with maximum root at most 2

√
d− 1.

So, the results by Godsil-Gutman in Theorem 14.11 and Heilmann-Lieb in Theorem 14.12 combined
to establish the second inequality in Equation 14.1, and this completes the proof of Theorem 14.6.

The original proof by Heilmann-Lieb uses recursion and induction. We present an approach by
Godsil [God93] which consists of three steps:

140



Chapter 14

1. The matching polynomial of a graph G of maximum degree d divides the matching polynomial
of an associated tree T (called the path tree) of maximum degree d.

2. The matching polynomial of a tree T is equal to the characteristic polynomial det(xI − AT )
of its adjacency matrix AT .

3. The maximum eigenvalue of the adjacency matrix AT of a tree T of maximum degree d is at
most 2

√
d− 1.

Since the characteristic polynomial of the adjacency matrix of a tree (and more generally a graph)
is real-rooted, (1) and (2) imply that the matching polynomial of a graph is real-rooted. Therefore,
the maximum root of the matching polynomial of G is

λmax

(
µG(x)

)
≤ λmax

(
µT (x)

)
= λmax

(
det(xI −AT )

)
≤ 2
√
d− 1,

where the �rst inequality is by (1), the equality is by (2), and the last inequality is by (3). Therefore,
proving the three steps would complete the proof of Heilmann and Lieb's result in Theorem 14.12.

The third step is already done in Problem 3.10. The second step is left as an exercise, as its proof
is similar to that in Theorem 14.11, showing that only permutations corresponding to matchings
contribute to the characteristic polynomial.

First Step

The proof of (1) in [God93] is not long but involves algebraic manipulations. Here we try to give a
proof by pictures. Given a graph G, we start from an arbitrary vertex v. Let the degree of v be d,
and the neighbors of v be u1, . . . , ud. We add d−1 copies of G−v to the graph and call the resulting
graph H. Check that the matching polynomial of the disjoint union is equal to the product of the
matching polynomials, i.e. µG1∪G2(x) = µG1(x) · µG2(x) where G1 ∪G2 is the disjoint union of two

graphs G1 and G2. Therefore, µH(x) = µG(x) ·
(
µG−v(x)

)d−1
, and so the matching polynomial of

G divides the matching polynomial of H.

Consider the following graph H ′, where the edge vui in G is replaced by vui in the i-th copy of
G− v for 2 ≤ i ≤ d (see the picture below). The claim is that the matching polynomials of H and
H ′ are the same. The reason is that there is a one-to-one correspondence between matchings in H
and matchings in H ′, as v can only be matched to one vertex. See the pictures, where the red edges
are the edges in a matching. Now, in H ′, there are no cycles involving v.
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Applying the same operations (duplicate and branch, and remove isolated vertices) on u1 in the
�rst copy of G− v, on u2 in the second copy of G− v, and so on, the resulting (big) graph will have
no cycles and is a tree. The resulting tree is called the path tree of G, as there is a path in T for
each path in G. See the following picture from [God93] for a complete example.

All these operations preserve the property that the matching polynomial of the old graph divides
the matching polynomial of the new graph, and so by induction the matching polynomial of the
original graph G divides the matching polynomial of the path tree, which has maximum degree at
most d. This �proves� the �rst step. See Chapter 6 of [God93] for the formal proof.

14.4 Discussions and Problems

One obvious open question is whether this approach can be extended to construct a true Ramanujan
graph (that satis�es |αn| ≤ 2

√
d− 1). There is a trick to get something close.

Problem 14.13 (Twice Ramanujan Graphs). Show that the current approach can be used to con-
struct a d-regular graph with max{α2, |αn|} ≤ 4

√
d− 1.

Another obvious open question is whether this approach can be made e�cient algorithmically.
Note that the natural attempt would not work, as it is NP-hard to compute the coe�cients of
matching polynomials. Marcus, Spielman, Srivastava [MSS18] gave another construction of bipartite
Ramanujan graphs using interlacing families for permutations, and Cohen [Coh16] showed that their
construction can be implemented in polynomial time.

The following is an exercise that completes the second step of Godsil's proof.
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Exercise 14.14 (Matching Polynomial of a Tree). Prove that the matching polynomial of a tree T
is equal to the characteristic polynomial det(xI −AT ) of its adjacency matrix AT .

The following are some identities for matching polynomials, which can be used to give a formal
proof that the matching polynomial of a graph G divides the matching polynomial of its path tree.
They can be proved by some simple relations between the number of matchings in a graph and its
subgraphs.

Problem 14.15 (Identities for Matching Polynomials [God93]).

1. µG∪H(x) = µG(x) · µH(x) for disjoint G and H.

2. µG(x) = µG\e(x)− µG\uv(x) if e = uv is an edge of G.

3. µG(x) = x · µG\u(x)−
∑

i∼u µG\ui(x) if u ∈ V (G).
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Chapter 15

Multivariate Barrier Method

Marcus, Spielman, and Srivastava [MSS15] proved Weaver's conjecture using the method of inter-
lacing family of polynomials. A key component in their proof is a multivariate barrier method to
bound the maximum root of the expected characteristic polynomial, which is an extension of the
barrier method by Batson, Spielman and Srivastava for spectral sparsi�cation in Chapter 10.

15.1 Weaver's Conjecture

It was observed that the linear-sized spectral sparsi�cation result by Batson, Spielman, and Srivas-
tava in Theorem 10.1 looks similar to the conjecture by Weaver, which is known to be equivalent
to the Kadison-Singer problem (see [MSS15, MSS14]), whose positive resolution would have impli-
cations in several areas of mathematics.

Conjecture 15.1 (Weaver's Conjecture). There exist positive constants α and ε so that the following
holds. For every m,n ∈ N and every set of vectors v1, . . . , vm ∈ Rn such that

m∑
i=1

viv
T
i = In and ‖vi‖22 ≤ α for 1 ≤ i ≤ n,

there exists a partition of {1, . . . ,m} into two sets S1 and S2 so that

λmax

(∑
i∈Sj

viv
T
i

)
≤ 1− ε for 1 ≤ j ≤ 2.

Note that since
∑

i∈S1
viv

T
i +

∑
i∈S2

viv
T
i = In, the conclusion in Weaver's conjecture is equivalent

to

εIn 4
∑
i∈S1

viv
T
i 4 (1− ε)In and εIn 4

∑
i∈S2

viv
T
i 4 (1− ε)In,

and so the vectors in S1 and in S2 form spectral approximators of the identity matrix. In The-
orem 10.1 by Batson, Spielman, and Srivastava, the task was to �nd scalars s1, . . . , sm with few
nonzeros so that

(1− ε)In 4
m∑
i=1

siviv
T
i 4 (1 + ε)In ⇐⇒ 1

2
(1− ε)In 4

m∑
i=1

si
2
viv

T
i 4

1

2
(1 + ε)In
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So, if all the scalars si/2 are either zero or one, then Theorem 10.1 would have given a positive
resolution to Weaver's conjecture. This is not always possible, however, since if there is a long
vector (say ‖vi‖ = 1), then setting si/2 to be zero or one would violate the minimum eigenvalue and
the maximum eigenvalue bounds. This is why there is an additional condition ‖vi‖22 ≤ α in Weaver's
conjecture, which says that long vectors are the only obstructions to �nding such a partitioning.

Graph Sparsi�cation

In terms of graph sparsi�cation, the question in Weaver's conjecture corresponds to �nding an
unweighted sparsi�er. Recall the reduction in Lemma 9.11 and the discussions in Subsection 9.2,
the length ‖vi‖22 is equal to the e�ective resistance of the i-th edge in the graph. So, Weaver's
conjecture in the graph setting states that if the maximum e�ective resistance of an edge is small
enough, then there is a partitioning of the edges into two groups so that the subgraph formed by
each group is a spectral approximator of the original graph. Some examples of graphs with small
maximum e�ective resistance are expander graphs and edge-transitive graphs (such as hypercubes
and Cayley graphs).

One could apply the matrix Cherno� bound in Theorem 9.13 to this problem, and it works for
α . 1/ log2 n with high probability, but this is not enough for Weaver's conjecture. The approach
by Batson, Spielman, and Srivastava for spectral sparsi�cation heavily depends on a careful choice
of scalars and does not seem applicable for constructing unweighted sparsi�ers. See [BST19] for a
recent paper on constructing unweighted sparsi�ers.

15.2 Probabilistic Formulation

Marcus, Spielman, and Srivastava formulated and proved a probabilistic statement that implies
Weaver's conjecture.

Theorem 15.2 (Marcus-Spielman-Srivastava [MSS15]). Let v1, . . . , vm ∈ Rn be independent ran-
dom vectors with �nite support such that

E
[ m∑
i=1

viv
T
i

]
= In and E

[
‖vi‖22

]
≤ ε for 1 ≤ i ≤ m.

Then

Pr

[
λmax

( m∑
i=1

viv
T
i

)
≤
(
1 +
√
ε
)2]

> 0.

Reduction

Weaver's conjecture is about partitioning and Theorem 15.2 is about sum of random variables, but
there is a simple reduction from the former to the latter.

For each vector ui ∈ Rn in Weaver's problem, de�ne a random vector vi ∈ R2n with two choices:

vi =
√

2

(
ui
0

)
with probability 1/2 and vi =

√
2

(
0
ui

)
with probability 1/2.
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The �rst choice corresponds to putting ui in the �rst group, and the second choice corresponds to
putting ui in the second group. Then, by the assumption that

∑m
i=1 uiu

T
i = In,

E
[
viv

T
i

]
=

(
uiu

T
i 0

0 uiu
T
i

)
=⇒

m∑
i=1

E [vivi]
T =

m∑
i=1

(
uiu

T
i 0

0 uiu
T
i

)
=

(
In 0
0 In

)
= I2n.

Similarly, by the assumption that ‖ui‖22 ≤ α,

E
[
‖vi‖22

]
= E

[
vTi vi

]
= 2‖ui‖22 ≤ 2α.

By Theorem 15.2, there exists a choice of v1, . . . , vm such that λmax(
∑m

i=1 viv
T
i ) ≤ (1 +

√
2α)2. As

intended, we put vector ui into S1 if we select the �rst choice for vi, and put ui into S2 otherwise.
Then the conclusion from Theorem 15.2 implies that

λmax

((
2
∑

i∈S1
uiu

T
i 0

0 2
∑

i∈S2
uiu

T
i

))
≤ (1 +

√
2α)2 =⇒ λmax

(∑
i∈Sj

viv
T
i

)
≤ 1

2
(1 +

√
2α)2

for 1 ≤ j ≤ 2. So, when α is small enough (say α ≤ 1
32), then

1
2(1 +

√
2α)2 < 1 and thus Weaver's

conjecture follows. We record the following corollary for future references.

Corollary 15.3 (Solution to Weaver's Conjecture). Under the same setting in Conjecture 15.1,
there exists a partition of [m] into two sets S1 and S2 such that for 1 ≤ j ≤ 2,(1

2
−
√

2α− α
)
· In 4

∑
i∈Sj

viv
T
i 4

1

2
(1 +

√
2α)2 · In.

Corollary 15.3 is quantitatively stronger than Weaver's formulation, as when α is small enough, we
can bound how far is the solution from the ideal partitioning 1

2I, which will be useful in applications.

Proof Overview

The plan of the proof is to show that there exists a choice of the random variables v1, . . . , vm such
that

λmax

(
det

(
xIn −

m∑
i=1

viv
T
i

))
≤ λmax

(
Ev1,...,vm

[
det

(
xIn −

m∑
i=1

viv
T
i

)])
≤
(
1 +
√
ε
)2
. (15.1)

We have established in Theorem 13.28 that the set of all possible characteristic polynomials det(xIn−∑m
i=1 viv

T
i ) forms an interlacing family, and the root polynomial can be set to be Ev1,...,vm

[
det
(
xIn−∑m

i=1 viv
T
i

)]
where the expectation is taken over the independent uniform random distributions on

v1, . . . , vm. Therefore, by the new probabilistic method for interlacing family in Theorem 12.12, we
have already proved the �rst inequality, using the techniques from real stable polynomials described
in Chapter 13.

The main goal of this chapter is to prove the second inequality in Equation 15.1, given the assump-
tions that E

[
‖vi‖22

]
≤ ε for 1 ≤ i ≤ m and E

[∑m
i=1 viv

T
i

]
= In. In Chapter 14, when we construct

bipartite Ramanujan graphs, the expected characteristic polynomial turns out to be exactly the
matching polynomial and there were known results bounding the maximum root. For Weaver's
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conjecture, bounding the maximum root of the expected polynomial is a major technical challenge
(that took Marcus, Spielman, and Srivastava four years to solve).

Recall the multilinear formula in Theorem 13.20 that

Ev1,...,vm

[
det

(
λI −

m∑
i=1

viv
T
i

)]
=

m∏
i=1

(
1− ∂xi

)
det

(
λI +

m∑
i=1

xi · E
[
viv

T
i

])∣∣∣∣
x1=x2=···=xm=0

.

This formula plays an important role in the �rst step, by showing that the expected characteristic
polynomial is real-rooted to establish common interlacing for the new probabilistic method to work.
Perhaps unexpectedly, the formula also plays an important role in the second step. Their idea is
to �rst prove an upper bound of the �maximum root� of the multivariate polynomial det

(
λI +∑m

i=1 xi ·E
[
viv

T
i

] )
, and then maintain a good upper bound after each (1−∂xi) di�erential operator

is applied. To establish the upper bound, they �nally realized that the barrier method developed
for linear-sized spectral sparsi�cation in Chapter 10 can be extended to the multivariate setting in
a syntatically similar way!

15.3 Multivariate Approach

To bound the maximum root of the univariate polynomial E
[
det
(
λI −

∑m
i=1 viv

T
i

)]
, the approach

taken is to bound the �maximum root� of the multivariate polynomial
∏m
i=1(1 − ∂xi) det

(
λI +∑m

i=1 xi · E
[
viv

T
i

] )
, which will be de�ned in a moment.

First, we use the assumption and de�ne some notations to slightly simplify the statement. Using
the assumption that E

[∑m
i=1 viv

T
i

]
= I, we rewrite the RHS of the multilinear formula as

m∏
i=1

(1−∂xi) det

( m∑
i=1

(λ+xi)·E
[
viv

T
i

])∣∣∣∣
x1=...=xm=0

=

m∏
i=1

(1−∂xi) det

( m∑
i=1

xi·E
[
viv

T
i

])∣∣∣∣
x1=...=xm=λ

.

Denote the matrix E
[
viv

T
i

]
= Bi and note that Bi < 0 for 1 ≤ i ≤ m. Denote the polynomial after

applying the di�erential operator k times by

pk(x1, . . . , xm) :=

k∏
i=1

(1− ∂xi) det

( m∑
i=1

xiBi

)
, (15.2)

so that p0(x1, . . . , xm) = det(
∑m

i=1 xiBi) and pm(x1, . . . , xm) =
∏m
i=1(1− ∂xi) det

(∑m
i=1 xiBi

)
.

De�nition 15.4 (Above the Roots). Given a multivariate polynomial p(x1, . . . , xm), we say a point
y ∈ Rm is �above the roots� of p if p(y + t) > 0 for all t = (t1, . . . , tm) ∈ Rm≥0.

Our goal is to prove that the point (1 +
√
ε)2 · ~1 is above the roots of the multivariate polyno-

mial pm(x1, . . . , xm). Note that this implies that the maximum root of the univariate polynomial
pm(λ, . . . , λ) =

∏m
i=1(1 − ∂xi) det

(∑m
i=1 xiBi

)
|x1=...=xm=λ is at most (1 +

√
ε)2, and thus by the

multilinear formula the maximum root of the univariate polynomial Ev1,...,vm

[
det
(
λI−

∑m
i=1 viv

T
i

)]
is at most (1 +

√
ε)2.

Initially, since
∑m

i=1Bi = In by assumption, it follows that p0(t, t, . . . , t) = det(tI) > 0 for any
t > 0, and so the point t · ~1 is above the roots of p0 for any t > 0. The strategy in [MSS15] is to
prove inductively that (t+ δ, . . . , t+ δ︸ ︷︷ ︸

k coordinates

, t . . . , t) is above the roots of pk for some δ for all 1 ≤ k ≤ m.
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Multivariate Barrier Functions

To execute the above inductive proof strategy, a similar approach as in Chapter 10 for spectral
sparsi�cation is used, to establish a �soft/comfortable� upper bound for the induction to go through.

Recall that in De�nition 10.3, the potential function Φu(A) = Tr(uI − A)−1 is de�ned, and the
invariant Φu(A) ≤ φ is maintained to guarantee that u is well above the roots. Also recall from
Remark 10.6 and Remark 11.6 that Φu(A) = p′A(u)/pA(u) where pA(x) = det(xI − A) is the
characteristic polynomial of A, and so the potential function has a natural interpretation in terms
of polynomials. This univariate barrier function is generalized to the multivariate setting as follows.

De�nition 15.5 (Multivariate Barrier Functions). Given a real-stable polynomial p ∈ R[x1, . . . , xm]
and a point y ∈ Rm above the roots of p, for 1 ≤ i ≤ m, the barrier function of p in direction i at y
is de�ned as

Φi
p(y) :=

∂xip(y)

p(y)
.

Equivalently, we can de�ne

Φi
p(y) =

q′y,i(yi)

qy,i(yi)
=

d∑
j=1

1

yi − λj
,

where qy,i(t) is the univariate restriction qy,i(x) = p(y1, . . . , yi−1, t, yi+1, . . . , ym) where λ1, . . . , λd
are the roots of this univariate polynomial, which is real-rooted as substituting real numbers preserve
real-stability by Proposition 13.13.

For spectral sparsi�cation, we maintain one potential function ΦA(x) to show that u ∈ R is well
above the roots by showing that ΦA(u) ≤ φ for some small φ ∈ R. For Weaver's problem, we
maintain m potential functions Φ1

p(x), . . . ,Φm
p (x) to show that y ∈ Rm is well above the roots by

showing that Φi
p(y) ≤ φ for 1 ≤ i ≤ m for some small φ ∈ R.

De�nition 15.6 (Induction Hypothesis). Let x0 = (t, . . . , t) ∈ Rm be the initial point above the
roots of p0 in Equation 15.2 for some t > 0, such that Φi

p(x0) ≤ φ for some φ ∈ R for 1 ≤ i ≤ m.
This is the base case. Let xk = (t+ δ, . . . , t+ δ, t, . . . , t) with the �rst k coordinates being t+ δ. The
induction hypothesis is to maintain that Φi

pk
(xk) ≤ φ for 1 ≤ i ≤ m, for 1 ≤ k ≤ m where pk is

de�ned in Equation 15.2. The parameters t, φ, δ will be chosen at the end.

15.4 Bounding the Maximum Root

In this section, we do the calculations to carry out the induction as described in De�nition 15.6.

Monotonicity and Convexity

The following monotonicity and convexity properties are generalizations of Exercise 10.4 in the
univariate case to the multivariate setting.

Proposition 15.7 (Monotonicity and Convexity). Suppose p ∈ R[x1, . . . , xm] is real-stable and y
is above the roots of p. Then, for all i, j ∈ [m] and δ ≥ 0, the following two properties hold.

1. Monotonicity: Φi
p(y + δ · ej) ≤ Φi

p(y) where ej is the j-th vector in the standard basis.
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2. Convexity: Φi
p(y + δ · ej)− Φi

p(y) ≤ δ · ∂xjΦi
p(y + δ · ej).

The proof of the univariate case in Exercise 10.4 is easy, but the proof of the multivariate case
in Proposition 15.7 is not. The proof in [MSS15] uses a deep result that any bivariate real-stable
polynomial p(x1, x2) can be written as ±det(x1A+x2B+C) for some A,B < 0 and some symmetric
C. Then they do some explicit computations from this representation to prove monotonicity and
convexity.

Tao [Tao13] gave a more elementary proof using complex analysis. We gave a proof sketch of Tao's
proof in L15 in the previous o�ering of CS 860. We won't give a proof of this proposition in this
o�ering, and refer the reader to [MSS15, Tao13]. One reason is that the arguments are di�erent
and independent from the rest of the proofs and also not self-contained, and another reason is that
I don't understand the proofs well enough to provide any further explanations.

Inductive Proof

As a warm up, we �rst see that when a point y is well above the roots, then y is still above the
roots after the operation 1− ∂xj .

Lemma 15.8 (Above the Roots after One Operation). Suppose that p ∈ R[x1, . . . , xm] is real stable
and y ∈ Rm is above the roots of p, with the additional property that Φi

p(y) < 1 for 1 ≤ i ≤ m.
Then y is still above the roots of (1− ∂xj )p for 1 ≤ j ≤ m.

Proof. Let z ∈ Rm be a point above y such that z ≥ y. We would like to prove that (1−∂xj )p(z) 6= 0
for any 1 ≤ j ≤ m, and this would imply that y is still above the roots of (1 − ∂xj )p. By the

monotonicity property in Proposition 15.7, Φj
p(z) ≤ Φj

p(y) < 1 for 1 ≤ j ≤ m. This implies that

1 > Φj
p(z) =

∂xjp(z)

p(z)
=⇒ 0 6= p(z)− ∂xjp(z) = (1− ∂xj )p(z).

The lemma shows that y is still above the roots after one di�erential operation, but we cannot
repeat this argument because the condition Φj

(1−∂xi )p
(y) < 1 may no longer hold. To maintain

the invariant, we will increase the upper bound in the corresponding coordinate to decrease the
potential value. Assuming the monotonicity and convexity properties of the multivariate barrier
functions in Proposition 15.7, the proof in the following inductive step is actually very similar to the
univariate case as presented in Lemma 11.9 (and also in Problem 11.13). Basically, we can do exact
calculation to compute the increase of the potential function after the 1− ∂xi operation, and then
use convexity to bound the decrease of the potential value by shifting up the barrier to y + δ · ej .

Lemma 15.9 (Maintaining the Potential Values). Suppose that p ∈ R[x1, . . . , xm] is real stable and
y is above the roots of p. Suppose further that Φi

p(y) ≤ 1− 1
δ for 1 ≤ i ≤ m for some δ > 0. Then,

for 1 ≤ i, j ≤ m,

Φi
(1−∂xj )p(y + δ · ej) ≤ Φi

p(y),

and y + δ · ej is still above the roots of (1− ∂xj )p.
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Proof. By De�nition 15.5,

Φi
(1−∂xj )p =

∂xi((1− ∂xj )p)
(1− ∂xj )p

=
∂xi((1− Φj

p)p)

(1− Φj
p)p

=
(1− Φj

p)∂xip

(1− Φj
p)p

+
(∂xi(1− Φj

p))p

(1− Φj
p)p

= Φi
p −

∂xiΦ
j
p

1− Φj
p

.

Therefore,

Φi
(1−∂xj )p(y + δej) = Φi

p(y + δej)−
∂xiΦ

j
p(y + δej)

1− Φj
p(y + δej)

.

To prove Φi
(1−∂xj )p(y + δej) ≤ Φi

p(y), it is equivalent to proving that

Φi
p(y)− Φi

p(y + δej) ≥ −
∂xiΦ

j
p(y + δej)

1− Φj
p(y + δej)

. (15.3)

By convexity of the multivariate barrier function in Proposition 15.7, we have that

Φi
p(y)− Φi

p(y + δej) ≥ −δ · ∂xjΦi
p(y + δej).

So, Equation 15.3 holds if we could prove that

δ · ∂xjΦi
p(y + δej) ≤

∂xiΦ
j
p(y + δej)

1− Φj
p(y + δej)

⇐⇒ δ ≥ 1

1− Φj
p(y + δej)

, (15.4)

where the equivalence is by noting that ∂xjΦ
i
p = ∂xiΦ

j
p and so the numerators are the same,

and ∂xjΦ
i
p(y + δej) ≤ 0 as the barrier function is monotonically decreasing above the roots by

Proposition 15.7 and so the inequality is reversed when we cancel the numerators. Our assumption
implies that

δ ≥ 1

1− Φj
p(y)

≥ 1

1− Φj
p(y + δej)

as desired, where the second inequality is again by monotonicity. We conclude that Φi
(1−∂xj )p(y+ δ ·

ej) ≤ Φi
p(y) for 1 ≤ i, j ≤ m, and y+ δ · ej is still above the roots of (1− ∂xj )p by Lemma 15.8.

We will choose φ = 1− 1
δ in the induction hypothesis in De�nition 15.6.

Choosing the Parameters

By Lemma 15.9, if we choose the initial x0 = (t, . . . , t) such that Φi
p(x0) ≤ 1 − 1

δ for 1 ≤ i ≤ m
for some δ > 0. Then, by induction, xm = (t + δ, . . . , t + δ) is above the roots of pm. This would
imply that t + δ is above the roots of the univariate polynomial E

[
det
(
λI −

∑m
i=1 viv

T
i

)]
by the

multilinear formula. It remains to optimize t and δ to prove the best upper bound.

Note that for the induction step to go through, we only used the property that the polynomial is
real stable, and the general properties of monotonicity and convexity. We have not used the speci�c
form of pk in Equation 15.2. Also, we have not used the crucial assumption that E

[
‖vi‖22

]
≤ ε.

These are (only) needed in the following computation of the initial value.

Recall that p0(x1, . . . , xm) = det(
∑m

i=1 xiBi) where Bi = E
[
viv

T
i

]
< 0. The assumptions of Theo-

rem 15.2 are that
∑m

i=1Bi =
∑m

i=1 E
[
viv

T
i

]
= In and E

[
‖vi‖22

]
= Tr(Bi) ≤ ε. The initial potential

function is

Φj
p0

(x) =
∂xj det

(∑m
i=1 xiBi

)
det
(∑m

i=1 xiBi
) =

det
(∑m

i=1 xiBi
)

Tr
((∑m

i=1 xiBi
)−1

Bj
)

det
(∑m

i=1 xiBi
) = Tr

(( m∑
i=1

xiBi

)−1
Bj

)
,

151



Eigenvalues and Polynomials

where the second equality is by the Jacobi formula in Fact 2.39. Put in x0 = (t, . . . , t), using the
assumptions that

∑m
i=1Bi = I and Tr(Bi) ≤ ε, the initial potential value is

Φj
p0

(x0) = Tr
(
(tI)−1Bj

)
=

1

t
Tr(Bj) ≤

ε

t
.

