
Chapter 19

High Dimensional Expanders

We begin the third part of the course about high dimensional expanders and log-concave polyno-
mials. In this chapter, we study a de�nition of high dimensional expanders through local spectral
expansion. We will introduce the necessary concepts and then prove a fundamental result by Op-
penheim called the trickling down theorem. See [Ove20, HL21] for similar notes which are used in
the preparation of this chapter.

High Dimensional Expanders

As we have seen in Chapter 7, expander graphs have nice combinatorial, probabilistic, and algebraic
properties, which is an important reason that there is a rich theory with connections and applications
in diverse areas. While it may be easy to generalize the de�nition of expander graphs to higher
dimensions for some properties (e.g. combintorial expansion in hypergraphs), it is not easy to �nd
a de�nition in higher dimension that generlizes all nice properties of expander graphs. There are
various de�nitions of high dimensional expanders, some using concepts from algebraic topology;
see [Lub18] for a survey with motivations and applications.

In this course, the main application of high dimensional expanders is in analyzing mixing time of
Markov chains. We will study a more recent and elementary de�nition developed in [KM17, DK17,
KO20], which was motivated by the study of random walks.

19.1 Simplicial Complexes

A simplicial complex is a high dimensional generalization of a graph.

De�nition 19.1 (Simplicial Complex). A set system is a pair X = (U,F) with U as the ground set

and F is a set of subsets of U . A simplicial complex is a set system that is downward closed, such

that if τ ∈ F and σ ⊂ τ , then σ ∈ F.

We follow the convention of using Greek letters σ, τ, η, α, β for subsets in F. The following are some
basic de�nitions about simplicial complexes.

De�nition 19.2 (Face, Dimension, Pure Simplicial Complex). Any subset σ ∈ F is called a face of

the simplicial complex X = (U,F). A face σ is of dimension k if its size is |σ| = k + 1, e.g. a 0-
dimensional face is a singleton (a vertex), a 1-dimensional face is a pair (an edge), a 2-dimensional

face is a triple, etc. Given a simplicial complex X = (U,F), we use X(k) to denote the set of
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faces of dimension k. A simplicial complex is d-dimensional if the maximum face size is d + 1. A

d-dimensional simplicial complex is pure if every maximal face is of size d+ 1.

Simplicial complex is a very general de�nition. We can associate a simplicial complex to many
classes of combinatorial objects.

Example 19.3 (Simplicial Complex from Spanning Trees). Given a graph G = (V,E), we can

de�ne a simplicial complex X = (E,F) where the ground set in X is the edge set E of G. A subset

of edges E′ ⊆ E is in F if and only if E′ forms an acyclic subgraph in G. It should be clear that X
is a pure simplicial complex. When G is connected, the maximal faces correspond to spanning tree,

which are of size |V | − 1 and so X is (|V | − 2)-dimensional.

More generally, every matroid naturally corresponds to a simplicial complex.

Example 19.4 (Simplicial Complex from Matroids). A matroid M = (U, I) is a set system where

U is the ground set and I is the set of subsets of U which satis�es the following two properties:

1. I is downward close, i.e. S ∈ I and T ⊆ S implies T ∈ I.

2. If S, T ∈ I and |T | > |S|, then there exists x ∈ T \ S such that S ∪ {x} ∈ I.

So, by (1), M = (U, I) is a simplicial complex. And, by (2), M = (U, I) is a pure simplicial complex.

The sets in I are usually called the independent sets, and the maximal sets are usually called bases.

It is not di�cult to check that the simplicial complex from spanning trees is a matroid.

A more general example is the class of linear matroids. Given a matrix A ∈ Fm×n, the linear

matroid of A is de�ned as M = ([n], I) where the ground set [n] is the set of columns of A, and a

subset S of columns is in F if and only if the columns in S are linearly independent. We leave it as

an exercise to check that it is a matroid and includes the matroid from spanning trees as a special

case.

