
Chapter 23

Log-Sobolev Inequalities

We introduce log-Sobolev inequalities for analyzing mixing time of random walks, and see that they
provide the optimal bound for the down-up walks on strongly log-concave distributions.

23.1 Analyzing Mixing Time Using Log-Sobolev Inequalities

In this section, we �rst de�ne variance and relative entropy, and then de�ne spectral gap and log-
Sobolev constants, and then see their uses in bounding mixing time, and �nally some intuition about
these de�nitions. The presentation in this section is based on [CGM21, AJK+21, BT06, MT06].

Variance and Entropy

In Chapter 6, when we analyze the mixing time of random walks, we upper bound the total variation
distance dTV(pt, π) by upper bounding ‖D−1/2(pt−π)‖2 (see Problem 6.20). This can be understood
as bounding the variance of f := pt/π, the density of pt with respect to π at time t ≥ 0.

De�nition 23.1 (π-Variance). Let f : [n]→ R be a function and π be a probability distribution on

[n]. The variance of f with respect to π is de�ned as

Varπ[f ] := Eπ[f2]−
(
Eπ[f ]

)2
,

where Eπ[f ] =
∑

i∈[n] π(i)f(i).

There are other ways to measure the closeness of two probability distributions. A well-known
measure is the relative entropy between the two distributions.

De�nition 23.2 (KL-Divergence). Let p and q be probability distributions on [n] such that q(i) = 0
implies p(i) = 0 for 1 ≤ i ≤ n. The Kullback-Liebler divergence, or relative entropy, between p and

q is de�ned as

DKL(p ‖ q) =

n∑
i=1

p(i) log
p(i)

q(i)
,

where we follow the convention that 0 log 0 = 0. Check that DKL(p, q) ≥ 0 by Jensen's inequality.

Pinsker's inequality shows that KL-divergence can be used to upper bound the total variation
distance.
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Theorem 23.3 (Pinsker's Inequality). For any two probability distributions p, q on [n],

dTV(p, q)2 ≤ 2DKL(p ‖ q).

So, to analyze mixing time, it is also natural to consider the relative entropy betwen pt and π.

De�nition 23.4 (π-Entropy). Let f : [n]→ R be a function and π be a probability distributions on

[n]. De�ne
Entπ[f ] := Eπ[f log f ]− Eπ

[
f log(Eπ[f ])

]
.

Check that Entπ[ pπ ] = DKL(p ‖ π) for a probability distribution p.

Spectral Gap and Log-Sobolev Constants

We only consider reversible Markov chains in this course, which include transition matrices of
random walks on undirected graphs.

De�nition 23.5 (Reversible Markov Chain). Let P ∈ Rn×n be the transition matrix of a Markov

chain whose stationary distribution is π. We say P is reversible if for all i, j ∈ [n],

π(i) · P (i, j) = π(j) · P (j, i)

Let Π := diag(π). Then the reversible condition can be stated as ΠP being a symmetric matrix.

The following de�nition should be understood as the quadratic form of the Laplacian matrix when
we consider random walks on undirected graphs.

De�nition 23.6 (Dirichlet Form). Let P ∈ Rn×n be the transition matrix of a reversible Markov

chain whose stationary distribution is π. For two vectors f, g ∈ Rn, the Dirichlet form is de�ned as

EP (f, g) := 〈(I − P )f, g〉π = gT (Π−ΠP )f =
1

2

∑
1≤i,j≤n

π(i) · P (i, j) ·
(
g(i)− g(j)

)
·
(
f(i)− f(j)

)
,

where Π := diag(π). The last equality can be seen by thinking of Π − ΠP as the Laplacian matrix

of the underlying undirected graph with an edge weight Π(i) · P (i, j) for each pair i, j ∈ [n].

Remark 23.7 (Laplacian?). The matrix I−P is often called the Laplacian in the literature, but we

resist not to do so as it is not consistent with our convention (e.g. I − P may not be symmetric).

For random walks on an undirected graph G, the adjacency matrix of G is ΠP , and note that I −P
has the same spectrum as the normalized Laplacian matrix of G.

The Dirichlet form is sometimes called the energy of the function f , which can be thought of as a
measure of the local variation of f along the edges of the underlying graph. On the other hand, the
variance in De�nition 23.1 can be thought of as a measure of the global variation of f . Then the
spectral gap can be interpreted as a lower bound on the local variance by the global variance, and
this perspective is useful in designing approximation algorithms on expander graphs (e.g. [BRS11]).

