
Chapter 24

Entropic Independence

We end with a very recent paper by Anari, Jain, Koehler, Pham, Vuong [AJK+21a], who introduced
the notion of entropic independence and used it to lower bound the modi�ed log-Sobolev constants
of fractionally log-concave distributions. The presentation is taken directly from [AJK+21a].

24.1 Larger-Step Down-Up Walks

We will consider the following natural generalization of De�nition 20.5 for down-up walks.

De�nition 24.1 (Larger-Step Down-Up Walks). For a probability distribution µ :
([n]
k

)
→ R and

an integer l ≤ k, the k ↔ l down-up random walk P5k↔l is the sequence of random sets S0, S1, . . .
generated by the following algorithm:

for t = 0, 1, . . . do
Select Tt uniformly at random from subsets of size l of St.
Select St+1 with probability ∝ µ(St+1) from supersets of size k of Tt.

end for

We also take this opportunity to rede�ne the down and up operators, but use di�erent notations,
that are more natural for the analysis of random walks. Compare with De�nition 20.2 and see
Remark 20.3. We will think of these as matrices that act on probability distributions on the left.

De�nition 24.2 (Down Operator). For a ground set [n] and n ≥ k ≥ l, de�ne the row-stochastic

down operator Dk→l ∈ R([n]k )×([n]l ) as

Dk→l(S, T ) =


1

(kl)
if T ⊆ S,

0 otherwise.

De�nition 24.3 (Up Operator). For a ground set [n] and n ≥ k ≥ l, and probability distribution

µ :
([n]
k

)
→ R≥0, de�ne the up operator Ul→k ∈ R([n]l )×([n]k ) as

Ul→k(T, S) =

{
µ(S)∑

S′⊇T µ(S
′) if T ⊆ S,

0 otherwise.

The following properties should be familiar.
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Exercise 24.4 (Stationary Distributions of P5k↔l and P4k↔l). De�ne µk := µ and more gener-

ally de�ne µl := µkDk→l. The operators P5k↔l := Dk→lUl→k and P4l↔k := Ul→kDk→l both de�ne

Markov chains that are time-reversible and have nonnegative eigenvalues. Moreover µk and µl are
respectively their stationary distributions.

24.2 Entropic Independence

The notion of entropic independence is about the entropy contraction of the down operator.

De�nition 24.5 (Entropic Independence). A probability distribution µ on
([n]
k

)
is said to be (1/α)-

entropically independent, for α ∈ (0, 1], if for all probability distributions ν on
([n]
k

)
,

DKL

(
νDk→1 ‖ µDk→1

)
≤ 1

αk
·DKL(ν ‖ µ).

We remark that spectral independence can be used to prove the variance contraction of the down
operator (see [Ove22]), which can be used to prove a lower bound on the spectral gap as in Chap-
ter 23. So De�nition 24.5 can be seen as a natural analog of spectral independence for proving a
lower bound on the modi�ed log-Sobolev constant as in Chapter 23.

We study two main results from [AJK+21a]. The �rst one characterizes entropic independence and
fractionally log-concavity. In particular, it proves that an α-fractionally log-concave distribution is
(1/α)-entropically independent for all conditional distributions.

Theorem 24.6 (Entropic Independence and Fractionally Log-Concavity [AJK+21a]). Let µ be a

probability distribution on
([n]
k

)
and let µ1 = µDk→1 ∈ Rn. Then, for any α ∈ (0, 1],

µ is
1

α
-entropically independent ⇐⇒ ∀(z1, . . . , zn) ∈ Rn≥0, gµ(zα1 , . . . , z

α
n )

1
kα ≤

n∑
i=1

µ1(i) · zi.

Consequently, if µ is α-fractionally log-concave, then µ is (1/α)-entropically independent. Moreover,

µ is α-fractionally log-concave ⇐⇒ λ∗µ is (1/α)-entropically independent ∀λ = (λ1, . . . , λn) ∈ Rn>0,

where λ∗µ is the distribution scaled by external �eld λ such that gλ∗µ(z1, . . . , zn) ∝ gµ(λ1z1, . . . , λnzn).