There are many more simplicial complexes that one can de�ne, e.g. simplicial complexes from
cliques of graphs, simplicial complexes for graph coloring, etc. We may discuss some of these in
later chapters.

Weighted Simplicial Complexes

We will consider pure simplicial complexes with weights on its faces. We follow the convention
in [DDFH18] that the weights form a probability distribution on the faces of the same dimension.

De�nition 19.5 (Weighted Simplicial Complexes). A weighted pure simplicial complex (X,Π) is a
pure simplicial complex with a probability distribution Π on the faces of maximal dimension.

In applications of random sampling, the probability distribution in the maximal faces are usually
the uniform distribution, so they are simply unweighted simplicial complexes, but the following
de�nition of induced distributions will be important in our study. An alternative way to think
about these induced distributions is to think of them as weighted degrees of a subset in the simplicial
complex.
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Chapter 19

De�nition 19.6 (Induced Distributions). Given a d-dimensional weighted pure simplicial complex

(X,Π), a probability distribution Πk on X(k) for 0 ≤ k ≤ d is de�ned inductively as follows. The

base case is Πd = Π. For d − 1 ≥ k ≥ 0, the probability distribution Πk : X(k) → R is de�ned by

considering the marginal distributions such that

Πk(α) =
1

k + 2

∑
β∈X(k+1):β⊃α

Πk+1(β) (19.1)

for each face α ∈ X(k). Equivalently, we can understand Πk as the probability distribution of the

following random process. Sample a random face β ∈ X(d) using the probability distribution Πd,

and then sample a uniform random subset α of β in X(k), so that

Πk(α) =
1(
d+1
k+1

) ∑
β∈X(d):β⊃α

Πd(β) =
1(
d+1
k+1

) Pr
β∼Πd

[β ⊃ α].

We will often drop the subscript about the dimension of the face. Just keep in mind that each Πk

is a probability distribution.

19.2 Local Spectral Expanders

We �rst de�ne links and graphs of simplicial complexes, and then de�ne local spectral expanders.

Links

The following is the key de�nition that enables a local-to-global approach for simplicial complexes.

De�nition 19.7 (Links). Let X = (U,F) be a simplicial complex. For a face α ∈ F, the link Xα is

de�ned as

Xα := {β \ α | β ∈ F, β ⊃ α}.

In words, Xα is de�ned by the faces τ that can be used to extend α such that α ∪ τ ∈ F.

IfX is a pure d-dimensional simplicial complex and α ∈ X(k), thenXα is a pure (d−|α|)-dimensional
simplicial complex (where the empty set is a face of dimension −1). In the spanning tree complex
X = (E, I), given a subset of acyclic edges F ∈ I, the link XF is de�ned such that a subset of edges
F ′ is a face in XF if and only if F ∪F ′ is an acyclic subgraph. In matroid terminology, the link XF

is obtained by �contracting� the elements in F . A general approach to study a simplicial complex
is to decompose it into its links, as we will see later in this chapter.

The probability distributions Π0, . . . ,Πd onX in De�nition 19.6 can be used to de�ne Πα
0 , . . . ,Π

α
d−k−1

on Xα using conditional probability, where Πα(τ) ∝ Prβ∼Πd [β ⊃ τ | β ⊃ α]

De�nition 19.8 (Induced Distributions on Links). Let (X,Π) be a d-dimensional weighted pure

simplicial complex. For any face α and any τ ∈ Xα,

Πα(τ) := Pr
β∼Π|τ |+|α|−1

[
β = α ∪ τ | β ⊃ α

]
=

Π(α ∪ τ)∑
β:|β|=|τ |+|α|,β⊃α Π(β)

=
Π(α ∪ τ)(|α∪τ |
|α|
)
·Π(α)

, (19.2)

where the last equality follows from De�nition 19.6.
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Often, it is enough to understand that Πα(τ) ∝ Π(α ∪ τ), and just see the denominator in De�ni-
tion 19.8 as a normalizing constant.

