
Chapter 17

More Interlacing Families

We see some further developments in the method of interlacing family of polynomials in this chapter.

17.1 Interlacing Family for Strongly Rayleigh Measure

Motivated by the thin tree problem, Anari and Oveis Gharan [AO14] developed an interlacing family
for strongly Rayleigh distributions and applied it to the asymmetric traveling salesman problem.
We will �rst study the interlacing family and then discuss the application.

Recall that the interlacing family and the probabilistic formulation by Marcus, Spielman, and Sri-
vastava in Theorem 13.28 and Theorem 15.2 crucially depend on the random variables being inde-
pendent. Anari and Oveis Gharan proved a beautiful generalization of the probabilistic formulation
to strongly Rayleigh measures. In the following, a strongly Rayleigh measure µ is homogeneous if
every non-zero monomial in the generating polynomial gµ is of the same degree.

Theorem 17.1 (Probabilistic Method for Strongly Rayleigh Measure). Let µ : {0, 1}m → R be

a homogeneous strongly Rayleigh measure such that the marginal probability PrS∼µ[i ∈ S] of each
element 1 ≤ i ≤ m is at most ε1. Let v1, . . . , vm ∈ Rn be vectors in isotropic condition

∑m
i=1 viv

T
i =

In and ‖vi‖22 ≤ ε2 for 1 ≤ i ≤ m. Then

Pr
S∼µ

[∥∥∥∥∑
i∈S

viv
T
i

∥∥∥∥ ≤ 4(ε1 + ε2) + 2(ε1 + ε2)
2

]
> 0.

Product distributions are strongly Rayleigh distributions, so Theorem 17.1 should be more general
than Theorem 15.2, but the leading constant is just slightly larger that it cannot be used to prove
Weaver's Conjecture 15.1. It can still be used to prove a multi-partitioning version of Weaver's
conjecture for any r ≥ 5, using a similar reduction as in Section 15.2.

Problem 17.2 (Multi-Partitioning Weaver's Problem). Let v1, . . . , vm ∈ Rn be vectors in isotropic

condition
∑m

i=1 viv
T
i = In and ‖vi‖22 ≤ ε for 1 ≤ i ≤ m. Then, for any r, there is an r partitioning

of [m] into S1, . . . , Sr such that for any 1 ≤ j ≤ r,∥∥∥∥∑
i∈S

viv
T
i

∥∥∥∥ ≤ 4
(1

r
+ ε
)

+ 2
(1

r
+ ε
)2
.

The proof of Theorem 17.1 is based on the same two key steps as in Chapter 14 and Chapter 15:

161



Eigenvalues and Polynomials

1. Prove that the family of polynomials
{

det
(
xI −

∑
i∈S viv

T
i

)}
S∈supp(µ) forms an interlacing

family, and apply the probabilistic method in Theorem 12.12 to show that there exists S ∈
supp(µ) with

λmax

(
det
(
xI −

∑
i∈S

viv
T
i

))
≤ λmax

(
ES∼µ

[
det
(
xI −

∑
i∈S

viv
T
i

)])
.

2. Bound the maximum root of ES∼µ
[

det
(
xI −

∑
i∈S viv

T
i

)]
=
∑

S µ(S) · det
(
xI −

∑
i∈S viv

T
i

)
.

Expected Characteristic Polynomial

Recall that in the solution to the Weaver's conjecture in Chapter 15, both steps depend crucially
on the multilinear formula in Theorem 13.20. Anari and Oveis Gharan proved a generalization
incorporating the probability measure µ.

Theorem 17.3 (Expected Characteristic Polynomial of Strongly Rayleigh Distribution). Let gµ
be the homogeneous generating polynomial of a measure µ : {0, 1}m → R with degree d. Let

v1, v2, . . . , vm ∈ Rn. For any c ∈ R,

cd−n
∑
R⊆[m]

µ(R) det
(
cλI −

∑
i∈R

2viv
T
i

)
=

m∏
i=1

(
1− ∂2xi

)
gµ
(
c~1 + x

)
· det

(
λI +

m∑
i=1

xiviv
T
i

)∣∣∣∣
~x=0

.