The second one proves that if µ is (1/α)-entropically independent for all conditional distributions,
then the k ↔ k − 1

α down-up walk is fast mixing.

Theorem 24.7 (Local to Global Entropy Contraction [AJK+21a]). Suppose µ :
([n]
k

)
→ R≥0

is α-fractionally log-concave, or more generally (1/α)-entropically independent for all conditional

distributions. Let l ≤ k − d1/αe. Then, for all probability distributions ν on
([n]
k

)
,

DKL(νDk→l ‖ µDk→l) ≤ (1− κ) ·DKL(ν ‖ µ).

Consequently, the k ↔ l down-up walk with respect to µ has modi�ed log-Sobolev constant Ω(κ)
where Ω hides an absolute constant and when 1/α is an integer then

κ =

(
k − l
1/α

)/(
k

1/α

)
.

226



Chapter 24

Combining Theorem 24.6 and Theorem 24.7, the k ↔ k− 1
α down-up is fast mixing for α-fractionally

log-concave distributions. Note that this is a generalization of the result of Cryan, Guo, and Mousa
in Theorem 23.19 for strongly log-concave distributions, which are 1-fractionally log-concave. This
also gives the optimal mixing time analysis for the monomer-dimer systems and the non-symmetric
determinantal point process that we discussed in Chapter 22 (see [AJK+21a]).

24.3 Fractional Log-Concavity Implies Local Entropic Contraction

In this section, we prove one direction of Theorem 24.6, that fractionally log-concavity implies
entropic independence. We refer the reader to [AJK+21a] for the other direction, which is not
needed for the conclusion of fast mixing.

The following statement will be used to replace log-concavity by 1
d -th root concavity.

Problem 24.8. Let C ⊆ Rn≥0 denote a convex cone. For a d-homogeneous function f : C → R≥0,
f is log-concave if and only if f1/d is concave.

The �rst step is to show that fractional log-concavity implies that the transformed generating
polynomial is upper bounded by its linear tangent.

Lemma 24.9 (Linear Tangent Upper Bound). If µ is a α-fractionally log-concave distribution on([n]
k

)
, then

gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

Proof. Let f(z1, . . . , zn) := gµ(zα1 , . . . , z
α
n )

1
αk be the transformed generating polynomial. As the

polynomial gµ(zα1 , . . . , z
α
n ) is αk-homogeneous and log-concave, it follows from Problem 24.8 that f

is concave. Therefore, by concavity, for all z1, . . . , zn > 0,

f(z1, . . . , zn) ≤ f(~1) + 〈∇f(~1), ~z −~1〉 = f(~1) +
n∑
i=1

∂if(~1) · (zi − 1) =
n∑
i=1

∂if(~1) · zi,

where the last equality is because f is 1-homogeneous and so
∑n

i=1 ∂if(~1) = f(~1). By the chain
rule,

∂if(~1) =
(
α · ∂igµ(~1)

)( 1

αk
· gµ(~1)

1
αk
−1
)

=
1

k
Pr
S∼µ

[i ∈ S] = µ1(i),

where the last equality is by the de�nition that µ1 = µDk→1. Therefore,

f(z1, . . . , zn) ≤
n∑
i=1

µ1(i) · zi =⇒ gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

The second step is to show that the linear tangent upper bound implies entropic independence. A
key idea in the proof is to �x the marginal probability and to use the following Gurvits' capacity-type
bound proved by Singh and Vishnoi, which is obtained by convex duality.
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Lemma 24.10 (Capacity Bound of Relative Entropy). Consider a homogeneous distribution µ :([n]
k

)
→ R≥0 and let gµ(z1, . . . , zn) be its multivariate generating polynomial. Then, for any q ∈ Rn≥0

with
∑n

i=1 qi = 1,

inf
{
DKL(ν ‖ µ) | νDk→1 = q

}
= − log

(
inf

z1,...,zn>0

gµ(z1, . . . , zn)

zkq11 · · · zkqnn

)
.