Exercise 19.9. Verify that Πα
k is a probability distribution for every 0 ≤ k ≤ d− |α|.

Skeletons and Graphs

De�nition 19.10 (k-Skeletons). Given X = (U,F), the k-skeleton of X is the simplicial complex

Xk = (U,Fk) where Fk is the set of faces of F with dimension at most k. When there are weights

on the faces in F, we use the same weight on the faces in Fk.

The special case of 1-skeleton will be of particular interest, which could be thought of as the
underlying graph of the simplicial complex.

De�nition 19.11 (Graph of Links). For a link Xα, the graph Gα = (Xα(0), Xα(1),Πα
1 ) is de�ned

as the 1-skeleton of Xα. More explicitly, each singleton {v} in Xα is a vertex v in Gα, each pair

{u, v} in Xα is an edge uv in Gα, and the weight of uv in Gα is equal to Πα
1 ({u, v}).

A simple observation is that if X is a pure d-dimensional simplicial complex and Π is the uniform
distribution on X(d), then for any α ∈ X(d − 2) the weighting Πα

1 on the edges of Gα is uniform.
We will use this simple observation later.

Random Walk Matrices

The de�nition of local spectral expanders will be based on the random walk matrices of the links.

De�nition 19.12 (Random Walk Matrix of a Link). Given the graph Gα = (Xα(0), Xα(1),Πα
1 ) of

a link Xα, let Aα be the adjacency matrix of Gα and let Dα be the diagonal degree matrix where

Dα(x, x) =
∑

y∈Xα(0)

Aα(x, y) =
∑

y∈Xα(0)

Πα
1 ({x, y}) = 2Πα

0 ({x}).

Check that the last equality follows from De�nition 19.6 and De�nition 19.8. The random walk

matrix Wα of Gα is de�ned as

Wα := D−1
α Aα where Wα(x, y) =

Πα
1 ({x, y})

2Πα
0 ({x})

=
Π(α ∪ {x, y})

(|α|+ 2) ·Π(α ∪ {x})
for all {x, y} ∈ Xα(1).

Check that the last equality follows from De�nition 19.8. Note that the distribution Πα
0 is the

stationary distribution of Wα as

(Πα
0 )TWα = (Πα

0 )TD−1
α Aα =

1

2
(~1)TAα = (Πα

0 )T .

Recall from Chapter 6 that the random walk matrix and the normalized adjacency matrix of a
graph are similar matrices, and so the eigenvalues of the random walk matrices are real. The largest
eigenvalue of Wα is one and the all-one vector is a corresponding eigenvector.
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Local Spectral Expanders

Finally, we can state the de�nition of high dimensional expanders that we will use.

De�nition 19.13 (Local Spectral Expanders [KM17, DK17, KO20]). Let (X,Π) be a pure d-
dimensional simplicial complex. We say (X,Π) is a γ-local-spectral expander if λ2(Wα) ≤ γ for all

faces α ∈ X, where λ2(Wα) is the second largest eigenvalue of the random walk matrix Wα.

More generally, given γ−1, . . . , γd−2, we say (X,Π) is a (γ−1, . . . , γd−2)-local-spectral expander if

λ2(Wα) ≤ γk for all faces α ∈ X(k) for all −1 ≤ k ≤ d− 2.

The de�nitions in [KM17, DK17] require a lower bound on the minimum eigenvalue of Wα as well.
The above de�nition is from [KO20] where Kaufman and Oppenheim realized that only upper
bounding λ2 is enough for fast mixing of higher order random walks that we will de�ne in the next
chapter.

We can understand the above de�nition as requiring the �local� random walks in each link graph
are fast mixing. As the random walk matrix has the same spectrum as the normalized adjacency
matrix, we can also understand that the above de�nition as requiring the �local� weighted graphs
of the links have large edge conductance through Cheeger's inequality.

