
Chapter 16

Strongly Rayleigh Measure

We see some applications of the theory of real-stable polynomials in probability theory. Some results
will be used in the next chapter to extend the method of interlacing family of polynomials.

We have mentioned in Section 13.1 that the real-rootedness of the generating polynomial of a prob-
ability distribution implies some strong properties of the probability distribution. In this chapter,
we study the following generalization of this concept to the multivariate setting.

De�nition 16.1 (Strongly Rayleigh Measure). Given a probability distribution µ : {0, 1}m → R,
the generating polynomial is de�ned as

gµ(x1, . . . , xm) :=
∑
S⊆[m]

µ(S)
∏
i∈S

xi.

We say µ is strongly Rayleigh if its generating polynomial gµ is a real-stable polynomial.

We will see some interesting examples in Section 16.1, and some useful properties in Section 16.2.
Some parts of this chapter are from the course notes of Oveis Gharan [Ove15, Ove20].

16.1 Determinantal Measure

An important example of strongly Rayleigh measure is determinantal measure. This is also called
the determinantal point process in the literature (see [KT12]).

De�nition 16.2 (Determinantal Measure). Let X be a random variable over {0, 1}m with probability

distribution µ : {0, 1}m → R. We say µ is determinantal if there exists a matrix A ∈ Rm×m such

that

Pr(S ⊆ X) =
∑

R:R⊇S
µ(R) = det(AS,S)

for every subset S ⊆ [m], where AS,S is the |S| × |S|-submatrix of A restricting to the rows and

columns corresponding to S.

There is a compact formula to write the generating polynomial of µ in terms of A.

Proposition 16.3 (Generating Polynomial of Determinantal Measure). If µ : {0, 1}m → R is

determinantal with an m×m matrix 0 4 A 4 I, then the generating polynomial is

gµ(x) = det(I −A+A · diag(x)).
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Eigenvalues and Polynomials

Proof. Let h(x) = det(I − A + A · diag(x)) where x = (x1, . . . , xm) ∈ Rm. We will prove that
h(χS) = gµ(χS) =

∑
R⊆S µ(R) for every subset S ⊆ [m] where χS is the characteristic vector of the

subset S, and this will imply that h(x) = gµ(x). Note that

h(χS) = det
(
I −A+A · diag(χS)

)
= det

(
I|S| −AS,S̄
0 Im−|S| −AS̄,S̄

)
= det(Im−|S| −AS̄,S̄).

Let det(A∅,∅) = 1. Recall the expansion of the characteristic polynomial in Fact 2.31 that

det(λIn −A) =
n∑
k=0

λn−k(−1)k
∑

S∈([n]
k )

det(AS,S).

Applying this formula on h,

h(χS) = 1 +

m−|S|∑
k=1

(−1)k
∑

R:R⊆S̄,|R|=k

det(AR,R) = 1 +

m−|S|∑
k=1

(−1)k
∑

R:R⊆S̄,|R|=k

Pr(X ⊇ R)

where the second equality is by the de�nition of determinantal measure whereX denotes the random
outcome. Using the inclusion-exclusion principle that

Pr(X ∩ Y 6= ∅) =
|Y |∑
k=1

(−1)k+1
∑

R:R⊆Y,|R|=k

Pr(X ⊇ R)

for a �xed subset Y and plugging in Y = S, the above expression can be simpli�ed to

h(χS) = 1− Pr(X ∩ S 6= ∅) = Pr(X ∩ S = ∅) = Pr(X ⊆ S) =
∑
R⊆S

µ(R) = g(χS).

Then the proof that determinantal measure is strongly Rayleigh follows from the results of real-
stable polynomials in Chapter 13.

Theorem 16.4 (Determinantal Measure is Strongly Rayleigh). If µ : {0, 1}m → R is determinantal,

then µ is strongly Rayleigh.

Proof. Using Proposition 16.3, we just need to prove that h(x) = det(I − A + A · diag(x)) is a
real-stable polynomial. We prove the claim when 0 ≺ A 4 I, and the claim for 0 4 A 4 I will
follow from a continuity argument using Hurwitz's Theorem 13.14 as in Proposition 13.13. Note
that h(x) = det(I −A+A · diag(x)) = det(A) · det(A−1 − I + diag(x)), where we used that A � 0
so that A−1 exists and also det(A) > 0. Since 0 ≺ A 4 I, it follows that B := A−1 − I < 0, and so
det(A−1 − I + diag(x)) can be written as det(B +

∑m
i=1 xi diag(ei)) where B < 0 and diag(ei) < 0

for 1 ≤ i ≤ m. By Proposition 13.12, det(B +
∑m

i=1 xi diag(ei)) is a real-stable polynomial and so
is h(x). (Actually, the proof in Proposition 13.12 only proves the case when B � 0, but the case
B < 0 follows from the same continuity argument using Hurwitz's Theorem 13.14.)
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Chapter 16

Volume Measure

One interesting example of determinantal measure is the volume measure.