If we set t so that Φj
p0(x0) ≤ ε

t ≤ 1− 1
δ , then by Lemma 15.9, we will get the �nal bound t+ δ. So,

we should set t so that ε
t = 1− 1

δ , and the �nal bound is

t+
1

1− ε
t

.

This is minimized when t =
√
ε+ ε, and the �nal bound is (1 +

√
ε)2. This completes the proof of

Theorem 15.2 using the induction hypothesis in De�nition 15.6.

15.5 Discussions

The major open problem is to design a polynomial time algorithm to �nd the solution in Theo-
rem 15.2.

It is interesting to re�ect on the journey to the solution to the Kadison-Singer problem. First, it
started from the nice formulation of the spectral sparsi�cation problem, as an intermediate step
to design a fast Laplacian solver. Then, the reduction to the isotropy case, which helps to match
the cut sparsi�cation result by Benczur and Karger. Then, the barrier method was developed,
starting with the heuristic argument from expected characteristic polynomial. Then, the interlacing
property was observed, and the heuristic argument was developed as a new probabilistic method
of interlacing family. The theory of real-stable polynomials was used to establish that the family
in Theorem 15.2 is an interlacing family, with the crucial multilinear formula. Finally, the barrier
method was understood as a way to bound roots, and it was extended to the multivariate setting
through the multilinear formula to solve the problem. It is an amazing line of work with so many
great ideas and techniques developed.
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Chapter 16

Strongly Rayleigh Measure

We see some applications of the theory of real-stable polynomials in probability theory. Some results
will be used in the next chapter to extend the method of interlacing family of polynomials.

We have mentioned in Section 13.1 that the real-rootedness of the generating polynomial of a prob-
ability distribution implies some strong properties of the probability distribution. In this chapter,
we study the following generalization of this concept to the multivariate setting.

De�nition 16.1 (Strongly Rayleigh Measure). Given a probability distribution µ : {0, 1}m → R,
the generating polynomial is de�ned as

gµ(x1, . . . , xm) :=
∑
S⊆[m]

µ(S)
∏
i∈S

xi.

We say µ is strongly Rayleigh if its generating polynomial gµ is a real-stable polynomial.

We will see some interesting examples in Section 16.1, and some useful properties in Section 16.2.
Some parts of this chapter are from the course notes of Oveis Gharan [Ove15, Ove20].

16.1 Determinantal Measure

An important example of strongly Rayleigh measure is determinantal measure. This is also called
the determinantal point process in the literature (see [KT12]).

De�nition 16.2 (Determinantal Measure). Let X be a random variable over {0, 1}m with probability
distribution µ : {0, 1}m → R. We say µ is determinantal if there exists a matrix A ∈ Rm×m such
that

Pr(S ⊆ X) =
∑

R:R⊇S
µ(R) = det(AS,S)

for every subset S ⊆ [m], where AS,S is the |S| × |S|-submatrix of A restricting to the rows and
columns corresponding to S.

There is a compact formula to write the generating polynomial of µ in terms of A.

Proposition 16.3 (Generating Polynomial of Determinantal Measure). If µ : {0, 1}m → R is
determinantal with an m×m matrix 0 4 A 4 I, then the generating polynomial is

gµ(x) = det(I −A+A · diag(x)).
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Proof. Let h(x) = det(I − A + A · diag(x)) where x = (x1, . . . , xm) ∈ Rm. We will prove that
h(χS) = gµ(χS) =

∑
R⊆S µ(R) for every subset S ⊆ [m] where χS is the characteristic vector of the

subset S, and this will imply that h(x) = gµ(x). Note that

h(χS) = det
(
I −A+A · diag(χS)

)
= det

(
I|S| −AS,S̄
0 Im−|S| −AS̄,S̄

)
= det(Im−|S| −AS̄,S̄).

Let det(A∅,∅) = 1. Recall the expansion of the characteristic polynomial in Fact 2.31 that

det(λIn −A) =

n∑
k=0

λn−k(−1)k
∑

S∈([n]
k )

det(AS,S).

Applying this formula on h,

h(χS) = 1 +

m−|S|∑
k=1

(−1)k
∑

R:R⊆S̄,|R|=k

det(AR,R) = 1 +

m−|S|∑
k=1

(−1)k
∑

R:R⊆S̄,|R|=k

Pr(X ⊇ R)

where the second equality is by the de�nition of determinantal measure whereX denotes the random
outcome. Using the inclusion-exclusion principle that

Pr(X ∩ Y 6= ∅) =

|Y |∑
k=1

(−1)k+1
∑

R:R⊆Y,|R|=k

Pr(X ⊇ R)

for a �xed subset Y and plugging in Y = S, the above expression can be simpli�ed to

h(χS) = 1− Pr(X ∩ S 6= ∅) = Pr(X ∩ S = ∅) = Pr(X ⊆ S) =
∑
R⊆S

µ(R) = g(χS).

Then the proof that determinantal measure is strongly Rayleigh follows from the results of real-
stable polynomials in Chapter 13.

Theorem 16.4 (Determinantal Measure is Strongly Rayleigh). If µ : {0, 1}m → R is determinantal,
then µ is strongly Rayleigh.

Proof. Using Proposition 16.3, we just need to prove that h(x) = det(I − A + A · diag(x)) is a
real-stable polynomial. We prove the claim when 0 ≺ A 4 I, and the claim for 0 4 A 4 I will
follow from a continuity argument using Hurwitz's Theorem 13.14 as in Proposition 13.13. Note
that h(x) = det(I −A+A · diag(x)) = det(A) · det(A−1 − I + diag(x)), where we used that A � 0
so that A−1 exists and also det(A) > 0. Since 0 ≺ A 4 I, it follows that B := A−1 − I < 0, and so
det(A−1 − I + diag(x)) can be written as det(B +

∑m
i=1 xi diag(ei)) where B < 0 and diag(ei) < 0

for 1 ≤ i ≤ m. By Proposition 13.12, det(B +
∑m

i=1 xi diag(ei)) is a real-stable polynomial and so
is h(x). (Actually, the proof in Proposition 13.12 only proves the case when B � 0, but the case
B < 0 follows from the same continuity argument using Hurwitz's Theorem 13.14.)
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Volume Measure

One interesting example of determinantal measure is the volume measure.

De�nition 16.5 (Volume Measure). Given vectors v1, . . . , vm ∈ Rn that satis�es
∑m

i=1 viv
T
i = In,

the volume measure µ is de�ned as µ(S) = det
(∑

i∈S viv
T
i

)
for each subset S ⊆ [m] with |S| = n.

Note that µ is well-de�ned by the Cauchy-Binet formula in Fact 2.30, as

1 = det(In) = det
( m∑
i=1

viv
T
i

)
=

∑
S:S⊆[m],|S|=n

det
(∑
i∈S

viv
T
i

)
=

∑
S:S⊆[m],|S|=n

µ(S).

The following will be the base case of the proof that volume measure is determinantal.

Lemma 16.6 (Marginal Probability of Volume Measure). Let X be a random output of the volume
measure µ. Then Pr(j ∈ X) = ‖vj‖2.

Proof. Let V be the n × m matrix with the j-th column being vj for 1 ≤ j ≤ m. Let Vj be
the n × (m − 1) matrix where the j-th column of V is removed. By the Cauchy-Binet formula in
Fact 2.30,

Pr(j /∈ X) =
∑

S:j /∈S,|S|=n

det
(∑
i∈S

viv
T
i

)
= det(VjV

T
j

).

By the matrix determinantal formula in Fact 2.29 and the assumption that V V T = In,

det(VjV
T
j

) = det(V V T − vjvTj ) = det(V V T )
(
1− vTj (V V T )vj

)
= 1− ‖vj‖2.

The Gram matrix of the vectors v1, . . . , vm shows that the volume measure is determinantal. The
proof of the following theorem uses that the formula for the characteristic polynomial and the
inclusion-exclusion principle are the same.

Theorem 16.7 (Volume Measure is Determinantal). Let Y = V TV be the m×m Gram matrix of
the vectors v1, . . . , vm ∈ Rn. Let X be a random output of the volume measure µ. For any S ⊆ [m],

Pr
X∼µ

[S ⊆ X] = det(YS,S).

Proof. We prove by induction on the size of S. The base case when |S| = 1 was done in Lemma 16.6.
For the induction step, as in the proof of Lemma 16.6, note that

Pr
X∼µ

[X ∩ S = ∅] =
det
(
V V T −

∑
i∈S viv

T
i

)
det(V V T )

= det
(
In −

∑
i∈S

viv
T
i

)
.

On one hand, by the inclusion-exclusion principle,

Pr
X∼µ

[X ∩ S = ∅] = 1− Pr
X∼µ

[X ∩ S 6= ∅] = 1 +

|S|∑
k=1

(−1)k
∑

R:R⊆S,|R|=k

Pr
X∼µ

[X ⊇ R].
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On the other hand, let VS be the n×|S| submatrix of V with the columns in S. By det(I +XY ) =
det(I + Y X) in Fact 2.28 and the formula for the characteristic polynomial in Fact 2.31,

det
(
In −

∑
i∈S

viv
T
i

)
= det(In − VSV T

S ) = det(I|S| − V T
S VS) = 1 +

|S|∑
k=1

(−1)k
∑

R:R⊆S,|R|=k

det(V T
R VR).

By the induction hypothesis, Pr(R ⊆ X) = det(YR,R) = det(V T
R VR) for all R ⊂ S. So, there is a

one-to-one correspondence between the (inner) summands in the above two equations for |R| ≤ k−1,
and hence we must have PrX∼µ[S ⊆ X] = det(V T

S VS) = det(YS,S) as stated.

Combining Theorem 16.7 and Proposition 16.3 gives a formula for the generating polynomial of the
volume measure.

Corollary 16.8 (Generating Polynomial of Volume Measure). Let µ be a volume measure as de�ned
in De�nition 16.5, and Y be the Gram matrix of the vectors as de�ned in Theorem 16.7. Then the
generating polynomial is

gµ(x) = det
(
I − Y + Y · diag(x)

)
.

Spanning Tree Measure

An interesting consequence of Theorem 16.7 is that the uniform distribution on spanning trees is
determinantal.

De�nition 16.9 (Spanning Tree Measure). Let G = (V,E) be an undirected graph with edge weight
we on each edge e ∈ E. Let the edge set E be the ground set. Let µ : {0, 1}|E| → R be the probability
distribution with µ(T ) ∝

∏
e∈T we if T is a spanning tree and zero otherwise.

The uniform distribution of the spanning trees in a graph is a special case when we = 1 for all e ∈ E.
Using the proof in the matrix tree theorem in Problem 3.24 and the reduction to the identity matrix
as in Lemma 9.11, one can show that the spanning tree measure is a volume measure.

Problem 16.10 (Burton-Pemantle Theorem). Prove that the spanning tree measure for any weighted
undirected graph is a volume measure (and hence determinantal and strongly Rayleigh).

(It may be more convenient to consider the matrix L(G) + ~1~1T so that it is invertible and do the
matrix tree theorem with this modi�ed Laplacian matrix.)

A nice corollary of Problem 16.10 is that we have a nice formula from Theorem 16.7 to compute
the probability that a subset of edges F ⊆ E is contained in a random spanning tree.

16.2 Properties of Strongly Rayleigh Measure

Some useful properties of strongly Rayleigh measures follow from closure properties of real stable
polynomials in Chapter 13.

Exercise 16.11 (Strongly Rayleigh Preserving Operations). Suppose µ : {0, 1}m → R is a strongly
Rayleigh measure. Prove the following distributions are also strongly Rayleigh.
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1. (Conditioning:) The conditional probability distributions µ|xi=0 and µ|xi=1 where the i-th vari-
able is �xed to 0 or 1 for some 1 ≤ i ≤ m.

2. (Projection:) For a subset S ⊆ [m], the projection of µ onto S, denoted by µ|S, is the distri-
bution supported on subsets of S, where for any R ⊆ S,

µ|S(R) =
∑

T⊆[m]:T∩S=R

µ(T ).

3. (External Field:) Given a non-negative vector (λ1, . . . , λm), µ ∗ λ is the distribution where

µ ∗ λ(S) = µ(S) ·
∏
i∈S

λi.

The following exercise shows that some concentration property holds for strongly Rayleigh distri-
butions.

Exercise 16.12 (Rank Sequence). Suppose µ : {0, 1}m → R is a strongly Rayleigh measure. For
0 ≤ i ≤ m, let ai = PrS∼µ[|S| = i]. Use Problem 13.7 to show that the sequence a0, . . . , am is ultra
log-concave as de�ned in De�nition 13.6.

Truncation

We will use the following result from real stable polynomials.

Lemma 16.13 (Homogenization). Given a polynomial p ∈ R[x1, . . . , xm], the homogenized version
of p, denoted by pH , is de�ned as

pH(x1, . . . , xm, xm+1) = xdeg p
m+1 · p

( x1

xm+1
, . . . ,

xm
xm+1

)
.

For any real stable polynomial p ∈ R[x1, . . . , xm] with non-negative coe�cients, pH is real stable.

The following truncation operation is quite useful.

Theorem 16.14 (Truncation). Given a distribution µ and an integer k ≥ 1, the truncation of µ is
de�ned as the distribution µk where µk(S) ∝ µ(S) if |S| = k and zero otherwise. For any strongly
Rayleigh distribution µ and any 1 ≤ k ≤ n, µk is strongly Rayleigh.

Proof. Let gµ(x1, . . . , xm) be the generating polynomial of µ. As µ is strongly Rayleigh, gµ is real
stable. Consider the homogenized version (gµ)H of gµ. By Lemma 16.13, (gµ)H is also real stable.
Let the degree of gµ be d. Observe that the generating polynomial of µk is

gµk ∝ ∂
d−k
xm+1

gµH

∣∣∣
xm+1=0

,

because only the terms with the degree of xm+1 being d − k remained, and those terms have
total degree exactly k in other variables x1, . . . , xm in the homogenized polynomial (gµ)H . By
Exercise 13.17 and Proposition 13.13, di�erentiation and specialization preserves real stability and
so gµk is real stable. Therefore, by De�nition 16.1, µk is strongly Rayleigh.

This provides an alternative proof that the volume measure is strongly Rayleigh.
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Problem 16.15. Let L < 0 be an m×m matrix. Prove that the polynomial
∑

S:S⊆[m] det(LS,S) ·zS
is real stable. Conclude that the volume measure in De�nition 16.5 is strongly Rayleigh.

One useful implication is that the determinantal point process restricted to size k subsets, called k-
DPP, is still strongly Rayleigh, even though it is no longer determinantal. So, in particular, k-DPP
still enjoys the nice properties of strongly Rayleigh distributions, including the negative correlation
property in the following subsection.

Negative Correlation

This is probably the most important property of strongly Rayleigh distributions, as for instance it
allows us to apply Cherno� bounds on the variables to prove concentration results.

The simplest form of negative dependency is Pr(xi = 1 | xj = 1) ≤ Pr(xi = 1). Note that the
probability Pr(xi = 1) can be read from the generating probability as

Pr(xi = 1) = ∂xig(x1, . . . , xm)
∣∣∣
x1=...=xm=1

=
∑
S:S3i

µ(S),

the sum of the coe�cients containing i. Therefore, we can rewrite the negative correlation inequality
as Pr(xi = 1 ∩ xj = 1) ≤ Pr(xi = 1) · Pr(xj = 1), and then express it using generating polynomial
as (

∂xi∂xjg(~1)
)
· g(~1) ≤

(
∂xig(~1)

)(
∂xjg(~1)

)
.

Strongly Rayleigh measures satisfy this inequality for any y ∈ Rm, not just for y = ~1.

Theorem 16.16 (Negative Correlation). Let g(x1, . . . , xm) be a multi-linear real stable polynomial.
Then, for all i 6= j, for all y ∈ Rm,(

∂xi∂xjg(y)
)
· g(y) ≤

(
∂xig(y)

)(
∂xjg(y)

)
.

Proof. For any y ∈ Rm, consider the bivariate restriction

f(s, t) = g(y1, . . . , yi−1, yi + s, yi+1, . . . , yj−1, yj + t, yj+1, . . . , ym).

Then f is a bivariate real stable polynomial. Since g is multi-linear, note that

f(s, t) = g(y) + s · ∂xig(y) + t · ∂xjg(y) + st · ∂xi∂xjg(y).

The univariate polynomial h(s) = f(s, ı) is H-stable (but not necessarily real). Let a+ ıb be a root
of h(s). Then

R(h(a+ ıb)) = g(y) + a · ∂xig(y)− b · ∂xi∂xjg(y) = 0,

=(h(a+ ıb)) = b · ∂xig(y) + ∂xjg(y) + a · ∂xi∂xjg(y) = 0.

Solving the two equations by eliminating a, we get(
∂xi∂xjg(y)

)
· g(y)−

(
∂xi∂xjg(y)

)2 · b =
(
∂xig(y)

)2 · b+
(
∂xig(y)

)
·
(
∂xjg(y)

)
.

By stability of h, we have b ≤ 0. This implies that (∂xi∂xjg(y)) ·g(y)− (∂xig(y)) · (∂xjg(y)) ≤ 0.

The converse of Theorem 16.16 is also true; see [Ove20].
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Negative Association

A stronger form of negative dependency is called negative association.

De�nition 16.17 (Negative Association). The binary random variables {x1, . . . , xm} are negatively
associated if for any two non-decreasing functions f, g ∈ {0, 1}m → R that depend on disjoint set of
variables, it holds that

E [f(x1, . . . , xm) · g(x1, . . . , xm)] ≤ E [f(x1, . . . , xm)] · E [g(x1, . . . , xm)] ,

where a function f is nondecreasing if f(~x) ≥ f(~y) if ~x ≥ ~y.

Note that negative correlation is a special case of negative association. Feder and Mihail [FM92]
used negative correlation as the base case in an induction to prove that the random variables
of a strongly Rayleigh measure are negatively associated. Borcea, Brändén and Liggett [BBL09]
developed the theory of strongly Rayleigh measure and use it to answer many questions about
negatively dependent random variables (see [Pem11]).

One consequence of negative association is that Cherno� bounds apply on the random variables
from a strongly Rayleigh distribution, even though they are not independent.

Theorem 16.18 (Concentration of Strongly Rayleigh Distribution). Let µ : {0, 1}m → R be a
k-homogeneous strongly Rayleigh distribution. Let f : {0, 1}m → R be a 1-Lipchitz function where
|f(S1)− f(S2)| ≤ 1 for any two sets S1, S2 ⊆ [m] with |S14S2| = 1. Then, for any a ≥ 0,

Pr
[
|f − E [f ] | > a

]
≤ e−

a2

k .

Oveis Gharan used this theory to prove many interesting properties of random spanning trees,
and used these properties to design and analyze approximation algorithms for traveling salesman
problems. We refer the reader to his notes [Ove15] for some interesting examples.
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More Interlacing Families

We see some further developments in the method of interlacing family of polynomials in this chapter.

17.1 Interlacing Family for Strongly Rayleigh Measure

Motivated by the thin tree problem, Anari and Oveis Gharan [AO14] developed an interlacing family
for strongly Rayleigh distributions and applied it to the asymmetric traveling salesman problem.
We will �rst study the interlacing family and then discuss the application.

Recall that the interlacing family and the probabilistic formulation by Marcus, Spielman, and Sri-
vastava in Theorem 13.28 and Theorem 15.2 crucially depend on the random variables being inde-
pendent. Anari and Oveis Gharan proved a beautiful generalization of the probabilistic formulation
to strongly Rayleigh measures. In the following, a strongly Rayleigh measure µ is homogeneous if
every non-zero monomial in the generating polynomial gµ is of the same degree.

Theorem 17.1 (Probabilistic Method for Strongly Rayleigh Measure). Let µ : {0, 1}m → R be
a homogeneous strongly Rayleigh measure such that the marginal probability PrS∼µ[i ∈ S] of each
element 1 ≤ i ≤ m is at most ε1. Let v1, . . . , vm ∈ Rn be vectors in isotropic condition

∑m
i=1 viv

T
i =

In and ‖vi‖22 ≤ ε2 for 1 ≤ i ≤ m. Then

Pr
S∼µ

[∥∥∥∥∑
i∈S

viv
T
i

∥∥∥∥ ≤ 4(ε1 + ε2) + 2(ε1 + ε2)2

]
> 0.

Product distributions are strongly Rayleigh distributions, so Theorem 17.1 should be more general
than Theorem 15.2, but the leading constant is just slightly larger that it cannot be used to prove
Weaver's Conjecture 15.1. It can still be used to prove a multi-partitioning version of Weaver's
conjecture for any r ≥ 5, using a similar reduction as in Section 15.2.

Problem 17.2 (Multi-Partitioning Weaver's Problem). Let v1, . . . , vm ∈ Rn be vectors in isotropic
condition

∑m
i=1 viv

T
i = In and ‖vi‖22 ≤ ε for 1 ≤ i ≤ m. Then, for any r, there is an r partitioning

of [m] into S1, . . . , Sr such that for any 1 ≤ j ≤ r,∥∥∥∥∑
i∈S

viv
T
i

∥∥∥∥ ≤ 4
(1

r
+ ε
)

+ 2
(1

r
+ ε
)2
.

The proof of Theorem 17.1 is based on the same two key steps as in Chapter 14 and Chapter 15:
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1. Prove that the family of polynomials
{

det
(
xI −

∑
i∈S viv

T
i

)}
S∈supp(µ)

forms an interlacing

family, and apply the probabilistic method in Theorem 12.12 to show that there exists S ∈
supp(µ) with

λmax

(
det
(
xI −

∑
i∈S

viv
T
i

))
≤ λmax

(
ES∼µ

[
det
(
xI −

∑
i∈S

viv
T
i

)])
.

2. Bound the maximum root of ES∼µ
[

det
(
xI −

∑
i∈S viv

T
i

)]
=
∑

S µ(S) · det
(
xI −

∑
i∈S viv

T
i

)
.

Expected Characteristic Polynomial

Recall that in the solution to the Weaver's conjecture in Chapter 15, both steps depend crucially
on the multilinear formula in Theorem 13.20. Anari and Oveis Gharan proved a generalization
incorporating the probability measure µ.

Theorem 17.3 (Expected Characteristic Polynomial of Strongly Rayleigh Distribution). Let gµ
be the homogeneous generating polynomial of a measure µ : {0, 1}m → R with degree d. Let
v1, v2, . . . , vm ∈ Rn. For any c ∈ R,

cd−n
∑
R⊆[m]

µ(R) det
(
cλI −

∑
i∈R

2viv
T
i

)
=

m∏
i=1

(
1− ∂2

xi

)
gµ
(
c~1 + x

)
· det

(
λI +

m∑
i=1

xiviv
T
i

)∣∣∣∣
~x=0

.

Proof. Start with the LHS. Let Ai = viv
T
i , which is rank one so that det(λI+

∑
i xiAi) is multilinear

in xi. Then∑
R

µ(R) det
(
λI +

∑
i∈R

xiAi

)
=

∑
R

µ(R)
∑
S⊆R

xS
(∏
i∈S

∂xi det
(
λI +

∑
j∈R

xjAj

)∣∣
~x=0

)
(17.1)

=
∑
R

µ(R)
∑
S⊆R

xS
(∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)

=
∑
S

xS
( ∑
R:R⊇S

µ(R)
)(∏

i∈S
∂xi det

(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)
where the �rst equality is by the multilinear expression of det(λI +

∑
i∈R xiAi) as described in

Subsection 13.4.

The idea is to come up with one polynomial g with coe�cient
∑

R:R⊇S µ(R) on the monomial xS ,

and another polynomial f with coe�cient
∏
i∈S ∂xi det(λI +

∑m
j=1 xjAj)|~x=0 on the monomial xS .

Clearly f(x) := det(λI +
∑m

i=1 xiAi).

Consider gµ(c~1 + x) =
∑

R µ(R)
∏
i∈R(c + xi). Each R with R ⊇ S contributes µ(R) · c|R|−|S|

to xS . Therefore, since µ is homogeneous, the coe�cient of xS in gµ is
∑

R:R⊇S µ(R) · c|R|−|S| =

cd−|S|
∑

R:R⊇S µ(R). Let g(x) := gµ(c~1 + x).

Since both f and g are multilinear in xi, the coe�cient of
∏
i∈S x

2
i in f · g is the product of the

coe�cients of xS in f and in g. We can read the coe�cient of
∏
i∈S x

2
i in f · g using the formula

2−|S|
∏
i∈S ∂

2
xif · g|~x=0. So,

2−|S|
∏
i∈S

∂2
xi f · g

∣∣
~x=0

= cd−|S|
∑

R:R⊇S
µ(R)

∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

.
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Therefore,

m∏
i=1

(
1− ∂2

xi

)
f · g

∣∣∣
~x=0

=
∑
S

(−1)|S|
∏
i∈S

∂2
xif · g

∣∣∣
~x=0

= cd
∑
S

(−1)|S| ·
(2

c

)|S|( ∑
R:R⊇S

µ(R)

)(∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)
.

Note that the LHS of this equality is equal to the RHS of the statement, and the RHS of this equality
is equal to the LHS of the statement by plugging in xi = −2/c in Equation 17.1 for 1 ≤ i ≤ m.

Using Theorem 17.3 and Corollary 16.8, we have the following formula for the expected characteristic
polynomial for the volume measure.

Problem 17.4. Let v1, v2, . . . , vm ∈ Rn with
∑m

i=1 viv
T
i = In and let µ be its volume measure as in

De�nition 16.5. Then, for any c ∈ R,

cd−n
∑
S⊆[m]

µ(S) det
(
cλI−

∑
i∈S

2viv
T
i

)
=

m∏
i=1

(
1−∂2

xi

)
det
(
cI+

m∑
i=1

xiviv
T
i

)
·det

(
λI+

m∑
i=1

xiviv
T
i

)∣∣∣∣
~x=0

.

Interlacing Family

Once the formula in Theorem 17.3 is established, the proof that the family of polynomials
{

det
(
xI−∑

i∈S viv
T
i

)}
S∈supp(µ)

forms an interlacing family is similar to that of Theorem 13.28. First, using

that gµ is real stable as µ is strongly Rayleigh, we can prove that the expected characteristic
polynomial is real-rooted.

Exercise 17.5 (Expected Characteristic Polynomial is Real-Rooted). The expected characteristic
polynomial ES∼µ

[
det
(
xI −

∑
i∈S viv

T
i

)]
is real-rooted for any strongly Rayleigh distribution µ.