Example 19.14 (Complete Complex). Consider the complete complex Xd = (U,Fd) where every

subset S ⊆ U with |S| ≤ d + 1 is in Fd, equipped with the uniform distribution on the faces of

dimension d. Then the graph of every link of dimension k is an unweighted complete graph with

d− k vertices, with second largest eigenvalue of the random walk matrix being −1/(d− k − 1).

It is not surprising that a complete complex is a good high dimensional expander (if not, what is?).
As in expander graphs in Chapter 7, the goal is usually to construct high dimensional expanders
with few maximal faces. Unlike in the graph case, however, random simplicial complexes are not

high dimensional expanders with high probability. It is di�cult to construct sparse high-dimensional
expanders, with only a few known algebraic constructions [Lub18]. This is a topic of great interest
but is out of the scope of this course.

19.3 Oppenheim's Trickling Down Theorem

To show that a simplicial complex is a γ-local-spectral expander, we need to bound the second
largest eigenvalue of the random walk matrix for every link up to dimension d− 2. In applications
where the goal is to do uniform sampling of the maximal faces, it is usually much easier to work
with the random walk matrix of the �top� links of dimension d−2, because the graphs of these links
are unweighted as we mentioned before. For �lower� links, just determining the edge weights may
already involve some di�cult counting problems. So, it would be very nice if we could bound the
second largest eigenvalues of the lower links by the second largest eigenvalues of the top links, and
Oppenheim's trickling down theorem [Opp18] provides such a general bound for any pure simplicial
complex.

Theorem 19.15 (Oppenheim's Trickling Down Theorem [Opp18]). Let (X,Π) be a pure d-dimensional

weighted simplicial complex where Π satis�es Equation 19.1 and Equation 19.2. Suppose the graph

G∅ = (X(0), X(1),Π1) is connected and λ2(Wv) ≤ γ for all v ∈ X(0). Then

λ2(W∅) ≤
γ

1− γ
.
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Note that the condition that the graph G∅ is connected is necessary, as the example of two disjoint
cliques shows. Applying Theorem 19.15 inductively would give us the following bound.

Exercise 19.16 (Oppenheim's Bound [Opp18]). Let (X,Π) be a pure d-dimensional weighted sim-

plicial complex where Π satis�es Equation 19.1 and Equation 19.2. If Gα is connected for every

α ∈ X(k) for every k ≤ d− 2, then for any −1 ≤ j ≤ d− 2,

γj ≤
γd−2

1− (d− 2− j)γd−2
.

In general, when γd−2 > 0, the bound deteriorates as we go to lower links. But if we could prove
that γd−2 ≤ 0, then Oppenheim's bound in Exercise 19.16 would allow us to conclude that the
simplicial complex is a 0-local-spectral expander, which is almost as strong as the complete complex
in Example 19.14. An important example of 0-local-spectral expander is the matroid complex in
Example 19.4.

Matroid Complex

The following result is proved in [ALOV19], as an important step in proving the matroid expansion
conjecture that we will explain in the next chapter.

Theorem 19.17 (Matroid Complex is 0-Local-Spectral Expander [ALOV19]). The simplicial com-

plex of any matroid in Example 19.4 with the uniform distribution on the maximal faces is a 0-local-
spectral expander.

Proof. Let X be a pure d-dimensional simplicial complex from a matroid M . By Oppenheim's
bound in Exercise 19.16, we just need to prove that the graph of every link is connected and the
second largest eigenvalue of the random walk matrix of the links of diemnsion d− 2 is at most 0.

The �rst claim that the graph of every link is connected follows from the second axiom of matroids
stated in Example 19.4, and is left as a simple exercise.

For the second claim, we �rst consider the adjacency matrix Aα of a face α of dimension d−2. Since
the probability distribution on the maximal faces is the uniform distribution, every non-zero entry
of the adjacency matrix has the same weight. For bounding the spectrum, without loss of generality,
we rescale the matrix such that Aα(i, j) = 1 if α∪{i, j} is a maximal face and Aα(i, j) = 0 otherwise.
We would like to argue that Aα has at most one positive eigenvalue, and this would imply that
the normalized adjacency matrix Aα has at most one positive eigenvalue by the Courant-Fischer
Theorem 2.12, and this would imply that the random walk matrix Wα has at most one positive
eigenvalue as Wα and Aα are similar matrices.

