
Chapter 18

Real-Stability and Log-Concavity

In this chapter, we study the pioneer work of Gurvits on using real stable polynomials in combina-
torial problems that inspired the recent developments, and we see some applications of real-stable
polynomials in designing approximation algorithms for combinatorial optimization problems. This
concludes the second part of the course about real stable polynomials, and connects to the third
part of the course that involves log-concave polynomials. Our presentation follows closely that of
the course notes by Oveis Gharan [Ove20].

18.1 Gurvits' Capacity Inequality

An in�uential concept de�ned by Gurvits is the capacity function [Gur04, Gur06].

De�nition 18.1 (Capacity of a Polynomial). Let p ∈ R[x1, . . . , xn] be a polynomial. The capacity

of p is de�ned as

cap(p) := inf
x>0

p(x1, . . . , xn)

x1 · · ·xn
.

The main theorem in [Gur06] is to use the capacity of a real-stable polynomial p to estimate the
coe�cient of the monomial x1 · · ·xn in p.

Theorem 18.2 (Gurvits [Gur06]). Let p ∈ R[x1, . . . , xn] be a real-stable polynomial with non-

negative coe�cients. Then

e−n · cap(p) ≤ ∂x1 · · · ∂xnp
∣∣
x=0
≤ cap(p).

The proof of the second inequality is easy and holds for any non-negative polynomial. The proof of
the �rst inequality is deferred to the next section after we introduced log-concavity.

The optimization problem in the capacity function can be formulated as a convex program, which
can be solved in polynomial time using only a value oracle.

Proposition 18.3 (Computing Capacity). Given a real stable polynomial p with non-negative coe�-

cients, and an oracle that for any x ∈ Rn returns the value p(x), there is an algorithm to compute the

capacity of p up to (1+ε) factor in time poly
(
〈p〉, 1/ε

)
, where 〈p〉 := n+deg(p)+| log cmax|+| log cmin|

and cmax, cmin are de�ned as the maximum and minimum coe�cients in p.
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Proof Sketch: The idea is to do a change of variables to replace xi by e
yi , which is valid since x > 0.

Then consider the logarithm of the objective function

log cap(p) = inf
y∈Rn

{
log
(
p
(
ey1 , . . . , eyn

))
−

n∑
i=1

yi

}
.

Since all the coe�cients of p are non-negative, the term log
(
p
(
ey1 , . . . , eyn

))
can be written as

log
∑

i aie
〈bi,y〉 where ai ≥ 0 and bi ∈ Rn for all i (one term for each monomial). This is known as

the log-sum-exponential function, which is a convex function in y (often used as a soft-max function
in convex optimization).

Using the ellipsoid method to compute log cap(p), one can implement the separation oracle using
only a value oracle and analyze the time complexity by bounding the volumes of the outer ellipsoid
and the inner ellipsoid. See [AO17] for the details.

Permanent

Gurvits [Gur06] used Theorem 18.2 to approximate the permanent of a matrix and to give a beautiful
proof of the Van der Waerden's conjecture.

De�nition 18.4 (Permanent of a Matrix). The permanent of a matrix A ∈ Rn×n is de�ned as

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i),

where the summation runs over the set of all permutations of n elements.

Gurvits' idea is to read the permanent of a matrix from the following real-stable polynomial.

Exercise 18.5 (Permanent Polynomial). Given a non-negative matrix A ∈ Rn×n≥0 , the permanent

polynomial is de�ned as

pA(x1, . . . , xn) :=

n∏
i=1

n∑
j=1

Ai,j · xj .

Show that pA is a homogeneous real-stable polynomial with non-negative coe�cients and per(A) =
∂x1 · · · ∂xnpA(x1, . . . , xn)

∣∣
x=0

.

It follow from Theorem 18.2 and Exercise 18.5 that there is a determininstic en-approximation
algorithm for the permanent of a non-negative matrix. The best known deterministic approximation
ratio is (

√
2)n by Anari and Rezaei [AR19]. A major breakthrough in approximate counting is a

randomized (1+ε)-approximation algorithm for the permanent of a non-negative matrix by Jerrum,
Sinclair and Vigoda [JSV04] with running time polynomial in n and 1/ε. Their method is to
use Markov chains to sample a uniform random perfect matching of the bipartite graph of the
input matrix. It has been a long standing open question to match this result with a deterministic
algorithm.

