
Chapter 21

Spectral Independence

We will �rst show that Kaufman-Oppenheim Theorem 20.10 can be improved to a natural product
form. Then we will see the notion of �spectral independence�, a nice probabilistic formulation of this
improved result without the language of high-dimensional expanders. Finally, we will mention some
recent developments using this notion in analyzing random sampling algorithms for combinatorial
objects.

21.1 Improved Analysis of Higher Order Random Walks

The proof of the matroid expansion conjecture shows that the techniques developed in higher order
random walks provide a completely new approach to analyze mixing times of Markov chains. Unlike
previous approaches such as couplings and multicommodity �ows, this simplicial complex approach
directly bounds the spectral gap of the random walk matrix. It is of great interest to investigate
whether this approach can be extended to other problems such as independent sets and graph
colorings.

First we discuss some limitations of the results in Chapter 20. Note that Theorem 20.10 can be used
to establish a non-trivial spectral gap of P5d only when λ < 1

d(d+1) , which is a very strong spectral
requirement of the simplicial complex. As discussed in Problem 19.19, the second eigenvalue is at
most zero if and only if the graph is a complete multi-partite graph, and more generally a 0-local-
spectral expander can be shown to be a weighted matroid complex. For most natural combinatorial
simplicial complexes, it does not hold that λ2(Gα) ≤ O( 1

d2
) even when restricted to faces α of

dimension d − 2. This suggests that we need to sharpen the bound in Theorem 20.10 in order to
apply this approach for other problems.

Small Improvement

It was observed that the comparison bound in Proposition 20.14 can be slightly improved.

Proposition 21.1 (Improved Comparison of P5k and P∧k [AL20]). Let (X,Π) be a pure d-dimensional
simplicial complex. For any 0 ≤ k ≤ d− 1,

P∧k − P
5
k 4Πk γk−1(I − P5k )

where γj := maxα∈X(j) λ2(Wα) is the maximum second largest eigenvalue of the link graphs of
dimension j as in De�nition 19.13.
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Proof. Following the proof in Proposition 20.14,

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0
≤ Eτ∼Πk−1

γk−1

〈
f⊥τ , f

⊥
τ

〉
Πτ0

(21.1)

Instead of bounding the right hand side simply by Eτ∼Πk−1
γk−1

〈
fτ , fτ

〉
Πτ0
, we collect the dropped

terms to prove the stated bound. As in Proposition 20.14, write fτ = c~1 + f⊥τ where
〈
~1, f⊥τ

〉
Πτ0

= 0

and c = 〈fτ ,~1〉Πτ0 as in Equation 19.5. So, the dropped terms are

Eτ∼Πk−1
γk−1

〈
c~1, c~1

〉
Πτ0

= γk−1 ·Eτ∼Πk−1
〈fτ ,~1〉2Πτ0 = γk−1 ·Eτ∼Πk−1

〈fτ , Jτfτ 〉Πτ0 = γk−1 · 〈f, P5k f〉Πk ,

where the second equality is because 〈fτ ,~1〉2Πτ0 = 〈fτ ,Πτ
0〉2 = 〈fτ , (Πτ

0)(Πτ
0)T fτ 〉 = 〈fτ , Jτfτ 〉Πτ0 since

Jτ = ~1(Πτ
0)T as de�ned in Lemma 20.13, and the last equality is by the statement in Lemma 20.13.

Therefore, we conclude that

〈f, (P∧k − P
5
k )f〉Πk ≤ Eτ∼Πk−1

γk−1

〈
f⊥τ , f

⊥
τ

〉
Πτ0

= Eτ∼Πk−1
γk−1

〈
fτ , fτ

〉
Πτ0
− Eτ∼Πk−1

γk−1

〈
c~1, c~1

〉
Πτ0

= γk−1

〈
f, f

〉
Πk
− γk−1 · 〈f, P5k f〉Πk

= γk−1 · 〈f, (I − P5k )f〉Πk ,

where the second line is by
〈
fτ , fτ

〉
Πτ0

=
〈
c~1, c~1

〉
Πτ0

+
〈
f⊥τ , f

⊥
τ

〉
Πτ0

using orthonormality, and the

third line is using Exercise 20.15 and the calculation above. This holds for any f and thus implies
the statement.

Product Form

The small improvement in Proposition 21.1 is very simple, but what is perhaps surprising is that
this is all we needed to prove a much sharper bound on λ2(P5k ).