To argue that A has at most one positive eigenvalue, let us start with the spanning tree complex
in Example 19.3. In the spanning tree complex X = (E,F) of a graph G = ([n], E), the maximal
faces are of size n − 1 and thus of dimension d := n − 2. Given a face F ⊆ E of dimension d − 2,
with |F | = n− 3, the subgraph formed by the edges in F has exactly three components left. Note
that the edges remained in the link XF are the edges with endpoints in di�erent components. Two
edges e, f in XF form a face of size 2 if and only if F ∪ {e, f}is a spanning tree if and only if e and
f are not parallel edges if we contract the three components into single vertices. In other words,
the edges in XF can be partitioned into three equivalent classes E1, E2, E3 such that two edges e, f
form a face of size 2 in XF if and only if they do not belong to the same subset. So, the adjacency
matrix AF can be written as J − χE1χ

T
E1
− χE2χ

T
E2
− χE3χ

T
E3
, where J is the all-one matrix and
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χEi is the characteristic vector of Ei for 1 ≤ i ≤ 3. Therefore, AF is a rank-one matrix minus three
positive semide�nite matrices. It follows from Courant-Fischer Theorem 2.12 or Cauchy interlacing
Theorem 2.13 that AF has at most one positive eigenvalue, and this concludes the proof for spanning
tree complexes.

The same proof works for linear matroids, where two columns i, j form a face of size 2 if and only
if they are parallel in the linear algebraic sense, and so again the columns can be partitioned into
equivalence classes E1, E2, . . . , El (with l not necessarily equal to 3) so that A = J −

∑l
i=1 χEiχ

T
Ei
.

In general, this holds for arbitrary matroids and is known as the matroid partition property and so
the same proof works.

The proof can be generalized so that the probability distribution on the maximal faces are product
distributions.

Exercise 19.18 (Product Distributions). Let X = (E, I) be a matroid complex. Suppose each

element e ∈ E has a weight we. Consider the probability distribution Π where each maximal face F
has probability Π(F ) proportional to

∏
e∈F we. Prove that (X,Π) is still a 0-local-spectral expander.

One may wonder what are other 0-local-spectral expanders. The following problem shows that they
have very restrictive structures such that the graphs of the top links must be complete multipartite
graphs.

Problem 19.19 (Complete Multi-Partite Graphs). The adjacency matrix of a graph G has at most

one positive eigenvalue if and only if G is a complete multi-partite graph.

19.4 Garland's Method

The main goal in this section is to prove Oppenheim's Theorem 19.15. We will �rst prepare by
introducing di�erent inner products for the calculations in the proof. Then we will introduce
the Garland's method which decomposes a structure of a simplicial complex to the corresponding
structure of its links. Then we will present the proof of Oppenheim's theorem.

Inner Products and Rayleigh Quotients

Recall from Chapter 6 that the random walk matrix of a graph and the normalized adjacency matrix
of a graph are similar matrices, and so the eigenvalues are real, but the eigenvectors may not be
orthonormal using the standard inner product. It will be convenient to work with a di�erent inner
product so that the eigenvectors are orthonormal with respect to this inner product. Given a random
walk matrix W = D−1A, we have shown in Lemma 6.18 that the eigenvectors u1, . . . , un ∈ Rn
satis�es 〈ui, uj〉D :=

∑n
l=1D(l, l) · ui(l) · uj(l) = 0. For simplicial complexes, we will use the

probability distribution Π0 to de�ne the inner product, which is equivalent to the degree distribution
as shown in De�nition 19.12.