Van der Waerden conjectured that the permanent of an n×n non-negative doubly stochastic matrix
is at least e−n. This conjecture was proven in the 80s by Gyires and by Egorychev and Falikman.
Gurvits provided a simple and elegant proof using Theorem 18.2 and the AM-GM inequality (which
follows from the concavity of the logarithmic function).
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Exercise 18.6 (Weighted AM-GM Inequality). Let a1, . . . , an ≥ 0 and µ1, . . . , µn ≥ 0 with
∑n

i=1 µi =
1. Then

n∑
i=1

µiai ≥
n∏
i=1

aµii .

Theorem 18.7 (Van der Waerden's Conjecture). The permanent of any non-negative doubly stochas-

tic matrix A ∈ Rn×n is at least e−n, where a matrix is called doubly stochastic if every row sum and

every column sum is equal to 1.

Proof. Let pA be the permanent polynomial in Exercise 18.5. By Exercise 18.5 and Theorem 18.2,

per(A) = ∂x1 · · · ∂xnpA(x1, . . . , xn)
∣∣
x=0
≥ e−n · cap(pA),

and so the statement would follow if we could prove that cap(pA) ≥ 1 for any non-negative doubly
stochastic matrix A. For any x ∈ Rn+,

pA(x1, . . . , xn) =

n∏
i=1

n∑
j=1

Ai,jxj ≥
n∏
i=1

n∏
j=1

x
Ai,j

j =

n∏
i=1

x
∑n

j=1 Ai,j

i =

n∏
i=1

xi,

where the inequality is by the weighted AM-GM inequality in Exercise 18.6 and the assumption
that every row sum is equal to one, and the last equality is by the assumption that every column
sum is equal to one. This implies that cap(pA) ≥ 1 and completes the proof.

Gurvits' result can also be used to give a simple proof of the following bound by Schrijver, whose
original proof is combinatorial and highly complicated.

Problem 18.8 (Schrijver's Bound). Let G be a k-regular bipartite graph with n vertices. Prove that

the number of perfect matchings in G is at least
(
k
e

)n
.

18.2 Log-Concavity

We follow the proof of Theorem 18.2 by Oveis Gharan [Ove20] that highlights the role of log-
concavity. The following simple lemma about univariate polynomials will be used in the base case.

Lemma 18.9 (Log-Concavity of Non-Negative Real-Rooted Polynomial). Let f ∈ R[x] be a real-

rooted polynomial with non-negative coe�cients then log f is a concave function on R≥0.

Proof. Let α1, . . . , αn be the roots of f . As all coe�cients of f are non-negative, it follows that
f(x) > 0 for all x > 0 as long as f 6≡ 0, and so all the roots of f must be non-positive. Assume
without loss that the leading coe�cient of f is one, then

log f = log
( n∏
i=1

(x− αi)
)

=

n∑
i=1

log(x− αi).

Since αi ≤ 0 for 1 ≤ i ≤ n, we conclude that log f is concave on R≥0 as each log(x − αi) is
well-de�ned and concave on R≥0 and the sum of concave functions is a concave function.

The following is Theorem 18.2 in the univariate case.
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Lemma 18.10 (Univariate Case of Theorem 18.2). For any real-rooted polynomial f ∈ R[x] with
non-negative coe�cients,

f ′(0) ≥ 1

e
inf
x>0

f(x)

x
.

Proof. If f(0) = 0, then f ′(0) = infx>0
f(x)
x as f(x) is a convex function in x, and so the inequality

holds trivially. Henceforth we assume that f(0) > 0. By log-concavity of f from Lemma 18.9, for
any x ≥ 0,

log f(x) ≤ log f(0) + x(log f(0))′ =⇒ log
f(x)

x
≤ log f(0) + x

f ′(0)

f(0)
− log x

The RHS is minimized when x = f(0)/f ′(0), and this implies that

inf
x>0

log
f(x)

x
≤ log f(0) + 1− log

f(0)

f ′(0)
=⇒ 1 + log f ′(0) ≥ inf

x>0
log

f(x)

x
,

which implies the lemma.

We are ready to prove Theorem 18.2.

Proof of Theorem 18.2. The proof is by induction on the number of variables n. Let

q(x1, . . . , xn−1) := ∂xnp|xn=0.

Note that q is real-stable as di�erentiation and substituting real number preserve real stability by
Exercise 13.17 and Proposition 13.13, and also q has non-negative coe�cients as p has.

For any x1, . . . , xn−1 > 0, consider the univariate polynomial f(xn) := p(x1, . . . , xn−1, xn). Note
that f is real-stable and thus real-rooted, and also f ′(0) = q(x1, . . . , xn−1). Applying Lemma 18.10
on f ,

q(x1, . . . , xn−1) = f ′(0) ≥ 1

e
inf
xn>0

f(xn)

xn
=

1

e
inf
xn>0

p(x1, . . . , xn)

xn
.