Proof. Start with the LHS. Let Ai = viv
T
i , which is rank one so that det(λI+

∑
i xiAi) is multilinear

in xi. Then∑
R

µ(R) det
(
λI +

∑
i∈R

xiAi

)
=

∑
R

µ(R)
∑
S⊆R

xS
(∏
i∈S

∂xi det
(
λI +

∑
j∈R

xjAj

)∣∣
~x=0

)
(17.1)

=
∑
R

µ(R)
∑
S⊆R

xS
(∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)

=
∑
S

xS
( ∑
R:R⊇S

µ(R)
)(∏

i∈S
∂xi det

(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)
where the �rst equality is by the multilinear expression of det(λI +

∑
i∈R xiAi) as described in

Subsection 13.4.

The idea is to come up with one polynomial g with coe�cient
∑

R:R⊇S µ(R) on the monomial xS ,

and another polynomial f with coe�cient
∏
i∈S ∂xi det(λI +

∑m
j=1 xjAj)|~x=0 on the monomial xS .

Clearly f(x) := det(λI +
∑m

i=1 xiAi).

Consider gµ(c~1 + x) =
∑

R µ(R)
∏
i∈R(c + xi). Each R with R ⊇ S contributes µ(R) · c|R|−|S|

to xS . Therefore, since µ is homogeneous, the coe�cient of xS in gµ is
∑

R:R⊇S µ(R) · c|R|−|S| =

cd−|S|
∑

R:R⊇S µ(R). Let g(x) := gµ(c~1 + x).

Since both f and g are multilinear in xi, the coe�cient of
∏
i∈S x

2
i in f · g is the product of the

coe�cients of xS in f and in g. We can read the coe�cient of
∏
i∈S x

2
i in f · g using the formula

2−|S|
∏
i∈S ∂

2
xif · g|~x=0. So,

2−|S|
∏
i∈S

∂2xi f · g
∣∣
~x=0

= cd−|S|
∑

R:R⊇S
µ(R)

∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

.
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Therefore,

m∏
i=1

(
1− ∂2xi

)
f · g

∣∣∣
~x=0

=
∑
S

(−1)|S|
∏
i∈S

∂2xif · g
∣∣∣
~x=0

= cd
∑
S

(−1)|S| ·
(2

c

)|S|( ∑
R:R⊇S

µ(R)

)(∏
i∈S

∂xi det
(
λI +

m∑
j=1

xjAj

)∣∣
~x=0

)
.

Note that the LHS of this equality is equal to the RHS of the statement, and the RHS of this equality
is equal to the LHS of the statement by plugging in xi = −2/c in Equation 17.1 for 1 ≤ i ≤ m.

Using Theorem 17.3 and Corollary 16.8, we have the following formula for the expected characteristic
polynomial for the volume measure.

Problem 17.4. Let v1, v2, . . . , vm ∈ Rn with
∑m

i=1 viv
T
i = In and let µ be its volume measure as in

De�nition 16.5. Then, for any c ∈ R,

cd−n
∑
S⊆[m]

µ(S) det
(
cλI−

∑
i∈S

2viv
T
i

)
=

m∏
i=1

(
1−∂2xi

)
det
(
cI+

m∑
i=1

xiviv
T
i

)
·det

(
λI+

m∑
i=1

xiviv
T
i

)∣∣∣∣
~x=0

.

Interlacing Family

Once the formula in Theorem 17.3 is established, the proof that the family of polynomials
{

det
(
xI−∑

i∈S viv
T
i

)}
S∈supp(µ) forms an interlacing family is similar to that of Theorem 13.28. First, using

that gµ is real stable as µ is strongly Rayleigh, we can prove that the expected characteristic
polynomial is real-rooted.

Exercise 17.5 (Expected Characteristic Polynomial is Real-Rooted). The expected characteristic

polynomial ES∼µ
[

det
(
xI −

∑
i∈S viv

T
i

)]
is real-rooted for any strongly Rayleigh distribution µ.

Then, using a tree with depth m where each internal node has at most 2 children, and associating
each non-leaf node with the conditional expected polynomial, we can use a similar argument as in
Theorem 13.28 to establish an interlacing family for strongly Rayleigh measure.

