
Chapter 22

Log-Concave Polynomials

In this chapter, we take a di�erent perspective to view a 0-local-spectral expander as a strongly
log-concave polynomial. Then we see two related notions of polynomials, sector-stable polynomials
and fractionally log-concave polynomials, and their connections to spectral independence.

22.1 Log-Concave Polynomials

The polynomial approach is actually the original approach that was used to solve the matroid
expansion conjecture [ALOV19] that we saw in Chapter 20.

De�nition 22.1 (Strongly Log-Concave Distribution). Let µ : {0, 1}n → R be a probability distri-

bution and gµ(x) =
∑

S⊆[n] µ(S) ·
∏
i∈S xi be its generating polynomial as de�ned in De�nition 16.1.

We say µ is a log-concave distribution if log gµ is a concave function at the point ~1.

We say µ is a strongly log-concave distribution if for any k ≥ 0 and any sequence of integers

1 ≤ i1, . . . , ik ≤ n, (
∂xi1 · · · ∂xik gµ

)
(x1, . . . , xn)

is log-concave at the point ~1.

In Chapter 19, given a d-homogeneous probability distribution µ, we use µ to de�ne a pure (d− 1)-
dimensional weighted simplicial complex (Xµ,Π) as in De�nition 19.5, with Πd−1 := µ being the
distribution on the maximal faces of dimension d−1. In this chapter, give a d-homogeneous probabil-
ity distribution, we use µ to de�ne a d-homogeneous generating polynomial gµ as in De�nition 22.1.
The connection between the weighted simplicial complex (Xµ,Π) and the generating polynomial gµ
is through the Hessian matrix of log gµ at the point ~1.

Exercise 22.2 (Hessian Matrix of a Polynomial). The Hessian matrix of log p is

∇2 log p =
p · (∇2p)− (∇p)(∇p)T

p2
.

A basic result in convex analysis is that log p is concave at a point x if and only if ∇2 log p is negative
semide�nite at x.

The main observation in [ALOV19] is that the Hessian matrix of gµ is closely related to the random
walk matrix of the empty link of Xµ.
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Theorem 22.3 (Strongly Log-Concave Polynomial and 0-Local-Spectral Expander [ALOV19]). Let
µ : {0, 1}n → R be a probability distribution, gµ be its generating polynomial as in De�nition 22.1,

and Xµ be its weighted simplicial complex as in De�nition 19.5. Then gµ is strongly log-concave if

and only if Xµ is a 0-local-spectral expander.

Proof. The main step is to show that the �random walk matrix� of the Hessian matrix of gµ at
point ~1 and the random walk matrix of the empty link of Xµ are the same. On one hand, let
H := ∇2gµ|x=~1 be the Hessian matrix of gµ at the point ~1. Note that gµ|x=~1 = 1,(
∇gµ

)∣∣
x=~1

(i) = ∂xigµ
∣∣
x=~1

= Pr
S∼µ

[
i ∈ S

]
and

(
∇2gµ

)∣∣
x=~1

(i, j) = ∂xi∂xjgµ
∣∣
x=~1

= Pr
S∼µ

[
{i, j} ⊆ S

]
.

Let DH be the degree matrix of H. Then, as µ is d-homogeneous, for any i ∈ [n],

DH(i, i) =
n∑
j=1

H(i, j) =
n∑
j=1

Pr
S∼µ

[
{i, j} ⊆ S

]
= (d− 1) Pr

S∼µ

[
i ∈ S

]
.

On the other hand, let the random walk matrix of the empty link be W . For i 6= j ∈ [n], by
De�nition 19.12 and De�nition 19.6,

W (i, j) =
Π
(
{i, j}

)
2Π
(
{i}
) =

(
d
2

)−1 · PrS∼µ
[
{i, j} ⊆ S

]
2
(
d
1

)−1 · PrS∼µ
[
i ∈ S

] =
PrS∼µ

[
{i, j} ⊆ S

]
(d− 1) · PrS∼µ

[
i ∈ S

] .
Therefore,

W = D−1H H.