Then, using a tree with depth m where each internal node has at most 2 children, and associating
each non-leaf node with the conditional expected polynomial, we can use a similar argument as in
Theorem 13.28 to establish an interlacing family for strongly Rayleigh measure.

Problem 17.6 (Interlacing Family of Strongly Rayleigh Measure). Let µ : {0, 1}m → R be a
strongly Rayleigh measure with homogeneous generating polynomial gµ. The set of all polynomials
in
{

det
(
xI −

∑
i∈S viv

T
i

)}
S∈supp(µ)

form an interlacing family, where the root polynomial can be

chosen to be ES∼µ
[

det
(
xI −

∑
i∈S viv

T
i

)]
.

Multivariate Barrier Argument

The second step is to upper bound the maximum root of the expected characteristic polynomial.
The proof structure is similar to that in the induction hypothesis in De�nition 15.6. The same mul-
tivariate barrier functions Φi

p(y) = ∂xip(y)/p(y) as in De�nition 15.5 are used. Starting with a point

(t, . . . , t) which is above the roots of the multivariate polynomial gµ(λ~1+x) ·det
(
λI+

∑m
i=1 xiviv

T
i

)
,

Anari and Oveis Gharan proved that (t+δ, . . . , t+δ, t, . . . , t) with the �rst k coordinates being t+δ
for a small δ is still above the roots after applying the di�erential operator (1− ∂2

xi) for 1 ≤ i ≤ k.
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Also, the monotoncity and the convexity of the barrier functions in Proposition 15.7 are important
in the analysis.

The main di�erence is that the di�erential operator (1 − ∂2
xi) is di�erent. So, not only they need

to keep track of Φi
p(y) = ∂xip(y)/p(y), but also the second derivative Ψi

p(z) = ∂2
xip(y)/p(y) as well.

They prove a new lemma that ∂xiΨ
j
p(y)/∂xiΦ

j
p(y) ≤ 2Φj

p(y), also using the result that a bivariate
real-stable polynomial can be written as det(x1A+ x2B +C) for A,B < 0 and C Hermitian. As in
Chapter 15, the assumptions Pr(i ∈ S) ≤ ε1 and ‖vj‖22 ≤ ε2 are (only) used in the computation of the
initial value of the barrier functions. Because of the di�erential operator (1−∂2

xi) = (1+∂xi)(1−∂xi),
they could prove that the shift δ is much smaller as (1−∂xi) shifts the root up while (1 +∂xi) shifts
the roots down, hence getting a �nal bound that is much smaller than that in Theorem 15.2.

We refer the reader to [AO14] for details. It would be very nice if one could strengthen their result
to prove Weaver's Conjecture 15.1.

Thin Tree and Asymmetric Traveling Salesman Problem

The main motivation of their work is the thin tree problem and its application to the asymmetric
traveling salesman problem (ATSP).

De�nition 17.7 (Thin Tree). Given an undirected graph G = (V,E) and 0 < α < 1, we say a
spanning tree T is α-thin if |δT (S)| ≤ α · |δG(S)| for all S ⊆ V . In words, a spanning tree is α-thin
if it uses at most α-fraction of edges in every cut.

There is a strong conjecture about the existence of a thin tree.

Conjecture 17.8 (Goddyn's Conjecture). Every k-edge-connected graph has a O( 1
k )-thin tree.

If the conjecture is true and a O( 1
k )-thin tree can be found in polynomial time, then it would imply

a constant factor approximation algorithm for ATSP [AGM+17].

It can be proved that a random spanning tree is a O
( logn

log logn ·
1
k

)
-thin tree [AGM+17]. The argument

is similar to that in cut sparsi�cation, using Cherno� bound and careful union bound. The reason
that we can apply Cherno� bound is that the edges in a random spanning tree are negatively
associated as shown in Chapter 16.

As in graph sparsi�cation, one can de�ne a stronger spectral notion of a thin tree.

De�nition 17.9 (Spectrally Thin Tree). Given an undirected graph G = (V,E) and 0 < α < 1,
we say a spanning tree T is α-spectrally-thin if L(T ) 4 α · L(G), where L(T ) and L(G) are the
Laplacian matrices of T and G respectively.

Exercise 17.10 (Spectral Thin Tree is Combinatorially Thin Tree). Prove that an α-spectrally thin
tree is also an α-thin tree.

One advantage of this stronger notion is that it is easier to work with. For example, given a tree,
it is easy to check whether it is α-spectrally thin, while it is not known how to check whether it
is (combinatorially) α-thin. Moreover, the solution to the Weaver's conjecture in Corollary 15.3
provides a non-trivial su�cient condition for the existence of a spectrally thin tree.

Proposition 17.11 (Su�cient Condition for Spectrally Thin Tree [HO14]). If the maximum e�ec-
tive resistance of an edge in a graph G is α, then G has a O(α)-spectrally thin tree.
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The solution to Weaver's conjecture in Corollary 15.3 implies that if the maximum e�ective resis-
tance of an edge in G is α, then the edge set of G can be partitioned into two subgraphs H1 and
H2 such that for i ∈ {1, 2},

1

2

(
1−
√

2α
)
LG 4 LHi 4

1

2

(
1 +
√

2α
)
LG.

The idea in Proposition 17.11 is to recursively apply this partitioning in each subgraph (with slightly
weaker bound on the maximum e�ective resistance of an edge) until we cannot apply again, by that
time there will be O( 1

α) edge-disjoint subgraphs of G, each is connected and O(α)-spectrally thin.

This gives hope that the techniques developed in the method of interlacing family of polynomials
can be used to prove Goddyn's conjecture. Proposition 17.11 gives us a spectrally thin tree, which
is combinatorially thin, but it requires the assumption that the maximum e�ective resistance of
an edge is small, which is not necessarily satis�ed in a k-edge-connected graph. The breakthrough
by Anari and Oveis Gharan [AO15], in a high level, is to reduce the combinatorial problem to the
spectral problem, and use Theorem 17.1 to prove the following result.

Theorem 17.12 (Anari, Oveis Gharan [AO15]). Every k-edge-connected graph has a O
(

log logn ·
1
k

)
-thin tree.

The reduction, however, is very complicated and technically challenging. Also, there is now a con-
stant factor approximation algorithm for ATSP. So we just highlight some underlying mathematics
of the thin tree result. First, check that the probabilistic formulation for strongly Rayleigh measure
can be used to prove Proposition 17.11 without using recursion.

Exercise 17.13 (Direct Proof of Su�cient Condition). Show that Theorem 17.1 can be used to
prove Proposition 17.11. You may use the fact that the probability that an edge is in a uniform
spanning tree is equal to the e�ective resistance of an edge, i.e. PrT [e ∈ T ] = Reff(e).

The main advantage of Theorem 17.1 is that the output is guaranteed to be a spanning tree, so that
we get connectivity for free (without worrying about the minimum eigenvalue), which is important
for the thin tree problem. The following is the fundamental building block of their approach.

Theorem 17.14 (Spectral Thin Tree from Subgraph). Given a graph G = (V,E) and a subset
of edges F ⊆ E such that (V, F ) is k-edge-connected, if Reff(e) ≤ ε for all e ∈ F , then G has a
O
(

1
k + ε

)
-spectrally thin tree in F .

Proof Idea: Since F is k-edge-connected, there are at least k/2 edge-disjoint spanning trees by Tutte
or Nash-Williams' theorem. This implies that there is a point in the spanning tree polytope with
maximum edge value O(1/k). By expressing this point using �maximum entropy distribution�, it
can be proved that there is a weighting of the edges, so that the weighted random spanning tree
distribution µ (which is still homogeneous strongly Rayleigh by Exercise 16.11) has maximum
marginal probability of an edge O(1/k), i.e. ε1 = O(1/k) in Theorem 17.1. The assumption about
e�ective resistance implies that ε2 ≤ ε, and so Theorem 17.1 can be applied.

With Theorem 17.14, their strategy is to add �short-cut� edges in the graph, so that they don't
change the cut structures much, while creating many edges with small e�ective resistance. They do
it in O(log log n) iterations so that the edges with small e�ective resistance form a k-edge-connected
subgraph. The most di�cult step is to prove the existence of good short-cut edges, which they proved
by using an involved analysis of a semide�nite program. They managed to prove Theorem 17.12
after 80 pages of work after Theorem 17.14.
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17.2 Interlacing Family for Matrix Discrepancy

The result by Marcus, Spielman, and Srivastava on Weaver's conjecture can be interpreted as an
improved discrepancy bound over the matrix Cherno� bound in Theorem 9.13. Taking this per-
spective, Kyng, Luh, and Song [KLS20] considered the following more re�ned matrix concentration
result.

Theorem 17.15 (Matrix Concentration with Variance [Tro12]). Let ξi ∈ {±1} be independent
random signs, and let A1, . . . , Am ∈ Rn×n be symmetric matrices. Let σ2 = ‖

∑m
i=1 var[ξi]A

2
i ‖.

Then,

Pr

(∥∥∥∥ m∑
i=1

E [ξi]Ai −
m∑
i=1

ξiAi

∥∥∥∥ ≥ t · σ) ≤ 2ne−
t2

2 .

This theorem implies that with high probability the discrepancy is at most O(
√

log n) ·σ. The main
result of Kyng, Luh, and Song is to prove that there exists a signing with a stronger discrepancy
bound.

Theorem 17.16 (Matrix Discrepancy of Rank One Matrices [KLS20]). Consider any independent
scalar random variables ξ1, . . . , ξm with �nite support. Let u1, . . . , um ∈ Rn and

σ2 =

∥∥∥∥ m∑
i=1

var[ξi](uiu
T
i )2

∥∥∥∥.
Then there exists a choice of outcomes ε1, . . . , εm in the support of ξ1, . . . , ξm such that∥∥∥∥ m∑

i=1

E [ξi]uiu
T
i −

m∑
i=1

εiuiu
T
i

∥∥∥∥ ≤ 4σ.

Note that if ‖ui‖22 ≤ ε and
∑m

i=1 uiu
T
i = In, then σ

2 ≤ ε, and the conclusion is that there is a signing
ε1, . . . , εm ∈ {±1} with

∥∥∑m
i=1 εiuiu

T
i

∥∥ ≤ O(
√
ε). Check that this matches the result of Marcus,

Spielman and Srivastava in Corollary 15.3 applied to the same setting (i.e. with {±1} instead of
{0, 1}). Theorem 17.16 is more �exible that allow arbitrary biased ±1 random variables, instead of
only zero mean random variables. Also, Theorem 17.16 is more re�ned in that it proves stronger
bounds when there are only a few vectors with ‖ui‖22 = ε while other vectors are much shorter.

Two-Sided Spectral Rounding

One interesting application of Theorem 17.16 is the two-sided spectral rounding problem from
Chapter 11.

Problem 17.17 (Two-Sided Spectral Rounding). Let v1, ..., vm ∈ Rn and x ∈ [0, 1]m. Suppose∑m
i=1 xiviv

T
i = In and ‖vi‖22 ≤ ε for all i ∈ [m]. Prove that there exists a subset S ⊆ [m] satisfying(

1−O(
√
ε)
)
· In 4

∑
i∈S

viv
T
i 4

(
1 +O(

√
ε)
)
· In.

This result can be slightly extended to incorporate one non-negative linear constraint, which has
some applications in network design.
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Theorem 17.18 (Two-Sided Spectral Rounding with Costs [LZ20]). Let v1, ..., vm ∈ Rn, x ∈ [0, 1]m

and c ∈ Rm≥0. Suppose
∑m

i=1 xiviv
T
i = In, ‖vi‖22 ≤ ε for all i ∈ [m] and c∞ ≤ ε2〈c, x〉. Then there

exists z ∈ {0, 1}m such that

(
1−O(

√
ε)
)
·In 4

m∑
i=1

ziviv
T
i 4

(
1+O(

√
ε)
)
·In and

(
1−O(

√
ε)
)
·〈c, x〉 ≤ 〈c, z〉 ≤

(
1+O(

√
ε)
)
·〈c, x〉.

Proof Ideas

Theorem 17.16 needs to bound the maximum eigenvalue and the minimum eigenvalue of the di�er-
ence. Their main idea is to consider the polynomial

det

(
x2I −

( m∑
i=1

ξiuiu
T
i

)2
)

= det

(
xI −

m∑
i=1

ξiuiu
T
i

)
· det

(
xI +

m∑
i=1

ξiuiu
T
i

)
Note that the largest root of this polynomial is

λmax

(
det

(
x2I −

( m∑
i=1

ξiuiu
T
i

)2
))

=

∥∥∥∥ m∑
i=1

ξiuiu
T
i

∥∥∥∥.
They found a nice formula for the expected characteristic polynomial.

Proposition 17.19 (Expected Characteristic Polynomial for Matrix Discrepancy). Let u1, . . . , um ∈
Rn. Consider independent random variables ξi with means µi and variances γ2

i . Let Q ∈ Rm×m be
a symmetric matrix. Then

Eξ
[

det

(
x2I −

(
Q+

m∑
i=1

(ξi − µi)uiuTi
)2
)]

=
m∏
i=1

(
1− 1

2
∂2
zi

)
det
(
xI −Q+

m∑
i=1

ziγiuiu
T
i

)
· det

(
xI +Q+

m∑
i=1

ziγiuiu
T
i

)∣∣∣∣
z1=...=zm=0

.

This formula is obtained inductively by the following lemma, as in the inductive proof of the
multilinear formula in Subsection 13.4.

Problem 17.20 (Expected Characteristic Polynomial after One Step). For positive semide�nite
matrices M,N ∈ Rm×m, v ∈ Rm and ξ a random variable with zero mean and variance γ2,

Eξ
[

det
(
M − ξvvT

)
· det

(
N + ξvvT

)]
=
(

1− 1

2

d2

dt2

)
det
(
M + tγvvT

)
det
(
N + tγvvT

)∣∣∣
t=0

.

Proposition 17.19 implies that the expected characteristic polynomial is real-rooted. Then, using a
similar argument as in Theorem 13.28 and Problem 17.6, one can prove that the set of all possible
characteristic polynomials form an interlacing family. Therefore, by the probabilistic method in
Theorem 12.12, there exists a choice of outcomes ε1, . . . , εm in the �nite support of ξ1, . . . , ξm such
that ∥∥∥∥ m∑

i=1

εiuiu
T
i −

m∑
i=1

E [ξi]uiu
T
i

∥∥∥∥ ≤ λmax

(
Eξ1,...,ξm

[
det

(
x2I −

( m∑
i=1

(ξi − E [ξi])uiu
T
i

)2
)])

.
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Then the second step is to bound the maximum root of the expected polynomial. The di�erential
operator 1 − ∂2

zi in Proposition 17.19 is the same as in the formula for strongly Rayleigh measure
in Theorem 17.3. It turned out that the same setup (including the induction hypothesis and the
multivariate barrier functions) and many calculations in [AO14] can be reused. The base case is
di�erent, and once again the assumptions are (only) used in computing the initial values of the
barrier functions.

17.3 Interlacing Family for Higher Rank Matrices

The interlacing families that we have seen so far all involve sum of rank one matrices. It was
remarked that the same approach would fail spectacularly for sum of higher rank matrices, e.g. the
multilinear formula in Theorem 13.20 does not hold and the expected characterisitic polynomials
may not even be real-rooted anymore. Cohen [Coh16] found a very clever solution to bypass expected
characteristic polynomials and proved the following generalization of Theorem 15.2.

Theorem 17.21 (Cohen [Coh16]). Let A1, . . . , Am ∈ Rn×n be independent random positive semidef-
inite matrices with �nite support such that

E
[ m∑
i=1

Ai

]
= In and E

[
Tr(Ai)

]
≤ ε for 1 ≤ i ≤ m.

Then

Pr

[
λmax

( m∑
i=1

Ai

)
≤
(
1 +
√
ε
)2]

> 0.

The insight of Cohen is to focus on the RHS of the multilinear formula, the mixed characteristic
polynomial in De�nition 13.21. The following is a generalization with a �non-mixed� matrix M ,
where the mixed characteristic polynomial in De�nition 13.21 is a special case with M = 0.

De�nition 17.22 (Generalized Mixed Characteristic Polynomial). The generalized mixed charac-
teristic polynomial of n× n matrices M,B1, . . . , Bm (not necessarily rank-one) is de�ned as

µ[M ;B1, . . . , Bm](λ) =

m∏
i=1

(
1− ∂xi

)
det

(
λI −M +

m∑
i=1

xi ·Bi
)∣∣∣∣

x1=x2=···=xm=0

The multivariate barrier argument in Chapter 15 proved that

λmax

(
µ
[
E [A1] , . . . ,E [Am]

]
(λ)
)

= λmax

( m∏
i=1

(1− ∂xi) det

(
λI +

m∑
i=1

xi ·E [Ai]

)∣∣∣∣
~x=0

)
≤ (1 +

√
ε)2.

Cohen's proof has two steps. The �rst step is to prove that the set of all possible mixed characteristic
polynomials form an interlacing family and so the probabilistic method in Theorem 12.12 applies.

Problem 17.23 (Interlacing Family for Mixed Characteristic Polynomials). Let A1, . . . , Am ∈ Rn×n
be independent random positive semide�nite matrices, where each Aj has k possibilitiesMj,1, . . . ,Mj,k.
Prove that the set of all km possible mixed characteristic polynomials µ[M1,i1 , . . . ,Mm,im ](λ) where
each 1 ≤ ij ≤ k for 1 ≤ j ≤ m form an interlacing family, and the root polynomial can be chosen to
be µ

[
E [A1] , . . . ,E [Am]

]
. Conclude that there exists a choice Mj ∈ supp(Aj) for 1 ≤ j ≤ m such

that
λmax

(
µ
[
M1, . . . ,Mm

]
(λ)
)
≤ λmax

(
µ
[
E [A1] , . . . ,E [Am]

]
(λ)
)
.
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The second step is to prove that the maximum root of the characteristic polynomial can only be
smaller than the maximum root of the mixed characteristic polynomial.

Proposition 17.24 (Maximum Root of Mixed Characteristic Polynomials). For any positive semidef-
inite matrices M1, . . . ,Mm,

λmax

(
det
(
λI −

m∑
i=1

Mi

))
≤ λmax

(
µ
[
M1, . . . ,Mm

]
(λ)
)

The proof of Proposition 17.24 is by applying the following lemma repeatedly, where we move the
mixed part to the non-mixed part one at a time. The proof of the following lemma nicely uses the
convexity of real-stable polynomials for points above the roots.

Lemma 17.25 (Inductive Step for Proposition 17.24). Let M,M1, . . . ,Mm ∈ Rn×n be positive
semide�nite matrices. Then

λmax

(
µ
[
M +Mm;M1, . . . ,Mm−1

]
(λ)
)
≤ λmax

(
µ
[
M ;M1, . . . ,Mm

]
(λ)
)

Proof Sketch: Consider the bivariate polynomial

p(λ, x) :=
m−1∏
i=1

(1− ∂xi) det

(
λI −M + xMm +

m−1∑
j=1

xiMi

)∣∣∣∣
x1=...=xm−1=0

.

Note that

p(λ,−1) = µ
[
M +Mm;M1, . . . ,Mm−1

]
(λ) and (1− ∂x)p(λ, x)|x=0 = µ

[
M ;M1, . . . ,Mm

]
(λ).

Let λ∗ be the maximum root of p(λ,−1). Note that both p(λ,−1) and (1 − ∂x)p(λ, x)|x=0 are
real-rooted with positive leading coe�cients. So, to prove the statement of the lemma, it su�ces to
prove that (1− ∂x)p(λ∗, x)|x=0 ≤ 0.

Using the result that any bivariate real-stable polynomial p(x1, x2) can be written as ±det(x1A+
x2B + C) for some A,B < 0 and some symmetric C (or the complex analysis argument in Tao's
blogpost), it can be shown that the roots of the univariate polynomial px(λ) can only decrease when
we increase x. This implies that the point (λ∗,−1) is above the roots of p(λ, x). Since (λ∗,−1) is
above the roots of p(λ, x), the point (λ∗, 0) is also above the roots of p(λ, x). Again, by the result
of bivariate real-stable polynomial, it follows that p(λ∗, x) is convex along the interval x ∈ [−1, 0],
which implies that

p(λ∗, 0)− p(λ∗,−1) ≤ ∂xp(λ∗, 0) =⇒ (1− ∂x)p(λ∗, x)|x=0 ≤ p(λ∗,−1) = 0.

More Results

The interlacing family for permutations in [MSS18] and the interlacing family for the paving problem
in [RL20] are also very interesting.
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Chapter 18

Real-Stability and Log-Concavity

In this chapter, we study the pioneer work of Gurvits on using real stable polynomials in combina-
torial problems that inspired the recent developments, and we see some applications of real-stable
polynomials in designing approximation algorithms for combinatorial optimization problems. This
concludes the second part of the course about real stable polynomials, and connects to the third
part of the course that involves log-concave polynomials. Our presentation follows closely that of
the course notes by Oveis Gharan [Ove20].

18.1 Gurvits' Capacity Inequality

An in�uential concept de�ned by Gurvits is the capacity function [Gur04, Gur06].

De�nition 18.1 (Capacity of a Polynomial). Let p ∈ R[x1, . . . , xn] be a polynomial. The capacity
of p is de�ned as

cap(p) := inf
x>0

p(x1, . . . , xn)

x1 · · ·xn
.

The main theorem in [Gur06] is to use the capacity of a real-stable polynomial p to estimate the
coe�cient of the monomial x1 · · ·xn in p.

Theorem 18.2 (Gurvits [Gur06]). Let p ∈ R[x1, . . . , xn] be a real-stable polynomial with non-
negative coe�cients. Then

e−n · cap(p) ≤ ∂x1 · · · ∂xnp
∣∣
x=0
≤ cap(p).

The proof of the second inequality is easy and holds for any non-negative polynomial. The proof of
the �rst inequality is deferred to the next section after we introduced log-concavity.

The optimization problem in the capacity function can be formulated as a convex program, which
can be solved in polynomial time using only a value oracle.

Proposition 18.3 (Computing Capacity). Given a real stable polynomial p with non-negative coe�-
cients, and an oracle that for any x ∈ Rn returns the value p(x), there is an algorithm to compute the
capacity of p up to (1+ε) factor in time poly

(
〈p〉, 1/ε

)
, where 〈p〉 := n+deg(p)+| log cmax|+| log cmin|

and cmax, cmin are de�ned as the maximum and minimum coe�cients in p.
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Proof Sketch: The idea is to do a change of variables to replace xi by e
yi , which is valid since x > 0.

Then consider the logarithm of the objective function

log cap(p) = inf
y∈Rn

{
log
(
p
(
ey1 , . . . , eyn

))
−

n∑
i=1

yi

}
.

Since all the coe�cients of p are non-negative, the term log
(
p
(
ey1 , . . . , eyn

))
can be written as

log
∑

i aie
〈bi,y〉 where ai ≥ 0 and bi ∈ Rn for all i (one term for each monomial). This is known as

the log-sum-exponential function, which is a convex function in y (often used as a soft-max function
in convex optimization).

Using the ellipsoid method to compute log cap(p), one can implement the separation oracle using
only a value oracle and analyze the time complexity by bounding the volumes of the outer ellipsoid
and the inner ellipsoid. See [AO17] for the details.

Permanent

Gurvits [Gur06] used Theorem 18.2 to approximate the permanent of a matrix and to give a beautiful
proof of the Van der Waerden's conjecture.

De�nition 18.4 (Permanent of a Matrix). The permanent of a matrix A ∈ Rn×n is de�ned as

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

where the summation runs over the set of all permutations of n elements.

Gurvits' idea is to read the permanent of a matrix from the following real-stable polynomial.

Exercise 18.5 (Permanent Polynomial). Given a non-negative matrix A ∈ Rn×n≥0 , the permanent
polynomial is de�ned as

pA(x1, . . . , xn) :=

n∏
i=1

n∑
j=1

Ai,j · xj .

Show that pA is a homogeneous real-stable polynomial with non-negative coe�cients and per(A) =
∂x1 · · · ∂xnpA(x1, . . . , xn)

∣∣
x=0

.

It follow from Theorem 18.2 and Exercise 18.5 that there is a determininstic en-approximation
algorithm for the permanent of a non-negative matrix. The best known deterministic approximation
ratio is (

√
2)n by Anari and Rezaei [AR19]. A major breakthrough in approximate counting is a

randomized (1+ε)-approximation algorithm for the permanent of a non-negative matrix by Jerrum,
Sinclair and Vigoda [JSV04] with running time polynomial in n and 1/ε. Their method is to
use Markov chains to sample a uniform random perfect matching of the bipartite graph of the
input matrix. It has been a long standing open question to match this result with a deterministic
algorithm.

Van der Waerden conjectured that the permanent of an n×n non-negative doubly stochastic matrix
is at least e−n. This conjecture was proven in the 80s by Gyires and by Egorychev and Falikman.
Gurvits provided a simple and elegant proof using Theorem 18.2 and the AM-GM inequality (which
follows from the concavity of the logarithmic function).
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Exercise 18.6 (Weighted AM-GM Inequality). Let a1, . . . , an ≥ 0 and µ1, . . . , µn ≥ 0 with
∑n

i=1 µi =
1. Then

n∑
i=1

µiai ≥
n∏
i=1

aµii .

Theorem 18.7 (Van der Waerden's Conjecture). The permanent of any non-negative doubly stochas-
tic matrix A ∈ Rn×n is at least e−n, where a matrix is called doubly stochastic if every row sum and
every column sum is equal to 1.

Proof. Let pA be the permanent polynomial in Exercise 18.5. By Exercise 18.5 and Theorem 18.2,

per(A) = ∂x1 · · · ∂xnpA(x1, . . . , xn)
∣∣
x=0
≥ e−n · cap(pA),

and so the statement would follow if we could prove that cap(pA) ≥ 1 for any non-negative doubly
stochastic matrix A. For any x ∈ Rn+,

pA(x1, . . . , xn) =

n∏
i=1

n∑
j=1

Ai,jxj ≥
n∏
i=1

n∏
j=1

x
Ai,j
j =

n∏
j=1

x
∑n
i=1 Ai,j

j =

n∏
j=1

xj ,

where the inequality is by the weighted AM-GM inequality in Exercise 18.6 and the assumption
that every row sum is equal to one, and the last equality is by the assumption that every column
sum is equal to one. This implies that cap(pA) ≥ 1 and completes the proof.

Gurvits' result can also be used to give a simple proof of the following bound by Schrijver, whose
original proof is combinatorial and highly complicated.