Problem 17.6 (Interlacing Family of Strongly Rayleigh Measure). Let µ : {0, 1}m → R be a

strongly Rayleigh measure with homogeneous generating polynomial gµ. The set of all polynomials

in
{

det
(
xI −

∑
i∈S viv

T
i

)}
S∈supp(µ) form an interlacing family, where the root polynomial can be

chosen to be ES∼µ
[

det
(
xI −

∑
i∈S viv

T
i

)]
.

Multivariate Barrier Argument

The second step is to upper bound the maximum root of the expected characteristic polynomial.
The proof structure is similar to that in the induction hypothesis in De�nition 15.6. The same mul-
tivariate barrier functions Φi

p(y) = ∂xip(y)/p(y) as in De�nition 15.5 are used. Starting with a point

(t, . . . , t) which is above the roots of the multivariate polynomial gµ(λ~1+x) ·det
(
λI+

∑m
i=1 xiviv

T
i

)
,

Anari and Oveis Gharan proved that (t+δ, . . . , t+δ, t, . . . , t) with the �rst k coordinates being t+δ
for a small δ is still above the roots after applying the di�erential operator (1− ∂2xi) for 1 ≤ i ≤ k.
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Also, the monotoncity and the convexity of the barrier functions in Proposition 15.7 are important
in the analysis.

The main di�erence is that the di�erential operator (1 − ∂2xi) is di�erent. So, not only they need
to keep track of Φi

p(y) = ∂xip(y)/p(y), but also the second derivative Ψi
p(z) = ∂2xip(y)/p(y) as well.

They prove a new lemma that ∂xiΨ
j
p(y)/∂xiΦ

j
p(y) ≤ 2Φj

p(y), also using the result that a bivariate
real-stable polynomial can be written as det(x1A+ x2B +C) for A,B < 0 and C Hermitian. As in
Chapter 15, the assumptions Pr(i ∈ S) ≤ ε1 and ‖vj‖22 ≤ ε2 are (only) used in the computation of the
initial value of the barrier functions. Because of the di�erential operator (1−∂2xi) = (1+∂xi)(1−∂xi),
they could prove that the shift δ is much smaller as (1−∂xi) shifts the root up while (1 +∂xi) shifts
the roots down, hence getting a �nal bound that is much smaller than that in Theorem 15.2.

We refer the reader to [AO14] for details. It would be very nice if one could strengthen their result
to prove Weaver's Conjecture 15.1.

Thin Tree and Asymmetric Traveling Salesman Problem

The main motivation of their work is the thin tree problem and its application to the asymmetric
traveling salesman problem (ATSP).

De�nition 17.7 (Thin Tree). Given an undirected graph G = (V,E) and 0 < α < 1, we say a

spanning tree T is α-thin if |δT (S)| ≤ α · |δG(S)| for all S ⊆ V . In words, a spanning tree is α-thin
if it uses at most α-fraction of edges in every cut.

There is a strong conjecture about the existence of a thin tree.

Conjecture 17.8 (Goddyn's Conjecture). Every k-edge-connected graph has a O( 1k )-thin tree.

If the conjecture is true and a O( 1k )-thin tree can be found in polynomial time, then it would imply
a constant factor approximation algorithm for ATSP [AGM+17].

It can be proved that a random spanning tree is a O
( logn
log logn ·

1
k

)
-thin tree [AGM+17]. The argument

is similar to that in cut sparsi�cation, using Cherno� bound and careful union bound. The reason
that we can apply Cherno� bound is that the edges in a random spanning tree are negatively
associated as shown in Chapter 16.

As in graph sparsi�cation, one can de�ne a stronger spectral notion of a thin tree.

De�nition 17.9 (Spectrally Thin Tree). Given an undirected graph G = (V,E) and 0 < α < 1,
we say a spanning tree T is α-spectrally-thin if L(T ) 4 α · L(G), where L(T ) and L(G) are the

Laplacian matrices of T and G respectively.

Exercise 17.10 (Spectral Thin Tree is Combinatorially Thin Tree). Prove that an α-spectrally thin
tree is also an α-thin tree.