With this identity, we next show that gµ is log-concave if and only if λ2(W ) ≤ 0. In one direction, if
gµ is log-concave, then ∇2 log gµ is negative semide�nite by De�nition 22.1. Note that this implies
that H = ∇2gµ has at most one positive eigenvalue by the identity in Exercise 22.2. Check that it
follows that W = D−1H H also has at most one positive eigenvalue, and thus λ2(W ) ≤ 0.

In the other direction, if W has at most one positive eigenvalue, then note that W has exactly one
positive eigenvalue, as ~1 is an eigenvector of W with eigenvalue 1. Check that this implies that
λ1(W − ~1ΠT

0 ) ≤ 0, and then it follows that DH(W − ~1ΠT
0 ) = H − d−1

d (∇gµ)(∇gµ)T is negative
semide�nite. By the identity in Exercise 22.2, this implies that ∇2 log p is negative semide�nite.

Finally, observe that there is a one-to-one correspondence between the di�erentiated polynomi-
als

(
∂xi1 · · · ∂xik gµ

)
(x1, . . . , xn) and the links X{i1,...,ik} of the simplicial complex. Thus, by the

arguments above, the di�erentiated polynomial at point ~1 is log-concave if and only if the second
eigenvalue of the random walk matrix of the corresponding link is at most 0. Therefore, we conclude
that gµ is strongly log-concave if and only if Xµ is a 0-local-spectral expander.

Corollary 22.4 (Matroid Polynomial is Strongly Log-Concave). The generating polynomial of the
uniform distribution on matroid bases is strongly log-concave.

This result was proved earlier in [AOV18] using advanced techniques from Hodge theory for ma-
troids [AHK18], so the techniques from high-dimensional expanders provide a more elementary and
simpler proof. It is very interesting to see a correspondence between the concepts in polynomials
and the concepts in high-dimensional expanders (see [ALOV19] for more).
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Chapter 22

Mason's Ultra Log-Concavity Conjecture

An important consequence of the polynomial perspective is a proof of the conjecture that the rank
sequence of a matroid is ultra log-concave.

Theorem 22.5 (Mason's Conjecture [ALOV18, BH20]). For a matroid M on n elements with mk

independent sets of size k, the sequence m0,m1, . . . ,mn is ultra log-concave such that for 1 < k < n,(
mk(
n
k

))2

≥ mk−1(
n
k−1
) · mk+1(

n
k+1

) .
The question that whether the sequence m0,m1, . . . ,mn is log-concave was a long standing open
problem in combinatorics from the 70s, and was �rst proved in [AHK18] using Hodge theory for
matroids. The proof of the stronger ultra log-concavity in [ALOV18, Ove20] is short and elementary,
and should be readily understandable for readers who followed the course thus far. There is another
proof of ultra log-concavity in [BH20] using a closely related notion called Lorentzian polynomials.
We remark that Gurvits also studied log-concave polynomials earlier in his work on generalizations
of permanent problems.

22.2 Sector-Stable Polynomials

Given that the matroid expansion conjecture can be solved from both the high-dimensional expander
perspective and the strongly log-concave polynomial perspective, and that the high-dimensional ex-
pander approach can be extended further as in Chapter 21, one may wonder whether the polynomial
approach can also be extended further and possibly in di�erent directions.

A very interesting recent paper by Alimohammadi, Anari, Shirajur, Vuong [AASV21] proposed two
notions for polynomials called sector-stability and fractional log-concavity. We discuss sector-stable
polynomials in this section, and fractional log-concave polynomials in the next section.

De�nition 22.6 (Sector-Stable Polynomials). The open sector of aperature απ centered around the

positive real axix is denoted by

Γα :=
{

exp(x+ ıy) | x ∈ R, y ∈
(
− απ

2
,
απ

2

)}
A polynomial g(z1, . . . , zn) is Γα-stable if

z1, . . . , zn ∈ Γα =⇒ g(z1, . . . , zn) 6= 0.

Note that Γ1 is the right half-plane, and Γ1-stability is called Hurwitz-stability. The following
exercise shows that it is a generalization of real-stable polynomials for homogeneous polynomials.