De�nition 16.5 (Volume Measure). Given vectors v1, . . . , vm ∈ Rn that satis�es
∑m

i=1 viv
T
i = In,

the volume measure µ is de�ned as µ(S) = det
(∑

i∈S viv
T
i

)
for each subset S ⊆ [m] with |S| = n.

Note that µ is well-de�ned by the Cauchy-Binet formula in Fact 2.30, as

1 = det(In) = det
( m∑
i=1

viv
T
i

)
=

∑
S:S⊆[m],|S|=n

det
(∑
i∈S

viv
T
i

)
=

∑
S:S⊆[m],|S|=n

µ(S).

The following will be the base case of the proof that volume measure is determinantal.

Lemma 16.6 (Marginal Probability of Volume Measure). Let X be a random output of the volume

measure µ. Then Pr(j ∈ X) = ‖vj‖2.

Proof. Let V be the n × m matrix with the j-th column being vj for 1 ≤ j ≤ m. Let Vj be
the n × (m − 1) matrix where the j-th column of V is removed. By the Cauchy-Binet formula in
Fact 2.30,

Pr(j /∈ X) =
∑

S:j /∈S,|S|=n

det
(∑
i∈S

viv
T
i

)
= det(VjV

T
j
).

By the matrix determinantal formula in Fact 2.29 and the assumption that V V T = In,

det(VjV
T
j
) = det(V V T − vjvTj ) = det(V V T )

(
1− vTj (V V T )vj

)
= 1− ‖vj‖2.

The Gram matrix of the vectors v1, . . . , vm shows that the volume measure is determinantal. The
proof of the following theorem uses that the formula for the characteristic polynomial and the
inclusion-exclusion principle are the same.

Theorem 16.7 (Volume Measure is Determinantal). Let Y = V TV be the m×m Gram matrix of

the vectors v1, . . . , vm ∈ Rn. Let X be a random output of the volume measure µ. For any S ⊆ [m],

Pr
X∼µ

[S ⊆ X] = det(YS,S).

Proof. We prove by induction on the size of S. The base case when |S| = 1 was done in Lemma 16.6.
For the induction step, as in the proof of Lemma 16.6, note that

Pr
X∼µ

[X ∩ S = ∅] =
det
(
V V T −

∑
i∈S viv

T
i

)
det(V V T )

= det
(
In −

∑
i∈S

viv
T
i

)
.

On one hand, by the inclusion-exclusion principle,

Pr
X∼µ

[X ∩ S = ∅] = 1− Pr
X∼µ

[X ∩ S 6= ∅] = 1 +

|S|∑
k=1

(−1)k
∑

R:R⊆S,|R|=k

Pr
X∼µ

[X ⊇ R].
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On the other hand, let VS be the n×|S| submatrix of V with the columns in S. By det(I +XY ) =
det(I + Y X) in Fact 2.28 and the formula for the characteristic polynomial in Fact 2.31,

det
(
In −

∑
i∈S

viv
T
i

)
= det(In − VSV T

S ) = det(I|S| − V T
S VS) = 1 +

|S|∑
k=1

(−1)k
∑

R:R⊆S,|R|=k

det(V T
R VR).

By the induction hypothesis, Pr(R ⊆ X) = det(YR,R) = det(V T
R VR) for all R ⊂ S. So, there is a

one-to-one correspondence between the (inner) summands in the above two equations for |R| ≤ k−1,
and hence we must have PrX∼µ[S ⊆ X] = det(V T

S VS) = det(YS,S) as stated.

Combining Theorem 16.7 and Proposition 16.3 gives a formula for the generating polynomial of the
volume measure.

Corollary 16.8 (Generating Polynomial of Volume Measure). Let µ be a volume measure as de�ned

in De�nition 16.5, and Y be the Gram matrix of the vectors as de�ned in Theorem 16.7. Then the

generating polynomial is

gµ(x) = det
(
I − Y + Y · diag(x)

)
.

Spanning Tree Measure

An interesting consequence of Theorem 16.7 is that the uniform distribution on spanning trees is
determinantal.