One advantage of this stronger notion is that it is easier to work with. For example, given a tree,
it is easy to check whether it is α-spectrally thin, while it is not known how to check whether it
is (combinatorially) α-thin. Moreover, the solution to the Weaver's conjecture in Corollary 15.3
provides a non-trivial su�cient condition for the existence of a spectrally thin tree.

Proposition 17.11 (Su�cient Condition for Spectrally Thin Tree [HO14]). If the maximum e�ec-

tive resistance of an edge in a graph G is α, then G has a O(α)-spectrally thin tree.
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The solution to Weaver's conjecture in Corollary 15.3 implies that if the maximum e�ective resis-
tance of an edge in G is α, then the edge set of G can be partitioned into two subgraphs H1 and
H2 such that for i ∈ {1, 2},

1

2

(
1−
√

2α
)
LG 4 LHi 4

1

2

(
1 +
√

2α
)
LG.

The idea in Proposition 17.11 is to recursively apply this partitioning in each subgraph (with slightly
weaker bound on the maximum e�ective resistance of an edge) until we cannot apply again, by that
time there will be O( 1

α) edge-disjoint subgraphs of G, each is connected and O(α)-spectrally thin.

This gives hope that the techniques developed in the method of interlacing family of polynomials
can be used to prove Goddyn's conjecture. Proposition 17.11 gives us a spectrally thin tree, which
is combinatorially thin, but it requires the assumption that hte maximum e�ective resistance of
an edge is small, which is not necessarily satis�ed in a k-edge-connected graph. The breakthrough
by Anari and Oveis Gharan [AO15], in a high level, is to reduce the combinatorial problem to the
spectral problem, and use Theorem 17.1 to prove the following result.

Theorem 17.12 (Anari, Oveis Gharan [AO15]). Every k-edge-connected graph has a O
(

log logn ·
1
k

)
-thin tree.

The reduction, however, is very complicated and technically challenging. Also, there is now a con-
stant factor approximation algorithm for ATSP. So we just highlight some underlying mathematics
of the thin tree result. First, check that the probabilistic formulation for strongly Rayleigh measure
can be used to prove Proposition 17.11 without using recursion.

Exercise 17.13 (Direct Proof of Su�cient Condition). Show that Theorem 17.1 can be used to

prove Proposition 17.11. You may use the fact that the probability that an edge is in a uniform

spanning tree is equal to the e�ective resistance of an edge, i.e. PrT [e ∈ T ] = Reff(e).

The main advantage of Theorem 17.1 is that the output is guaranteed to be a spanning tree, so that
we get connectivity for free (without worrying about the minimum eigenvalue), which is important
for the thin tree problem. The following is the fundamental building block of their approach.

Theorem 17.14 (Spectral Thin Tree from Subgraph). Given a graph G = (V,E) and a subset

of edges F ⊆ E such that (V, F ) is k-edge-connected, if Reff(e) ≤ ε for all e ∈ F , then G has a

O
(
1
k + ε

)
-spectrally thin tree in F .

Proof Idea: Since F is k-edge-connected, there are at least k/2 edge-disjoint spanning trees by Tutte
or Nash-Williams' theorem. This implies that there is a point in the spanning tree polytope with
maximum edge value O(1/k). By expressing this point using �maximum entropy distribution�, it
can be proved that there is a weighting of the edges, so that the weighted random spanning tree
distribution µ (which is still homogeneous strongly Rayleigh by Exercise 16.11) has maximum
marginal probability of an edge O(1/k), i.e. ε1 = O(1/k) in Theorem 17.1. The assumption about
e�ective resistance implies that ε2 ≤ ε, and so Theorem 17.1 can be applied.

With Theorem 17.14, their strategy is to add �short-cut� edges in the graph, so that they don't
change the cut structures much, while creating many edges with small e�ective resistance. They do
it in O(log log n) iterations so that the edges with small e�ective resistance form a k-edge-connected
subgraph. The most di�cult step is to prove the existence of good short-cut edges, which they proved
by using an involved analysis of a semide�nite program. They managed to prove Theorem 17.12
after 80 pages of work after Theorem 17.14.
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17.2 Interlacing Family for Matrix Discrepancy

The result by Marcus, Spielman, and Srivastava on Weaver's conjecture can be interpreted as an
improved discrepancy bound over the matrix Cherno� bound in Theorem 9.13. Taking this per-
spective, Kyng, Luh, and Song [KLS20] considered the following more re�ned matrix concentration
result.

