
Chapter 20

Higher Order Random Walks

We study two related random walks on simplicial complexes, called the down-up walks and up-down
walks. The main result is that they are fast mixing if the simplicial complex is a good local-spectral
expander. A consequence is that the natural random walks on matroid bases is fast mixing, proving
the long-standing matroid expansion conjecture.

20.1 Random Walks on Simplicial Complexes

Kaufman and Mass [KM17] de�ned two natrual random walks on faces of dimension k in a simplicial
complex, the up-down walks that go through faces of dimension k + 1 and the down-up walks that
go through faces of dimension k− 1. The most intuitive way to de�ne these walks is to consider the
following bipartite graphs.

De�nition 20.1 (Bipartite Graph of a Layer). Let (X,Π) be a pure d-dimensional simplicial com-

plex. For any −1 ≤ k ≤ d− 1, the bipartite graph Hk = (X(k), X(k+ 1);E) has one vertex for each
face in X(k)∪X(k+ 1), with an edge between a face α ∈ X(k) and a face β ∈ X(k+ 1) if and only

if α ⊂ β and the weight of this edge is 1
k+2 ·Πk+1(β).

Up and Down Operators

We consider the random walk matrix of these bipartite graphs and de�ne the important up and down
operators, which correspond to one-step random walks on the bipartite graphs in De�nition 20.1.

De�nition 20.2 (Up and Down Operators). Let (X,Π) be a pure d-dimensional simplicial complex.

Let Ak be the adjacency matrix of Hk with Ak(α, β) = Ak(β, α) = 1
k+2 · Πk+1(β) if α ⊂ β for any

α ∈ X(k) and β ∈ X(k + 1) and zero otherwise. For each face α ∈ X(k), the weight degree of α is

deg(α) :=
∑

β∈X(k+1):β⊃α

Ak(α, β) =
∑

β∈X(k+1):β⊃α

1

k + 2
·Πk+1(β) = Πk(α),

where the last equality is by Equation 19.1. For each face β ∈ X(k + 1), the weighted degree of β is

deg(β) :=
∑

α∈X(k):α⊂β

Ak(α, β) =
∑

α∈X(k):α⊂β

1

k + 2
·Πk+1(β) = Πk+1(β).
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The random walk matrix Wk of Hk can thus be written as

Wk =

(
0 Dk+1

Uk 0

)
,

where Dk+1 is a X(k)×X(k + 1) matrix and Uk is a X(k + 1)×X(k) matrix with

Dk+1(α, β) =
Ak(α, β)

deg(α)
=

Πk+1(β)

(k + 2)Πk(α)
and Uk(β, α) =

Ak(α, β)

deg(β)
=

1

k + 2
.

for α ∈ X(k) and β ∈ X(k + 1) satisfying α ⊂ β. The matrix Dk+1 is called the down operator

from X(k + 1) to X(k) and Uk is called the up operator from X(k) to X(k + 1).

The following remark may clear up some potential confusion about the naming convention.

Remark 20.3 (Down Up Confusion). The name down operator comes from the perspective that

Dk+1 is an operator that maps a function f : X(k + 1)→ R to a function g = Dk+1f : X(k)→ R,
and so the output is one dimension lower and it is called a down operator. In other words, the name

comes from when we do right-multiplication on the matrix.

When we do random walks, however, we do left-multiplication of the form pTWk. So Dk+1 actually

maps a distribution in X(k) to a distribution in X(k+ 1), and the output is one dimension higher.

It is a bit confusing for us because we mostly think about random walks, but it won't be a big issue

that we won't often talk about these down and up operators alone.

A useful property is the adjoint property of the up and down operators.

Exercise 20.4 (Adjoint Property). Let (X,Π) be a pure d-dimensional simplicial complex. Prove

that for any f : X(k)→ R and g : X(k + 1)→ R,

〈Ukf, g〉Πk+1
= 〈f,Dk+1g〉Πk .

Up-Down Walks and Down-Up Walks

The two random walks de�ned by Kaufman and Mass correspond to two-steps random walks on
the bipartite graphs in De�nition 20.1.

De�nition 20.5 (Up-Down Walks and Down-Up Walks). Let (X,Π) be a pure d-dimensional sim-

plicial complex. Let Hk be the bipartite graph in De�nition 20.1 and Wk be the random walk matrix

on Hk in De�nition 20.2. Consider

W 2
k =

(
Dk+1Uk 0

0 UkDk+1

)
=:

(
P4k 0

0 P5k+1

)
,

where P4k ∈ RX(k)×X(k) is called the up-down walk matrix and P5k+1 ∈ RX(k+1)×X(k+1) is called the

down-up walk matrix.