Using this and applying the induction hypothesis on q, we conclude that

∂x1 · · · ∂xnp
∣∣
x1=...=xn=0

= ∂x1 · · · ∂xn−1q
∣∣
x1=...=xn−1=0

≥ e−n−1 inf
x1,...,xn−1>0

q(x1, . . . , xn−1)

x1 · · ·xn−1
≥ e−n inf

x1,...,xn>0

p(x1, . . . , xn)

x1 · · ·xn
.

Finally, we prove the following generalization of Lemma 18.9, which can be seen as a generalization
of the well-known fact that det(X) is log-concave over the space of positive semide�nite matrices.
This result will be useful in the next section for designing approximation algorithms.

Theorem 18.11 (Log-Concavity of Homogeneous Real-Stable Polynomials). Let p ∈ R[x1, . . . , xn]
be a homogeneous real-stable polynomial with non-negative coe�cients. Then p is log-concave on

Rn≥0.
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Proof. To prove the statement, we will prove that log p(a+ tb) is concave along the line a+ tb, for
any a ∈ Rn+ and b ∈ Rn such that a+ tb ∈ Rn+ for all t ∈ [0, 1]. Let p be homogeneous of degree k.
Then

p(a+ tb) = p
(
t
(a
t

+ b
))

= tk · p
(a
t

+ b
)
.

Since p is real-stable and a ∈ Rn+, p(at + b) is real rooted. Let p(at + b) = c
∏k
i=1(t − λi) where

λ1, . . . , λk ∈ R are the roots. Then p(at + b) = c
∏k
i=1(

1
t − λi), and so

p(a+ tb) = tk · p
(a
t

+ b
)

= c
k∏
i=1

(1− tλi)

Note that λi < 1 for 1 ≤ i ≤ k, as otherwise there exists t ∈ [0, 1] such that p(a + tb) = 0,
contradicting to our assumption that the line a + tb ∈ Rn+ for t ∈ [0, 1] and so p(a + tb) > 0 as p
has non-negative coe�cients. Therefore,

log p(a+ tb) = log(c) +

k∑
i=1

log(1− tλi),

which is a concave function as each log(1 − tλi) is a concave function of t for t ∈ [0, 1] when
λi < 1.

18.3 Determinant Maximization

In this section, we see some applications of Gurvits' capacity inequality in Theorem 18.2 and the log-
concavity of real-stable polynomial in designing approximation algorithms for some combinatorial
optimization problems.

The determinant maximization problem is closely related to the D-design problem that we have
discussed in Section 11.1.

De�nition 18.12 (Determinant Maximization Problem). Given a positive semide�nite matrixM ∈
Rn×n and an integer k, the goal is to output a set S ⊆ [n] with |S| = k that maximizes det(MS,S).

Oveis Gharan [Ove20] give a simple proof of the following result by Nikolov [Nik15] using the theory
of real-stable polynomials.

Theorem 18.13 (Nikolov [Nik15]). There is a polynomial time algorithm that gives a e−k approx-

imation to the determinant maximization problem.

Proof Sketch: Consider the following mathematical program for the problem:

max log
∑

S⊆[n]:|S|=k

det(MS,S)
∏
i∈S

xi

subject to

n∑
i=1

xi = k

xi ≥ 0 for 1 ≤ i ≤ n.

First we argue that the program is convex and can be solved in polynomial time. We know from
Problem 16.15 that the polynomial

∑
S⊆[n]:|S|=k det(MS,S)

∏
i∈S xi is real-stable when M < 0. As
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this polynomial is homogeneous with non-negative coe�cients as M < 0, it follows from Theo-
rem 18.11 that the objective function is a concave function, and thus the program is a convex
program. We remark that the proof of Problem 16.15 also provides a compact representation of
the polynomial in the objective function, so that we can evaluate the objective function in time
polynomial in terms of the size of the input M .