De�nition 23.8 (Variational Characterization of Spectral Gap). Let P ∈ Rn×n be the transition

matrix of a reversible Markov chain whose stationary distribution is π. De�ne

λ(P ) := inf

{
EP (f, f)

Varπ(f)

∣∣∣∣ f : [n]→ R, Varπ[f ] 6= 0

}
.
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Exercise 23.9. Show that λ(P ) = 1− α2(P ) where α2(P ) is the second largest eigenvalue of P .

We note that the spectral gap is sometimes called the Poincaré constant. The log-Sobolev con-
stant replaces the variance of f in the denominator of the spectral gap by the π-entropy of f in
De�nition 23.4.

De�nition 23.10 (Log-Sobolev Constant [DSC96]). Let P ∈ Rn×n be the transition matrix of a

reversible Markov chain whose stationary distribution is π. De�ne the log-Sobolev constant of P as

α(P ) := inf

{
EP (f, f)

Entπ(f2)

∣∣∣∣ f : [n]→ R≥0, Entπ[f2] 6= 0

}
.

The modi�ed log-Sobolev constant is introduced by Bobkov and Tetali [BT06].

De�nition 23.11 (Modi�ed Log-Sobolev Constant [BT06]). Let P ∈ Rn×n be the transition matrix

of a reversible Markov chain whose stationary distribution is π. De�ne the modi�ed log-Sobolev

constant of P as

ρ(P ) := inf

{
EP (f, log f)

Entπ(f)

∣∣∣∣ f : [n]→ R≥0, Entπ[f ] 6= 0

}
.

These de�nitions may not look intuitive. In the following, we will �rst state the results of using
spectral gap and log-Sobolev constants to bounding mixing time, and then we will provide some
intuitions about these de�nitions.

Bounding Mixing Time by Log-Sobolev Constants

We have already seen in Chapter 6 that we can upper bound the mixing time by lower bounding
the spectral gap. The following is a generalization of Theorem 6.16.

Theorem 23.12 (Mixing Time by Spectral Gap). Let P ∈ Rn×n be the transition matrix of a

reversible Markov chain whose stationary distribution is π. The ε-mixing time in De�nition 6.15 is

τε(P ) .
1

λ(P )

(
log

1

πmin
+ log

1

ε

)
,

where πmin := mini∈[n] π(i) (which is 1
n when π is the uniform distribution).

The signi�cance of the log-Sobolov constant is a much better dependence on 1/πmin. The following
result is proved by Diaconis and Salo�-Coste [DSC96].

Theorem 23.13 (Mixing Time by Log-Sobolev Constant [DSC96]). Let P ∈ Rn×n be the transition

matrix of a reversible Markov chain whose stationary distribution is π. Then

τε(P ) .
1

α(P )

(
log log

1

πmin
+ log

1

ε

)
.

Bobkov and Tetali [BT06] proved a similar result for modi�ed log-Sobolev constant.
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Theorem 23.14 (Mixing Time by Modi�ed Log-Sobolev Constant [BT06]). Let P ∈ Rn×n be the

transition matrix of a reversible Markov chain whose stationary distribution is π. Then

τε(P ) .
1

ρ(P )

(
log log

1

πmin
+ log

1

ε

)
.

Bobkov and Tetali also proved that

2λ(P ) ≥ ρ(P ) ≥ 4α(P ),

and so the lower bounds on these constants are increasingly di�cult to obtain. The modi�ed log-
Sobolev constant has the advantage that it provides the same upper bound on the mixing time,
while it is always at least as large as the log-Sobolev constant.

Intuition from Continuous Time Random Walks

The de�nitions of the spectral gap and the modi�ed log-Sobolev constant come quite naturally from
continuous time random walks. We would not be able to introduce continuous time random walks
properly, so we just state the de�nition.

De�nition 23.15 (Continuous Time Random Walks). Let P ∈ Rn×n be the transition matrix of a

reversible Markov chain whose stationary distribution is π. For any t ≥ 0, the transition matrix, or

the heat kernel, is de�ned as

Ht = e−t(I−P ) =
∞∑
k=0

tk(P − I)k

k!
.