Theorem 17.15 (Matrix Concentration with Variance [Tro12]). Let ξi ∈ {±1} be independent

random signs, and let A1, . . . , Am ∈ Rn×n be symmetric matrices. Let σ2 = ‖
∑m

i=1 var[ξi]A
2
i ‖.

Then,

Pr

(∥∥∥∥ m∑
i=1

E [ξi]Ai −
m∑
i=1

ξiAi

∥∥∥∥ ≥ t · σ) ≤ 2ne−
t2

2 .

This theorem implies that with high probability the discrepancy is at most O(
√

log n) ·σ. The main
result of Kyng, Luh, and Song is to prove that there exists a signing with a stronger discrepancy
bound.

Theorem 17.16 (Matrix Discrepancy of Rank One Matrices [KLS20]). Consider any independent

scalar random variables ξ1, . . . , ξm with �nite support. Let u1, . . . , um ∈ Rn and

σ2 =

∥∥∥∥ m∑
i=1

var[ξi](uiu
T
i )2
∥∥∥∥.

Then there exists a choice of outcomes ε1, . . . , εm in the support of ξ1, . . . , ξm such that∥∥∥∥ m∑
i=1

E [ξi]uiu
T
i −

m∑
i=1

εiuiu
T
i

∥∥∥∥ ≤ 4σ.

Note that if ‖ui‖22 ≤ ε and
∑m

i=1 uiu
T
i = In, then σ

2 ≤ ε, and the conclusion is that there is a signing
ε1, . . . , εm ∈ {±1} with

∥∥∑m
i=1 εiuiu

T
i

∥∥ ≤ O(
√
ε). Check that this matches the result of Marcus,

Spielman and Srivastava in Corollary 15.3 applied to the same setting (i.e. with {±1} instead of
{0, 1}). Theorem 17.16 is more �exible that allow arbitrary biased ±1 random variables, instead of
only zero mean random variables. Also, Theorem 17.16 is more re�ned in that it proves stronger
bounds when there are only a few vectors with ‖ui‖22 = ε while other vectors are much shorter.

Two-Sided Spectral Rounding

One interesting application of Theorem 17.16 is the two-sided spectral rounding problem from
Chapter 11.

Problem 17.17 (Two-Sided Spectral Rounding). Let v1, ..., vm ∈ Rn and x ∈ [0, 1]m. Suppose∑m
i=1 xiviv

T
i = In and ‖vi‖22 ≤ ε for all i ∈ [m]. Prove that there exists a subset S ⊆ [m] satisfying(

1−O(
√
ε)
)
· In 4

∑
i∈S

viv
T
i 4

(
1 +O(

√
ε)
)
· In.

This result can be slightly extended to incorporate one non-negative linear constraint, which has
some applications in network design.
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Theorem 17.18 (Two-Sided Spectral Rounding with Costs [LZ20]). Let v1, ..., vm ∈ Rn, x ∈ [0, 1]m

and c ∈ Rm≥0. Suppose
∑m

i=1 xiviv
T
i = In, ‖vi‖22 ≤ ε for all i ∈ [m] and c∞ ≤ ε2〈c, x〉. Then there

exists z ∈ {0, 1}m such that

(
1−O(

√
ε)
)
·In 4

m∑
i=1

ziviv
T
i 4

(
1+O(

√
ε)
)
·In and

(
1−O(

√
ε)
)
·〈c, x〉 ≤ 〈c, z〉 ≤

(
1+O(

√
ε)
)
·〈c, x〉.

Proof Ideas

Theorem 17.16 needs to bound the maximum eigenvalue and the minimum eigenvalue of the di�er-
ence. Their main idea is to consider the polynomial

det

(
x2I −

( m∑
i=1

ξiuiu
T
i

)2)
= det

(
xI −

m∑
i=1

ξiuiu
T
i

)
· det

(
xI +

m∑
i=1

ξiuiu
T
i

)
Note that the largest root of this polynomial is

λmax

(
det

(
x2I −

( m∑
i=1

ξiuiu
T
i

)2))
=

∥∥∥∥ m∑
i=1

ξiuiu
T
i

∥∥∥∥.
They found a nice formula for the expected characteristic polynomial.