Note that the convex program is a relaxation of the determinant maximization problem, and so its
objective value

∑
S⊆[n]:|S|=k det(MS,S)

∏
i∈S xi is at least the optimal value opt. Given an optimal

solution x to the convex program, we consider the following simple randomized rounding algorithm.
Let µ be the distribution on [n] where µ(i) = xi/k. Choose k indexes i1, i2, . . . , ik ∈ [n], where
each index ij is sampled from µ independently. If i1, . . . , ik are all distinct, then we output S =
{i1, . . . , ik}, otherwise we output �failed�. Then, the expected objective value of the output is

E [alg] =
∑

S∈([n]
k )

Pr[S is sampled] · det(MS,S) =
∑

S∈([n]
k )

(
k! ·
∏
i∈S

xi
k

)
· det(MS,S) ≥ e−k · opt,

where the second equality is because there are k! permutations to choose the same subset S, each
permutation with probability

∏
i∈S

xi
k . This bounds the integrality gap of the convex program,

but note that the randomized rounding algorithm is not a polynomial time algorithm (see Exer-
cise 18.14). Nikolov [Nik15] derandomized this analysis using conditional expectation to give a
deterministic polynomial time algorithm with the same guarantee.

Exercise 18.14 (Exponential Running Time). Show an example where the randomized rounding

algorithm in the proof of Theorem 18.13 runs in time Ω(ek).

Problem 18.15 (Sampling by Volume). Suppose there is a polynomial time algorithm that outputs

a random size-k subset S with probability proportional to det(MS,S). Show that this algorithm can

be used to give a randomized polynomial time e−k-approximation algorithm for the determinant

maximization problem.

Determinant Maximization with Partition Constraints

Nikolov and Singh [NS16] considered the generalization of the determinant maximization problem
with partition constraints. The following is a simple version of their problem.

De�nition 18.16 (Determinant Maximization with Partition Constraints). Given a positive semidef-

inite matrix M ∈ Rn×n, an integer k and a partition of the ground set [n] into P1 ∪ P2 ∪ . . . ∪ Pk,
the goal is to output a set S with |S ∩ Pi| = 1 for 1 ≤ i ≤ k that maximizes det(MS,S).

We brie�y discuss the main ingredients in [NS16]. The natural relaxation in the proof of Theo-
rem 18.13 (with suitable modi�cation) has unbounded integrality gap. The key contribution by
Nikolov and Singh is to come up with a very interesting convex relaxation for the problem. Let
B := {S ⊆ [n] | |S ∩ Pi| = 1 ∀1 ≤ i ≤ k} be the set of subsets that satisfy the partition constraints.

176



Chapter 18

Write M = V TV and let vi be the i-th column of V . The relaxation in [NS16] is

opt = sup
x

inf
y

det
( n∑
i=1

xiyiviv
T
i

)
subject to

∑
j∈Pi

xj = 1 ∀1 ≤ i ≤ k

0 ≤ xj ≤ 1 ∀1 ≤ j ≤ n,∏
i∈S

yi = 1 ∀S ∈ B.

Nikolov and Singh showed that it is indeed a relaxation and it can be solved in polynomial time.
They analyzed the simple rounding algorithm where we choose one vector in Pi with probability dis-
tribution {xj}j∈Pi . The analysis uses the real-stability of the polynomial p(y) := det(

∑n
i=1 xiyiviv

T
i ).

They reduced the problem of bounding the expected value of the output to bounding the coe�-
cient of the monomial z1 . . . zm of a related real-stable polynomial, and then they applied Gurvits'
inequality in Theorem 18.2 to prove that the convex program gives a e−k-approximation to the
problem.

Generalized Permanent Inequality

Extending the convex program in [NS16], Anari and Oveis Gharan [AO17] obtained an elegant
generalization of Gurvits' permanent inequality. The following is a simpler version of their main
theorem.

Theorem 18.17 (Generalized Permanent Inequality [AO17]). For any two multi-linear real-stable

polynomial p, q ∈ R[x1, . . . , xn] with non-negative coe�cients,

sup
α≥0

inf
x,y>0

e−α
p(x)q(y)(
xy/α

)α ≤∑
κ

cp(κ) · cq(κ) ≤ sup
α≥0

inf
x,y>0

p(x)q(y)(
xy/α

)α ,
where α, x, y ∈ Rn are vectors, and κ is over the set of monomials of p and q with coe�cients cp(κ)
and cq(κ) respectively. For two vectors a, b ∈ Rn, ab ∈ Rn denotes the vector with the i-th entry

being aibi, and a
b ∈ R denotes the number

∏n
i=1 a

bi
i .

They showed that this result generalizes Gurvits' inequality and Nikolov-Singh's result, and provides
deterministic polynomial time algorithms for several counting problems.

Concluding Remark

Besides the applications we discussed, Gurvits' concept of capacity has found important applications
in analyzing scaling problems including matrix scaling, frame scaling and operator scaling, and there
are various applications of these scaling problems (see e.g. [GGOW20]).
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