Lemma 24.11 (Linear Tangent Upper Bound Implies Entropic Independence). If µ is a homoge-

neous distribution whose generating polynomial gµ satis�es

gµ(zα1 , . . . , z
α
n ) ≤

( n∑
i=1

µ1(i) · zi
)αk

.

for all z1, . . . , zn ∈ Rn≥0, then µ is (1/α)-entropically independent.

Proof. Let ν be an arbitrary probability distribution on
([n]
k

)
and let ν1 := νDk→1, so that ν1 ∈ Rn≥0

and
∑n

i=1 ν1(i) = 1. By Lemma 24.10,

DKL(ν ‖ µ) ≥ inf
{
DKL(ν ‖ µ) | νDk→1 = ν1

}
= − log

(
inf

z1,...,zn>0

gµ(z1, . . . , zn)

z
k·ν1(1)
1 · · · zk·ν1(n)n

)
.

By the linear tangent upper bound,

inf
z1,...,zn>0

gµ(z1, . . . , zn)

z
k·ν1(1)
1 · · · zk·ν1(n)n

≤ inf
z1,...,zn>0

(∑n
i=1 µ1(i) · z

1
α
i

)αk
z
k·ν1(1)
1 · · · zk·ν1(n)n

≤
n∏
i=1

(µ1(i)
ν1(i)

)αk·ν1(i)
where the last inequality is by plugging in zi = (ν1(i)/µ1(i))

α. Taking log and negating gives

DKL(ν ‖ µ) ≥ − log

n∏
i=1

(µ1(i)
ν1(i)

)αk·ν1(i)
= αk

n∑
i=1

ν1(i) log
( ν1(i)
µ1(i)

)
= αk ·DKL(νDk→1 ‖ µDk→1),

which establishes (1/α)-entropic independence by De�nition 24.5.

Finally, we note that α-fractional log-concavity is preserved by scaling, which implies that the
generating polynomial of any conditional distribution

gµS ∝ lim
λ→∞

gµ
(
λz1, . . . , λz|S|, . . . , zn

)
λ|S|

.

is also α-fractionally log-concave, and thus µS is also (1/α)-entropically independent by Lemma 24.9
and Lemma 24.11.

Therefore, we have proved the direction of Theorem 24.6 that we need, that an α-fractionally
log-concave distribution is (1/α)-entropic independent for all conditional distributions.

24.4 Local Entropy Contraction to Global Entropy Contraction

In this section, we prove Theorem 24.7, which also proves Theorem 23.19 for strongly log-concave
distributions.
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Proof of Theorem 24.7. The plan is to write both DKL(ν ‖ µ) and DKL(νDk→l ‖ µDk→l) as a
telescoping sum of terms of the form DKL(νDk→i ‖ µDk→i)−DKL(νDk→(i−1) ‖ µDk→(i−1)).

Consider the following random process. Sample a set S ∼ µ and uniformly at random permute
its elements to obtain X1, . . . , Xk. Notice that any pre�x X1, . . . , Xi is distributed according to
µDk→i. Consider the random variable

τi :=
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

log
νDk→i({X1, . . . , Xi})
µDk→i({X1, . . . , Xi})

Then
ES∼µ[τi] = E{X1,...,Xi}∼µDk→i [τi] = DKL(νDk→i ‖ µDk→i).

Therefore, we can write both DKL(ν ‖ µ) and DKL(νDk→l ‖ µDk→l) as telescoping sums

DKL(ν ‖ µ) = E[τk] =

k−1∑
i=0

(
E[τi+1]−E[τi]

)
and DKL(νDk→l ‖ µDk→l) = E[τl] =

l−1∑
i=0

(
E[τi+1]−E[τi]

)
.

To prove entropy contraction, it is equivalent to proving that the last k− l terms in the telescoping
sum are su�ciently large compared to the rest.