Theorem 21.2 (Improved Second Eigenvalue Bound on P5k [AL20]). Let (X,Π) be a pure d-
dimensional simplicial complex. For any 0 ≤ k ≤ d,

λ2(P5k ) ≤ 1− 1

k + 1

k−2∏
j=−1

(1− γj),

where γj := maxα∈X(j) λ2(Wα) is as de�ned in De�nition 19.13.

Proof. We prove by induction on k. The base case is when k = 0, where P50 is a rank one matrix

and so λ2(P50 ) ≤ 0, and hence the statement trivially holds.

Now, assume the statement holds for k, and we would like to prove the induction step. By Propo-
sition 21.1, P∧k 4Πk γk−1 · I + (1 − γk−1)P5k , which implies by Exercise 20.16 and Exercise 20.9
that

λ2(P∧k ) ≤ γk−1 + (1− γk−1) · λ2(P5k ) ≤ 1− 1

k + 1

k−1∏
i=−1

(1− γi),
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where the last inequality is by the induction hypothesis. Recall from De�nition 20.8 that

P∧k =
k + 2

k + 1

(
P4k −

I

k + 2

)
=⇒ P4k =

k + 1

k + 2
P∧k +

I

k + 2
.

Therefore, the second largest eigenvalue of P4k is

λ2(P4k ) ≤ k + 1

k + 2

(
1− 1

k + 1

k−1∏
i=−1

(1− γi)
)

+
1

k + 2
= 1− 1

k + 2

k−1∏
i=−1

(1− γi).

The induction step follows from Exercise 20.6 that P5k+1 and P4k have the same spectrum.

Implications

We discuss some implications of the product form in Theorem 21.2. A basic result is that a simplicial
complex X has λ2(P5d ) < 1 if and only if λ2(Gα) < 1 for every face α of dimension up to d − 2.
Theorem 21.2 provides a quantitative generalization of this result. The product form matches the
combinatorial intuition that we replace the complete graphs in the links of P5k by expander graphs
in the links of P∧k as described in Chapter 20, and so we expect that the spectral gap decreases by
a multiplicative factor but is always non-zero.

Combining with Oppenheim's trickling down Theorem 19.15, Theorem 21.2 provides the following
convenient bound for the second eigenvalue of higher order random walks in a black box fashion.

Exercise 21.3. Let (X,Π) be a pure d-dimensional simplicial complex. For any 0 ≤ k ≤ d, suppose
γk−2 ≤ 1

k+1 and Gα is connected for every face α up to dimension k − 2, then

λ2(P5k ) ≤ 1− 1

(k + 1)2
.

In particular, this implies that the down-up walk P5d is fast mixing for any O
(

1
d

)
-local-spectral

expander, which is an improvement of Theorem 20.10 where it requires the simplicial complex to
be a O

(
1
d2

)
-local-spectral expander. See [AL20] for an application of Exercise 21.3 in sampling

a random independent set of size up to n/(2∆) where n is the number of vertices and ∆ is the
maximum degree of the input graph.

Another consequence is that the following type of eigenvalue pro�le is enough to guarantee polyno-
mial mixing time.

Exercise 21.4 (Improving Pro�le). Let (X,Π) be a pure d-dimensional simplicial complex. If there
is a constant 0 < c < 1 such that

(γ−1, γ0, . . . , γd−2) =
( c
d
,

c

d− 1
, . . . ,

c

1

)
,

then

λ2(P5d ) ≤ 1− 1

d1+c
.
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21.2 Spectral Independence

Anari, Liu and Oveis Gharan [ALO20] de�ned a notion called spectral independence, which is
a nice probabilistic formulation of Theorem 21.2 without using the language of high-dimensional
expanders.

The following correlation matrix is a natural matrix that records the pairwise correlation of the
elements. As we will see, this matrix is closely related to the random walk matrix of the empty link
of a corresponding simplicial complex of the probability distribution.

De�nition 21.5 (Correlation Matrix). Let µ : {0, 1}n → R be a probability distribution on subsets
of [n]. The correlation matrix of µ is a 2n× 2n matrix Ψ, whose rows and columns are indexed by
[n]× {0, 1}, with

Ψ
(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai

]
− Pr
Z∼µ

[
Z(j) = aj

]
for i 6= j and ai, aj ∈ {0, 1}, and Ψ

(
(i, ai), (j, aj)

)
= 0 if i = j.

Remark 21.6. The correlation matrix in [ALO20] is de�ned slightly di�erently, with

Ψ
(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai

]
− Pr
Z∼µ

[
Z(j) = aj | Z(i) = 1− ai

]
.