De�nition 16.9 (Spanning Tree Measure). Let G = (V,E) be an undirected graph with edge weight

we on each edge e ∈ E. Let the edge set E be the ground set. Let µ : {0, 1}|E| → R be the probability

distribution with µ(T ) ∝
∏
e∈T we if T is a spanning tree and zero otherwise.

The uniform distribution of the spanning trees in a graph is a special case when we = 1 for all e ∈ E.
Using the proof in the matrix tree theorem in Problem 3.24 and the reduction to the identity matrix
as in Lemma 9.11, one can show that the spanning tree measure is a volume measure.

Problem 16.10 (Burton-Pemantle Theorem). Prove that the spanning tree measure for any weighted

undirected graph is a volume measure (and hence determinantal and strongly Rayleigh).

(It may be more convenient to consider the matrix L(G) + ~1~1T so that it is invertible and do the

matrix tree theorem with this modi�ed Laplacian matrix.)

A nice corollary of Problem 16.10 is that we have a nice formula from Theorem 16.7 to compute
the probability that a subset of edges F ⊆ E is contained in a random spanning tree.

16.2 Properties of Strongly Rayleigh Measure

Some useful properties of strongly Rayleigh measures follow from closure properties of real stable
polynomials in Chapter 13.

Exercise 16.11 (Strongly Rayleigh Preserving Operations). Suppose µ : {0, 1}m → R is a strongly

Rayleigh measure. Prove the following distributions are also strongly Rayleigh.
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1. (Conditioning:) The conditional probability distributions µ|xi=0 and µ|xi=1 where the i-th vari-
able is �xed to 0 or 1 for some 1 ≤ i ≤ m.

2. (Projection:) For a subset S ⊆ [m], the projection of µ onto S, denoted by µ|S, is the distri-

bution supported on subsets of S, where for any R ⊆ S,

µ|S(R) =
∑

T⊆[m]:T∩S=R

µ(T ).

3. (External Field:) Given a non-negative vector (λ1, . . . , λm), µ ∗ λ is the distribution where

µ ∗ λ(S) = µ(S) ·
∏
i∈S

λi.

The following exercise shows that some concentration property holds for strongly Rayleigh distri-
butions.

Exercise 16.12 (Rank Sequence). Suppose µ : {0, 1}m → R is a strongly Rayleigh measure. For

0 ≤ i ≤ m, let ai = PrS∼µ[|S| = i]. Use Problem 13.7 to show that the sequence a0, . . . , am is ultra

log-concave as de�ned in De�nition 13.6.

Truncation

We will use the following result from real stable polynomials.

Lemma 16.13 (Homogenization). Given a polynomial p ∈ R[x1, . . . , xm], the homogenized version

of p, denoted by pH , is de�ned as

pH(x1, . . . , xm, xm+1) = xdeg p
m+1 · p

( x1

xm+1
, . . . ,

xm
xm+1

)
.

For any real stable polynomial p ∈ R[x1, . . . , xm] with non-negative coe�cients, pH is real stable.

The following truncation operation is quite useful.

Theorem 16.14 (Truncation). Given a distribution µ and an integer k ≥ 1, the truncation of µ is

de�ned as the distribution µk where µk(S) ∝ µ(S) if |S| = k and zero otherwise. For any strongly

Rayleigh distribution µ and any 1 ≤ k ≤ n, µk is strongly Rayleigh.

Proof. Let gµ(x1, . . . , xm) be the generating polynomial of µ. As µ is strongly Rayleigh, gµ is real
stable. Consider the homogenized version (gµ)H of gµ. By Lemma 16.13, (gµ)H is also real stable.
Let the degree of gµ be d. Observe that the generating polynomial of µk is

gµk ∝ ∂
d−k
xm+1

gµH

∣∣∣
xm+1=0

,

because only the terms with the degree of xm+1 being d − k remained, and those terms have
total degree exactly k in other variables x1, . . . , xm in the homogenized polynomial (gµ)H . By
Exercise 13.17 and Proposition 13.13, di�erentiation and specialization preserves real stability and
so gµk is real stable. Therefore, by De�nition 16.1, µk is strongly Rayleigh.

This provides an alternative proof that the volume measure is strongly Rayleigh.
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Problem 16.15. Let L < 0 be an m×m matrix. Prove that the polynomial
∑

S:S⊆[m] det(LS,S) ·zS
is real stable. Conclude that the volume measure in De�nition 16.5 is strongly Rayleigh.