Let p0 ∈ Rn be an initial distribution. Then pTt = pT0 Ht is the distribution at time t.

As discussed earlier, we will consider ft := pt/π and keep track of how fast it converges to ~1.

Exercise 23.16 (Change of Density). Let P ∈ Rn×n be the transition matrix of a reversible Markov

chain whose stationary distribution is π. Let ft(i) = pt(i)/π(i) for all i ∈ [n] be the density of pt
with respect to π at time t ≥ 0. For any initial distribution p0 and all t ≥ 0, show that

ft = Htf0.

Furthermore, for any i ∈ [n], show that

dft(i)

dt
=
(
(P − I)ft

)
(i).

It turns out that the change of variance is exactly the Dirichlet form.

Lemma 23.17 (Change of Variance). Let P ∈ Rn×n be the transition matrix of a reversible Markov

chain whose stationary distribution is π. Let ft = pt/π. Then

d

dt
Varπ(ft) = −2EP (ft, ft).
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Proof. Note that Varπ(ft) = Eπ[f2
t ]− 1 by De�nition 23.1, and so

d

dt
Varπ(ft) =

n∑
i=1

π(i) · d
dt
ft(i)

2 = 2

n∑
i=1

π(i) · ft(i) ·
(
(P − I)ft

)
(i) = −2EP (ft, ft).

So we can understand the spectral gap in De�nition 23.8 is de�ned to ensure that

d

dt
Varπ(ft) = −2EP (ft, ft) ≤ −2λ(P ) ·Varπ(ft) =⇒ d

dt
log
(
Varπ(ft)

)
≤ −2λ(P ).

By integrating on both sides, we see that the variance is exponentially decreasing as

log
(
Varπ(ft)

)
− log

(
Varπ(f0)

)
≤ −2λ(P ) · t =⇒ Varπ(ft) ≤ Varπ(f0) · e−2λ(P )·t.

Note that the initial variance Varπ(f0) ≤ 1/πmin, and this implies Theorem 23.12 for continuous
time random walks. This argument can be adapted for discrete time random walks. This is a good
exercise to work out; see [MT06] for a solution.

Bobkov and Tetali used the same logic to de�ne the modi�ed log-Sobolev constant, by using relative
entropy in place of variance.

Lemma 23.18 (Change of Relative Entropy). Let P ∈ Rn×n be the transition matrix of a reversible

Markov chain whose stationary distribution is π. Let ft = pt/π. Then

d

dt
Entπ(ft) = −EP (ft, log ft).

Proof. Note that Eπ[f ] = 1 and thus Entπ[f ] = Eπ[f log f ] by De�nition 23.4, and hence

d

dt
Entπ(ft) =

n∑
i=1

π(i) · d
dt
ft(i) log ft(i) =

n∑
i=1

π(i) ·
(
1 + log ft(i)

)
·
(
(P − I)ft

)
(i) = −EP (ft, log ft),

where in the last equality we use that
∑n

i=1 π(i)((P − I)ft)(i) = 〈π, (P − I)ft〉 = 0.

So the modi�ed log-Sobolev constant is de�ned to ensure that

d

dt
Entπ(ft) = −EP (ft, log ft) ≤ −ρ(P ) · Entπ(ft) =⇒ Entπ(ft) ≤ Entπ(f0) · e−ρ(P )·t.

Crucially, the initial relative entropy is

Entπ[f0] =

n∑
i=1

p0(i) log
p0(i)

π(i)
≤ log

1

πmin
,

and this implies Theorem 23.14 for continuous time random walks by Pinsker's inequality in Theo-
rem 23.3.

I have not found a general proof of Theorem 23.14 for discrete time random walks, and it was
mentioned in [MT06] that �there seems to be no discrete-time analog� of it.

In the combinatorial applications that we will see, however, there are direct proofs of the exponential
decreasing of the relative entropy, and thus the mixing time bound in Theorem 23.14 holds.
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23.2 Log-Sobolev Constant for Strongly Log-Concave Distribution

It is already di�cult to prove a lower bound on the spectral gap, and so there are very few known
result on proving a lower bound on the log-Sobolev constants. This is starting to change after the
resolution of the matroid expansion conjecture. Not only do the techniques from high dimensional
expanders provide a direct way to establish a lower bound on the spectral gap, recent developments
extend the techniques further to establish a lower bound on the modi�ed log-Sobolev constant. The
�rst result in this direction is by Cryan, Guo and Mousa [CGM21].