A simple but important property of P4k and P5k+1 is that they have the same spectrum. This will

be used in an inductive proof to analyze the spectrum of P5d .
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Chapter 20

Exercise 20.6 (Same Spectrum of P4k and P5k+1). Prove that there is a one-to-one correspondence

between the non-zero eigenvalues of P4k and P5k+1.

It will be helpful to write out the entries of P4k and P5k+1 explicitly.

Exercise 20.7 (Entries of P4k and P5k+1). Let (X,Π) be a pure d-dimensional simplicial complex.

For α, α′ ∈ X(k),

P4k (α, α′) =


1

k+2 if α = α′

Πk+1(α∪α′)
(k+2)2·Πk(α)

if α ∪ α′ ∈ X(k + 1)

0 otherwise.

For β, β′ ∈ X(k + 1).

P5k+1(β, β′) =


∑

α∈X(k):α⊂β
Πk+1(β′)

(k+2)2·Πk(α)
if β = β′

Πk+1(β′)
(k+2)2·Πk(β∩β′) if β ∩ β′ ∈ X(k)

0 otherwise.

Notice that P40 is just the standard lazy random walks on a graph. The non-lazy up-down walks
turn out to be important in the analysis.

De�nition 20.8 (Non-Lazy Up-Down Walks). Let (X,Π) be a pure d-dimensional simplicial com-

plex. For −1 ≤ k ≤ d− 1, the non-lazy up-down walk matrix P∧k ∈ RX(k)×X(k) is de�ned as

P∧k :=
k + 2

k + 1

(
P4k −

I

k + 2

)
.

Explicitly, for α, α′ ∈ X(k),

P∧k (α, α′) =

{
Πk+1(α∪α′)

(k+1)(k+2)·Πk(α) if α ∪ α′ ∈ X(k + 1)

0 otherwise.

For the notations, remember that the 4 in P4 represents that there could be self-loops, while the
∧ in P∧ represents that the two endpoints are di�erent.

The stationary distributions of P4k , P
∧
k , P

5
k are all the same. This can be checked by direct calcu-

lations or check that the time reversible condition (i.e. πiP (i, j) = πjP (j, i) for all i, j) is satis�ed.

Exercise 20.9 (Stationary Distributions). The stationary distributions of P4k , P
∧
k , P

5
k are Πk.

This will allow us to use the inner product 〈·, ·〉Πk to bound the eigenvalues of P4k , P
∧
k , P

5
k using

the Rayleigh quotients with Πk in De�nition 19.21.

RandomWalks on Matroid Bases: To sample a uniform random basis of a matroid, we consider
the matroid complex with the uniform distribution on the bases, and run the down-up walk P5d .
Then, by Exercise 20.9, the stationary distribution is the uniform distribution. Note that the down-
up walk P5d is the natural algorithm that we start from an arbitrary basis B0, and in each iteration
t ≥ 0 we drop a random element i of the current basis and then add a random element j so that
Bt+1 := Bt − i + j is a basis, and repeat. Observe that the random spanning tree algorithm in
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Chapter 6 is a special case. We know from Theorem 19.17 that a matroid complex is a 0-local-
spectral expander. We will see in the next section that the up-down walks and the down-up walks
of a good local-spectral expander mix quickly. Thus this provides a simple and e�cient algorithm
to sample a uniform matroid basis, answering a long-standing open question called the matroid
expansion conjecture that we will explain at the end in the next section.

20.2 Kaufman-Oppenheim Theorem

Kaufman and Oppenheim [KO20] proved that if the simplicial complex is a good local-spectral
expander, then the up-down walks and the down-up walks mix quickly.

Theorem 20.10 (Kaufman-Oppenheim Second Eigenvalue Bound [KO20]). If (X,Π) is a γ-local-

spectral expander, then for any 0 ≤ k ≤ d the second eigenvalue of P5k is

λ2(P5k ) ≤ 1− 1

k + 1
+ kγ.

We will present the proof of this theorem in the rest of this section, and discuss the matroid
expansion conjecture at the end.

Garland's Method

An important step in the proof is to use Garland's method to decompose the down-up walk matrix
and the up-down walk matrix into matrices of the links. We need a de�nition similar to, but di�erent
from, De�nition 19.22.