Exercise 22.7. Show that a homogeneous polynomial is Hurwitz-stable if and only if it is H-stable

in De�nition 13.8.

A very interesting theorem in [AASV21] is a connection between sector-stability and spectral inde-
pendence. The proof is very nice and elegant, using some elementary complex analysis.
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Theorem 22.8 (Sector-Stability Implies Spectral Independence). Suppose that µ :
([n]
k

)
→ R≥0 is

a probability distribution whose generating polynomial is Γα-stable. Then the `1-norm of any row in

the correlation matrix Ψ in De�nition 21.5 is bounded by

∑
j

∣∣∣∣ Pr
S∼µ

[j ∈ S | i ∈ S]− Pr
S∼µ

[j ∈ S]

∣∣∣∣ ≤ 2

α
.

A consequence is that λmax(Ψ) ≤ 2
α .

Sector Stability Preserving Operations

Before we see some examples of sector-stable polynomials, we �rst record some sector-stability
preserving operations from [AASV21].

Exercise 22.9 (Sector-Stability Preserving Operations). Show that the following operations pre-

serve Γα-sector stability.

1. Specialization: g(z1, . . . , zn)→ g(a, z2, . . . , zn), where a ∈ Γ̄α.

2. Scaling: g(z1, . . . , zn)→ g(λ1z1, λ2z2, . . . , λnzn), where λi ≥ 0 for 1 ≤ i ≤ n.

3. Dual: g → g∗, where g(z) =
∑

S⊆[n] cS · zS and g∗(z1, . . . , zn) :=
∑

S⊆[n] cS · z[n]\S.

Exercise 22.10 (Homogenization). If multi-a�ne polynomial g(z1, . . . , zn) :=
∑

S⊆[n] cS · zS is

Γα-stable, then its homogenization

ghom(z1, . . . , zn, w1, . . . , wn) :=
∑
S⊆[n]

cS · zS · w[n]\S

is multi-a�ne, homogeneous of degree n, and Γα/2-stable.

Proposition 22.11 (Partial Derivative). If g(z1, . . . , zn) is a multia�ne polynomial, then ∂zig is

sector stable for 1 ≤ i ≤ n.

Theorem 22.12 (Truncation). If g(z1, . . . , zn) is Γ1-stable, then gk is either identically zero or

Γ1/2-stable, where gk is the truncation of g that keeps only the degree k terms.

Applications

One application in [AASV21] is to sample matchings of a given size in planar graphs. The starting
point is a theorem by Heilman and Lieb.

Theorem 22.13 (Monomer-Dimer Polynomial). Given a graph G = (V,E) with edge weight we for
e ∈ E, the polynomial ∑

M⊆E:Mmatching

∏
e∈M

w(e)
∏

v:v/∈M

zv

is Γ1-stable, where {zv}v∈V are the variables in this polynomial.
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Chapter 22

This polynomial is not homogeneous, and homogenization does not preserve Hurwitz-stabiliy, nor
truncation to matchings of a given size. Applying Theorem 22.12, however, they can say that the
truncation to matchings of a given size is still Γ1/2-stable, so that they can apply Theorem 22.8
to prove that the Markov chain on the set of �monomers� is fast mixing. For any class of graphs
that counting matchings is polynomial time solvable, including planar graphs and bounded genus
graphs, their results can be used to approximate sample and count matchings of a given size.

Another application is in non-asymmetric determinantal point process.

Theorem 22.14 (Non-Symmetric k-DPPs). For any matrix L ∈ Rn×n satisfying L+ LT < 0 and

a number k, the polynomial

g(z1, . . . , zn) =
∑

S∈([n]
k )

det(LS,S)
∏
i∈S

zi

is Γ1/2-stable

The following result shows some limitation on the class of sector-stable polynomials for combinatorial
problems.

Lemma 22.15 (Bounded Length of Sector-Stable Distributions). If µ : {0, 1}n → R is a Γ1/k-

sector-stable distribution, then the length of edges of its Newton polytope newt(µ) is at most 2k,
where

newt(µ) := conv
(
{S : µ(S) > 0}

)
.