Proposition 17.19 (Expected Characteristic Polynomial for Matrix Discrepancy). Let u1, . . . , um ∈
Rn. Consider independent random variables ξi with means µi and variances γ2i . Let Q ∈ Rm×m be

a symmetric matrix. Then

Eξ
[

det

(
x2I −

(
Q+

m∑
i=1

(ξi − µi)uiuTi
)2)]

=
m∏
i=1

(
1− 1

2
∂2zi

)
det
(
xI −Q+

m∑
i=1

ziγiuiu
T
i

)
· det

(
xI +Q+

m∑
i=1

ziγiuiu
T
i

)∣∣∣∣
z1=...=zm=0

.

This formula is obtained inductively by the following lemma, as in the inductive proof of the
multilinear formula in Subsection 13.4.

Problem 17.20 (Expected Characteristic Polynomial after One Step). For positive semide�nite

matrices M,N ∈ Rm×m, v ∈ Rm and ξ a random variable with zero mean and variance γ2,

Eξ
[

det
(
M − ξvvT

)
· det

(
N + ξvvT

)]
=
(

1− 1

2

d2

dt2

)
det
(
M + tγvvT

)
det
(
N + tγvvT

)∣∣∣
t=0

.

Proposition 17.19 implies that the expected characteristic polynomial is real-rooted. Then, using a
similar argument as in Theorem 13.28 and Problem 17.6, one can prove that the set of all possible
characteristic polynomials form an interlacing family. Therefore, by the probabilistic method in
Theorem 12.12, there exists a choice of outcomes ε1, . . . , εm in the �nite support of ξ1, . . . , ξm such
that ∥∥∥∥ m∑

i=1

εiuiu
T
i −

m∑
i=1

E [ξi]uiu
T
i

∥∥∥∥ ≤ λmax

(
Eξ1,...,ξm

[
det

(
x2I −

( m∑
i=1

(ξi − E [ξi])uiu
T
i

)2)])
.
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Then the second step is to bound the maximum root of the expected polynomial. The di�erential
operator 1 − ∂2zi in Proposition 17.19 is the same as in the formula for strongly Rayleigh measure
in Theorem 17.3. It turned out that the same setup (including the induction hypothesis and the
multivariate barrier functions) and many calculations in [AO14] can be reused. The base case is
di�erent, and once again the assumptions are (only) used in computing the initial values of the
barrier functions.

17.3 Interlacing Family for Higher Rank Matrices

The interlacing families that we have seen so far all involve sum of rank one matrices. It was
remarked that the same approach would fail spectacularly for sum of higher rank matrices, e.g. the
multilinear formula in Theorem 13.20 does not hold and the expected characterisitic polynomials
may not even be real-rooted anymore. Cohen [Coh16] found a very clever solution to bypass expected
characteristic polynomials and proved the following generalization of Theorem 15.2.

Theorem 17.21 (Cohen [Coh16]). Let A1, . . . , Am ∈ Rn×n be independent random positive semidef-

inite matrices with �nite support such that

E
[ m∑
i=1

Ai

]
= In and E

[
Tr(Ai)

]
≤ ε for 1 ≤ i ≤ m.

Then

Pr

[
λmax

( m∑
i=1

Ai

)
≤
(
1 +
√
ε
)2]

> 0.

The insight of Cohen is to focus on the RHS of the multilinear formula, the mixed characteristic
polynomial in De�nition 13.21. The following is a generalization with a �non-mixed� matrix M ,
where the mixed characteristic polynomial in De�nition 13.21 is a special case with M = 0.

De�nition 17.22 (Generalized Mixed Characteristic Polynomial). The generalized mixed charac-

teristic polynomial of n× n matrices M,B1, . . . , Bm (not necessarily rank-one) is de�ned as

µ[M ;B1, . . . , Bm](λ) =

m∏
i=1

(
1− ∂xi

)
det

(
λI −M +

m∑
i=1

xi ·Bi
)∣∣∣∣

x1=x2=···=xm=0

The multivariate barrier argument in Chapter 15 proved that

λmax

(
µ
[
E [A1] , . . . ,E [Am]

]
(λ)
)

= λmax

( m∏
i=1

(1− ∂xi) det

(
λI +

m∑
i=1

xi ·E [Ai]

)∣∣∣∣
~x=0

)
≤ (1 +

√
ε)2.