Theorem 23.19 (Modi�ed Log-Sobolev Constant for Strongly Log-Concave Distribution [CGM21]).
Let µ be a d-homogeneous strongly log-concave distribution. Then the modi�ed log-Sobolev constant

of the down-up walk P5d in De�nition 20.5 is

ρ(P5d ) ≥ 1

d
.

The proof in [CGM21] is very nice, but we will not present it here. Rather, we will present a recent
generalization for fractionally log-concave distributions in the next chapter. We just note here that
the proof in [CGM21] shows that the relative entropy is exponentially decreasing after one step of
the down-up walk such that

DKL(P5d p ‖ π) ≤
(

1− 1

d

)
·DKL(p ‖ π),

and using Pinsker's inequality as in the previous section gives the optimal mixing time analysis for
the down-up walk on matroid bases.

Corollary 23.20 (Optimal Mixing Time for Sampling Matroid Bases [CGM21]). The mixing time

of the down-up walk in Chapter 20 for sampling uniform random matroid bases of size d is

τε(P
5
d ) . d

(
log d+ log log n+ log

1

ε

)
.

Near-Linear Time Algorithm for Random Spanning Trees

One immediate consequence of Corollary 23.20 is that the mixing time of the down-up walk for
sampling uniform random spanning trees is at most O(n log n). To design a near-linear time algo-
rithm, one needs to implement each iteration in the down-up walk e�ciently, but it is not known
how to do so.

Fortunately, the trick in [ALO+21] is to consider the down-up walk on the dual matroid. Given
a graph G = (V,E), the rank of the dual matroid is |E| − |V | + 1 ≤ |E|, so the mixing time of

the down-up walk on the dual matroid O(|E| log |E|ε ) by Corollary 23.20. The resulting algorithm
is as follows. Let T0 be an arbitrary spanning tree. In iteration t ≥ 0, sample a uniform random
edge e ∈ E − Tt, and then sample a uniform random edge f in the unique cycle in Tt + e and set
Tt+1 := Tt + e− f , and repeat. This algorithm has been studied by Russo, Teixeira and Francisco,
and they show that each iteration can be implemented in amortized O(log |E|) time using the
cut-link trees data structures.

Theorem 23.21 (Near-Linear Time Algorithm for Sampling Random Spanning Trees [ALO+21]).
Given a graph G = (V,E), there is an algorithm to sample a random spanning tree in G with

distribution ε-close to the uniform distribution and running time O(|E| log |E| log |E|ε ).
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The problem of designing a fast algorithm for sampling a uniform random spanning tree is well-
studied. The previous best known algorithm is by Schild with almost-linear running timeO(m1+o(1)).
This is based on a line of work that simulated another Markov chain for generating random spanning
trees, using techniques from Laplacian solvers and electrical �ows. The algorithm by Schild is very
sophisicated and complicated, and so Theorem 23.21 is a dramatic simpli�cation based on better
analysis of mixing time.

Concentration Inequality for Strongly Log-Concave Distribution

One main application of log-Sobolev inequalities is to prove concentration inequalities [BLM13,
VH14]. The following result is a consequence of Theorem 23.19 for strongly log-concave distributions.

Theorem 23.22 (Concentration of Strongly Log-Concave Distributions [CGM21]). Let µ be a d-
homogeneous strongly log-concave distribution with support Ω ⊆ {0, 1}n. For any observable function
f : Ω→ R and a ≥ 0,

Pr
x∼µ

[
|f(x)− Eπf | ≥ a

]
≤ 2 exp

(
− a2

2d · ν(f)

)
,

where ν(f) is the maximum of one-step variances

ν(f) := max
x∈Ω

{∑
y∈Ω

P5d (x, y) ·
(
f(x)− f(y)

)2}
.

The proof of Theorem 23.22 follows from the Herbst argument (see [BLM13]). The reader is referred
to [CGM21] for the proof. For a c-Lipschitz function under the graph distance in the bases exchange
graph, ν(f) ≤ c2 and thus Theorem 23.22 generalizes the concentration result for strongly Rayleigh
distributions in Theorem 16.18.
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