De�nition 19.20 (Inner Products using Π). Given a simplicial complex (X,Π), for two functions

f, g : X(0)→ R, de�ne 〈
f, g
〉

Π0
:= Ei∼X(0)

[
f(i)g(i)

]
=
∑

i∈X(0)

Π0(i)f(i)g(i).
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Similarly, given a link Xα and two functions f, g : Xα(0)→ R, de�ne 〈f, g〉Πα0 := Ei∼Xα(0)[f(i)g(i)].
Note that Wα is self-adjoint with respect to this inner product, as〈

f,Wαg
〉

Πα0
=
〈
f,D−1

α Aαg
〉

Πα0
=

1

2

〈
f,Aαg

〉
=

1

2

〈
Aαf, g

〉
=
〈
Wαf, g

〉
Πα0
. (19.3)

Check that this implies that all eigenvalues of Wα are real with corresponding eigenvectors orthonor-

mal with respect to this inner product.

We also de�ne Rayleigh quotients using the inner product in De�nition 19.20.

De�nition 19.21 (Rayleigh Quotients using Π). Given a simplicial complex (X,Π) and a link

(Xα,Π
α), for a function g : Xα(0)→ R, the Rayleigh quotient of g is de�ned as

〈g,Wαg〉Πα0
〈g, g〉Πα0

.

Check that there is a one-to-one correspondence between the Rayleigh quotients of Wα and the

Rayleigh quotients of Aα de�ned as fTAαf/f
T f , and in particular the second largest eigenvalue of

Wα can be characterized as

λ2(Wα) = max
g:〈g,~1〉Πα0 =0

〈g,Wαg〉Πα0
〈g, g〉Πα0

. (19.4)

The advantage of working with Wα (instead of Aα or Aα) is that we know that the vector ~1/‖1‖Πα0
is an eigenvector of Wα with eigenvalue 1 for every link α. Let u1, . . . , un be the eigenvectors of Wα

that are Πα
0 -orthonormal. Given any y ∈ Rn, note that we can write y = c1u1 + . . . + cnun with

ci = 〈y, ui〉Πα0 , and in particular

c1 = 〈y, u1〉Πα0 =
〈y,~1〉Πα0
‖~1‖Πα0

. (19.5)

Garland's Method

Our plan is to bound the second largest eigenvalue of W using the Rayleigh quotient formulation
in Equation 19.4. Garland's method is a well-known technique in high dimensional expanders that
decompose a term (Rayleigh quotient in this case) into the corresponding terms over the links,
so that we can apply the properties (second largest eigenvalue in this case) in the links to bound
the terms over the links in order to bound the original term. We �rst de�ne a notation for the
localization of a function into a link.

De�nition 19.22 (Localization to Link). Given a simplicial complex (X,Π), a function f : X(k)→
R and a face τ , the localization of f to Xτ (k) is de�ned as fτ : Xτ (k)→ R such that fτ (σ) = f(σ)
for all σ ∈ Xτ (k).

The following two lemmas show how to decompose the denominator and the numerator of Equa-
tion 19.4 respectively.

Lemma 19.23 (Decomposition of Denominator). Given a simplicial complex (X,Π), for any two

functions f, g : X(0)→ R, 〈
f, g
〉

Π0
= Ev∼Π0

[〈
fv, gv

〉
Πv0

]
,

where fv is the localization of f to Xv(0) as de�ned in De�nition 19.22.
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Proof. The proof is by showing that the distribution Π0 can be written as Ev∼Π0 [Πv
0] by using

conditional probability. Note that
〈
f, g
〉

Π0
=
∑

w∈X(0) Π0(w)f(w)g(w) and

Ev∼Π0

[〈
fv, gv

〉
Πv0

]
=

∑
v∈X(0)

Π0(v)
∑

w∈Xv(0)

Πv
0(w)fv(w)gv(w) =

∑
w∈X(0)

( ∑
v∈X(0)

Π0(v)Π̃v
0(w)

)
f(w)g(w)

where Π̃v
0 is just an extension of Πv

0 (with zero entries) so that it has the same dimension as Π0.
We prove the statement by showing that Π0(w) =

∑
v∈X(0) Π0(v) · Π̃v

0(w) as

Π0(w) =
1

2

∑
v:{w,v}∈X(1)

Π1({w, v}) =
∑

v:{w,v}∈X(1)

Π0(v) ·Πv
0(w) =

∑
v∈X(0)

Π0(v) · Π̃v
0(w).

where the �rst equality is by Equation 19.1 and the second equality is by Equation 19.2.