This result shows that if the polytope of the combinatorial problem has unbounded edge length
(such as the matching polytope and the arborescence polytope), then the corresponding generating
polynomial cannot be sector-stable.

22.3 Fractionally Log-Concave Polynomials

The class of fractionally log-concave polynomials is a generalization of the class of log-concave
polynomials.

De�nition 22.16 (Fractionally Log-Concave Polynomials). A polynomial gµ(z1, . . . , zn) is called

α-fractionally log-concave for α ∈ [0, 1] if log gµ(zα1 , . . . , z
α
n ) is concave when viewed as a function

over Rn≥0.

The key observation is that the Hessian matrix of log gµ(zα1 , . . . , z
α
n ) at the point ~1 is closely related

to the correlation matrix in De�nition 21.5. The proof is similar to that in Exercise 22.2 and
Theorem 22.3.

Proposition 22.17 (α-Fractionally Log-Concavity and Spectral Independence). Let µ : {0, 1}n →
R be a probability distribution and gµ be its generating polynomial. Then gµ is α-fractionally log-

concave at the point ~1 if and only if λmax(Ψ) ≤ 1
α where Ψ is the correlation matrix of µ as de�ned

in De�nition 21.5.
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Proof. Let H := ∇2 log gµ(zα1 , . . . , z
α
n )|z=~1. Let Pr[i] := PrS∼µ[i ∈ S] and similarly Pr[i ∧ j] :=

PrS∼µ[i ∈ S ∧ j ∈ S]. Check that a similar calculation as in Exercise 22.2 gives

Hi,j =

{
α(α− 1) Pr[i]− α2 Pr[i]2 if i = j

α2
(

Pr[i ∧ j]− Pr[i] · Pr[j]
)

if i 6= j

Let D := diag(Pr[i]) be the diagonal matrix of marginal probability. It follows from De�nition 21.5
that

Ψ =
1

α2
D−1H +

1

α
I.

This implies that λmax(Ψ) ≤ 1
α if and only if λmax(D−1H) ≤ 0 if and only if H 4 0 if and only if

gµ is α-fractionally log-concave at the point ~1.

Recall from Theorem 18.11 that a homogeneous real-stable polynomial is log-concave, and thus
log-concavity is a generalization of real-stability that does not involve root locations. Using Propo-
sition 22.17 and Theorem 22.8, we see that fractionally log-concavity is a generalization of sector-
stability that does not involve root locations.

Theorem 22.18 (Sector-Stability Implies Fractionally Log-Concavity). For α ∈ [0, 12 ], if gµ is

Γ2α-stable, then gµ is α-fractionally log-concave.

Proof. Theorem 22.8 proves that Γ2α-stability of gµ implies that λmax(Ψ) ≤ 1
α , and thus implies

that gµ is α-fractionally log-concave at the point ~1 by Proposition 22.17.

Note that sector-stability is preserved under the change of variables zi → λizi when λ1, . . . , λn are
positive reals by Exercise 22.9. This allows us to map any point in Rn≥0 to the point ~1, and to use
the above argument to show that gµ is α-fractionally log-concave at any point in Rn≥0.

While fractional log-concavity at the point ~1 is equivalent to a bound on the eigenvalues of the corre-
lation matrix Ψ, it does not imply a bound for the conditioned distributions µS . However, fractional
log-concavity at all points in Rn≥0 does, because the polynomial for conditional distributions µS can
be obtained as the following limit:

gµS ∝ lim
λ→∞

gµ
(
λz1, . . . , λz|S|, . . . , zn

)
λ|S|

.

Scaling the variables or the polynomial, and taking limits all preserve fractional log-concavity.

Theorem 22.19 (Fractional Log-Concavity Implies Spectral Independence). If µ :
([n]
k

)
→ R≥0 has

a α-fractionally log-concave generating polynomial, then the correlation matrix of every conditioned

distribution µS has maximum eigenvalue 1
α . It follows that µ is 1

α -spectrally independent as de�ned

in De�nition 21.8.
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