The above de�nition of the correlation matrices is from [AASV21, CGSV21].

The following conditional correlation matrices are the correlation matrices given a partial assign-
ment. As we will see, they are closely related to the random walk matrices of the links of a
corresponding simplicial complex of the probability distribution.

De�nition 21.7 (Conditional Correlation Matrices). Let µ : {0, 1}n → R be a probability distribu-
tion on subsets of [n]. Let S ⊆ [n] be a subset of size k and let aS ∈ {0, 1}k be a binary string of
length k with an entry for each element i ∈ S. Let Z(S) = aS be the event that Z(i) = aS(i) for all
i ∈ S when Z ∼ µ. The conditional correlation matrix ΨaS is a 2(n− k)× 2(n− k) matrix, whose
rows and columns are indexed by ([n] \ S)× {0, 1}, with

ΨaS

(
(i, ai), (j, aj)

)
= Pr

Z∼µ

[
Z(j) = aj | Z(i) = ai, Z(S) = aS

]
− Pr
Z∼µ

[
Z(j) = aj | Z(S) = aS

]
for i 6= j and ai, aj ∈ {0, 1}, and Ψ

(
(i, ai), (j, aj)

)
= 0 if i = j.

The following de�nition of spectral independence is closely related to local-spectral expansion of a
corresponding simplicial complex of the probability distribution.

De�nition 21.8 (Spectral Independence). A probability distribution µ : {0, 1}n → R on subsets
of [n] is called η-spectrally independent if for any S ⊆ [n] with |S| ≤ n − 2 and partial assignment
aS ∈ {0, 1}|S|,

λmax

(
ΨaS

)
≤ η.

Let's see some examples before we go on. First, it is easy to see that if µ is an independent product
distribution (i.e. there exist λ1, . . . , λn such that µ(S) ∝

∑
i∈S λi), then µ is 0-spectrally indepen-

dent. This suggests that spectral independence is an algebraic way to quantity the independence of
a probability distribution.

A more interesting example is the class of negatively correlated distributions that we studied in
Chapter 16.
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Problem 21.9 (Spectral Independence of Strongly Rayleigh Distributions). Let µ : {0, 1}n be a
homogeneous distribution such that for all i 6= j,

Pr
Z∼µ

[
Z(i) = 1 | Z(j) = 1

]
≤ Pr

Z∼µ

[
Z(i) = 1

]
.

Prove that λmax(Ψ) ≤ 1 where Ψ is the correlation matrix of µ. Conclude that a homogeneous
strongly Rayleigh distribution as de�ned in De�nition 16.1 is 1-spectrally independent.

Glauber Dynamics

A natural random walk on a probability distribution µ : {0, 1}n → R is called Glauber dynamics.

De�nition 21.10 (Glauber Dynamics). Let µ : {0, 1}n → R be a probability distribution on subsets
of [n]. Start with an arbitrary subset S0 ∈ supp(µ). At each iteration t ≥ 1, we choose a uniformly
random element i ∈ [n] and set

St :=

St−1 \ {i} with probability
µ
(
St−1\{i}

)
µ
(
St−1\{i}

)
+µ
(
St−1∪{i}

)
St−1 ∪ {i} otherwise.

Check that this Markov chain has stationary distribution µ.

The main result of this formulation is to bound the spectral gap of the transition matrix of the
Glauber dynamics by the spectral independence of the probability distribution.

Theorem 21.11 (Spectral Gap via Spectral Independence [ALO20]). Let µ : {0, 1}n → R be a
probability distribution that is η-spectrally independent. The random walk matrix of the Glauber
dynamics of µ has spectral gap at least

1

n

n−2∏
i=0

(
1− η

n− i− 1

)
.

Simplicial Complex for Glauber Dynamics

The proof of Theorem 21.11 is by (1) de�ning a simplicial complex Xµ for µ, (2) showing that the

down-up walk P5n−1 of Xµ is exactly the Glauber dynamics in De�nition 21.10, (3) seeing that the
conditional correlation matrices of µ are basically the matrices Wτ − Jτ of the links of Xµ in the
proofs of Proposition 20.14 and Proposition 21.1, and (4) seeing that the spectral gap bound in
Theorem 21.11 for Glauber dynamics follows from that in Theorem 21.2 for down-up walks.