Problem 18.8 (Schrijver's Bound). Let G be a k-regular bipartite graph with n vertices on each
side. Prove that the number of perfect matchings in G is at least

(
k
e

)n
.

18.2 Log-Concavity

We follow the proof of Theorem 18.2 by Oveis Gharan [Ove20] that highlights the role of log-
concavity. The following simple lemma about univariate polynomials will be used in the base case.

Lemma 18.9 (Log-Concavity of Non-Negative Real-Rooted Polynomial). Let f ∈ R[x] be a real-
rooted polynomial with non-negative coe�cients then log f is a concave function on R≥0.

Proof. Let α1, . . . , αn be the roots of f . As all coe�cients of f are non-negative, it follows that
f(x) > 0 for all x > 0 as long as f 6≡ 0, and so all the roots of f must be non-positive. Assume
without loss that the leading coe�cient of f is one, then

log f = log
( n∏
i=1

(x− αi)
)

=

n∑
i=1

log(x− αi).

Since αi ≤ 0 for 1 ≤ i ≤ n, we conclude that log f is concave on R≥0 as each log(x − αi) is
well-de�ned and concave on R≥0 and the sum of concave functions is a concave function.

The following is Theorem 18.2 in the univariate case.
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Lemma 18.10 (Univariate Case of Theorem 18.2). For any real-rooted polynomial f ∈ R[x] with
non-negative coe�cients,

f ′(0) ≥ 1

e
inf
x>0

f(x)

x
.

Proof. If f(0) = 0, then f ′(0) = infx>0
f(x)
x as f(x) is a convex function in x, and so the inequality

holds trivially. Henceforth we assume that f(0) > 0. By log-concavity of f from Lemma 18.9, for
any x ≥ 0,

log f(x) ≤ log f(0) + x(log f(0))′ =⇒ log
f(x)

x
≤ log f(0) + x

f ′(0)

f(0)
− log x

The RHS is minimized when x = f(0)/f ′(0), and this implies that

inf
x>0

log
f(x)

x
≤ log f(0) + 1− log

f(0)

f ′(0)
=⇒ 1 + log f ′(0) ≥ inf

x>0
log

f(x)

x
,

which implies the lemma.

We are ready to prove Theorem 18.2.

Proof of Theorem 18.2. The proof is by induction on the number of variables n. Let

q(x1, . . . , xn−1) := ∂xnp|xn=0.

Note that q is real-stable as di�erentiation and substituting real number preserve real stability by
Exercise 13.17 and Proposition 13.13, and also q has non-negative coe�cients as p has.

For any x1, . . . , xn−1 > 0, consider the univariate polynomial f(xn) := p(x1, . . . , xn−1, xn). Note
that f is real-stable and thus real-rooted, and also f ′(0) = q(x1, . . . , xn−1). Applying Lemma 18.10
on f ,

q(x1, . . . , xn−1) = f ′(0) ≥ 1

e
inf
xn>0

f(xn)

xn
=

1

e
inf
xn>0

p(x1, . . . , xn)

xn
.

Using this and applying the induction hypothesis on q, we conclude that

∂x1 · · · ∂xnp
∣∣
x1=...=xn=0

= ∂x1 · · · ∂xn−1q
∣∣
x1=...=xn−1=0

≥ e−n−1 inf
x1,...,xn−1>0

q(x1, . . . , xn−1)

x1 · · ·xn−1
≥ e−n inf

x1,...,xn>0

p(x1, . . . , xn)

x1 · · ·xn
.

Finally, we prove the following generalization of Lemma 18.9, which can be seen as a generalization
of the well-known fact that det(X) is log-concave over the space of positive semide�nite matrices.
This result will be useful in the next section for designing approximation algorithms.

Theorem 18.11 (Log-Concavity of Homogeneous Real-Stable Polynomials). Let p ∈ R[x1, . . . , xn]
be a homogeneous real-stable polynomial with non-negative coe�cients. Then p is log-concave on
Rn≥0.
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Proof. To prove the statement, we will prove that log p(a+ tb) is concave along the line a+ tb, for
any a ∈ Rn+ and b ∈ Rn such that a+ tb ∈ Rn+ for all t ∈ [0, 1]. Let p be homogeneous of degree k.
Then

p(a+ tb) = p
(
t
(a
t

+ b
))

= tk · p
(a
t

+ b
)
.

Since p is real-stable and a ∈ Rn+, p(at + b) is real rooted. Let p(at + b) = c
∏k
i=1(t − λi) where

λ1, . . . , λk ∈ R are the roots. Then p(at + b) = c
∏k
i=1(1

t − λi), and so

p(a+ tb) = tk · p
(a
t

+ b
)

= c
k∏
i=1

(1− tλi)

Note that λi < 1 for 1 ≤ i ≤ k, as otherwise there exists t ∈ [0, 1] such that p(a + tb) = 0,
contradicting to our assumption that the line a + tb ∈ Rn+ for t ∈ [0, 1] and so p(a + tb) > 0 as p
has non-negative coe�cients. Therefore,

log p(a+ tb) = log(c) +

k∑
i=1

log(1− tλi),

which is a concave function as each log(1 − tλi) is a concave function of t for t ∈ [0, 1] when
λi < 1.

18.3 Determinant Maximization

In this section, we see some applications of Gurvits' capacity inequality in Theorem 18.2 and the log-
concavity of real-stable polynomial in designing approximation algorithms for some combinatorial
optimization problems.

The determinant maximization problem is closely related to the D-design problem that we have
discussed in Section 11.1.

De�nition 18.12 (Determinant Maximization Problem). Given a positive semide�nite matrixM ∈
Rn×n and an integer k, the goal is to output a set S ⊆ [n] with |S| = k that maximizes det(MS,S).

Oveis Gharan [Ove20] give a simple proof of the following result by Nikolov [Nik15] using the theory
of real-stable polynomials.

Theorem 18.13 (Nikolov [Nik15]). There is a polynomial time algorithm that gives a e−k approx-
imation to the determinant maximization problem.

Proof Sketch: Consider the following mathematical program for the problem:

max log
∑

S⊆[n]:|S|=k

det(MS,S)
∏
i∈S

xi

subject to

n∑
i=1

xi = k

xi ≥ 0 for 1 ≤ i ≤ n.

First we argue that the program is convex and can be solved in polynomial time. We know from
Problem 16.15 that the polynomial

∑
S⊆[n]:|S|=k det(MS,S)

∏
i∈S xi is real-stable when M < 0. As
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this polynomial is homogeneous with non-negative coe�cients as M < 0, it follows from Theo-
rem 18.11 that the objective function is a concave function, and thus the program is a convex
program. We remark that the proof of Problem 16.15 also provides a compact representation of
the polynomial in the objective function, so that we can evaluate the objective function in time
polynomial in terms of the size of the input M .

Note that the convex program is a relaxation of the determinant maximization problem, and so its
objective value

∑
S⊆[n]:|S|=k det(MS,S)

∏
i∈S xi is at least the optimal value opt. Given an optimal

solution x to the convex program, we consider the following simple randomized rounding algorithm.
Let µ be the distribution on [n] where µ(i) = xi/k. Choose k indexes i1, i2, . . . , ik ∈ [n], where
each index ij is sampled from µ independently. If i1, . . . , ik are all distinct, then we output S =
{i1, . . . , ik}, otherwise we output �failed�. Then, the expected objective value of the output is

E [alg] =
∑

S∈([n]
k )

Pr[S is sampled] · det(MS,S) =
∑

S∈([n]
k )

(
k! ·
∏
i∈S

xi
k

)
· det(MS,S) ≥ e−k · opt,

where the second equality is because there are k! permutations to choose the same subset S, each
permutation with probability

∏
i∈S

xi
k . This bounds the integrality gap of the convex program,

but note that the randomized rounding algorithm is not a polynomial time algorithm (see Exer-
cise 18.14). Nikolov [Nik15] derandomized this analysis using conditional expectation to give a
deterministic polynomial time algorithm with the same guarantee.

Exercise 18.14 (Exponential Running Time). Show an example where the randomized rounding
algorithm in the proof of Theorem 18.13 runs in time Ω(ek).

Problem 18.15 (Sampling by Volume). Suppose there is a polynomial time algorithm that outputs
a random size-k subset S with probability proportional to det(MS,S). Show that this algorithm can
be used to give a randomized polynomial time e−k-approximation algorithm for the determinant
maximization problem.

Determinant Maximization with Partition Constraints

Nikolov and Singh [NS16] considered the generalization of the determinant maximization problem
with partition constraints. The following is a simple version of their problem.

De�nition 18.16 (Determinant Maximization with Partition Constraints). Given a positive semidef-
inite matrix M ∈ Rn×n, an integer k and a partition of the ground set [n] into P1 ∪ P2 ∪ . . . ∪ Pk,
the goal is to output a set S with |S ∩ Pi| = 1 for 1 ≤ i ≤ k that maximizes det(MS,S).

We brie�y discuss the main ingredients in [NS16]. The natural relaxation in the proof of Theo-
rem 18.13 (with suitable modi�cation) has unbounded integrality gap. The key contribution by
Nikolov and Singh is to come up with a very interesting convex relaxation for the problem. Let
B := {S ⊆ [n] | |S ∩ Pi| = 1 ∀1 ≤ i ≤ k} be the set of subsets that satisfy the partition constraints.

176



Chapter 18

Write M = V TV and let vi be the i-th column of V . The relaxation in [NS16] is

opt = sup
x

inf
y

det
( n∑
i=1

xiyiviv
T
i

)
subject to

∑
j∈Pi

xj = 1 ∀1 ≤ i ≤ k

0 ≤ xj ≤ 1 ∀1 ≤ j ≤ n,∏
i∈S

yi = 1 ∀S ∈ B.

Nikolov and Singh showed that it is indeed a relaxation and it can be solved in polynomial time.
They analyzed the simple rounding algorithm where we choose one vector in Pi with probability dis-
tribution {xj}j∈Pi . The analysis uses the real-stability of the polynomial p(y) := det(

∑n
i=1 xiyiviv

T
i ).

They reduced the problem of bounding the expected value of the output to bounding the coe�-
cient of the monomial z1 . . . zm of a related real-stable polynomial, and then they applied Gurvits'
inequality in Theorem 18.2 to prove that the convex program gives a e−k-approximation to the
problem.

Generalized Permanent Inequality

Extending the convex program in [NS16], Anari and Oveis Gharan [AO17] obtained an elegant
generalization of Gurvits' permanent inequality. The following is a simpler version of their main
theorem.

Theorem 18.17 (Generalized Permanent Inequality [AO17]). For any two multi-linear real-stable
polynomial p, q ∈ R[x1, . . . , xn] with non-negative coe�cients,

sup
α≥0

inf
x,y>0

e−α
p(x)q(y)(
xy/α

)α ≤∑
κ

cp(κ) · cq(κ) ≤ sup
α≥0

inf
x,y>0

p(x)q(y)(
xy/α

)α ,
where α, x, y ∈ Rn are vectors, and κ is over the set of monomials of p and q with coe�cients cp(κ)
and cq(κ) respectively. For two vectors a, b ∈ Rn, ab ∈ Rn denotes the vector with the i-th entry

being aibi, and a
b ∈ R denotes the number

∏n
i=1 a

bi
i .

They showed that this result generalizes Gurvits' inequality and Nikolov-Singh's result, and provides
deterministic polynomial time algorithms for several counting problems.

Concluding Remark

Besides the applications we discussed, Gurvits' concept of capacity has found important applications
in analyzing scaling problems including matrix scaling, frame scaling and operator scaling, and there
are various applications of these scaling problems (see e.g. [GGOW20]).
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Chapter 19

High Dimensional Expanders

We begin the third part of the course about high dimensional expanders and log-concave polyno-
mials. In this chapter, we study a de�nition of high dimensional expanders through local spectral
expansion. We will introduce the necessary concepts and then prove a fundamental result by Op-
penheim called the trickling down theorem. See [Ove20, HL21] for similar notes which are used in
the preparation of this chapter.

High Dimensional Expanders

As we have seen in Chapter 7, expander graphs have nice combinatorial, probabilistic, and algebraic
properties, which is an important reason that there is a rich theory with connections and applications
in diverse areas. While it may be easy to generalize the de�nition of expander graphs to higher
dimensions for some properties (e.g. combintorial expansion in hypergraphs), it is not easy to �nd
a de�nition in higher dimension that generlizes all nice properties of expander graphs. There are
various de�nitions of high dimensional expanders, some using concepts from algebraic topology;
see [Lub18] for a survey with motivations and applications.

In this course, the main application of high dimensional expanders is in analyzing mixing time of
Markov chains. We will study a more recent and elementary de�nition developed in [KM17, DK17,
KO20], which was motivated by the study of random walks.

19.1 Simplicial Complexes

A simplicial complex is a high dimensional generalization of a graph.

De�nition 19.1 (Simplicial Complex). A set system is a pair X = (U,F) with U as the ground set
and F is a set of subsets of U . A simplicial complex is a set system that is downward closed, such
that if τ ∈ F and σ ⊂ τ , then σ ∈ F.

We follow the convention of using Greek letters σ, τ, η, α, β for subsets in F. The following are some
basic de�nitions about simplicial complexes.

De�nition 19.2 (Face, Dimension, Pure Simplicial Complex). Any subset σ ∈ F is called a face of
the simplicial complex X = (U,F). A face σ is of dimension k if its size is |σ| = k + 1, e.g. a 0-
dimensional face is a singleton (a vertex), a 1-dimensional face is a pair (an edge), a 2-dimensional
face is a triple, etc. Given a simplicial complex X = (U,F), we use X(k) to denote the set of
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faces of dimension k. A simplicial complex is d-dimensional if the maximum face size is d + 1. A
d-dimensional simplicial complex is pure if every maximal face is of size d+ 1.

Simplicial complex is a very general de�nition. We can associate a simplicial complex to many
classes of combinatorial objects.

Example 19.3 (Simplicial Complex from Spanning Trees). Given a graph G = (V,E), we can
de�ne a simplicial complex X = (E,F) where the ground set in X is the edge set E of G. A subset
of edges E′ ⊆ E is in F if and only if E′ forms an acyclic subgraph in G. It should be clear that X
is a pure simplicial complex. When G is connected, the maximal faces correspond to spanning tree,
which are of size |V | − 1 and so X is (|V | − 2)-dimensional.

More generally, every matroid naturally corresponds to a simplicial complex.

Example 19.4 (Simplicial Complex from Matroids). A matroid M = (U, I) is a set system where
U is the ground set and I is the set of subsets of U which satis�es the following two properties:

1. I is downward close, i.e. S ∈ I and T ⊆ S implies T ∈ I.

2. If S, T ∈ I and |T | > |S|, then there exists x ∈ T \ S such that S ∪ {x} ∈ I.

So, by (1), M = (U, I) is a simplicial complex. And, by (2), M = (U, I) is a pure simplicial complex.
The sets in I are usually called the independent sets, and the maximal sets are usually called bases.
It is not di�cult to check that the simplicial complex from spanning trees is a matroid.

A more general example is the class of linear matroids. Given a matrix A ∈ Fm×n, the linear
matroid of A is de�ned as M = ([n], I) where the ground set [n] is the set of columns of A, and a
subset S of columns is in F if and only if the columns in S are linearly independent. We leave it as
an exercise to check that it is a matroid and includes the matroid from spanning trees as a special
case.

There are many more simplicial complexes that one can de�ne, e.g. simplicial complexes from
cliques of graphs, simplicial complexes for graph coloring, etc. We may discuss some of these in
later chapters.

Weighted Simplicial Complexes

We will consider pure simplicial complexes with weights on its faces. We follow the convention
in [DDFH18] that the weights form a probability distribution on the faces of the same dimension.

De�nition 19.5 (Weighted Simplicial Complexes). A weighted pure simplicial complex (X,Π) is a
pure simplicial complex with a probability distribution Π on the faces of maximal dimension.

In applications of random sampling, the probability distribution in the maximal faces are usually
the uniform distribution, so they are simply unweighted simplicial complexes, but the following
de�nition of induced distributions will be important in our study. An alternative way to think
about these induced distributions is to think of them as weighted degrees of a subset in the simplicial
complex.
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De�nition 19.6 (Induced Distributions). Given a d-dimensional weighted pure simplicial complex
(X,Π), a probability distribution Πk on X(k) for 0 ≤ k ≤ d is de�ned inductively as follows. The
base case is Πd = Π. For d − 1 ≥ k ≥ 0, the probability distribution Πk : X(k) → R is de�ned by
considering the marginal distributions such that

Πk(α) =
1

k + 2

∑
β∈X(k+1):β⊃α

Πk+1(β) (19.1)

for each face α ∈ X(k). Equivalently, we can understand Πk as the probability distribution of the
following random process. Sample a random face β ∈ X(d) using the probability distribution Πd,
and then sample a uniform random subset α of β in X(k), so that

Πk(α) =
1(
d+1
k+1

) ∑
β∈X(d):β⊃α

Πd(β) =
1(
d+1
k+1

) Pr
β∼Πd

[β ⊃ α].

We will often drop the subscript about the dimension of the face. Just keep in mind that each Πk

is a probability distribution.

19.2 Local Spectral Expanders

We �rst de�ne links and graphs of simplicial complexes, and then de�ne local spectral expanders.

Links

The following is the key de�nition that enables a local-to-global approach for simplicial complexes.

De�nition 19.7 (Links). Let X = (U,F) be a simplicial complex. For a face α ∈ F, the link Xα is
de�ned as

Xα := {β \ α | β ∈ F, β ⊃ α}.

In words, Xα is de�ned by the faces τ that can be used to extend α such that α ∪ τ ∈ F.

IfX is a pure d-dimensional simplicial complex and α ∈ X(k), thenXα is a pure (d−|α|)-dimensional
simplicial complex (where the empty set is a face of dimension −1). In the spanning tree complex
X = (E, I), given a subset of acyclic edges F ∈ I, the link XF is de�ned such that a subset of edges
F ′ is a face in XF if and only if F ∪F ′ is an acyclic subgraph. In matroid terminology, the link XF

is obtained by �contracting� the elements in F . A general approach to study a simplicial complex
is to decompose it into its links, as we will see later in this chapter.

The probability distributions Π0, . . . ,Πd onX in De�nition 19.6 can be used to de�ne Πα
0 , . . . ,Π

α
d−k−1

on Xα using conditional probability, where Πα(τ) ∝ Prβ∼Πd [β ⊃ τ | β ⊃ α]

De�nition 19.8 (Induced Distributions on Links). Let (X,Π) be a d-dimensional weighted pure
simplicial complex. For any face α and any τ ∈ Xα,

Πα(τ) := Pr
β∼Π|τ |+|α|−1

[
β = α ∪ τ | β ⊃ α

]
=

Π(α ∪ τ)∑
β:|β|=|τ |+|α|,β⊃α Π(β)

=
Π(α ∪ τ)(|α∪τ |
|α|
)
·Π(α)

, (19.2)

where the last equality follows from De�nition 19.6.
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Often, it is enough to understand that Πα(τ) ∝ Π(α ∪ τ), and just see the denominator in De�ni-
tion 19.8 as a normalizing constant.

Exercise 19.9. Verify that Πα
k is a probability distribution for every 0 ≤ k ≤ d− |α|.

Skeletons and Graphs

De�nition 19.10 (k-Skeletons). Given X = (U,F), the k-skeleton of X is the simplicial complex
Xk = (U,Fk) where Fk is the set of faces of F with dimension at most k. When there are weights
on the faces in F, we use the same weight on the faces in Fk.

The special case of 1-skeleton will be of particular interest, which could be thought of as the
underlying graph of the simplicial complex.

De�nition 19.11 (Graph of Links). For a link Xα, the graph Gα = (Xα(0), Xα(1),Πα
1 ) is de�ned

as the 1-skeleton of Xα. More explicitly, each singleton {v} in Xα is a vertex v in Gα, each pair
{u, v} in Xα is an edge uv in Gα, and the weight of uv in Gα is equal to Πα

1 ({u, v}).

A simple observation is that if X is a pure d-dimensional simplicial complex and Π is the uniform
distribution on X(d), then for any α ∈ X(d − 2) the weighting Πα

1 on the edges of Gα is uniform.
We will use this simple observation later.

Random Walk Matrices

The de�nition of local spectral expanders will be based on the random walk matrices of the links.

De�nition 19.12 (Random Walk Matrix of a Link). Given the graph Gα = (Xα(0), Xα(1),Πα
1 ) of

a link Xα, let Aα be the adjacency matrix of Gα and let Dα be the diagonal degree matrix where

Dα(x, x) =
∑

y∈Xα(0)

Aα(x, y) =
∑

y∈Xα(0)

Πα
1 ({x, y}) = 2Πα

0 ({x}).

Check that the last equality follows from De�nition 19.6 and De�nition 19.8. The random walk
matrix Wα of Gα is de�ned as

Wα := D−1
α Aα where Wα(x, y) =

Πα
1 ({x, y})

2Πα
0 ({x})

=
Π(α ∪ {x, y})

(|α|+ 2) ·Π(α ∪ {x})
for all {x, y} ∈ Xα(1).

Check that the last equality follows from De�nition 19.8. Note that the distribution Πα
0 is the

stationary distribution of Wα as

(Πα
0 )TWα = (Πα

0 )TD−1
α Aα =

1

2
(~1)TAα = (Πα

0 )T .

Recall from Chapter 6 that the random walk matrix and the normalized adjacency matrix of a
graph are similar matrices, and so the eigenvalues of the random walk matrices are real. The largest
eigenvalue of Wα is one and the all-one vector is a corresponding eigenvector.
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Local Spectral Expanders

Finally, we can state the de�nition of high dimensional expanders that we will use.

De�nition 19.13 (Local Spectral Expanders [KM17, DK17, KO20]). Let (X,Π) be a pure d-
dimensional simplicial complex. We say (X,Π) is a γ-local-spectral expander if λ2(Wα) ≤ γ for all
faces α ∈ X, where λ2(Wα) is the second largest eigenvalue of the random walk matrix Wα.

More generally, given γ−1, . . . , γd−2, we say (X,Π) is a (γ−1, . . . , γd−2)-local-spectral expander if
λ2(Wα) ≤ γk for all faces α ∈ X(k) for all −1 ≤ k ≤ d− 2.

The de�nitions in [KM17, DK17] require a lower bound on the minimum eigenvalue of Wα as well.
The above de�nition is from [KO20] where Kaufman and Oppenheim realized that only upper
bounding λ2 is enough for fast mixing of higher order random walks that we will de�ne in the next
chapter.

We can understand the above de�nition as requiring the �local� random walks in each link graph
are fast mixing. As the random walk matrix has the same spectrum as the normalized adjacency
matrix, we can also understand that the above de�nition as requiring the �local� weighted graphs
of the links have large edge conductance through Cheeger's inequality.

Example 19.14 (Complete Complex). Consider the complete complex Xd = (U,Fd) where every
subset S ⊆ U with |S| ≤ d + 1 is in Fd, equipped with the uniform distribution on the faces of
dimension d. Then the graph of every link of dimension k is an unweighted complete graph with
d− k vertices, with second largest eigenvalue of the random walk matrix being −1/(d− k − 1).

It is not surprising that a complete complex is a good high dimensional expander (if not, what is?).
As in expander graphs in Chapter 7, the goal is usually to construct high dimensional expanders
with few maximal faces. Unlike in the graph case, however, random simplicial complexes are not
high dimensional expanders with high probability. It is di�cult to construct sparse high-dimensional
expanders, with only a few known algebraic constructions [Lub18]. This is a topic of great interest
but is out of the scope of this course.

19.3 Oppenheim's Trickling Down Theorem

To show that a simplicial complex is a γ-local-spectral expander, we need to bound the second
largest eigenvalue of the random walk matrix for every link up to dimension d− 2. In applications
where the goal is to do uniform sampling of the maximal faces, it is usually much easier to work
with the random walk matrix of the �top� links of dimension d−2, because the graphs of these links
are unweighted as we mentioned before. For �lower� links, just determining the edge weights may
already involve some di�cult counting problems. So, it would be very nice if we could bound the
second largest eigenvalues of the lower links by the second largest eigenvalues of the top links, and
Oppenheim's trickling down theorem [Opp18] provides such a general bound for any pure simplicial
complex.

Theorem 19.15 (Oppenheim's Trickling Down Theorem [Opp18]). Let (X,Π) be a pure d-dimensional
weighted simplicial complex where Π satis�es Equation 19.1 and Equation 19.2. Suppose the graph
G∅ = (X(0), X(1),Π1) is connected and λ2(Wv) ≤ γ for all v ∈ X(0). Then

λ2(W∅) ≤
γ

1− γ
.
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Note that the condition that the graph G∅ is connected is necessary, as the example of two disjoint
cliques shows. Applying Theorem 19.15 inductively would give us the following bound.

Exercise 19.16 (Oppenheim's Bound [Opp18]). Let (X,Π) be a pure d-dimensional weighted sim-
plicial complex where Π satis�es Equation 19.1 and Equation 19.2. If Gα is connected for every
α ∈ X(k) for every k ≤ d− 2, then for any −1 ≤ j ≤ d− 2,

γj ≤
γd−2

1− (d− 2− j)γd−2
.

In general, when γd−2 > 0, the bound deteriorates as we go to lower links. But if we could prove
that γd−2 ≤ 0, then Oppenheim's bound in Exercise 19.16 would allow us to conclude that the
simplicial complex is a 0-local-spectral expander, which is almost as strong as the complete complex
in Example 19.14. An important example of 0-local-spectral expander is the matroid complex in
Example 19.4.

Matroid Complex

The following result is proved in [ALOV19], as an important step in proving the matroid expansion
conjecture that we will explain in the next chapter.

Theorem 19.17 (Matroid Complex is 0-Local-Spectral Expander [ALOV19]). The simplicial com-
plex of any matroid in Example 19.4 with the uniform distribution on the maximal faces is a 0-local-
spectral expander.

Proof. Let X be a pure d-dimensional simplicial complex from a matroid M . By Oppenheim's
bound in Exercise 19.16, we just need to prove that the graph of every link is connected and the
second largest eigenvalue of the random walk matrix of the links of diemnsion d− 2 is at most 0.

The �rst claim that the graph of every link is connected follows from the second axiom of matroids
stated in Example 19.4, and is left as a simple exercise.