One useful implication is that the determinantal point process restricted to size k subsets, called k-
DPP, is still strongly Rayleigh, even though it is no longer determinantal. So, in particular, k-DPP
still enjoys the nice properties of strongly Rayleigh distributions, including the negative correlation
property in the following subsection.

Negative Correlation

This is probably the most important property of strongly Rayleigh distributions, as for instance it
allows us to apply Cherno� bounds on the variables to prove concentration results.

The simplest form of negative dependency is Pr(xi = 1 | xj = 1) ≤ Pr(xi = 1). Note that the
probability Pr(xi = 1) can be read from the generating probability as

Pr(xi = 1) = ∂xig(x1, . . . , xm)
∣∣∣
x1=...=xm=1

=
∑
S:S3i

µ(S),

the sum of the coe�cients containing i. Therefore, we can rewrite the negative correlation inequality
as Pr(xi = 1 ∩ xj = 1) ≤ Pr(xi = 1) · Pr(xj = 1), and then express it using generating polynomial
as (

∂xi∂xjg(~1)
)
· g(~1) ≤

(
∂xig(~1)

)(
∂xjg(~1)

)
.

Strongly Rayleigh measures satisfy this inequality for any y ∈ Rm, not just for y = ~1.

Theorem 16.16 (Negative Correlation). Let g(x1, . . . , xm) be a multi-linear real stable polynomial.

Then, for all i 6= j, for all y ∈ Rm,(
∂xi∂xjg(y)

)
· g(y) ≤

(
∂xig(y)

)(
∂xjg(y)

)
.

Proof. For any y ∈ Rm, consider the bivariate restriction

f(s, t) = g(y1, . . . , yi−1, yi + s, yi+1, . . . , yj−1, yj + t, yj+1, . . . , ym).

Then f is a bivariate real stable polynomial. Since g is multi-linear, note that

f(s, t) = g(y) + s · ∂xig(y) + t · ∂xjg(y) + st · ∂xi∂xjg(y).

The univariate polynomial h(s) = f(s, ı) is H-stable (but not necessarily real). Let a+ ıb be a root
of h(s). Then

R(h(a+ ıb)) = g(y) + a · ∂xig(y)− b · ∂xi∂xjg(y) = 0,

=(h(a+ ıb)) = b · ∂xig(y) + ∂xjg(y) + a · ∂xi∂xjg(y) = 0.

Solving the two equations by eliminating a, we get(
∂xi∂xjg(y)

)
· g(y)−

(
∂xi∂xjg(y)

)2 · b = (∂xig(y))2 · b+ (∂xig(y)) · (∂xjg(y)).
By stability of h, we have b ≤ 0. This implies that (∂xi∂xjg(y)) ·g(y)− (∂xig(y)) · (∂xjg(y)) ≤ 0.

The converse of Theorem 16.16 is also true; see [Ove20].
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Negative Association

A stronger form of negative dependency is called negative association.

De�nition 16.17 (Negative Association). The binary random variables {x1, . . . , xm} are negatively
associated if for any two non-decreasing functions f, g ∈ {0, 1}m → R that depend on disjoint set of

variables, it holds that

E [f(x1, . . . , xm) · g(x1, . . . , xm)] ≤ E [f(x1, . . . , xm)] · E [g(x1, . . . , xm)] ,

where a function f is nondecreasing if f(~x) ≥ f(~y) if ~x ≥ ~y.

Note that negative correlation is a special case of negative association. Feder and Mihail [FM92]
used negative correlation as the base case in an induction to prove that the random variables
of a strongly Rayleigh measure are negatively associated. Borcea, Brändén and Liggett [BBL09]
developed the theory of strongly Rayleigh measure and use it to answer many questions about
negatively dependent random variables (see [Pem11]).

One consequence of negative association is that Cherno� bounds apply on the random variables
from a strongly Rayleigh distribution, even though they are not independent.

Theorem 16.18 (Concentration of Strongly Rayleigh Distribution). Let µ : {0, 1}m → R be a

k-homogeneous strongly Rayleigh distribution. Let f : {0, 1}m → R be a 1-Lipchitz function where

|f(S1)− f(S2)| ≤ 1 for any two sets S1, S2 ⊆ [m] with |S14S2| = 1. Then, for any a ≥ 0,

Pr
[
|f − E [f ] | > a

]
≤ e−

a2

k .

Oveis Gharan used this theory to prove many interesting properties of random spanning trees,
and used these properties to design and analyze approximation algorithms for traveling salesman
problems. We refer the reader to his notes [Ove15] for some interesting examples.
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