An alternative succinct way [Ove20] to write the above proof is

Ew∼Π0

[
f(w)g(w)

]
= Evw∈Π1Ew|{v,w}

[
f(w)g(w)

]
= Ev∈Π0E{v,w}|v

[
f(w)g(w)

]
= Ev∼Π0

[
〈fv, gv〉Πv0

]
,

where in the �rst equality to sample a random vertex w we choose a random pair {v, w} and then
drop a random vertex with probability 1/2, in the second equality we use an equivalent process of
�rst choosing a random vertex v then choose a random edge {v, w} incident on it and then choose
the other vertex w.

Lemma 19.24 (Decomposition of Numerator). Given a simplicial complex (X,Π), for two functions
f, g : X(0)→ R, 〈

f,Wg
〉

Π0
= Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
,

where W and Wv are the random walk matrices of the empty link X∅ and the link Xv respectively.

Proof. The proof is by showing that the adjacency matrix can be written as the expected matrix of
the adjacency matrices of the links. We use Equation 19.3 to write the terms using the adjacency
matrices so that

〈
f,Wg

〉
Π0

= 1
2〈f,Ag〉 and

Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
= Ev∼Π0

[1

2
〈fv, Avgv〉

]
= Ev∼Π0

[1

2
〈f, Ãvg〉

]
=

1

2

〈
f,
(
Ev∈Π0Ãv

)
g
〉

where Ãv is just the extended matrix of Av (with zero rows and columns) so that it has the
same dimension as A. We prove the statement by showing that A = Ev∈Π0Ãv. Using conditional
probability, for each entry (u,w),

Au,w = Π1({u,w}) =
1

3

∑
v:{u,v,w}∈X(2)

Π2({u, v, w}) =
∑

v:{u,v,w}∈X(2)

Π0(v) ·Πv
1({u,w})

=
∑

v∈X(0)

Π0(v) ·Πv
1({u,w}) =

∑
v∈X(0)

Π0(v) ·
(
Ãv
)
u,w
,

where the �rst line is by Equation 19.1 and Equation 19.2.

An alternative succinct way [Ove20] to write the above proof is to rewrite the �rst step as
〈
f,Wg

〉
Π0

=

E{v,w}∼Π1
[f(v)g(w)] (exercise) and the remaining steps as

E{u,w}∼Π1
[f(u)g(w)] = E{u,v,w}∼Π2

E{u,w}|{u,v,w}[f(u)g(w)] = Ev∼Π0E{u,v,w}|v[f(u)g(w)]

= Ev∼Π0E{u,w}∼Πv1
[f(u)g(w)] = Ev∼Π0

[〈
fv,Wvgv

〉
Πv0

]
.
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Proof of Oppenheim's Theorem

We are ready to prove Oppenheim Theorem 19.15. Let G be the graph of X and W be its random
walk matrix. Since G is connected by assumption, the second largest eigenvalue of W is less than
one. Let λ < 1 be the second largest eigenvalue ofW and f be a corresponding eigenvector achieving
the maximum of the Rayleigh quotient in Equation 19.4 with 〈f,~1〉Π0 = 0. We assume without loss
of generality that 〈f, f〉Π0 = 1. Therefore, by Lemma 19.24,

λ = 〈f,Wf〉Π0 = Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
As eachWv is a random walk matrix, the largest eigenvalue of eachWv is one with the corresponding
eigenvector being ~1v/‖~1v‖Πv0 = ~1v, where ~1v is the localization of ~1 into Xv(0) as described in
De�nition 19.22. To bound 〈fv,Wvfv〉Πv0 , we use Equation 19.5 to decompose the vector fv as

fv = 〈fv,~1v〉Πv0 ·~1v + f⊥v where 〈~1v, f⊥v 〉Πv0 = 0.