De�nition 21.12 (Simplicial Complex of Assignments). Let µ : {0, 1}n → R be a probability
distribution on subsets of [n]. The simplicial complex (Xµ,Π) is de�ned with ground set [n]×{0, 1},
with a maximal face ζ :=

(
(1, Z(1)), (2, Z(2)), . . . , (n,Z(n))

)
of dimension n− 1 with Π(ζ) := µ(Z)

for each Z ∈ supp(µ). In words, each maximal face of Xµ corresponds to an assignment of the n
binary variables with non-zero probability in µ.

Note that there is a one-to-one correspondence between a face ζaS of Xµ and a partial assignment
aS ∈ {0, 1}|S| on a subset S ⊆ [n] of binary variables. Hence we denote the links of Xµ by Xµ

aS for
S ⊆ [n] and for aS ∈ {0, 1}|S|.
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Step (2) is left as an exercise.

Exercise 21.13 (Glauber Dynamics and Down-Up Walks). Verify that the down-up walk matrix

P5n−1 on Xµ is exactly the transition matrix of Glauber dynamics on µ in De�nition 21.10.

Step (3) is to see that the correspondence between conditional correlation matrices of µ and random
walk matrices of links of Xµ.

Lemma 21.14 (Correlation Matrices and Random Walk Matrices of Links). Let µ : {0, 1}n → R
be a probability distribution on subsets of [n] and Xµ be the simplicial complex in De�nition 21.12.
For a partial assignment aS ∈ {0, 1}|S| on a subset S ⊆ [n],

WaS − JaS 4Π
aS
0

1

n− |S| − 1

(
JaS + ΨaS

)
,

where ΨaS is the conditional correlation matrix in De�nition 21.7, WaS is the random walk matrix
of the link Xµ

aS in De�nition 19.12, and JaS := ~1(ΠaS
0 )T is de�ned as in Lemma 20.13.

Proof. We �rst check that each o�-diagonal entry of LHS and RHS matches. Let aS be a partial
assignment and ai, aj be two bits for i, j /∈ S. Then aS∪{i} is used to denote the partial assignment on
S∪{i} which extends aS with the i-th variable being assigned ai, and aS∪{i,j} is de�ned analogously.
By De�nition 19.12 and Equation 19.1,

WaS

(
(i, ai), (j, aj)

)
=

Π(aS∪{i,j})

(|S|+ 2) ·Π(aS∪{i})

=

(
n
|S|+2

)−1 · PrZ∼µ
[
Z
(
S ∪ {i, j}

)
= aS∪{i,j}

]
(|S|+ 2) ·

(
n
|S|+1

)−1 · PrZ∼µ
[
Z
(
S ∪ {i}

)
= aS∪{i}

]
=

1

n− |S| − 1
· Pr
Z∼µ

[
Z(j) = aj | Z(i) = ai, Z(S) = aS

]
.

Similarly, by Equation 19.2,

JaS
(
(i, ai), (j, aj)

)
= ΠaS

0 ((j, aj)) =
Π(aS∪{j})

(|S|+ 1) ·Π(aS)
=

1

n− |S|
· Pr
Z∼µ

[
Z(j) = aj | Z(S) = aS

]
.

This shows that the non-diagonal entries of ΨaS and (n−|S|−1) ·WaS − (n−|S|) ·JaS are the same.
Rearranging and noting that the diagonal entries on RHS are bigger than that on LHS proves the
statement.

We are ready to prove step (4) and thus Theorem 21.11.

Proof of Theorem 21.11. The plan is to use the assumption that µ is η-spectrally independent
(instead of local-spectral expansion of Xµ) to prove Proposition 21.1 with γk−1 replaced by η

n−k−1 ,
and then the theorem follows by plugging in γk−1 = η

n−k−1 into Theorem 21.2 to obtain

λ2(P5n−1) ≤ 1− 1

n

n−3∏
j=−1

(1− γj) = 1− 1

n

n−2∏
j=0

(
1− η

n− k − 1

)
.
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To see Proposition 21.1 holds with γk−1 = η
n−k−1 , we use Lemma 21.14 in Equation 21.1 with

Xτ = XaS so that

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1

1

n− k − 1

〈
f⊥τ , (Jτ + Ψτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1

η

n− k − 1

〈
f⊥τ , f

⊥
τ

〉
Πτ0
,

where the last inequality uses the assumption that λmax(Ψτ ) ≤ η and 〈f⊥τ , Jτfτ 〉 = 0. Then the
rest of the proof of Proposition 21.1 is the same with γk−1 replaced by η

n−k−1 .