Cohen's proof has two steps. The �rst step is to prove that the set of all possible mixed characteristic
polynomials form an interlacing family and so the probabilistic method in Theorem 12.12 applies.

Problem 17.23 (Interlacing Family for Mixed Characteristic Polynomials). Let A1, . . . , Am ∈ Rn×n
be independent random positive semide�nite matrices, where each Aj has k possibilitiesMj,1, . . . ,Mj,k.

Prove that the set of all km possible mixed characteristic polynomials µ[M1,i1 , . . . ,Mm,im ](λ) where

each 1 ≤ ij ≤ k for 1 ≤ j ≤ m form an interlacing family, and the root polynomial can be chosen to

be µ
[
E [A1] , . . . ,E [Am]

]
. Conclude that there exists a choice Mj ∈ supp(Aj) for 1 ≤ j ≤ m such

that

λmax

(
µ
[
M1, . . . ,Mm

]
(λ)
)
≤ λmax

(
µ
[
E [A1] , . . . ,E [Am]

]
(λ)
)
.
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The second step is to prove that the maximum root of the characteristic polynomial can only be
smaller than the maximum root of the mixed characteristic polynomial.

Proposition 17.24 (Maximum Root of Mixed Characteristic Polynomials). For any positive semidef-

inite matrices M1, . . . ,Mm,

λmax

(
det
(
λI −

m∑
i=1

Mi

))
≤ λmax

(
µ
[
M1, . . . ,Mm

]
(λ)
)

The proof of Proposition 17.24 is by applying the following lemma repeatedly, where we move the
mixed part to the non-mixed part one at a time. The proof of the following lemma nicely uses the
convexity of real-stable polynomials for points above the roots.

Lemma 17.25 (Inductive Step for Proposition 17.24). Let M,M1, . . . ,Mm ∈ Rn×n be positive

semide�nite matrices. Then

λmax

(
µ
[
M +Mm;M1, . . . ,Mm−1

]
(λ)
)
≤ λmax

(
µ
[
M ;M1, . . . ,Mm

]
(λ)
)

Proof Sketch: Consider the bivariate polynomial

p(λ, x) :=
m−1∏
i=1

(1− ∂xi) det

(
λI −M + xMm +

m−1∑
j=1

xiMi

)∣∣∣∣
x1=...=xm−1=0

.

Note that

p(λ,−1) = µ
[
M +Mm;M1, . . . ,Mm−1

]
(λ) and (1− ∂x)p(λ, x)|x=0 = µ

[
M ;M1, . . . ,Mm

]
(λ).

Let λ∗ be the maximum root of p(λ,−1). Note that both p(λ,−1) and (1 − ∂x)p(λ, x)|x=0 are
real-rooted with positive leading coe�cients. So, to prove the statement of the lemma, it su�ces to
prove that (1− ∂x)p(λ∗, x)|x=0 ≤ 0.

Using the result that any bivariate real-stable polynomial p(x1, x2) can be written as ±det(x1A+
x2B + C) for some A,B < 0 and some symmetric C (or the complex analysis argument in Tao's
blogpost), it can be shown that the roots of the univariate polynomial px(λ) can only decrease when
we increase x. This implies that the point (λ∗,−1) is above the roots of p(λ, x). Since (λ∗,−1) is
above the roots of p(λ, x), the point (λ∗, 0) is also above the roots of p(λ, x). Again, by the result
of bivariate real-stable polynomial, it follows that p(λ∗, x) is convex along the interval x ∈ [−1, 0],
which implies that

p(λ∗, 0)− p(λ∗,−1) ≤ ∂xp(λ∗, 0) =⇒ (1− ∂x)p(λ∗, x)|x=0 ≤ p(λ∗,−1) = 0.

More Results

The interlacing family for permutations in [MSS18] and the interlacing family for the paving problem
in [RL20] are also very interesting.
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