Expanding the quadratic form using Wv~1v = ~1v, 〈~1v, f⊥v 〉Πv0 = 0 and the self-adjoint property in
Equation 19.3, the cross terms are zero and we get

〈fv,Wvfv〉Πv0 = 〈fv,~1v〉2Πv0 +〈f⊥v ,Wvf
⊥
v 〉Πv0 ≤ 〈fv,~1v〉

2
Πv0

+γ〈f⊥v , f⊥v 〉Πv0 = (1−γ)〈fv,~1v〉2Πv0 +γ〈fv, fv〉Πv0

where the inequality is by the characterization of the second largest eigenvalue in Equation 19.4
and the assumption that each link has second largest eigenvalue at most γ, and the last equality is
by 〈fv, fv〉Πv0 = 〈fv,~1v〉2Πv0 + 〈f⊥v , f⊥v 〉Πv0 by the same orthonormality argument. Therefore, using the

decomposition of the denominator in Lemma 19.23 and 〈f, f〉Π0 = 1,

Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
≤ Ev∈Π0

[
(1− γ)〈fv,~1v〉2Πv0 + γ〈fv, fv〉Πv0

]
= γ + (1− γ) · Ev∈Π0

[
〈fv,~1v〉2Πv0

]
.

Note that, by Equation 19.2 and De�nition 19.12,

〈fv,~1v〉Πv0 =
∑

w∈Xv(0)

Πv
0(w)fv(w) =

∑
w∈Xv(0)

Π1({v, w})
2Π0(v)

·fv(w) =
∑

w∈Xv(0)

W (v, w) ·fv(w) = (Wf)(v).

Hence, as f is an eigenvector of W with eigenvalue λ and 〈f, f〉Π0 = 1,

Ev∈Π0

[
〈fv,~1v〉2Πv0

]
= Ev∈Π0

[
(Wf)(v)2

]
=
〈
Wf,Wf

〉
Π0

= λ2 · 〈f, f〉Π0 = λ2.

To summarize,

λ = Ev∈Π0

[〈
fv,Wvfv

〉
Πv0

]
≤ γ + (1− γ) · Ev∈Π0

[
〈fv,~1v〉2Πv0

]
= γ + (1− γ)λ2

Solving this quadratic inequality gives either λ ≥ 1 or λ ≤ γ/(1 − γ). Since G is connected and
λ < 1, we conclude that λ ≤ γ/(1− γ) as stated in Theorem 19.15.

19.5 Problems

The following are two interesting problems.
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Problem 19.25 (Spanning Tree Complex without Oppenheim). Use the results in Chapter 16 to

prove directly that the spanning tree complex is a 0-local-spectral expander, without using Oppen-

heim's trickling down theorem.

Problem 19.26 (Approximate Negative Correlation of Matroids). In Chapter 16, we have seen

that the variables in a random spanning tree are negatively correlated, such that for any two edges

e 6= f ,
Pr
T

[e ∈ T | f ∈ T ] ≤ Pr
T

[e ∈ T ].

This is known to be not necessarily true for general matroids, but not all is lost. Use the result

that any matroid complex is a 0-local-spectral expander in Theorem 19.17 to prove that for any two

elements i 6= j in a matroid,

Pr
B

[i ∈ B | j ∈ B] ≤ 2 Pr
B

[i ∈ B],

where B is a uniform random basis of the matroid.

Question 19.27. It is an open question what is the best constant that one could prove for the

approximate negative correlation property of matroids in Problem 19.26. There are examples showing

that the constant is at least 8/7, and some conjectured that this is tight.
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