De�nition 20.11 (Restriction to Link). Given a simplicial complex (X,Π), a function f : X(k)→
R and a face τ ∈ X(k − 1), the restriction of f to Xτ (0) is de�ned as fτ : Xτ (0) → R such that

fτ (x) = f(τ ∪ {x}) for all x ∈ Xτ (0).

The following lemma shows that the non-lazy up-down walk matrix P∧k can be decomposed into the
random walk matrix Wτ of the links for τ ∈ X(k − 1). The reason that we consider the non-lazy
up-down walk is that there are no self-loops in the random walk matrices of the links.

Lemma 20.12 (Decomposition of Non-Lazy Up-Down Walk Matrix). For any pure d-dimensional

simplicial complex (X,Π) and any function f : X(k)→ R,

〈f, P∧k f〉Πk = Eτ∼Πk−1
〈fτ ,Wτfτ 〉Πτ0 ,

where Wτ is the random walk matrix of the link τ in De�nition 19.12.

Proof. The main idea is to decompose P∧k into transition matrices where each is about the transitions
involving a particular link τ ∈ X(k − 1). Let P∧τ be the X(k)×X(k) matrix with

P∧τ (σ, σ′) =
Πk+1(α ∪ α′)

(k + 1)(k + 2) ·Πk(α)
if α ∩ α′ = τ and P∧τ (σ, σ′) = 0 otherwise.

Note that P∧k =
∑

τ∈X(k−1) P
∧
τ by De�nition 20.8, as the transition between any two faces α, α′ ∈

X(k) involves a unique link τ = α∩α′ ∈ X(k−1). The observation is that this matrix P∧τ is almost
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the same as the random walk matrix Wτ of the link τ . Let α = τ ∪ {x} and α′ = τ ∪ {y}. Then,
from De�nition 19.12,

Wτ (x, y) =
Π(τ ∪ {x, y})

(|τ |+ 2) ·Π(τ ∪ {x})
=

Πk+1(α ∪ α′)
(k + 2) ·Πk(α)

=⇒ P∧τ (σ, σ′) =
1

k + 1
Wτ (σ \ τ, σ′ \ τ).

So, if we extend the small matrices Wτ appropriately to W̃τ (i.e. put the (x, y)-entry of Wτ on the
(τ ∪ {x}, τ ∪ {y})-entry of W̃τ and set all other entries to be zero), then

P∧k =
1

k + 1

∑
τ∈X(k−1)

W̃τ ,

and so it should be clear that a quadratic form involving P∧k can be decomposed as a sum of
quadratic forms involving Wτ as in the statement.

To write it concisely, we decompose the quadratic form directly (instead of decomposing the matrix
P∧k ). By writing the quadratic form as a sum of |X(k)| × |X(k)| terms,

〈f, P∧k f〉Πk =
∑

σ∈X(k),σ′∈X(k):σ∪σ′∈X(k+1)

Πk+1(σ ∪ σ′)
(k + 1)(k + 2)

· f(σ) · f(σ′)

For each pair σ, σ′ ∈ X(k) with σ ∪ σ′ ∈ X(k + 1), their intersection τ := σ ∩ σ′ ∈ X(k − 1). Let
x = σ \ τ and y = σ′ \ τ . Then the corresponding term on the RHS is from the link Xτ with
contribution

Πk−1(τ) ·Πτ
0(x) ·Wτ (x, y) · fτ (x) · fτ (y)

= Πk−1(τ) · Πk(τ ∪ {x})
(|τ |+ 1) ·Πk−1(τ)

· Πk+1(τ ∪ {x, y})
(|τ |+ 2) ·Πk(τ ∪ {x})

· f(τ ∪ {x}) · f(τ ∪ {y})

=
Πk+1(σ ∪ σ′)
(k + 1)(k + 2)

· f(σ) · f(σ′).

The statement follows by noting that there is a one-to-one correspondence because each transition
in P∧k involves a unique link τ ∈ X(k − 1).

The next lemma shows that the down-up walk matrix can be decomposed as the down-up walk
matrices of the links which are simple rank-one matrices.

Lemma 20.13 (Decomposition of Down-Up Walk Matrix). For any pure d-dimensional simplicial

complex (X,Π) and any function f : X(k)→ R,

〈f, P5k f〉Πk = Eτ∼Πk−1
〈fτ , Jτfτ 〉Πτ0 ,

where Jτ := ~1(Πτ
0)T is a Xτ (0)×Xτ (0) rank-one matrix.