For the second claim, we �rst consider the adjacency matrix Aα of a face α of dimension d−2. Since
the probability distribution on the maximal faces is the uniform distribution, every non-zero entry
of the adjacency matrix has the same weight. For bounding the spectrum, without loss of generality,
we rescale the matrix such that Aα(i, j) = 1 if α∪{i, j} is a maximal face and Aα(i, j) = 0 otherwise.
We would like to argue that Aα has at most one positive eigenvalue, and this would imply that
the normalized adjacency matrix Aα has at most one positive eigenvalue by the Courant-Fischer
Theorem 2.12, and this would imply that the random walk matrix Wα has at most one positive
eigenvalue as Wα and Aα are similar matrices.

To argue that A has at most one positive eigenvalue, let us start with the spanning tree complex
in Example 19.3. In the spanning tree complex X = (E,F) of a graph G = ([n], E), the maximal
faces are of size n − 1 and thus of dimension d := n − 2. Given a face F ⊆ E of dimension d − 2,
with |F | = n− 3, the subgraph formed by the edges in F has exactly three components left. Note
that the edges remained in the link XF are the edges with endpoints in di�erent components. Two
edges e, f in XF form a face of size 2 if and only if F ∪ {e, f}is a spanning tree if and only if e and
f are not parallel edges if we contract the three components into single vertices. In other words,
the edges in XF can be partitioned into three equivalent classes E1, E2, E3 such that two edges e, f
form a face of size 2 in XF if and only if they do not belong to the same subset. So, the adjacency
matrix AF can be written as J − χE1χ

T
E1
− χE2χ

T
E2
− χE3χ

T
E3
, where J is the all-one matrix and
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χEi is the characteristic vector of Ei for 1 ≤ i ≤ 3. Therefore, AF is a rank-one matrix minus three
positive semide�nite matrices. It follows from Courant-Fischer Theorem 2.12 or Cauchy interlacing
Theorem 2.13 that AF has at most one positive eigenvalue, and this concludes the proof for spanning
tree complexes.

The same proof works for linear matroids, where two columns i, j form a face of size 2 if and only
if they are parallel in the linear algebraic sense, and so again the columns can be partitioned into
equivalence classes E1, E2, . . . , El (with l not necessarily equal to 3) so that A = J −

∑l
i=1 χEiχ

T
Ei
.

In general, this holds for arbitrary matroids and is known as the matroid partition property and so
the same proof works.

The proof can be generalized so that the probability distribution on the maximal faces are product
distributions.

Exercise 19.18 (Product Distributions). Let X = (E, I) be a matroid complex. Suppose each
element e ∈ E has a weight we. Consider the probability distribution Π where each maximal face F
has probability Π(F ) proportional to

∏
e∈F we. Prove that (X,Π) is still a 0-local-spectral expander.

One may wonder what are other 0-local-spectral expanders. The following problem shows that they
have very restrictive structures such that the graphs of the top links must be complete multipartite
graphs.

Problem 19.19 (Complete Multi-Partite Graphs). The adjacency matrix of a graph G has at most
one positive eigenvalue if and only if G is a complete multi-partite graph.

19.4 Garland's Method

The main goal in this section is to prove Oppenheim's Theorem 19.15. We will �rst prepare by
introducing di�erent inner products for the calculations in the proof. Then we will introduce
the Garland's method which decomposes a structure of a simplicial complex to the corresponding
structure of its links. Then we will present the proof of Oppenheim's theorem.

Inner Products and Rayleigh Quotients

Recall from Chapter 6 that the random walk matrix of a graph and the normalized adjacency matrix
of a graph are similar matrices, and so the eigenvalues are real, but the eigenvectors may not be
orthonormal using the standard inner product. It will be convenient to work with a di�erent inner
product so that the eigenvectors are orthonormal with respect to this inner product. Given a random
walk matrix W = D−1A, we have shown in Lemma 6.18 that the eigenvectors u1, . . . , un ∈ Rn
satis�es 〈ui, uj〉D :=

∑n
l=1D(l, l) · ui(l) · uj(l) = 0. For simplicial complexes, we will use the

probability distribution Π0 to de�ne the inner product, which is equivalent to the degree distribution
as shown in De�nition 19.12.

De�nition 19.20 (Inner Products using Π). Given a simplicial complex (X,Π), for two functions
f, g : X(0)→ R, de�ne 〈

f, g
〉

Π0
:= Ei∼X(0)

[
f(i)g(i)

]
=
∑

i∈X(0)

Π0(i)f(i)g(i).
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Similarly, given a link Xα and two functions f, g : Xα(0)→ R, de�ne 〈f, g〉Πα0 := Ei∼Xα(0)[f(i)g(i)].
Note that Wα is self-adjoint with respect to this inner product, as〈

f,Wαg
〉

Πα0
=
〈
f,D−1

α Aαg
〉

Πα0
=

1

2

〈
f,Aαg

〉
=

1

2

〈
Aαf, g

〉
=
〈
Wαf, g

〉
Πα0
. (19.3)

Check that this implies that all eigenvalues of Wα are real with corresponding eigenvectors orthonor-
mal with respect to this inner product.

We also de�ne Rayleigh quotients using the inner product in De�nition 19.20.

De�nition 19.21 (Rayleigh Quotients using Π). Given a simplicial complex (X,Π) and a link
(Xα,Π

α), for a function g : Xα(0)→ R, the Rayleigh quotient of g is de�ned as

〈g,Wαg〉Πα0
〈g, g〉Πα0

.

Check that there is a one-to-one correspondence between the Rayleigh quotients of Wα and the
Rayleigh quotients of Aα de�ned as fTAαf/f

T f , and in particular the second largest eigenvalue of
Wα can be characterized as

λ2(Wα) = max
g:〈g,~1〉Πα0 =0

〈g,Wαg〉Πα0
〈g, g〉Πα0

. (19.4)

The advantage of working with Wα (instead of Aα or Aα) is that we know that the vector ~1/‖1‖Πα0
is an eigenvector of Wα with eigenvalue 1 for every link α. Let u1, . . . , un be the eigenvectors of Wα

that are Πα
0 -orthonormal. Given any y ∈ Rn, note that we can write y = c1u1 + . . . + cnun with

ci = 〈y, ui〉Πα0 , and in particular

c1 = 〈y, u1〉Πα0 =
〈y,~1〉Πα0
‖~1‖Πα0

. (19.5)

Garland's Method

Our plan is to bound the second largest eigenvalue of W using the Rayleigh quotient formulation
in Equation 19.4. Garland's method is a well-known technique in high dimensional expanders that
decompose a term (Rayleigh quotient in this case) into the corresponding terms over the links,
so that we can apply the properties (second largest eigenvalue in this case) in the links to bound
the terms over the links in order to bound the original term. We �rst de�ne a notation for the
localization of a function into a link.

De�nition 19.22 (Localization to Link). Given a simplicial complex (X,Π), a function f : X(k)→
R and a face τ , the localization of f to Xτ (k) is de�ned as fτ : Xτ (k)→ R such that fτ (σ) = f(σ)
for all σ ∈ Xτ (k).

The following two lemmas show how to decompose the denominator and the numerator of Equa-
tion 19.4 respectively.

Lemma 19.23 (Decomposition of Denominator). Given a simplicial complex (X,Π), for any two
functions f, g : X(0)→ R, 〈

f, g
〉

Π0
= Ev∼Π0

[〈
fv, gv

〉
Πv0

]
,

where fv is the localization of f to Xv(0) as de�ned in De�nition 19.22.
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Proof. The proof is by showing that the distribution Π0 can be written as Ev∼Π0 [Πv
0] by using

conditional probability. Note that
〈
f, g
〉

Π0
=
∑

w∈X(0) Π0(w)f(w)g(w) and

Ev∼Π0

[〈
fv, gv

〉
Πv0

]
=

∑
v∈X(0)

Π0(v)
∑

w∈Xv(0)

Πv
0(w)fv(w)gv(w) =

∑
w∈X(0)

( ∑
v∈X(0)

Π0(v)Π̃v
0(w)

)
f(w)g(w)

where Π̃v
0 is just an extension of Πv

0 (with zero entries) so that it has the same dimension as Π0.
We prove the statement by showing that Π0(w) =

∑
v∈X(0) Π0(v) · Π̃v

0(w) as

Π0(w) =
1

2

∑
v:{w,v}∈X(1)

Π1({w, v}) =
∑

v:{w,v}∈X(1)

Π0(v) ·Πv
0(w) =

∑
v∈X(0)

Π0(v) · Π̃v
0(w).

where the �rst equality is by Equation 19.1 and the second equality is by Equation 19.2.

An alternative succinct way [Ove20] to write the above proof is

Ew∼Π0

[
f(w)g(w)

]
= Evw∈Π1Ew|{v,w}

[
f(w)g(w)

]
= Ev∈Π0E{v,w}|v

[
f(w)g(w)

]
= Ev∼Π0

[
〈fv, gv〉Πv0

]
,

where in the �rst equality to sample a random vertex w we choose a random pair {v, w} and then
drop a random vertex with probability 1/2, in the second equality we use an equivalent process of
�rst choosing a random vertex v then choose a random edge {v, w} incident on it and then choose
the other vertex w.

Lemma 19.24 (Decomposition of Numerator). Given a simplicial complex (X,Π), for two functions
f, g : X(0)→ R, 〈

f,Wg
〉

Π0
= Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
,

where W and Wv are the random walk matrices of the empty link X∅ and the link Xv respectively.

Proof. The proof is by showing that the adjacency matrix can be written as the expected matrix of
the adjacency matrices of the links. We use Equation 19.3 to write the terms using the adjacency
matrices so that

〈
f,Wg

〉
Π0

= 1
2〈f,Ag〉 and

Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
= Ev∼Π0

[1

2
〈fv, Avgv〉

]
= Ev∼Π0

[1

2
〈f, Ãvg〉

]
=

1

2

〈
f,
(
Ev∈Π0Ãv

)
g
〉

where Ãv is just the extended matrix of Av (with zero rows and columns) so that it has the
same dimension as A. We prove the statement by showing that A = Ev∈Π0Ãv. Using conditional
probability, for each entry (u,w),

Au,w = Π1({u,w}) =
1

3

∑
v:{u,v,w}∈X(2)

Π2({u, v, w}) =
∑

v:{u,v,w}∈X(2)

Π0(v) ·Πv
1({u,w})

=
∑

v∈X(0)

Π0(v) ·Πv
1({u,w}) =

∑
v∈X(0)

Π0(v) ·
(
Ãv
)
u,w
,

where the �rst line is by Equation 19.1 and Equation 19.2.

An alternative succinct way [Ove20] to write the above proof is to rewrite the �rst step as
〈
f,Wg

〉
Π0

=

E{v,w}∼Π1
[f(v)g(w)] (exercise) and the remaining steps as

E{u,w}∼Π1
[f(u)g(w)] = E{u,v,w}∼Π2

E{u,w}|{u,v,w}[f(u)g(w)] = Ev∼Π0E{u,v,w}|v[f(u)g(w)]

= Ev∼Π0E{u,w}∼Πv1
[f(u)g(w)] = Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
.
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Proof of Oppenheim's Theorem

We are ready to prove Oppenheim Theorem 19.15. Let G be the graph of X and W be its random
walk matrix. Since G is connected by assumption, the second largest eigenvalue of W is less than
one. Let λ < 1 be the second largest eigenvalue ofW and f be a corresponding eigenvector achieving
the maximum of the Rayleigh quotient in Equation 19.4 with 〈f,~1〉Π0 = 0. We assume without loss
of generality that 〈f, f〉Π0 = 1. Therefore, by Lemma 19.24,

λ = 〈f,Wf〉Π0 = Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
As eachWv is a random walk matrix, the largest eigenvalue of eachWv is one with the corresponding
eigenvector being ~1v/‖~1v‖Πv0 = ~1v, where ~1v is the localization of ~1 into Xv(0) as described in
De�nition 19.22. To bound 〈fv,Wvfv〉Πv0 , we use Equation 19.5 to decompose the vector fv as

fv = 〈fv,~1v〉Πv0 ·~1v + f⊥v where 〈~1v, f⊥v 〉Πv0 = 0.

Expanding the quadratic form using Wv~1v = ~1v, 〈~1v, f⊥v 〉Πv0 = 0 and the self-adjoint property in
Equation 19.3, the cross terms are zero and we get

〈fv,Wvfv〉Πv0 = 〈fv,~1v〉2Πv0 +〈f⊥v ,Wvf
⊥
v 〉Πv0 ≤ 〈fv,~1v〉

2
Πv0

+γ〈f⊥v , f⊥v 〉Πv0 = (1−γ)〈fv,~1v〉2Πv0 +γ〈fv, fv〉Πv0

where the inequality is by the characterization of the second largest eigenvalue in Equation 19.4
and the assumption that each link has second largest eigenvalue at most γ, and the last equality is
by 〈fv, fv〉Πv0 = 〈fv,~1v〉2Πv0 + 〈f⊥v , f⊥v 〉Πv0 by the same orthonormality argument. Therefore, using the

decomposition of the denominator in Lemma 19.23 and 〈f, f〉Π0 = 1,

Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
≤ Ev∈Π0

[
(1− γ)〈fv,~1v〉2Πv0 + γ〈fv, fv〉Πv0

]
= γ + (1− γ) · Ev∈Π0

[
〈fv,~1v〉2Πv0

]
.

Note that, by Equation 19.2 and De�nition 19.12,

〈fv,~1v〉Πv0 =
∑

w∈Xv(0)

Πv
0(w)fv(w) =

∑
w∈Xv(0)

Π1({v, w})
2Π0(v)

·fv(w) =
∑

w∈Xv(0)

W (v, w) ·fv(w) = (Wf)(v).

Hence, as f is an eigenvector of W with eigenvalue λ and 〈f, f〉Π0 = 1,

Ev∈Π0

[
〈fv,~1v〉2Πv0

]
= Ev∈Π0

[
(Wf)(v)2

]
=
〈
Wf,Wf

〉
Π0

= λ2 · 〈f, f〉Π0 = λ2.

To summarize,

λ = Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
≤ γ + (1− γ) · Ev∈Π0

[
〈fv,~1v〉2Πv0

]
= γ + (1− γ)λ2

Solving this quadratic inequality gives either λ ≥ 1 or λ ≤ γ/(1 − γ). Since G is connected and
λ < 1, we conclude that λ ≤ γ/(1− γ) as stated in Theorem 19.15.

19.5 Problems

The following are two interesting problems.
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Problem 19.25 (Spanning Tree Complex without Oppenheim). Use the results in Chapter 16 to
prove directly that the spanning tree complex is a 0-local-spectral expander, without using Oppen-
heim's trickling down theorem.

Problem 19.26 (Approximate Negative Correlation of Matroids). In Chapter 16, we have seen
that the variables in a random spanning tree are negatively correlated, such that for any two edges
e 6= f ,

Pr
T

[e ∈ T | f ∈ T ] ≤ Pr
T

[e ∈ T ].

This is known to be not necessarily true for general matroids, but not all is lost. Use the result
that any matroid complex is a 0-local-spectral expander in Theorem 19.17 to prove that for any two
elements i 6= j in a matroid,

Pr
B

[i ∈ B | j ∈ B] ≤ 2 Pr
B

[i ∈ B],

where B is a uniform random basis of the matroid.

Question 19.27. It is an open question what is the best constant that one could prove for the
approximate negative correlation property of matroids in Problem 19.26. There are examples showing
that the constant is at least 8/7, and some conjectured that this is tight.
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Chapter 20

Higher Order Random Walks

We study two related random walks on simplicial complexes, called the down-up walks and up-down
walks. The main result is that they are fast mixing if the simplicial complex is a good local-spectral
expander. A consequence is that the natural random walks on matroid bases is fast mixing, proving
the long-standing matroid expansion conjecture.

20.1 Random Walks on Simplicial Complexes

Kaufman and Mass [KM17] de�ned two natrual random walks on faces of dimension k in a simplicial
complex, the up-down walks that go through faces of dimension k + 1 and the down-up walks that
go through faces of dimension k− 1. The most intuitive way to de�ne these walks is to consider the
following bipartite graphs.

De�nition 20.1 (Bipartite Graph of a Layer). Let (X,Π) be a pure d-dimensional simplicial com-
plex. For any −1 ≤ k ≤ d− 1, the bipartite graph Hk = (X(k), X(k+ 1);E) has one vertex for each
face in X(k)∪X(k+ 1), with an edge between a face α ∈ X(k) and a face β ∈ X(k+ 1) if and only
if α ⊂ β and the weight of this edge is 1

k+2 ·Πk+1(β).

Up and Down Operators

We consider the random walk matrix of these bipartite graphs and de�ne the important up and down
operators, which correspond to one-step random walks on the bipartite graphs in De�nition 20.1.

De�nition 20.2 (Up and Down Operators). Let (X,Π) be a pure d-dimensional simplicial complex.
Let Ak be the adjacency matrix of Hk with Ak(α, β) = Ak(β, α) = 1

k+2 · Πk+1(β) if α ⊂ β for any
α ∈ X(k) and β ∈ X(k + 1) and zero otherwise. For each face α ∈ X(k), the weight degree of α is

deg(α) :=
∑

β∈X(k+1):β⊃α

Ak(α, β) =
∑

β∈X(k+1):β⊃α

1

k + 2
·Πk+1(β) = Πk(α),

where the last equality is by Equation 19.1. For each face β ∈ X(k + 1), the weighted degree of β is

deg(β) :=
∑

α∈X(k):α⊂β

Ak(α, β) =
∑

α∈X(k):α⊂β

1

k + 2
·Πk+1(β) = Πk+1(β).
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The random walk matrix Wk of Hk can thus be written as

Wk =

(
0 Dk+1

Uk 0

)
,

where Dk+1 is a X(k)×X(k + 1) matrix and Uk is a X(k + 1)×X(k) matrix with

Dk+1(α, β) =
Ak(α, β)

deg(α)
=

Πk+1(β)

(k + 2)Πk(α)
and Uk(β, α) =

Ak(α, β)

deg(β)
=

1

k + 2
.

for α ∈ X(k) and β ∈ X(k + 1) satisfying α ⊂ β. The matrix Dk+1 is called the down operator
from X(k + 1) to X(k) and Uk is called the up operator from X(k) to X(k + 1).

The following remark may clear up some potential confusion about the naming convention.

Remark 20.3 (Down Up Confusion). The name down operator comes from the perspective that
Dk+1 is an operator that maps a function f : X(k + 1)→ R to a function g = Dk+1f : X(k)→ R,
and so the output is one dimension lower and it is called a down operator. In other words, the name
comes from when we do right-multiplication on the matrix.

When we do random walks, however, we do left-multiplication of the form pTWk. So Dk+1 actually
maps a distribution in X(k) to a distribution in X(k+ 1), and the output is one dimension higher.
It is a bit confusing for us because we mostly think about random walks, but it won't be a big issue
that we won't often talk about these down and up operators alone.

A useful property is the adjoint property of the up and down operators.

Exercise 20.4 (Adjoint Property). Let (X,Π) be a pure d-dimensional simplicial complex. Prove
that for any f : X(k)→ R and g : X(k + 1)→ R,

〈Ukf, g〉Πk+1
= 〈f,Dk+1g〉Πk .

Up-Down Walks and Down-Up Walks

The two random walks de�ned by Kaufman and Mass correspond to two-steps random walks on
the bipartite graphs in De�nition 20.1.

De�nition 20.5 (Up-Down Walks and Down-Up Walks). Let (X,Π) be a pure d-dimensional sim-
plicial complex. Let Hk be the bipartite graph in De�nition 20.1 and Wk be the random walk matrix
on Hk in De�nition 20.2. Consider

W 2
k =

(
Dk+1Uk 0

0 UkDk+1

)
=:

(
P4k 0

0 P5k+1

)
,

where P4k ∈ RX(k)×X(k) is called the up-down walk matrix and P5k+1 ∈ RX(k+1)×X(k+1) is called the
down-up walk matrix.

A simple but important property of P4k and P5k+1 is that they have the same spectrum. This will

be used in an inductive proof to analyze the spectrum of P5d .
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Exercise 20.6 (Same Spectrum of P4k and P5k+1). Prove that there is a one-to-one correspondence

between the non-zero eigenvalues of P4k and P5k+1.

It will be helpful to write out the entries of P4k and P5k+1 explicitly.

Exercise 20.7 (Entries of P4k and P5k+1). Let (X,Π) be a pure d-dimensional simplicial complex.
For α, α′ ∈ X(k),

P4k (α, α′) =


1

k+2 if α = α′

Πk+1(α∪α′)
(k+2)2·Πk(α)

if α ∪ α′ ∈ X(k + 1)

0 otherwise.

For β, β′ ∈ X(k + 1).

P5k+1(β, β′) =


∑

α∈X(k):α⊂β
Πk+1(β′)

(k+2)2·Πk(α)
if β = β′

Πk+1(β′)
(k+2)2·Πk(β∩β′) if β ∩ β′ ∈ X(k)

0 otherwise.

Notice that P40 is just the standard lazy random walks on a graph. The non-lazy up-down walks
turn out to be important in the analysis.

De�nition 20.8 (Non-Lazy Up-Down Walks). Let (X,Π) be a pure d-dimensional simplicial com-
plex. For −1 ≤ k ≤ d− 1, the non-lazy up-down walk matrix P∧k ∈ RX(k)×X(k) is de�ned as

P∧k :=
k + 2

k + 1

(
P4k −

I

k + 2

)
.

Explicitly, for α, α′ ∈ X(k),

P∧k (α, α′) =

{
Πk+1(α∪α′)

(k+1)(k+2)·Πk(α) if α ∪ α′ ∈ X(k + 1)

0 otherwise.

For the notations, remember that the 4 in P4 represents that there could be self-loops, while the
∧ in P∧ represents that the two endpoints are di�erent.

The stationary distributions of P4k , P
∧
k , P

5
k are all the same. This can be checked by direct calcu-

lations or check that the time reversible condition (i.e. πiP (i, j) = πjP (j, i) for all i, j) is satis�ed.

Exercise 20.9 (Stationary Distributions). The stationary distributions of P4k , P
∧
k , P

5
k are Πk.

This will allow us to use the inner product 〈·, ·〉Πk to bound the eigenvalues of P4k , P
∧
k , P

5
k using

the Rayleigh quotients with Πk in De�nition 19.21.

RandomWalks on Matroid Bases: To sample a uniform random basis of a matroid, we consider
the matroid complex with the uniform distribution on the bases, and run the down-up walk P5d .
Then, by Exercise 20.9, the stationary distribution is the uniform distribution. Note that the down-
up walk P5d is the natural algorithm that we start from an arbitrary basis B0, and in each iteration
t ≥ 0 we drop a random element i of the current basis and then add a random element j so that
Bt+1 := Bt − i + j is a basis, and repeat. Observe that the random spanning tree algorithm in
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Chapter 6 is a special case. We know from Theorem 19.17 that a matroid complex is a 0-local-
spectral expander. We will see in the next section that the up-down walks and the down-up walks
of a good local-spectral expander mix quickly. Thus this provides a simple and e�cient algorithm
to sample a uniform matroid basis, answering a long-standing open question called the matroid
expansion conjecture that we will explain at the end in the next section.

20.2 Kaufman-Oppenheim Theorem

Kaufman and Oppenheim [KO20] proved that if the simplicial complex is a good local-spectral
expander, then the up-down walks and the down-up walks mix quickly.

Theorem 20.10 (Kaufman-Oppenheim Second Eigenvalue Bound [KO20]). If (X,Π) is a γ-local-

spectral expander, then for any 0 ≤ k ≤ d, the second eigenvalue of P5k is

λ2(P5k ) ≤ 1− 1

k + 1
+ kγ.

We will present the proof of this theorem in the rest of this section, and discuss the matroid
expansion conjecture at the end.

Garland's Method

An important step in the proof is to use Garland's method to decompose the down-up walk matrix
and the up-down walk matrix into matrices of the links. We need a de�nition similar to, but di�erent
from, De�nition 19.22.

De�nition 20.11 (Restriction to Link). Given a simplicial complex (X,Π), a function f : X(k)→
R and a face τ ∈ X(k − 1), the restriction of f to Xτ (0) is de�ned as fτ : Xτ (0) → R such that
fτ (x) = f(τ ∪ {x}) for all x ∈ Xτ (0).

The following lemma shows that the non-lazy up-down walk matrix P∧k can be decomposed into the
random walk matrix Wτ of the links for τ ∈ X(k − 1). The reason that we consider the non-lazy
up-down walk is that there are no self-loops in the random walk matrices of the links.

Lemma 20.12 (Decomposition of Non-Lazy Up-Down Walk Matrix). For any pure d-dimensional
simplicial complex (X,Π) and any function f : X(k)→ R,

〈f, P∧k f〉Πk = Eτ∼Πk−1
〈fτ ,Wτfτ 〉Πτ0 ,

where Wτ is the random walk matrix of the link τ in De�nition 19.12.

Proof. The main idea is to decompose P∧k into transition matrices where each is about the transitions
involving a particular link τ ∈ X(k − 1). Let P∧τ be the X(k)×X(k) matrix with

P∧τ (σ, σ′) =
Πk+1(α ∪ α′)

(k + 1)(k + 2) ·Πk(α)
if α ∩ α′ = τ and P∧τ (σ, σ′) = 0 otherwise.

Note that P∧k =
∑

τ∈X(k−1) P
∧
τ by De�nition 20.8, as the transition between any two faces α, α′ ∈

X(k) involves a unique link τ = α∩α′ ∈ X(k−1). The observation is that this matrix P∧τ is almost
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the same as the random walk matrix Wτ of the link τ . Let α = τ ∪ {x} and α′ = τ ∪ {y}. Then,
from De�nition 19.12,

Wτ (x, y) =
Π(τ ∪ {x, y})

(|τ |+ 2) ·Π(τ ∪ {x})
=

Πk+1(α ∪ α′)
(k + 2) ·Πk(α)

=⇒ P∧τ (σ, σ′) =
1

k + 1
Wτ (σ \ τ, σ′ \ τ).

So, if we extend the small matrices Wτ appropriately to W̃τ (i.e. put the (x, y)-entry of Wτ on the
(τ ∪ {x}, τ ∪ {y})-entry of W̃τ and set all other entries to be zero), then

P∧k =
1

k + 1

∑
τ∈X(k−1)

W̃τ ,

and so it should be clear that a quadratic form involving P∧k can be decomposed as a sum of
quadratic forms involving Wτ as in the statement.