Let ∆i := E[τi+1]− E[τi] and βi := 1
α(k−i)−1 . As µ is α-fractionally log-concave, by Theorem 24.6,

µ is (1/α)-entropically independent, and thus it follows from De�nition 24.5 that

∆0 = DKL(νDk→1 ‖ µDk→1) ≤
1

αk
·DKL(ν ‖ µ) =⇒ ∆0 ≤ β0(∆1 + · · ·+ ∆k−1).

As conditioning preserves α-fractionally log-concavity, we can apply the same argument to each
conditional distribution µ(· | X1, . . . , Xi) and then take the expectation over X1, . . . , Xi to get

∆i ≤ βi(∆i+1 + . . .+ ∆k−1)

for each 1 ≤ i ≤ l − 1. Combining these inequalities, it follows inductively that for all 0 ≤ i ≤ l ≤
k − 1

α ,

∆i ≤ βi · (∆l + . . .+ ∆k−1) ·
l−1∏
j=i+1

(βj + 1).

Hence,

∆0 + · · ·+ ∆k−1
∆l + · · ·+ ∆k−1

= 1 +
∆0 + · · ·+ ∆l−1
∆l + · · ·+ ∆k−1

≤ 1 +

l−1∑
i=0

βi ·
l−1∏
j=i+1

(βj + 1) =

l−1∏
i=0

(1 + βi) =

k∏
j=k−l+1

j

j − 1
α

.

Let Γ(·) be the Gamma function. If 1/α is an integer, then the RHS is

Γ(k + 1)/Γ(k + 1− l)
Γ(k + 1− 1/α/Γ(k + 1− l − 1/α)

=
k!/(k − l)!

(k − 1/α)!(k − l − 1/α)!
=

(
k

1/α

)/(
k − l
1/α

)
.

This implies that

DKL(ν ‖ µ)

DKL(ν ‖ µ)−DKL(νDk→l ‖ µDk→l)
=

∆0 + · · ·+ ∆k−1
∆l + · · ·+ ∆k−1

≤
(
k

1/α

)/(
k − l
1/α

)
,

and rearranging gives the entropy contraction statementDKL(νDk→l ‖ µDk→l) ≤ (1−κ)·DKL(ν ‖ µ).
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Finally, by the data processing inequality in information theory, apply the up operator would not
increase the relative entropy, and so

DKL(νP5k↔l ‖ µP
5
k↔l) = DKL(νDk→lUl→k ‖ µDk→lUl→k) ≤ DKL(νDk→l ‖ µDk→l) ≤ (1−κ)·DKL(ν ‖ µ).

This implies that the relative entropy is exponentially decreasing and thus the we can upper bound
the mixing time as in Theorem 23.14 with ρ(P ) ≈ κ. This proves the consequence of the modi�ed
log-Sobolev constant in bounding mixing time. It is left as in Problem 24.12 to prove that entropy
contraction indeed implies a lower bound on the modi�ed log-Sobolev constant.

Problem 24.12 (Entropy Contraction Implies Modi�ed Log-Sobolev Constant). Let µ be a prob-

ability distribution on [n]. Let P denote the transition matrix of an irreducible, reversible Markov

chain on [n] with stationary distribution µ. Suppose there exists some α ∈ (0, 1] such that for all

probability measures ν on [n] which are absolutely continuous with respect to µ, we have

DKL(νP ‖ µP ) ≤ (1− α) ·DKL(ν ‖ µ).

Then the modi�ed log-Sobolev constant of P is

ρ(P ) ≥ 2α.

24.5 Summary

Since the resolution of the matroid expansion conjecture using the connection to high-dimensional
expanders, there are many recent developments in analyzing mixing time of Markov chains. It is
quite amazing to see that the techniques can be extended to bounding the (notorious) modi�ed
log-Sobolev constants, with applications in proving optimal mixing times, in bounding correlations,
and in proving concentration inequalities. In these most recent developements, the concepts from
high-dimensional expanders have been bypassed and one could understand the results directly us-
ing probabilistic and analytical concepts (see the newer papers [AJK+21b, CE22]). This area is
progressing and evolving very quickly, and the notes in the next o�ering may be entirely di�erent.
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