To summarize, Theorem 21.11 can be seen as �nding the corresponding simplicial complex so that
Glauber dynamics is the same as down-up walks, and then interpreting the matrix Wτ − Jτ in
the proof of Proposition 21.1 as correlation matrices to de�ne spectral independence. Spectral
independence is a nice formulation so that probabilists do not need to know about high-dimensional
expanders to use the result, and indeed this notion has led to many recent developments and we
will discuss some in the next section.

21.3 Applications

In this section, we just brie�y discuss some of the recent developments and point to the relevant
references.

Sampling Independent Sets from Hardcore Distributions

The �rst major application of the spectral independence formulation is to prove fast mixing for
sampling independent sets from the hardcore distribution.

De�nition 21.15 (Hardcore Distributions). Given a graph G = (V,E) and a parameter λ > 0,
de�ne the hardcore distribution µλ : {0, 1}|V | → R as µλ(S) = λ|S|/ZG(λ) for each independent set
S ⊆ V , where

ZG(λ) :=
∑

S⊆V :S is an independent set

λ|S|

is the normalization constant called the partition function.

Estimating the partition function is a well-studied problem in statistical physics. Given a graph
of maximum degree ∆, there is a critical threshold λ(∆) = (∆ − 1)∆−1/(∆ − 2)∆ called the �tree
uniqueness threshold�, where λ < λ(∆) corresponds to the regime where the �in�uence� of a vertex
u on another vertex v in the in�nite ∆-regular tree decays exponentially fast in the distance between
u and v.

The tree uniqueness threshold is about a mathematical property, but very interestingly this is also
about computational complexity. A seminal work of Weitz showed that for any λ < λ(∆), there is a
deterministic fully polynomial time approximate scheme to estimate ZG(λ). Another seminal work
of Sly proved that for any λ > λ(∆), there is no such scheme to estimate ZG(λ) unless NP = RP.
Both proofs connect explicitly the mathematical property to the computational complexity.
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It was conjectured that the simple Glauber dynamics in De�nition 21.10 for the hardcore distri-
butions mixes in polynomial time whenever λ < λ(∆). Anari, Liu and Oveis Gharan [ALO20]
introduced spectral independence and used this notion to resolve the conjecture positively. Their
proof uses the self-avoiding walk tree de�ned by Weitz to write a recurrence to bound the maxi-
mum row sum of the correlation matrices Ψ in De�nition 21.5 to bound their maximum eigenvalue
λmax(Ψ) to apply Theorem 21.11 to conclude fast mixing. The proof is interesting and nontriv-
ial which extends previous techniques in �correlation decay�. One advantage of this randomized
algorithm is that the dependency on ∆ in the running time is much better than that of Weitz.

Sampling Graph Coloring from Glauber Dynamics

The work on spectral independence [ALO20] inspired many recent developments. One natural
generalization is to sample from distributions µ : [k]n → R where the variables are of larger arity.
This class of distributions includes the problem of sampling a random graph coloring of a graph.
The long standing major open problem for sampling graph coloring is that the simple Glauber
dynamics as in De�nition 21.10 mixes rapidly as long as the number of colors k is at least ∆ + 2
where ∆ is the maximum degree of the input graph. Note that the Glauber dynamics may not be
irreducible when k ≤ ∆ + 1. The best known result is by Vigoda that the Glauber dynamic mixes
in polynomial time as long as k ≥ 11∆/6, so there is a very large gap between the upper bound
and the lower bound.

The random graph coloring problem is very well-studied, where previous results are mostly based
on the coupling techniques to prove fast mixing. Using spectral independence with �correlation
decay� arguments, the previous results can be recovered [CGSV21, CLV21] with improved running
time. Some of these results also rely on log-Sobolev inequalities and entropy techniques that we will
study in later chapters. The main goal in this line of work is to use these new ideas originally from
high-dimensional expanders to make progress on the long standing open problem about mixing time
of Glauber dynamics for graph coloring.

Problem 21.16 (Simplicial Complex for Graph Coloring). De�ne a simplicial complex for graph
coloring so that the down-up walk matrix corresponds exactly to the Glauber dynamics. De�ne the
corresponding notion of spectral independence and compare to those de�ned in [CGSV21, CLV21].

Coupling and Spectral Independence

A general question is how does the spectral independence method relate to other methods for proving
fast mixing such as the most popular coupling techniques. Recent work in [Liu21, BCC+22] show
that certain types of coupling proofs imply spectral independence as well, suggesting the spectral
independence method could be a unifying method in analyzing mixing times of Markov chains.
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