To write it concisely, we decompose the quadratic form directly (instead of decomposing the matrix
P∧k ). By writing the quadratic form as a sum of |X(k)| × |X(k)| terms,

〈f, P∧k f〉Πk =
∑

σ∈X(k),σ′∈X(k):σ∪σ′∈X(k+1)

Πk+1(σ ∪ σ′)
(k + 1)(k + 2)

· f(σ) · f(σ′)

For each pair σ, σ′ ∈ X(k) with σ ∪ σ′ ∈ X(k + 1), their intersection τ := σ ∩ σ′ ∈ X(k − 1). Let
x = σ \ τ and y = σ′ \ τ . Then the corresponding term on the RHS is from the link Xτ with
contribution

Πk−1(τ) ·Πτ
0(x) ·Wτ (x, y) · fτ (x) · fτ (y)

= Πk−1(τ) · Πk(τ ∪ {x})
(|τ |+ 1) ·Πk−1(τ)

· Πk+1(τ ∪ {x, y})
(|τ |+ 2) ·Πk(τ ∪ {x})

· f(τ ∪ {x}) · f(τ ∪ {y})

=
Πk+1(σ ∪ σ′)
(k + 1)(k + 2)

· f(σ) · f(σ′).

The statement follows by noting that there is a one-to-one correspondence because each transition
in P∧k involves a unique link τ ∈ X(k − 1).

The next lemma shows that the down-up walk matrix can be decomposed as the down-up walk
matrices of the links which are simple rank-one matrices.

Lemma 20.13 (Decomposition of Down-Up Walk Matrix). For any pure d-dimensional simplicial
complex (X,Π) and any function f : X(k)→ R,

〈f, P5k f〉Πk = Eτ∼Πk−1
〈fτ , Jτfτ 〉Πτ0 ,

where Jτ := ~1(Πτ
0)T is a Xτ (0)×Xτ (0) rank-one matrix.

Proof. The proof is similar to that in Lemma 20.12. We decompose P5k into transition matrices

where each is about the transitions involving a particular link τ ∈ X(k − 1). Let P5τ be the
X(k)×X(k) matrix with

P5τ (σ, σ′) =
Πk(σ

′)

(k + 1)2 ·Πk−1(τ)
if σ ∩ σ′ ⊇ τ and P5τ (σ, σ′) = 0 otherwise.
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Note that P5k =
∑

τ∈X(k−1) P
5
τ by Exercise 20.7, where the summation in the self-loop probability

for σ is split into the subsets τ ⊂ σ for τ ∈ X(k− 1) where each takes a summand. Let σ = τ ∪{x}
and σ′ = τ ∪ {y}. By the de�nition of Jτ and Equation 19.2,

Jτ (x, y) = Πτ
0(y) =

Π(τ ∪ {y})
(|τ |+ 1) ·Π(τ)

=
Πk(α

′)

(k + 1) ·Πk−1(τ)
=⇒ P5τ (σ, σ′) =

1

k + 1
Jτ (σ\τ, σ′\τ).

Check that the remaining calculations are similar to that in Lemma 20.12, with the contribution
from σ, σ′ ∈ X(k) involving at link τ ∈ X(k − 1) is the same from LHS and RHS, being equal to

Πk(σ) ·Πk(σ
′)

(k + 1)2 ·Πk−1(τ)
· f(σ) · f(σ′).

Comparing Down-Up Walk and Non-Lazy Up-Down Walk

The decomposition of the down-up walk matrix in Lemma 20.13 shows that P5k can be written as the
sum of rank-one matrices in the links each with second largest eigenvalue 0, while the decomposition
of the non-lazy up-down walk matrix in Lemma 20.12 shows that P∧k can be wrttien as the sum
of random walk matrices in the links each with second largest eigenvalue at most γ for a γ-local-
spectral expander. The main step in Kaufman-Oppenheim's theorem is to compare the spectrum
of the down-up walk matrix P5k with the non-lazy up-down walk matrix P∧k , which intuitively can
be understood as a term-by-term comparison between a complete graph and an expander graph.

Proposition 20.14 (Comparision of P5k and P∧k [KO20, DDFH18]). If (X,Π) is a γ-local-spectral
expander, then

P∧k − P
5
k 4Πk γI

for any 0 ≤ k ≤ d− 1, where A 4Π B donotes 〈f,Af〉Π ≤ 〈f,Bf〉Π for all f .

Proof. Using Lemma 20.12 and Lemma 20.13,〈
f, (P∧k − P

5
k )f

〉
Πk

= Eτ∼Πk−1

〈
fτ , (Wτ − Jτ )fτ

〉
Πτ0
.

For each term, write fτ = c~1 + f⊥τ where
〈
~1, f⊥τ

〉
Πτ0

= 0 as in Equation 19.5. Then note that〈
fτ , (Wτ − Jτ )fτ

〉
Πτ0

=
〈
c~1 + f⊥τ , (Wτ − Jτ )(c~1 + f⊥τ )

〉
Πτ0

=
〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0
,

because Wτ~1 = Jτ~1 = ~1 and also (Πτ
0)TWτ = (Πτ

0)TJτ = (Πτ
0)T . Therefore,

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1
γ
〈
f⊥τ , f

⊥
τ

〉
Πτ0

≤ Eτ∼Πk−1
γ
〈
fτ , fτ

〉
Πτ0

= γ
〈
f, f

〉
Πk
,

where the �rst inequality is by the Rayleigh quotient characterization in Equation 19.4 and the
assumption that (X,Π) is a γ-local-spectral expander, and the last equality is left as Exercise 20.15.

Exercise 20.15 (Decomposition of Identity). Prove that 〈f, f〉Πk = Eτ∼Πk−1
〈fτ , fτ 〉Πτ0 .
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Inductive Proof

Now we are ready to prove Kaufman-Oppenheim's Theorem 20.10. The proof is by an interesting
induction, that we start from the spectrum of P50 and use Exercise 20.6 and Proposition 20.14 to

reason about the spectrums of P5k and P4k and P∧k . We prepare with the following exercise which
will be used in reasoning about the spectrums.

Exercise 20.16 (Bounding Spectrum by Quadratic Forms). Let A,B ∈ Rn×n be two self-adjoint
matrices with respect to the inner product Π (see Equation 19.3). If A 4Π B as described in
Proposition 20.14, then λi(A) ≤ λi(B) for all 1 ≤ i ≤ n.

Proof of Theorem 20.10. The proof is by induction on k. In the base case when k = 0, the matrix
P50 is of rank one (see Exercise 20.7), and thus the second largest eigenvalue is at most 0, and the
statement holds.

Now, assume the statement holds for k, and we would like to prove the inductive step. By Propo-
sition 20.14, P∧k 4Πk P

5
k + γI. It follows from Exercise 20.16 and Exercise 20.9 that

λ2(P∧k ) ≤ λ2(P5k ) + γ ≤ 1− 1

k + 1
+ (k + 1)γ,

where the second inequality is by the induction hypothesis on P5k . Recall from De�nition 20.8 that

P∧k =
k + 2

k + 1

(
P4k −

I

k + 2

)
=⇒ P4k =

k + 1

k + 2
P∧k +

I

k + 2
.

Therefore, the second largest eigenvalue of P4k is

λ2(P4k ) ≤ k + 1

k + 2

(
1− 1

k + 1
+ (k + 1)γ

)
+

1

k + 2
= 1− 1

k + 2
+

(k + 1)2γ

k + 2
≤ 1− 1

k + 2
+ (k + 1)γ.

Finally, recall that P5k+1 and P4k have the same spectrum by Exercise 20.6, and this completes the
induction step.

Combinatorial Interpretation: To summarize, one could visualize the proof as having a stack
of bipartite graphs, one for each layer as in De�nition 20.1. To reason about the spectrum of the top
layer, we start from the down-up walk of the bottom layer. The key step using Garland's method
is to observe that the (non-lazy) up-down walk in the layer above has a similar structure to the
down-up walk in the layer below, by replacing each clique Jτ in a link τ in the down-up walk in
Lemma 20.13 by an expander graph Wτ in the up-down walk in Lemma 20.12, whose expansion
comes from the assumption of the local-spectral expander. So, if the down-up walk is an expander
then the up-down walk is still an expander but with slightly weaker expansion (as we just replace a
complete graph by an expander graph), and this is essentially the term-by-term comparison step of
Kaufman and Oppenheim in Proposition 20.14. Finally, within the same layer, we use the simple
but important property that the up-down walk and the down-up walk having the same spectrum
to carry out the induction.
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Matroid Expansion Conjecture

Recall from Theorem 19.17 that the matroid complex is a 0-local-spectral expander (using Oppen-

heim's trickling down Theorem 19.15). Then, by Kaufman-Oppenheim's Theorem 20.10, λ2(P5d ) ≤
1 − 1

d+1 where r := d + 1 is the rank of the matroid. By standard analysis of mixing time in

Theorem 6.16, the ε-mixing time of the natural down-up walks is at most O(r log N
ε ) = O(r2 log n

ε )
where N is the number of bases and n is the number of elements in the ground set.

Theorem 20.17 (Sampling Matroid Bases by Down-Up Walks [ALOV19]). Given a matroid M
with n elements and rank at most r, the mixing time of the down-up walk of the matroid complex is
at most O(r2 log n

ε ).

The matroid expansion conjecture by Mihail and Vazirani from 1989 states that the bases exchange
graph has edge expansion at least one, which follows from Theorem 20.17 and Cheeger's inequality
in Theorem 4.3.

Problem 20.18 (Matroid Expansion Conjecture). The bases exchange graph G = (V,E) is the
underlying unweighted graph of the down-up walk matrix of the matroid complex. Prove that the
edge expansion of G is at least one, that is, |δ(S)|/|S| ≥ 1 for all S ⊆ V with |S| ≤ |V |/2.

One may understand the resolution of the matroid expansion conjecture as using the right induction
for the problem which may not be easy to come up with without the perspective of a simplicial
complex and the concepts such as links. It would be great if someone could write a completely
combinatorial proof (without using any linear algebra) of the matroid expansion conjecture using
the combinatorial interpretation above.

Question 20.19 (Combinatorial Proof of Matroid Expansion Conjecture). Is there a purely com-
binatorial proof of the matroid expansion conjecture?
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Spectral Independence

We will �rst show that Kaufman-Oppenheim Theorem 20.10 can be improved to a natural product
form. Then we will see the notion of �spectral independence�, a nice probabilistic formulation of this
improved result without the language of high-dimensional expanders. Finally, we will mention some
recent developments using this notion in analyzing random sampling algorithms for combinatorial
objects.

21.1 Improved Analysis of Higher Order Random Walks

The proof of the matroid expansion conjecture shows that the techniques developed in higher order
random walks provide a completely new approach to analyze mixing times of Markov chains. Unlike
previous approaches such as couplings and multicommodity �ows, this simplicial complex approach
directly bounds the spectral gap of the random walk matrix. It is of great interest to investigate
whether this approach can be extended to other problems such as independent sets and graph
colorings.

First we discuss some limitations of the results in Chapter 20. Note that Theorem 20.10 can be used
to establish a non-trivial spectral gap of P5d only when λ < 1

d(d+1) , which is a very strong spectral
requirement of the simplicial complex. As discussed in Problem 19.19, the second eigenvalue is at
most zero if and only if the graph is a complete multi-partite graph, and more generally a 0-local-
spectral expander can be shown to be a weighted matroid complex. For most natural combinatorial
simplicial complexes, it does not hold that λ2(Gα) ≤ O( 1

d2 ) even when restricted to faces α of
dimension d − 2. This suggests that we need to sharpen the bound in Theorem 20.10 in order to
apply this approach for other problems.

Small Improvement

It was observed that the comparison bound in Proposition 20.14 can be slightly improved.

Proposition 21.1 (Improved Comparison of P5k and P∧k [AL20]). Let (X,Π) be a pure d-dimensional
simplicial complex. For any 0 ≤ k ≤ d− 1,

P∧k − P
5
k 4Πk γk−1(I − P5k )

where γj := maxα∈X(j) λ2(Wα) is the maximum second largest eigenvalue of the link graphs of
dimension j as in De�nition 19.13.
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Proof. Following the proof in Proposition 20.14,

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0
≤ Eτ∼Πk−1

γk−1

〈
f⊥τ , f

⊥
τ

〉
Πτ0

(21.1)

Instead of bounding the right hand side simply by Eτ∼Πk−1
γk−1

〈
fτ , fτ

〉
Πτ0
, we collect the dropped

terms to prove the stated bound. As in Proposition 20.14, write fτ = c~1 + f⊥τ where
〈
~1, f⊥τ

〉
Πτ0

= 0

and c = 〈fτ ,~1〉Πτ0 as in Equation 19.5. So, the dropped terms are

Eτ∼Πk−1
γk−1

〈
c~1, c~1

〉
Πτ0

= γk−1 ·Eτ∼Πk−1
〈fτ ,~1〉2Πτ0 = γk−1 ·Eτ∼Πk−1

〈fτ , Jτfτ 〉Πτ0 = γk−1 · 〈f, P5k f〉Πk ,

where the second equality is because 〈fτ ,~1〉2Πτ0 = 〈fτ ,Πτ
0〉2 = 〈fτ , (Πτ

0)(Πτ
0)T fτ 〉 = 〈fτ , Jτfτ 〉Πτ0 since

Jτ = ~1(Πτ
0)T as de�ned in Lemma 20.13, and the last equality is by the statement in Lemma 20.13.

Therefore, we conclude that

〈f, (P∧k − P
5
k )f〉Πk ≤ Eτ∼Πk−1

γk−1

〈
f⊥τ , f

⊥
τ

〉
Πτ0

= Eτ∼Πk−1
γk−1

〈
fτ , fτ

〉
Πτ0
− Eτ∼Πk−1

γk−1

〈
c~1, c~1

〉
Πτ0

= γk−1

〈
f, f

〉
Πk
− γk−1 · 〈f, P5k f〉Πk

= γk−1 · 〈f, (I − P5k )f〉Πk ,

where the second line is by
〈
fτ , fτ

〉
Πτ0

=
〈
c~1, c~1

〉
Πτ0

+
〈
f⊥τ , f

⊥
τ

〉
Πτ0

using orthonormality, and the

third line is using Exercise 20.15 and the calculation above. This holds for any f and thus implies
the statement.

Product Form

The small improvement in Proposition 21.1 is very simple, but what is perhaps surprising is that
this is all we needed to prove a much sharper bound on λ2(P5k ).

Theorem 21.2 (Improved Second Eigenvalue Bound on P5k [AL20]). Let (X,Π) be a pure d-
dimensional simplicial complex. For any 0 ≤ k ≤ d,

λ2(P5k ) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj),

where γj := maxα∈X(j) λ2(Wα) is as de�ned in De�nition 19.13.

Proof. We prove by induction on k. The base case is when k = 0, where P50 is a rank one matrix

and so λ2(P50 ) ≤ 0, and hence the statement trivially holds.

Now, assume the statement holds for k, and we would like to prove the induction step. By Propo-
sition 21.1, P∧k 4Πk γk−1 · I + (1 − γk−1)P5k , which implies by Exercise 20.16 and Exercise 20.9
that

λ2(P∧k ) ≤ γk−1 + (1− γk−1) · λ2(P5k ) ≤ 1− 1

k + 1

k−1∏
i=−1

(1− γi),
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where the last inequality is by the induction hypothesis. Recall from De�nition 20.8 that

P∧k =
k + 2

k + 1

(
P4k −

I

k + 2

)
=⇒ P4k =

k + 1

k + 2
P∧k +

I

k + 2
.

Therefore, the second largest eigenvalue of P4k is

λ2(P4k ) ≤ k + 1

k + 2

(
1− 1

k + 1

k−1∏
i=−1

(1− γi)
)

+
1

k + 2
= 1− 1

k + 2

k−1∏
i=−1

(1− γi).

The induction step follows from Exercise 20.6 that P5k+1 and P4k have the same spectrum.

Implications

We discuss some implications of the product form in Theorem 21.2. A basic result is that a simplicial
complex X has λ2(P5d ) < 1 if and only if λ2(Gα) < 1 for every face α of dimension up to d − 2.
Theorem 21.2 provides a quantitative generalization of this result. The product form matches the
combinatorial intuition that we replace the complete graphs in the links of P5k by expander graphs
in the links of P∧k as described in Chapter 20, and so we expect that the spectral gap decreases by
a multiplicative factor but is always non-zero.

Combining with Oppenheim's trickling down Theorem 19.15, Theorem 21.2 provides the following
convenient bound for the second eigenvalue of higher order random walks in a black box fashion.

Exercise 21.3. Let (X,Π) be a pure d-dimensional simplicial complex. For any 0 ≤ k ≤ d, suppose
γk−2 ≤ 1

k+1 and Gα is connected for every face α up to dimension k − 2, then

λ2(P5k ) ≤ 1− 1

(k + 1)2
.

In particular, this implies that the down-up walk P5d is fast mixing for any O
(

1
d

)
-local-spectral

expander, which is an improvement of Theorem 20.10 where it requires the simplicial complex to
be a O

(
1
d2

)
-local-spectral expander. See [AL20] for an application of Exercise 21.3 in sampling

a random independent set of size up to n/(2∆) where n is the number of vertices and ∆ is the
maximum degree of the input graph.

Another consequence is that the following type of eigenvalue pro�le is enough to guarantee polyno-
mial mixing time.

Exercise 21.4 (Improving Pro�le). Let (X,Π) be a pure d-dimensional simplicial complex. If there
is a constant 0 < c < 1 such that

(γ−1, γ0, . . . , γd−2) =
( c
d
,

c

d− 1
, . . . ,

c

1

)
,

then

λ2(P5d ) ≤ 1− 1

d1+c
.
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21.2 Spectral Independence

Anari, Liu and Oveis Gharan [ALO20] de�ned a notion called spectral independence, which is
a nice probabilistic formulation of Theorem 21.2 without using the language of high-dimensional
expanders.

The following correlation matrix is a natural matrix that records the pairwise correlation of the
elements. As we will see, this matrix is closely related to the random walk matrix of the empty link
of a corresponding simplicial complex of the probability distribution.

De�nition 21.5 (Correlation Matrix). Let µ : {0, 1}n → R be a probability distribution on subsets
of [n]. The correlation matrix of µ is a 2n× 2n matrix Ψ, whose rows and columns are indexed by
[n]× {0, 1}, with

Ψ
(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai

]
− Pr
Z∼µ

[
Z(j) = aj

]
for i 6= j and ai, aj ∈ {0, 1}, and Ψ

(
(i, ai), (j, aj)

)
= 0 if i = j.

Remark 21.6. The correlation matrix in [ALO20] is de�ned slightly di�erently, with

Ψ
(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai

]
− Pr
Z∼µ

[
Z(j) = aj | Z(i) = 1− ai

]
.

The above de�nition of the correlation matrices is from [AASV21, CGSV21].

The following conditional correlation matrices are the correlation matrices given a partial assign-
ment. As we will see, they are closely related to the random walk matrices of the links of a
corresponding simplicial complex of the probability distribution.

De�nition 21.7 (Conditional Correlation Matrices). Let µ : {0, 1}n → R be a probability distribu-
tion on subsets of [n]. Let S ⊆ [n] be a subset of size k and let aS ∈ {0, 1}k be a binary string of
length k with an entry for each element i ∈ S. Let Z(S) = aS be the event that Z(i) = aS(i) for all
i ∈ S when Z ∼ µ. The conditional correlation matrix ΨaS is a 2(n− k)× 2(n− k) matrix, whose
rows and columns are indexed by ([n] \ S)× {0, 1}, with

ΨaS

(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai, Z(S) = aS

]
− Pr
Z∼µ

[
Z(j) = aj | Z(S) = aS

]
for i 6= j and ai, aj ∈ {0, 1}, and Ψ

(
(i, ai), (j, aj)

)
= 0 if i = j.

The following de�nition of spectral independence is closely related to local-spectral expansion of a
corresponding simplicial complex of the probability distribution.

De�nition 21.8 (Spectral Independence). A probability distribution µ : {0, 1}n → R on subsets
of [n] is called η-spectrally independent if for any S ⊆ [n] with |S| ≤ n − 2 and partial assignment
aS ∈ {0, 1}|S|,

λmax

(
ΨaS

)
≤ η.

Let's see some examples before we go on. First, it is easy to see that if µ is an independent product
distribution (i.e. there exist λ1, . . . , λn such that µ(S) ∝

∑
i∈S λi), then µ is 0-spectrally indepen-

dent. This suggests that spectral independence is an algebraic way to quantity the independence of
a probability distribution.

A more interesting example is the class of negatively correlated distributions that we studied in
Chapter 16.
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Problem 21.9 (Spectral Independence of Strongly Rayleigh Distributions). Let µ : {0, 1}n be a
homogeneous distribution such that for all i 6= j,

Pr
Z∼µ

[
Z(i) = 1 | Z(j) = 1

]
≤ Pr

Z∼µ

[
Z(i) = 1

]
.

Prove that λmax(Ψ) ≤ 1 where Ψ is the correlation matrix of µ. Conclude that a homogeneous
strongly Rayleigh distribution as de�ned in De�nition 16.1 is 1-spectrally independent.

Glauber Dynamics

A natural random walk on a probability distribution µ : {0, 1}n → R is called Glauber dynamics.

De�nition 21.10 (Glauber Dynamics). Let µ : {0, 1}n → R be a probability distribution on subsets
of [n]. Start with an arbitrary subset S0 ∈ supp(µ). At each iteration t ≥ 1, we choose a uniformly
random element i ∈ [n] and set

St :=

St−1 \ {i} with probability
µ
(
St−1\{i}

)
µ
(
St−1\{i}

)
+µ
(
St−1∪{i}

)
St−1 ∪ {i} otherwise.

Check that this Markov chain has stationary distribution µ.

The main result of this formulation is to bound the spectral gap of the transition matrix of the
Glauber dynamics by the spectral independence of the probability distribution.

Theorem 21.11 (Spectral Gap via Spectral Independence [ALO20]). Let µ : {0, 1}n → R be a
probability distribution that is η-spectrally independent. The random walk matrix of the Glauber
dynamics of µ has spectral gap at least

1

n

n−2∏
i=0

(
1− η

n− i− 1

)
.

Simplicial Complex for Glauber Dynamics

The proof of Theorem 21.11 is by (1) de�ning a simplicial complex Xµ for µ, (2) showing that the

down-up walk P5n−1 of Xµ is exactly the Glauber dynamics in De�nition 21.10, (3) seeing that the
conditional correlation matrices of µ are basically the matrices Wτ − Jτ of the links of Xµ in the
proofs of Proposition 20.14 and Proposition 21.1, and (4) seeing that the spectral gap bound in
Theorem 21.11 for Glauber dynamics follows from that in Theorem 21.2 for down-up walks.

De�nition 21.12 (Simplicial Complex of Assignments). Let µ : {0, 1}n → R be a probability
distribution on subsets of [n]. The simplicial complex (Xµ,Π) is de�ned with ground set [n]×{0, 1},
with a maximal face ζ :=

(
(1, Z(1)), (2, Z(2)), . . . , (n,Z(n))

)
of dimension n− 1 with Π(ζ) := µ(Z)

for each Z ∈ supp(µ). In words, each maximal face of Xµ corresponds to an assignment of the n
binary variables with non-zero probability in µ.

Note that there is a one-to-one correspondence between a face ζaS of Xµ and a partial assignment
aS ∈ {0, 1}|S| on a subset S ⊆ [n] of binary variables. Hence we denote the links of Xµ by Xµ

aS for
S ⊆ [n] and for aS ∈ {0, 1}|S|.
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Step (2) is left as an exercise.

Exercise 21.13 (Glauber Dynamics and Down-Up Walks). Verify that the down-up walk matrix

P5n−1 on Xµ is exactly the transition matrix of Glauber dynamics on µ in De�nition 21.10.

Step (3) is to see that the correspondence between conditional correlation matrices of µ and random
walk matrices of links of Xµ.

Lemma 21.14 (Correlation Matrices and Random Walk Matrices of Links). Let µ : {0, 1}n → R
be a probability distribution on subsets of [n] and Xµ be the simplicial complex in De�nition 21.12.
For a partial assignment aS ∈ {0, 1}|S| on a subset S ⊆ [n],

WaS − JaS 4Π
aS
0

1

n− |S| − 1

(
JaS + ΨaS

)
,

where ΨaS is the conditional correlation matrix in De�nition 21.7, WaS is the random walk matrix
of the link Xµ

aS in De�nition 19.12, and JaS := ~1(ΠaS
0 )T is de�ned as in Lemma 20.13.

Proof. We �rst check that each o�-diagonal entry of LHS and RHS matches. Let aS be a partial
assignment and ai, aj be two bits for i, j /∈ S. Then aS∪{i} is used to denote the partial assignment on
S∪{i} which extends aS with the i-th variable being assigned ai, and aS∪{i,j} is de�ned analogously.
By De�nition 19.12 and Equation 19.1,

WaS

(
(i, ai), (j, aj)

)
=

Π(aS∪{i,j})

(|S|+ 2) ·Π(aS∪{i})

=

(
n
|S|+2

)−1 · PrZ∼µ
[
Z
(
S ∪ {i, j}

)
= aS∪{i,j}

]
(|S|+ 2) ·

(
n
|S|+1

)−1 · PrZ∼µ
[
Z
(
S ∪ {i}

)
= aS∪{i}

]
=

1

n− |S| − 1
· Pr
Z∼µ

[
Z(j) = aj | Z(i) = ai, Z(S) = aS

]
.

Similarly, by Equation 19.2,

JaS
(
(i, ai), (j, aj)

)
= ΠaS

0 ((j, aj)) =
Π(aS∪{j})

(|S|+ 1) ·Π(aS)
=

1

n− |S|
· Pr
Z∼µ

[
Z(j) = aj | Z(S) = aS

]
.

This shows that the non-diagonal entries of ΨaS and (n−|S|−1) ·WaS − (n−|S|) ·JaS are the same.
Rearranging and noting that the diagonal entries on RHS are bigger than that on LHS proves the
statement.

We are ready to prove step (4) and thus Theorem 21.11.

Proof of Theorem 21.11. The plan is to use the assumption that µ is η-spectrally independent
(instead of local-spectral expansion of Xµ) to prove Proposition 21.1 with γk−1 replaced by η

n−k−1 ,
and then the theorem follows by plugging in γk−1 = η

n−k−1 into Theorem 21.2 to obtain

λ2(P5n−1) ≤ 1− 1

n

n−3∏
j=−1

(1− γj) = 1− 1

n

n−2∏
j=0

(
1− η

n− k − 1

)
.