Proof. The proof is similar to that in Lemma 20.12. We decompose P5k into transition matrices

where each is about the transitions involving a particular link τ ∈ X(k − 1). Let P5τ be the
X(k)×X(k) matrix with

P5τ (σ, σ′) =
Πk(σ

′)

(k + 1)2 ·Πk−1(τ)
if σ ∩ σ′ ⊇ τ and P5τ (σ, σ′) = 0 otherwise.
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Note that P5k =
∑

τ∈X(k−1) P
5
τ by Exercise 20.7, where the summation in the self-loop probability

for σ is split into the subsets τ ⊂ σ for τ ∈ X(k− 1) where each takes a summand. Let σ = τ ∪{x}
and σ′ = τ ∪ {y}. By the de�nition of Jτ and Equation 19.2,

Jτ (x, y) = Πτ
0(y) =

Π(τ ∪ {y})
(|τ |+ 1) ·Π(τ)

=
Πk(α

′)

(k + 1) ·Πk−1(τ)
=⇒ P5τ (σ, σ′) =

1

k + 1
Jτ (σ\τ, σ′\τ).

Check that the remaining calculations are similar to that in Lemma 20.12, with the contribution
from σ, σ′ ∈ X(k) involving at link τ ∈ X(k − 1) is the same from LHS and RHS, being equal to

Πk(σ) ·Πk(σ
′)

(k + 1)2 ·Πk−1(τ)
· f(σ) · f(σ′).

Comparing Down-Up Walk and Non-Lazy Up-Down Walk

The decomposition of the down-up walk matrix in Lemma 20.13 shows that P5k can be written as the
sum of rank-one matrices in the links each with second largest eigenvalue 0, while the decomposition
of the non-lazy up-down walk matrix in Lemma 20.12 shows that P∧k can be wrttien as the sum
of random walk matrices in the links each with second largest eigenvalue at most γ for a γ-local-
spectral expander. The main step in Kaufman-Oppenheim's theorem is to compare the spectrum
of the down-up walk matrix P5k with the non-lazy up-down walk matrix P∧k , which intuitively can
be understood as a term-by-term comparison between a complete graph and an expander graph.

Proposition 20.14 (Comparision of P5k and P∧k [KO20, DDFH18]). If (X,Π) is a γ-local-spectral
expander, then

P∧k − P
5
k 4Πk γI

for any 0 ≤ k ≤ d− 1, where A 4Π B donotes 〈f,Af〉Π ≤ 〈f,Bf〉Π for all f .

Proof. Using Lemma 20.12 and Lemma 20.13,〈
f, (P∧k − P

5
k )f

〉
Πk

= Eτ∼Πk−1

〈
fτ , (Wτ − Jτ )fτ

〉
Πτ0
.

For each term, write fτ = c~1 + f⊥τ where
〈
~1, f⊥τ

〉
Πτ0

= 0 as in Equation 19.5. Then note that〈
fτ , (Wτ − Jτ )fτ

〉
Πτ0

=
〈
c~1 + f⊥τ , (Wτ − Jτ )(c~1 + f⊥τ )

〉
Πτ0

=
〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0
,

because Wτ~1 = Jτ~1 = ~1 and also (Πτ
0)TWτ = (Πτ

0)TJτ = (Πτ
0)T . Therefore,

〈f, (P∧k − P
5
k )f〉Πk = Eτ∼Πk−1

〈
f⊥τ , (Wτ − Jτ )f⊥τ

〉
Πτ0

≤ Eτ∼Πk−1
γ
〈
f⊥τ , f

⊥
τ

〉
Πτ0

≤ Eτ∼Πk−1
γ
〈
fτ , fτ

〉
Πτ0

= γ
〈
f, f

〉
Πk
,

where the �rst inequality is by the Rayleigh quotient characterization in Equation 19.4 and the
assumption that (X,Π) is a γ-local-spectral expander, and the last equality is left as Exercise 20.15.

Exercise 20.15 (Decomposition of Identity). Prove that 〈f, f〉Πk = Eτ∼Πk−1
〈fτ , fτ 〉Πτ0 .
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Inductive Proof

Now we are ready to prove Kaufman-Oppenheim's Theorem 20.10. The proof is by an interesting
induction, that we start from the spectrum of P50 and use Exercise 20.6 and Proposition 20.14 to

reason about the spectrums of P5k and P4k and P∧k . We prepare with the following exercise which
will be used in reasoning about the spectrums.