204



Chapter 21

To see Proposition 21.1 holds with γk−1 = η
n−k−1 , we use Lemma 21.14 in Equation 21.1 with

Xτ = XaS so that

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1

1

n− k − 1

〈
f⊥τ , (Jτ + Ψτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1

η

n− k − 1

〈
f⊥τ , f

⊥
τ

〉
Πτ0
,

where the last inequality uses the assumption that λmax(Ψτ ) ≤ η and 〈f⊥τ , Jτfτ 〉 = 0. Then the
rest of the proof of Proposition 21.1 is the same with γk−1 replaced by η

n−k−1 .

To summarize, Theorem 21.11 can be seen as �nding the corresponding simplicial complex so that
Glauber dynamics is the same as down-up walks, and then interpreting the matrix Wτ − Jτ in
the proof of Proposition 21.1 as correlation matrices to de�ne spectral independence. Spectral
independence is a nice formulation so that probabilists do not need to know about high-dimensional
expanders to use the result, and indeed this notion has led to many recent developments and we
will discuss some in the next section.

21.3 Applications

In this section, we just brie�y discuss some of the recent developments and point to the relevant
references.

Sampling Independent Sets from Hardcore Distributions

The �rst major application of the spectral independence formulation is to prove fast mixing for
sampling independent sets from the hardcore distribution.

De�nition 21.15 (Hardcore Distributions). Given a graph G = (V,E) and a parameter λ > 0,
de�ne the hardcore distribution µλ : {0, 1}|V | → R as µλ(S) = λ|S|/ZG(λ) for each independent set
S ⊆ V , where

ZG(λ) :=
∑

S⊆V :S is an independent set

λ|S|

is the normalization constant called the partition function.

Estimating the partition function is a well-studied problem in statistical physics. Given a graph
of maximum degree ∆, there is a critical threshold λ(∆) = (∆ − 1)∆−1/(∆ − 2)∆ called the �tree
uniqueness threshold�, where λ < λ(∆) corresponds to the regime where the �in�uence� of a vertex
u on another vertex v in the in�nite ∆-regular tree decays exponentially fast in the distance between
u and v.

The tree uniqueness threshold is about a mathematical property, but very interestingly this is also
about computational complexity. A seminal work of Weitz showed that for any λ < λ(∆), there is a
deterministic fully polynomial time approximate scheme to estimate ZG(λ). Another seminal work
of Sly proved that for any λ > λ(∆), there is no such scheme to estimate ZG(λ) unless NP = RP.
Both proofs connect explicitly the mathematical property to the computational complexity.
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It was conjectured that the simple Glauber dynamics in De�nition 21.10 for the hardcore distri-
butions mixes in polynomial time whenever λ < λ(∆). Anari, Liu and Oveis Gharan [ALO20]
introduced spectral independence and used this notion to resolve the conjecture positively. Their
proof uses the self-avoiding walk tree de�ned by Weitz to write a recurrence to bound the maxi-
mum row sum of the correlation matrices Ψ in De�nition 21.5 to bound their maximum eigenvalue
λmax(Ψ) to apply Theorem 21.11 to conclude fast mixing. The proof is interesting and nontriv-
ial which extends previous techniques in �correlation decay�. One advantage of this randomized
algorithm is that the dependency on ∆ in the running time is much better than that of Weitz.

Sampling Graph Coloring from Glauber Dynamics

The work on spectral independence [ALO20] inspired many recent developments. One natural
generalization is to sample from distributions µ : [k]n → R where the variables are of larger arity.
This class of distributions includes the problem of sampling a random graph coloring of a graph.
The long standing major open problem for sampling graph coloring is that the simple Glauber
dynamics as in De�nition 21.10 mixes rapidly as long as the number of colors k is at least ∆ + 2
where ∆ is the maximum degree of the input graph. Note that the Glauber dynamics may not be
irreducible when k ≤ ∆ + 1. The best known result is by Vigoda that the Glauber dynamic mixes
in polynomial time as long as k ≥ 11∆/6, so there is a very large gap between the upper bound
and the lower bound.

The random graph coloring problem is very well-studied, where previous results are mostly based
on the coupling techniques to prove fast mixing. Using spectral independence with �correlation
decay� arguments, the previous results can be recovered [CGSV21, CLV21] with improved running
time. Some of these results also rely on log-Sobolev inequalities and entropy techniques that we will
study in later chapters. The main goal in this line of work is to use these new ideas originally from
high-dimensional expanders to make progress on the long standing open problem about mixing time
of Glauber dynamics for graph coloring.

Problem 21.16 (Simplicial Complex for Graph Coloring). De�ne a simplicial complex for graph
coloring so that the down-up walk matrix corresponds exactly to the Glauber dynamics. De�ne the
corresponding notion of spectral independence and compare to those de�ned in [CGSV21, CLV21].

Coupling and Spectral Independence

A general question is how does the spectral independence method relate to other methods for proving
fast mixing such as the most popular coupling techniques. Recent work in [Liu21, BCC+22] show
that certain types of coupling proofs imply spectral independence as well, suggesting the spectral
independence method could be a unifying method in analyzing mixing times of Markov chains.
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Chapter 22

Log-Concave Polynomials

In this chapter, we take a di�erent perspective to view a 0-local-spectral expander as a strongly
log-concave polynomial. Then we see two related notions of polynomials, sector-stable polynomials
and fractionally log-concave polynomials, and their connections to spectral independence.

22.1 Log-Concave Polynomials

The polynomial approach is actually the original approach that was used to solve the matroid
expansion conjecture [ALOV19] that we saw in Chapter 20.

De�nition 22.1 (Strongly Log-Concave Distribution). Let µ : {0, 1}n → R be a probability distri-
bution and gµ(x) =

∑
S⊆[n] µ(S) ·

∏
i∈S xi be its generating polynomial as de�ned in De�nition 16.1.

We say µ is a log-concave distribution if log gµ is a concave function at the point ~1.

We say µ is a strongly log-concave distribution if for any k ≥ 0 and any sequence of integers
1 ≤ i1, . . . , ik ≤ n, (

∂xi1 · · · ∂xik gµ
)
(x1, . . . , xn)

is log-concave at the point ~1.

In Chapter 19, given a d-homogeneous probability distribution µ, we use µ to de�ne a pure (d− 1)-
dimensional weighted simplicial complex (Xµ,Π) as in De�nition 19.5, with Πd−1 := µ being the
distribution on the maximal faces of dimension d−1. In this chapter, give a d-homogeneous probabil-
ity distribution, we use µ to de�ne a d-homogeneous generating polynomial gµ as in De�nition 22.1.
The connection between the weighted simplicial complex (Xµ,Π) and the generating polynomial gµ
is through the Hessian matrix of log gµ at the point ~1.

Exercise 22.2 (Hessian Matrix of a Polynomial). The Hessian matrix of log p is

∇2 log p =
p · (∇2p)− (∇p)(∇p)T

p2
.

A basic result in convex analysis is that log p is concave at a point x if and only if ∇2 log p is negative
semide�nite at x.

The main observation in [ALOV19] is that the Hessian matrix of gµ is closely related to the random
walk matrix of the empty link of Xµ.
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Theorem 22.3 (Strongly Log-Concave Polynomial and 0-Local-Spectral Expander [ALOV19]). Let
µ : {0, 1}n → R be a probability distribution, gµ be its generating polynomial as in De�nition 22.1,
and Xµ be its weighted simplicial complex as in De�nition 19.5. Then gµ is strongly log-concave if
and only if Xµ is a 0-local-spectral expander.

Proof. The main step is to show that the �random walk matrix� of the Hessian matrix of gµ at
point ~1 and the random walk matrix of the empty link of Xµ are the same. On one hand, let
H := ∇2gµ|x=~1 be the Hessian matrix of gµ at the point ~1. Note that gµ|x=~1 = 1,(
∇gµ

)∣∣
x=~1

(i) = ∂xigµ
∣∣
x=~1

= Pr
S∼µ

[
i ∈ S

]
and

(
∇2gµ

)∣∣
x=~1

(i, j) = ∂xi∂xjgµ
∣∣
x=~1

= Pr
S∼µ

[
{i, j} ⊆ S

]
.

Let DH be the degree matrix of H. Then, as µ is d-homogeneous, for any i ∈ [n],

DH(i, i) =
n∑
j=1

H(i, j) =
n∑
j=1

Pr
S∼µ

[
{i, j} ⊆ S

]
= (d− 1) Pr

S∼µ

[
i ∈ S

]
.

On the other hand, let the random walk matrix of the empty link be W . For i 6= j ∈ [n], by
De�nition 19.12 and De�nition 19.6,

W (i, j) =
Π
(
{i, j}

)
2Π
(
{i}
) =

(
d
2

)−1 · PrS∼µ
[
{i, j} ⊆ S

]
2
(
d
1

)−1 · PrS∼µ
[
i ∈ S

] =
PrS∼µ

[
{i, j} ⊆ S

]
(d− 1) · PrS∼µ

[
i ∈ S

] .
Therefore,

W = D−1
H H.

With this identity, we next show that gµ is log-concave if and only if λ2(W ) ≤ 0. In one direction, if
gµ is log-concave, then ∇2 log gµ is negative semide�nite by De�nition 22.1. Note that this implies
that H = ∇2gµ has at most one positive eigenvalue by the identity in Exercise 22.2. Check that it
follows that W = D−1

H H also has at most one positive eigenvalue, and thus λ2(W ) ≤ 0.

In the other direction, if W has at most one positive eigenvalue, then note that W has exactly one
positive eigenvalue, as ~1 is an eigenvector of W with eigenvalue 1. Check that this implies that
λ1(W − ~1ΠT

0 ) ≤ 0, and then it follows that DH(W − ~1ΠT
0 ) = H − d−1

d (∇gµ)(∇gµ)T is negative
semide�nite. By the identity in Exercise 22.2, this implies that ∇2 log p is negative semide�nite.

Finally, observe that there is a one-to-one correspondence between the di�erentiated polynomi-
als

(
∂xi1 · · · ∂xik gµ

)
(x1, . . . , xn) and the links X{i1,...,ik} of the simplicial complex. Thus, by the

arguments above, the di�erentiated polynomial at point ~1 is log-concave if and only if the second
eigenvalue of the random walk matrix of the corresponding link is at most 0. Therefore, we conclude
that gµ is strongly log-concave if and only if Xµ is a 0-local-spectral expander.

Corollary 22.4 (Matroid Polynomial is Strongly Log-Concave). The generating polynomial of the
uniform distribution on matroid bases is strongly log-concave.

This result was proved earlier in [AOV18] using advanced techniques from Hodge theory for ma-
troids [AHK18], so the techniques from high-dimensional expanders provide a more elementary and
simpler proof. It is very interesting to see a correspondence between the concepts in polynomials
and the concepts in high-dimensional expanders (see [ALOV19] for more).

210



Chapter 22

Mason's Ultra Log-Concavity Conjecture

An important consequence of the polynomial perspective is a proof of the conjecture that the rank
sequence of a matroid is ultra log-concave.

Theorem 22.5 (Mason's Conjecture [ALOV18, BH20]). For a matroid M on n elements with mk

independent sets of size k, the sequence m0,m1, . . . ,mn is ultra log-concave such that for 1 < k < n,(
mk(
n
k

))2

≥ mk−1(
n
k−1

) · mk+1(
n
k+1

) .
The question that whether the sequence m0,m1, . . . ,mn is log-concave was a long standing open
problem in combinatorics from the 70s, and was �rst proved in [AHK18] using Hodge theory for
matroids. The proof of the stronger ultra log-concavity in [ALOV18, Ove20] is short and elementary,
and should be readily understandable for readers who followed the course thus far. There is another
proof of ultra log-concavity in [BH20] using a closely related notion called Lorentzian polynomials.
We remark that Gurvits also studied log-concave polynomials earlier in his work on generalizations
of permanent problems.

22.2 Sector-Stable Polynomials

Given that the matroid expansion conjecture can be solved from both the high-dimensional expander
perspective and the strongly log-concave polynomial perspective, and that the high-dimensional ex-
pander approach can be extended further as in Chapter 21, one may wonder whether the polynomial
approach can also be extended further and possibly in di�erent directions.

A very interesting recent paper by Alimohammadi, Anari, Shirajur, Vuong [AASV21] proposed two
notions for polynomials called sector-stability and fractional log-concavity. We discuss sector-stable
polynomials in this section, and fractional log-concave polynomials in the next section.

De�nition 22.6 (Sector-Stable Polynomials). The open sector of aperature απ centered around the
positive real axix is denoted by

Γα :=
{

exp(x+ ıy) | x ∈ R, y ∈
(
− απ

2
,
απ

2

)}
A polynomial g(z1, . . . , zn) is Γα-stable if

z1, . . . , zn ∈ Γα =⇒ g(z1, . . . , zn) 6= 0.

Note that Γ1 is the right half-plane, and Γ1-stability is called Hurwitz-stability. The following
exercise shows that it is a generalization of real-stable polynomials for homogeneous polynomials.

Exercise 22.7. Show that a homogeneous polynomial is Hurwitz-stable if and only if it is H-stable
in De�nition 13.8.

A very interesting theorem in [AASV21] is a connection between sector-stability and spectral inde-
pendence. The proof is very nice and elegant, using some elementary complex analysis.
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Theorem 22.8 (Sector-Stability Implies Spectral Independence). Suppose that µ :
([n]
k

)
→ R≥0 is

a probability distribution whose generating polynomial is Γα-stable. Then the `1-norm of any row in
the correlation matrix Ψ in De�nition 21.5 is bounded by

∑
j

∣∣∣∣ Pr
S∼µ

[j ∈ S | i ∈ S]− Pr
S∼µ

[j ∈ S]

∣∣∣∣ ≤ 2

α
.

A consequence is that λmax(Ψ) ≤ 2
α .

Sector Stability Preserving Operations

Before we see some examples of sector-stable polynomials, we �rst record some sector-stability
preserving operations from [AASV21].

Exercise 22.9 (Sector-Stability Preserving Operations). Show that the following operations pre-
serve Γα-sector stability.

1. Specialization: g(z1, . . . , zn)→ g(a, z2, . . . , zn), where a ∈ Γ̄α.

2. Scaling: g(z1, . . . , zn)→ g(λ1z1, λ2z2, . . . , λnzn), where λi ≥ 0 for 1 ≤ i ≤ n.

3. Dual: g → g∗, where g(z) =
∑

S⊆[n] cS · zS and g∗(z1, . . . , zn) :=
∑

S⊆[n] cS · z[n]\S.

Exercise 22.10 (Homogenization). If multi-a�ne polynomial g(z1, . . . , zn) :=
∑

S⊆[n] cS · zS is
Γα-stable, then its homogenization

ghom(z1, . . . , zn, w1, . . . , wn) :=
∑
S⊆[n]

cS · zS · w[n]\S

is multi-a�ne, homogeneous of degree n, and Γα/2-stable.

Proposition 22.11 (Partial Derivative). If g(z1, . . . , zn) is a multia�ne polynomial, then ∂zig is
sector stable for 1 ≤ i ≤ n.

Theorem 22.12 (Truncation). If g(z1, . . . , zn) is Γ1-stable, then gk is either identically zero or
Γ1/2-stable, where gk is the truncation of g that keeps only the degree k terms.

Applications

One application in [AASV21] is to sample matchings of a given size in planar graphs. The starting
point is a theorem by Heilman and Lieb.

Theorem 22.13 (Monomer-Dimer Polynomial). Given a graph G = (V,E) with edge weight we for
e ∈ E, the polynomial ∑

M⊆E:Mmatching

∏
e∈M

w(e)
∏

v:v/∈M

zv

is Γ1-stable, where {zv}v∈V are the variables in this polynomial.
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This polynomial is not homogeneous, and homogenization does not preserve Hurwitz-stabiliy, nor
truncation to matchings of a given size. Applying Theorem 22.12, however, they can say that the
truncation to matchings of a given size is still Γ1/2-stable, so that they can apply Theorem 22.8
to prove that the Markov chain on the set of �monomers� is fast mixing. For any class of graphs
that counting matchings is polynomial time solvable, including planar graphs and bounded genus
graphs, their results can be used to approximate sample and count matchings of a given size.

Another application is in non-asymmetric determinantal point process.

Theorem 22.14 (Non-Symmetric k-DPPs). For any matrix L ∈ Rn×n satisfying L+ LT < 0 and
a number k, the polynomial

g(z1, . . . , zn) =
∑

S∈([n]
k )

det(LS,S)
∏
i∈S

zi

is Γ1/2-stable

The following result shows some limitation on the class of sector-stable polynomials for combinatorial
problems.

Lemma 22.15 (Bounded Length of Sector-Stable Distributions). If µ : {0, 1}n → R is a Γ1/k-
sector-stable distribution, then the length of edges of its Newton polytope newt(µ) is at most 2k,
where

newt(µ) := conv
(
{S : µ(S) > 0}

)
.

This result shows that if the polytope of the combinatorial problem has unbounded edge length
(such as the matching polytope and the arborescence polytope), then the corresponding generating
polynomial cannot be sector-stable.

22.3 Fractionally Log-Concave Polynomials

The class of fractionally log-concave polynomials is a generalization of the class of log-concave
polynomials.

De�nition 22.16 (Fractionally Log-Concave Polynomials). A polynomial gµ(z1, . . . , zn) is called
α-fractionally log-concave for α ∈ [0, 1] if log gµ(zα1 , . . . , z

α
n ) is concave when viewed as a function

over Rn≥0.

The key observation is that the Hessian matrix of log gµ(zα1 , . . . , z
α
n ) at the point ~1 is closely related

to the correlation matrix in De�nition 21.5. The proof is similar to that in Exercise 22.2 and
Theorem 22.3.

Proposition 22.17 (α-Fractionally Log-Concavity and Spectral Independence). Let µ : {0, 1}n →
R be a probability distribution and gµ be its generating polynomial. Then gµ is α-fractionally log-
concave at the point ~1 if and only if λmax(Ψ) ≤ 1

α where Ψ is the correlation matrix of µ as de�ned
in De�nition 21.5.
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Proof. Let H := ∇2 log gµ(zα1 , . . . , z
α
n )|z=~1. Let Pr[i] := PrS∼µ[i ∈ S] and similarly Pr[i ∧ j] :=

PrS∼µ[i ∈ S ∧ j ∈ S]. Check that a similar calculation as in Exercise 22.2 gives

Hi,j =

{
α(α− 1) Pr[i]− α2 Pr[i]2 if i = j

α2
(

Pr[i ∧ j]− Pr[i] · Pr[j]
)

if i 6= j

Let D := diag(Pr[i]) be the diagonal matrix of marginal probability. It follows from De�nition 21.5
that

Ψ =
1

α2
D−1H +

1

α
I.

This implies that λmax(Ψ) ≤ 1
α if and only if λmax(D−1H) ≤ 0 if and only if H 4 0 if and only if

gµ is α-fractionally log-concave at the point ~1.

Recall from Theorem 18.11 that a homogeneous real-stable polynomial is log-concave, and thus
log-concavity is a generalization of real-stability that does not involve root locations. Using Propo-
sition 22.17 and Theorem 22.8, we see that fractionally log-concavity is a generalization of sector-
stability that does not involve root locations.

Theorem 22.18 (Sector-Stability Implies Fractionally Log-Concavity). For α ∈ [0, 1
2 ], if gµ is

Γ2α-stable, then gµ is α-fractionally log-concave.

Proof. Theorem 22.8 proves that Γ2α-stability of gµ implies that λmax(Ψ) ≤ 1
α , and thus implies

that gµ is α-fractionally log-concave at the point ~1 by Proposition 22.17.

Note that sector-stability is preserved under the change of variables zi → λizi when λ1, . . . , λn are
positive reals by Exercise 22.9. This allows us to map any point in Rn≥0 to the point ~1, and to use
the above argument to show that gµ is α-fractionally log-concave at any point in Rn≥0.

While fractional log-concavity at the point ~1 is equivalent to a bound on the eigenvalues of the corre-
lation matrix Ψ, it does not imply a bound for the conditioned distributions µS . However, fractional
log-concavity at all points in Rn≥0 does, because the polynomial for conditional distributions µS can
be obtained as the following limit:

gµS ∝ lim
λ→∞

gµ
(
λz1, . . . , λz|S|, . . . , zn

)
λ|S|

.

Scaling the variables or the polynomial, and taking limits all preserve fractional log-concavity.

Theorem 22.19 (Fractional Log-Concavity Implies Spectral Independence). If µ :
([n]
k

)
→ R≥0 has

a α-fractionally log-concave generating polynomial, then the correlation matrix of every conditioned
distribution µS has maximum eigenvalue 1

α . It follows that µ is 1
α -spectrally independent as de�ned

in De�nition 21.8.
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Chapter 23

Log-Sobolev Inequalities

We introduce log-Sobolev inequalities for analyzing mixing time of random walks, and see that they
provide the optimal bound for the down-up walks on strongly log-concave distributions.

23.1 Analyzing Mixing Time Using Log-Sobolev Inequalities

In this section, we �rst de�ne variance and relative entropy, and then de�ne spectral gap and log-
Sobolev constants, and then see their uses in bounding mixing time, and �nally some intuition about
these de�nitions. The presentation in this section is based on [CGM21, AJK+21, BT06, MT06].

Variance and Entropy

In Chapter 6, when we analyze the mixing time of random walks, we upper bound the total variation
distance dTV(pt, π) by upper bounding ‖D−1/2(pt−π)‖2 (see Problem 6.20). This can be understood
as bounding the variance of f := pt/π, the density of pt with respect to π at time t ≥ 0.

De�nition 23.1 (π-Variance). Let f : [n]→ R be a function and π be a probability distribution on
[n]. The variance of f with respect to π is de�ned as

Varπ[f ] := Eπ[f2]−
(
Eπ[f ]

)2
,

where Eπ[f ] =
∑

i∈[n] π(i)f(i).

There are other ways to measure the closeness of two probability distributions. A well-known
measure is the relative entropy between the two distributions.

De�nition 23.2 (KL-Divergence). Let p and q be probability distributions on [n] such that q(i) = 0
implies p(i) = 0 for 1 ≤ i ≤ n. The Kullback-Liebler divergence, or relative entropy, between p and
q is de�ned as

DKL(p ‖ q) =

n∑
i=1

p(i) log
p(i)

q(i)
,

where we follow the convention that 0 log 0 = 0. Check that DKL(p, q) ≥ 0 by Jensen's inequality.

Pinsker's inequality shows that KL-divergence can be used to upper bound the total variation
distance.

217



Eigenvalues and Polynomials

Theorem 23.3 (Pinsker's Inequality). For any two probability distributions p, q on [n],

dTV(p, q)2 ≤ 2DKL(p ‖ q).

So, to analyze mixing time, it is also natural to consider the relative entropy betwen pt and π.

De�nition 23.4 (π-Entropy). Let f : [n]→ R be a function and π be a probability distributions on
[n]. De�ne

Entπ[f ] := Eπ[f log f ]− Eπ
[
f log(Eπ[f ])

]
.

Check that Entπ[ pπ ] = DKL(p ‖ π) for a probability distribution p.

Spectral Gap and Log-Sobolev Constants

We only consider reversible Markov chains in this course, which include transition matrices of
random walks on undirected graphs.

De�nition 23.5 (Reversible Markov Chain). Let P ∈ Rn×n be the transition matrix of a Markov
chain whose stationary distribution is π. We say P is reversible if for all i, j ∈ [n],

π(i) · P (i, j) = π(j) · P (j, i)

Let Π := diag(π). Then the reversible condition can be stated as ΠP being a symmetric matrix.

The following de�nition should be understood as the quadratic form of the Laplacian matrix when
we consider random walks on undirected graphs.

De�nition 23.6 (Dirichlet Form). Let P ∈ Rn×n be the transition matrix of a reversible Markov
chain whose stationary distribution is π. For two vectors f, g ∈ Rn, the Dirichlet form is de�ned as

EP (f, g) := 〈(I − P )f, g〉π = gT (Π−ΠP )f =
1

2

∑
1≤i,j≤n

π(i) · P (i, j) ·
(
g(i)− g(j)

)
·
(
f(i)− f(j)

)
,

where Π := diag(π). The last equality can be seen by thinking of Π − ΠP as the Laplacian matrix
of the underlying undirected graph with an edge weight Π(i) · P (i, j) for each pair i, j ∈ [n].

Remark 23.7 (Laplacian?). The matrix I−P is often called the Laplacian in the literature, but we
resist not to do so as it is not consistent with our convention (e.g. I − P may not be symmetric).

For random walks on an undirected graph G, the adjacency matrix of G is ΠP , and note that I −P
has the same spectrum as the normalized Laplacian matrix of G.

The Dirichlet form is sometimes called the energy of the function f , which can be thought of as a
measure of the local variation of f along the edges of the underlying graph. On the other hand, the
variance in De�nition 23.1 can be thought of as a measure of the global variation of f . Then the
spectral gap can be interpreted as a lower bound on the local variance by the global variance, and
this perspective is useful in designing approximation algorithms on expander graphs (e.g. [BRS11]).

De�nition 23.8 (Variational Characterization of Spectral Gap). Let P ∈ Rn×n be the transition
matrix of a reversible Markov chain whose stationary distribution is π. De�ne

λ(P ) := inf

{
EP (f, f)

Varπ(f)

∣∣∣∣ f : [n]→ R, Varπ[f ] 6= 0

}
.
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Exercise 23.9. Show that λ(P ) = 1− α2(P ) where α2(P ) is the second largest eigenvalue of P .

We note that the spectral gap is sometimes called the Poincaré constant. The log-Sobolev con-
stant replaces the variance of f in the denominator of the spectral gap by the π-entropy of f in
De�nition 23.4.

De�nition 23.10 (Log-Sobolev Constant [DSC96]). Let P ∈ Rn×n be the transition matrix of a
reversible Markov chain whose stationary distribution is π. De�ne the log-Sobolev constant of P as

α(P ) := inf

{
EP (f, f)

Entπ(f2)

∣∣∣∣ f : [n]→ R≥0, Entπ[f2] 6= 0

}
.

The modi�ed log-Sobolev constant is introduced by Bobkov and Tetali [BT06].