Exercise 20.16 (Bounding Spectrum by Quadratic Forms). Let A,B ∈ Rn×n be two self-adjoint

matrices with respect to the inner product Π (see Equation 19.3). If A 4Π B as described in

Proposition 20.14, then λi(A) ≤ λi(B) for all 1 ≤ i ≤ n.

Proof of Theorem 20.10. The proof is by induction on k. In the base case when k = 0, the matrix
P50 is of rank one (see Exercise 20.7), and thus the second largest eigenvalue is at most 0, and the
statement holds.

Now, assume the statement holds for k, and we would like to prove the inductive step. By Propo-
sition 20.14, P∧k 4Πk P

5
k + γI. It follows from Exercise 20.16 and Exercise 20.9 that

λ2(P∧k ) ≤ λ2(P5k ) + γ ≤ 1− 1

k + 1
+ (k + 1)γ,

where the second inequality is by the induction hypothesis on P5k . Recall from De�nition 20.8 that

P∧k =
k + 2

k + 1

(
P4k −

I

k + 2

)
=⇒ P4k =

k + 1

k + 2
P∧k +

I

k + 2
.

Therefore, the second largest eigenvalue of P4k is

λ2(P4k ) ≤ k + 1

k + 2

(
1− 1

k + 1
+ (k + 1)γ

)
+

1

k + 2
= 1− 1

k + 2
+

(k + 1)2γ

k + 2
≤ 1− 1

k + 2
+ (k + 1)γ.

Finally, recall that P5k+1 and P4k have the same spectrum by Exercise 20.6, and this completes the
induction step.

Combinatorial Interpretation: To summarize, one could visualize the proof as having a stack
of bipartite graphs, one for each layer as in De�nition 20.1. To reason about the spectrum of the top
layer, we start from the down-up walk of the bottom layer. The key step using Garland's method
is to observe that the (non-lazy) up-down walk in the layer above has a similar structure to the
down-up walk in the layer below, by replacing each clique Jτ in a link τ in the down-up walk in
Lemma 20.13 by an expander graph Wτ in the up-down walk in Lemma 20.12, whose expansion
comes from the assumption of the local-spectral expander. So, if the down-up walk is an expander
then the up-down walk is still an expander but with slightly weaker expansion (as we just replace a
complete graph by an expander graph), and this is essentially the term-by-term comparison step of
Kaufman and Oppenheim in Proposition 20.14. Finally, within the same layer, we use the simple
but important property that the up-down walk and the down-up walk having the same spectrum
to carry out the induction.
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Matroid Expansion Conjecture

Recall from Theorem 19.17 that the matroid complex is a 0-local-spectral expander (using Oppen-

heim's trickling down Theorem 19.15). Then, by Kaufman-Oppenheim's Theorem 20.10, λ2(P5d ) ≤
1 − 1

d+1 where r := d + 1 is the rank of the matroid. By standard analysis of mixing time in

Theorem 6.16, the ε-mixing time of the natural down-up walks is at most O(r log N
ε ) = O(r2 log n

ε )
where N is the number of bases and n is the number of elements in the ground set.

Theorem 20.17 (Sampling Matroid Bases by Down-Up Walks [ALOV19]). Given a matroid M
with n elements and rank at most r, the mixing time of the down-up walk of the matroid complex is

at most O(r2 log n
ε ).

The matroid expansion conjecture by Mihail and Vazirani from 1989 states that the bases exchange
graph has edge expansion at least one, which follows from Theorem 20.17 and Cheeger's inequality
in Theorem 4.3.

Problem 20.18 (Matroid Expansion Conjecture). The bases exchange graph G = (V,E) is the

underlying unweighted graph of the down-up walk matrix of the matroid complex. Prove that the

edge expansion of G is at least one, that is, |δ(S)|/|S| ≥ 1 for all S ⊆ V with |S| ≤ |V |/2.

One may understand the resolution of the matroid expansion conjecture as using the right induction
for the problem which may not be easy to come up with without the perspective of a simplicial
complex and the concepts such as links. It would be great if someone could write a completely
combinatorial proof (without using any linear algebra) of the matroid expansion conjecture using
the combinatorial interpretation above.

Question 20.19 (Combinatorial Proof of Matroid Expansion Conjecture). Is there a purely com-

binatorial proof of the matroid expansion conjecture?
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