De�nition 23.11 (Modi�ed Log-Sobolev Constant [BT06]). Let P ∈ Rn×n be the transition matrix
of a reversible Markov chain whose stationary distribution is π. De�ne the modi�ed log-Sobolev
constant of P as

ρ(P ) := inf

{
EP (f, log f)

Entπ(f)

∣∣∣∣ f : [n]→ R≥0, Entπ[f ] 6= 0

}
.

These de�nitions may not look intuitive. In the following, we will �rst state the results of using
spectral gap and log-Sobolev constants to bounding mixing time, and then we will provide some
intuitions about these de�nitions.

Bounding Mixing Time by Log-Sobolev Constants

We have already seen in Chapter 6 that we can upper bound the mixing time by lower bounding
the spectral gap. The following is a generalization of Theorem 6.16.

Theorem 23.12 (Mixing Time by Spectral Gap). Let P ∈ Rn×n be the transition matrix of a
reversible Markov chain whose stationary distribution is π. The ε-mixing time in De�nition 6.15 is

τε(P ) .
1

λ(P )

(
log

1

πmin
+ log

1

ε

)
,

where πmin := mini∈[n] π(i) (which is 1
n when π is the uniform distribution).

The signi�cance of the log-Sobolov constant is a much better dependence on 1/πmin. The following
result is proved by Diaconis and Salo�-Coste [DSC96].

Theorem 23.13 (Mixing Time by Log-Sobolev Constant [DSC96]). Let P ∈ Rn×n be the transition
matrix of a reversible Markov chain whose stationary distribution is π. Then

τε(P ) .
1

α(P )

(
log log

1

πmin
+ log

1

ε

)
.

Bobkov and Tetali [BT06] proved a similar result for modi�ed log-Sobolev constant.
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Theorem 23.14 (Mixing Time by Modi�ed Log-Sobolev Constant [BT06]). Let P ∈ Rn×n be the
transition matrix of a reversible Markov chain whose stationary distribution is π. Then

τε(P ) .
1

ρ(P )

(
log log

1

πmin
+ log

1

ε

)
.

Bobkov and Tetali also proved that

2λ(P ) ≥ ρ(P ) ≥ 4α(P ),

and so the lower bounds on these constants are increasingly di�cult to obtain. The modi�ed log-
Sobolev constant has the advantage that it provides the same upper bound on the mixing time,
while it is always at least as large as the log-Sobolev constant.

Intuition from Continuous Time Random Walks

The de�nitions of the spectral gap and the modi�ed log-Sobolev constant come quite naturally from
continuous time random walks. We would not be able to introduce continuous time random walks
properly, so we just state the de�nition.

De�nition 23.15 (Continuous Time Random Walks). Let P ∈ Rn×n be the transition matrix of a
reversible Markov chain whose stationary distribution is π. For any t ≥ 0, the transition matrix, or
the heat kernel, is de�ned as

Ht = e−t(I−P ) =
∞∑
k=0

tk(P − I)k

k!
.

Let p0 ∈ Rn be an initial distribution. Then pTt = pT0 Ht is the distribution at time t.

As discussed earlier, we will consider ft := pt/π and keep track of how fast it converges to ~1.

Exercise 23.16 (Change of Density). Let P ∈ Rn×n be the transition matrix of a reversible Markov
chain whose stationary distribution is π. Let ft(i) = pt(i)/π(i) for all i ∈ [n] be the density of pt
with respect to π at time t ≥ 0. For any initial distribution p0 and all t ≥ 0, show that

ft = Htf0.

Furthermore, for any i ∈ [n], show that

dft(i)

dt
=
(
(P − I)ft

)
(i).

It turns out that the change of variance is exactly the Dirichlet form.

Lemma 23.17 (Change of Variance). Let P ∈ Rn×n be the transition matrix of a reversible Markov
chain whose stationary distribution is π. Let ft = pt/π. Then

d

dt
Varπ(ft) = −2EP (ft, ft).
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Proof. Note that Varπ(ft) = Eπ[f2
t ]− 1 by De�nition 23.1, and so

d

dt
Varπ(ft) =

n∑
i=1

π(i) · d
dt
ft(i)

2 = 2

n∑
i=1

π(i) · ft(i) ·
(
(P − I)ft

)
(i) = −2EP (ft, ft).

So we can understand the spectral gap in De�nition 23.8 is de�ned to ensure that

d

dt
Varπ(ft) = −2EP (ft, ft) ≤ −2λ(P ) ·Varπ(ft) =⇒ d

dt
log
(
Varπ(ft)

)
≤ −2λ(P ).

By integrating on both sides, we see that the variance is exponentially decreasing as

log
(
Varπ(ft)

)
− log

(
Varπ(f0)

)
≤ −2λ(P ) · t =⇒ Varπ(ft) ≤ Varπ(f0) · e−2λ(P )·t.

Note that the initial variance Varπ(f0) ≤ 1/πmin, and this implies Theorem 23.12 for continuous
time random walks. This argument can be adapted for discrete time random walks. This is a good
exercise to work out; see [MT06] for a solution.

Bobkov and Tetali used the same logic to de�ne the modi�ed log-Sobolev constant, by using relative
entropy in place of variance.

Lemma 23.18 (Change of Relative Entropy). Let P ∈ Rn×n be the transition matrix of a reversible
Markov chain whose stationary distribution is π. Let ft = pt/π. Then

d

dt
Entπ(ft) = −EP (ft, log ft).

Proof. Note that Eπ[f ] = 1 and thus Entπ[f ] = Eπ[f log f ] by De�nition 23.4, and hence

d

dt
Entπ(ft) =

n∑
i=1

π(i) · d
dt
ft(i) log ft(i) =

n∑
i=1

π(i) ·
(
1 + log ft(i)

)
·
(
(P − I)ft

)
(i) = −EP (ft, log ft),

where in the last equality we use that
∑n

i=1 π(i)((P − I)ft)(i) = 〈π, (P − I)ft〉 = 0.

So the modi�ed log-Sobolev constant is de�ned to ensure that

d

dt
Entπ(ft) = −EP (ft, log ft) ≤ −ρ(P ) · Entπ(ft) =⇒ Entπ(ft) ≤ Entπ(f0) · e−ρ(P )·t.

Crucially, the initial relative entropy is

Entπ[f0] =

n∑
i=1

p0(i) log
p0(i)

π(i)
≤ log

1

πmin
,

and this implies Theorem 23.14 for continuous time random walks by Pinsker's inequality in Theo-
rem 23.3.

I have not found a general proof of Theorem 23.14 for discrete time random walks, and it was
mentioned in [MT06] that �there seems to be no discrete-time analog� of it.

In the combinatorial applications that we will see, however, there are direct proofs of the exponential
decreasing of the relative entropy, and thus the mixing time bound in Theorem 23.14 holds.
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23.2 Log-Sobolev Constant for Strongly Log-Concave Distribution

It is already di�cult to prove a lower bound on the spectral gap, and so there are very few known
result on proving a lower bound on the log-Sobolev constants. This is starting to change after the
resolution of the matroid expansion conjecture. Not only do the techniques from high dimensional
expanders provide a direct way to establish a lower bound on the spectral gap, recent developments
extend the techniques further to establish a lower bound on the modi�ed log-Sobolev constant. The
�rst result in this direction is by Cryan, Guo and Mousa [CGM21].

Theorem 23.19 (Modi�ed Log-Sobolev Constant for Strongly Log-Concave Distribution [CGM21]).
Let µ be a d-homogeneous strongly log-concave distribution. Then the modi�ed log-Sobolev constant
of the down-up walk P5d in De�nition 20.5 is

ρ(P5d ) ≥ 1

d
.

The proof in [CGM21] is very nice, but we will not present it here. Rather, we will present a recent
generalization for fractionally log-concave distributions in the next chapter. We just note here that
the proof in [CGM21] shows that the relative entropy is exponentially decreasing after one step of
the down-up walk such that

DKL(P5d p ‖ π) ≤
(

1− 1

d

)
·DKL(p ‖ π),

and using Pinsker's inequality as in the previous section gives the optimal mixing time analysis for
the down-up walk on matroid bases.

Corollary 23.20 (Optimal Mixing Time for Sampling Matroid Bases [CGM21]). The mixing time
of the down-up walk in Chapter 20 for sampling uniform random matroid bases of size d is

τε(P
5
d ) . d

(
log d+ log log n+ log

1

ε

)
.

Near-Linear Time Algorithm for Random Spanning Trees

One immediate consequence of Corollary 23.20 is that the mixing time of the down-up walk for
sampling uniform random spanning trees is at most O(n log n). To design a near-linear time algo-
rithm, one needs to implement each iteration in the down-up walk e�ciently, but it is not known
how to do so.

Fortunately, the trick in [ALO+21] is to consider the down-up walk on the dual matroid. Given
a graph G = (V,E), the rank of the dual matroid is |E| − |V | + 1 ≤ |E|, so the mixing time of

the down-up walk on the dual matroid O(|E| log |E|ε ) by Corollary 23.20. The resulting algorithm
is as follows. Let T0 be an arbitrary spanning tree. In iteration t ≥ 0, sample a uniform random
edge e ∈ E − Tt, and then sample a uniform random edge f in the unique cycle in Tt + e and set
Tt+1 := Tt + e− f , and repeat. This algorithm has been studied by Russo, Teixeira and Francisco,
and they show that each iteration can be implemented in amortized O(log |E|) time using the
cut-link trees data structures.

Theorem 23.21 (Near-Linear Time Algorithm for Sampling Random Spanning Trees [ALO+21]).
Given a graph G = (V,E), there is an algorithm to sample a random spanning tree in G with

distribution ε-close to the uniform distribution and running time O(|E| log |E| log |E|ε ).
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The problem of designing a fast algorithm for sampling a uniform random spanning tree is well-
studied. The previous best known algorithm is by Schild with almost-linear running timeO(m1+o(1)).
This is based on a line of work that simulated another Markov chain for generating random spanning
trees, using techniques from Laplacian solvers and electrical �ows. The algorithm by Schild is very
sophisicated and complicated, and so Theorem 23.21 is a dramatic simpli�cation based on better
analysis of mixing time.

Concentration Inequality for Strongly Log-Concave Distribution

One main application of log-Sobolev inequalities is to prove concentration inequalities [BLM13,
VH14]. The following result is a consequence of Theorem 23.19 for strongly log-concave distributions.

Theorem 23.22 (Concentration of Strongly Log-Concave Distributions [CGM21]). Let µ be a d-
homogeneous strongly log-concave distribution with support Ω ⊆ {0, 1}n. For any observable function
f : Ω→ R and a ≥ 0,

Pr
x∼µ

[
|f(x)− Eπf | ≥ a

]
≤ 2 exp

(
− a2

2d · ν(f)

)
,

where ν(f) is the maximum of one-step variances

ν(f) := max
x∈Ω

{∑
y∈Ω

P5d (x, y) ·
(
f(x)− f(y)

)2}
.

The proof of Theorem 23.22 follows from the Herbst argument (see [BLM13]). The reader is referred
to [CGM21] for the proof. For a c-Lipschitz function under the graph distance in the bases exchange
graph, ν(f) ≤ c2 and thus Theorem 23.22 generalizes the concentration result for strongly Rayleigh
distributions in Theorem 16.18.
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Entropic Independence

We end with a very recent paper by Anari, Jain, Koehler, Pham, Vuong [AJK+21a], who introduced
the notion of entropic independence and used it to lower bound the modi�ed log-Sobolev constants
of fractionally log-concave distributions. The presentation is taken directly from [AJK+21a].

24.1 Larger-Step Down-Up Walks

We will consider the following natural generalization of De�nition 20.5 for down-up walks.

De�nition 24.1 (Larger-Step Down-Up Walks). For a probability distribution µ :
([n]
k

)
→ R and

an integer l ≤ k, the k ↔ l down-up random walk P5k↔l is the sequence of random sets S0, S1, . . .
generated by the following algorithm:

for t = 0, 1, . . . do
Select Tt uniformly at random from subsets of size l of St.
Select St+1 with probability ∝ µ(St+1) from supersets of size k of Tt.

end for

We also take this opportunity to rede�ne the down and up operators, but use di�erent notations,
that are more natural for the analysis of random walks. Compare with De�nition 20.2 and see
Remark 20.3. We will think of these as matrices that act on probability distributions on the left.

De�nition 24.2 (Down Operator). For a ground set [n] and n ≥ k ≥ l, de�ne the row-stochastic

down operator Dk→l ∈ R([n]
k )×([n]

l ) as

Dk→l(S, T ) =


1

(kl)
if T ⊆ S,

0 otherwise.

De�nition 24.3 (Up Operator). For a ground set [n] and n ≥ k ≥ l, and probability distribution

µ :
([n]
k

)
→ R≥0, de�ne the up operator Ul→k ∈ R([n]

l )×([n]
k ) as

Ul→k(T, S) =

{
µ(S)∑

S′⊇T µ(S′) if T ⊆ S,

0 otherwise.

The following properties should be familiar.
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Exercise 24.4 (Stationary Distributions of P5k↔l and P4k↔l). De�ne µk := µ and more gener-

ally de�ne µl := µkDk→l. The operators P5k↔l := Dk→lUl→k and P4l↔k := Ul→kDk→l both de�ne
Markov chains that are time-reversible and have nonnegative eigenvalues. Moreover µk and µl are
respectively their stationary distributions.

24.2 Entropic Independence

The notion of entropic independence is about the entropy contraction of the down operator.

De�nition 24.5 (Entropic Independence). A probability distribution µ on
([n]
k

)
is said to be (1/α)-

entropically independent, for α ∈ (0, 1], if for all probability distributions ν on
([n]
k

)
,

DKL

(
νDk→1 ‖ µDk→1

)
≤ 1

αk
·DKL(ν ‖ µ).

We remark that spectral independence can be used to prove the variance contraction of the down
operator (see [Ove22]), which can be used to prove a lower bound on the spectral gap as in Chap-
ter 23. So De�nition 24.5 can be seen as a natural analog of spectral independence for proving a
lower bound on the modi�ed log-Sobolev constant as in Chapter 23.

We study two main results from [AJK+21a]. The �rst one characterizes entropic independence and
fractionally log-concavity. In particular, it proves that an α-fractionally log-concave distribution is
(1/α)-entropically independent for all conditional distributions.

Theorem 24.6 (Entropic Independence and Fractionally Log-Concavity [AJK+21a]). Let µ be a

probability distribution on
([n]
k

)
and let µ1 = µDk→1 ∈ Rn. Then, for any α ∈ (0, 1],

µ is
1

α
-entropically independent ⇐⇒ ∀(z1, . . . , zn) ∈ Rn≥0, gµ(zα1 , . . . , z

α
n )

1
kα ≤

n∑
i=1

µ1(i) · zi.

Consequently, if µ is α-fractionally log-concave, then µ is (1/α)-entropically independent. Moreover,

µ is α-fractionally log-concave ⇐⇒ λ∗µ is (1/α)-entropically independent ∀λ = (λ1, . . . , λn) ∈ Rn>0,

where λ∗µ is the distribution scaled by external �eld λ such that gλ∗µ(z1, . . . , zn) ∝ gµ(λ1z1, . . . , λnzn).

The second one proves that if µ is (1/α)-entropically independent for all conditional distributions,
then the k ↔ k − 1

α down-up walk is fast mixing.

Theorem 24.7 (Local to Global Entropy Contraction [AJK+21a]). Suppose µ :
([n]
k

)
→ R≥0

is α-fractionally log-concave, or more generally (1/α)-entropically independent for all conditional

distributions. Let l ≤ k − d1/αe. Then, for all probability distributions ν on
([n]
k

)
,

DKL(νDk→l ‖ µDk→l) ≤ (1− κ) ·DKL(ν ‖ µ).

Consequently, the k ↔ l down-up walk with respect to µ has modi�ed log-Sobolev constant Ω(κ)
where Ω hides an absolute constant and when 1/α is an integer then

κ =

(
k − l
1/α

)/(
k

1/α

)
.
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Combining Theorem 24.6 and Theorem 24.7, the k ↔ k− 1
α down-up is fast mixing for α-fractionally

log-concave distributions. Note that this is a generalization of the result of Cryan, Guo, and Mousa
in Theorem 23.19 for strongly log-concave distributions, which are 1-fractionally log-concave. This
also gives the optimal mixing time analysis for the monomer-dimer systems and the non-symmetric
determinantal point process that we discussed in Chapter 22 (see [AJK+21a]).

24.3 Fractional Log-Concavity Implies Local Entropic Contraction

In this section, we prove one direction of Theorem 24.6, that fractionally log-concavity implies
entropic independence. We refer the reader to [AJK+21a] for the other direction, which is not
needed for the conclusion of fast mixing.

The following statement will be used to replace log-concavity by 1
d -th root concavity.

Problem 24.8. Let C ⊆ Rn≥0 denote a convex cone. For a d-homogeneous function f : C → R≥0,

f is log-concave if and only if f1/d is concave.

The �rst step is to show that fractional log-concavity implies that the transformed generating
polynomial is upper bounded by its linear tangent.

Lemma 24.9 (Linear Tangent Upper Bound). If µ is a α-fractionally log-concave distribution on([n]
k

)
, then

gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

Proof. Let f(z1, . . . , zn) := gµ(zα1 , . . . , z
α
n )

1
αk be the transformed generating polynomial. As the

polynomial gµ(zα1 , . . . , z
α
n ) is αk-homogeneous and log-concave, it follows from Problem 24.8 that f

is concave. Therefore, by concavity, for all z1, . . . , zn > 0,

f(z1, . . . , zn) ≤ f(~1) + 〈∇f(~1), ~z −~1〉 = f(~1) +
n∑
i=1

∂if(~1) · (zi − 1) =
n∑
i=1

∂if(~1) · zi,

where the last equality is because f is 1-homogeneous and so
∑n

i=1 ∂if(~1) = f(~1). By the chain
rule,

∂if(~1) =
(
α · ∂igµ(~1)

)( 1

αk
· gµ(~1)

1
αk
−1
)

=
1

k
Pr
S∼µ

[i ∈ S] = µ1(i),

where the last equality is by the de�nition that µ1 = µDk→1. Therefore,

f(z1, . . . , zn) ≤
n∑
i=1

µ1(i) · zi =⇒ gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

The second step is to show that the linear tangent upper bound implies entropic independence. A
key idea in the proof is to �x the marginal probability and to use the following Gurvits' capacity-type
bound proved by Singh and Vishnoi, which is obtained by convex duality.
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Lemma 24.10 (Capacity Bound of Relative Entropy). Consider a homogeneous distribution µ :([n]
k

)
→ R≥0 and let gµ(z1, . . . , zn) be its multivariate generating polynomial. Then, for any q ∈ Rn≥0

with
∑n

i=1 qi = 1,

inf
{
DKL(ν ‖ µ) | νDk→1 = q

}
= − log

(
inf

z1,...,zn>0

gµ(z1, . . . , zn)

zkq11 · · · zkqnn

)
.

Lemma 24.11 (Linear Tangent Upper Bound Implies Entropic Independence). If µ is a homoge-
neous distribution whose generating polynomial gµ satis�es

gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

for all z1, . . . , zn ∈ Rn≥0, then µ is (1/α)-entropically independent.

Proof. Let ν be an arbitrary probability distribution on
([n]
k

)
and let ν1 := νDk→1, so that ν1 ∈ Rn≥0

and
∑n

i=1 ν1(i) = 1. By Lemma 24.10,

DKL(ν ‖ µ) ≥ inf
{
DKL(ν ‖ µ) | νDk→1 = ν1

}
= − log

(
inf

z1,...,zn>0

gµ(z1, . . . , zn)

z
k·ν1(1)
1 · · · zk·ν1(n)

n

)
.

By the linear tangent upper bound,

inf
z1,...,zn>0

gµ(z1, . . . , zn)

z
k·ν1(1)
1 · · · zk·ν1(n)

n

≤ inf
z1,...,zn>0

(∑n
i=1 µ1(i) · z

1
α
i

)αk
z
k·ν1(1)
1 · · · zk·ν1(n)

n

≤
n∏
i=1

(µ1(i)

ν1(i)

)αk·ν1(i)

where the last inequality is by plugging in zi = (ν1(i)/µ1(i))α. Taking log and negating gives

DKL(ν ‖ µ) ≥ − log

n∏
i=1

(µ1(i)

ν1(i)

)αk·ν1(i)
= αk

n∑
i=1

ν1(i) log
( ν1(i)

µ1(i)

)
= αk ·DKL(νDk→1 ‖ µDk→1),

which establishes (1/α)-entropic independence by De�nition 24.5.

Finally, we note that α-fractional log-concavity is preserved by scaling, which implies that the
generating polynomial of any conditional distribution

gµS ∝ lim
λ→∞

gµ
(
λz1, . . . , λz|S|, . . . , zn

)
λ|S|

.

is also α-fractionally log-concave, and thus µS is also (1/α)-entropically independent by Lemma 24.9
and Lemma 24.11.

Therefore, we have proved the direction of Theorem 24.6 that we need, that an α-fractionally
log-concave distribution is (1/α)-entropic independent for all conditional distributions.

24.4 Local Entropy Contraction to Global Entropy Contraction

In this section, we prove Theorem 24.7, which also proves Theorem 23.19 for strongly log-concave
distributions.
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Proof of Theorem 24.7. The plan is to write both DKL(ν ‖ µ) and DKL(νDk→l ‖ µDk→l) as a
telescoping sum of terms of the form DKL(νDk→i ‖ µDk→i)−DKL(νDk→(i−1) ‖ µDk→(i−1)).

Consider the following random process. Sample a set S ∼ µ and uniformly at random permute
its elements to obtain X1, . . . , Xk. Notice that any pre�x X1, . . . , Xi is distributed according to
µDk→i. Consider the random variable

τi :=
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

log
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

Then
ES∼µ[τi] = E{X1,...,Xi}∼µDk→i [τi] = DKL(νDk→i ‖ µDk→i).

Therefore, we can write both DKL(ν ‖ µ) and DKL(νDk→l ‖ µDk→l) as telescoping sums

DKL(ν ‖ µ) = E[τk] =

k−1∑
i=0

(
E[τi+1]−E[τi]

)
and DKL(νDk→l ‖ µDk→l) = E[τl] =

l−1∑
i=0

(
E[τi+1]−E[τi]

)
.

To prove entropy contraction, it is equivalent to proving that the last k− l terms in the telescoping
sum are su�ciently large compared to the rest.

Let ∆i := E[τi+1]− E[τi] and βi := 1
α(k−i)−1 . As µ is α-fractionally log-concave, by Theorem 24.6,

µ is (1/α)-entropically independent, and thus it follows from De�nition 24.5 that

∆0 = DKL(νDk→1 ‖ µDk→1) ≤ 1

αk
·DKL(ν ‖ µ) =⇒ ∆0 ≤ β0(∆1 + · · ·+ ∆k−1).

As conditioning preserves α-fractionally log-concavity, we can apply the same argument to each
conditional distribution µ(· | X1, . . . , Xi) and then take the expectation over X1, . . . , Xi to get

∆i ≤ βi(∆i+1 + . . .+ ∆k−1)

for each 1 ≤ i ≤ l − 1. Combining these inequalities, it follows inductively that for all 0 ≤ i ≤ l ≤
k − 1

α ,

∆i ≤ βi · (∆l + . . .+ ∆k−1) ·
l−1∏
j=i+1

(βj + 1).

Hence,

∆0 + · · ·+ ∆k−1

∆l + · · ·+ ∆k−1
= 1 +

∆0 + · · ·+ ∆l−1

∆l + · · ·+ ∆k−1
≤ 1 +

l−1∑
i=0

βi ·
l−1∏
j=i+1

(βj + 1) =

l−1∏
i=0

(1 + βi) =

k∏
j=k−l+1

j

j − 1
α

.

Let Γ(·) be the Gamma function. If 1/α is an integer, then the RHS is

Γ(k + 1)/Γ(k + 1− l)
Γ(k + 1− 1/α/Γ(k + 1− l − 1/α)

=
k!/(k − l)!

(k − 1/α)!(k − l − 1/α)!
=

(
k

1/α

)/(
k − l
1/α

)
.

This implies that

DKL(ν ‖ µ)

DKL(ν ‖ µ)−DKL(νDk→l ‖ µDk→l)
=

∆0 + · · ·+ ∆k−1

∆l + · · ·+ ∆k−1
≤
(
k

1/α

)/(
k − l
1/α

)
,

and rearranging gives the entropy contraction statementDKL(νDk→l ‖ µDk→l) ≤ (1−κ)·DKL(ν ‖ µ).
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Finally, by the data processing inequality in information theory, apply the up operator would not
increase the relative entropy, and so

DKL(νP5k↔l ‖ µP
5
k↔l) = DKL(νDk→lUl→k ‖ µDk→lUl→k) ≤ DKL(νDk→l ‖ µDk→l) ≤ (1−κ)·DKL(ν ‖ µ).

This implies that the relative entropy is exponentially decreasing and thus the we can upper bound
the mixing time as in Theorem 23.14 with ρ(P ) ≈ κ. This proves the consequence of the modi�ed
log-Sobolev constant in bounding mixing time. It is left as in Problem 24.12 to prove that entropy
contraction indeed implies a lower bound on the modi�ed log-Sobolev constant.

Problem 24.12 (Entropy Contraction Implies Modi�ed Log-Sobolev Constant). Let µ be a prob-
ability distribution on [n]. Let P denote the transition matrix of an irreducible, reversible Markov
chain on [n] with stationary distribution µ. Suppose there exists some α ∈ (0, 1] such that for all
probability measures ν on [n] which are absolutely continuous with respect to µ, we have

DKL(νP ‖ µP ) ≤ (1− α) ·DKL(ν ‖ µ).

Then the modi�ed log-Sobolev constant of P is

ρ(P ) ≥ 2α.

24.5 Summary

Since the resolution of the matroid expansion conjecture using the connection to high-dimensional
expanders, there are many recent developments in analyzing mixing time of Markov chains. It is
quite amazing to see that the techniques can be extended to bounding the (notorious) modi�ed
log-Sobolev constants, with applications in proving optimal mixing times, in bounding correlations,
and in proving concentration inequalities. In these most recent developements, the concepts from
high-dimensional expanders have been bypassed and one could understand the results directly us-
ing probabilistic and analytical concepts (see the newer papers [AJK+21b, CE22]). This area is
progressing and evolving very quickly, and the notes in the next o�ering may be entirely di�erent.
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