
Chapter 15

Multivariate Barrier Method

Marcus, Spielman, and Srivastava [MSS15] proved Weaver's conjecture using the method of inter-
lacing family of polynomials. A key component in their proof is a multivariate barrier method to
bound the maximum root of the expected characteristic polynomial, which is an extension of the
barrier method by Batson, Spielman and Srivastava for spectral sparsi�cation in Chapter 10.

15.1 Weaver's Conjecture

It was observed that the linear-sized spectral sparsi�cation result by Batson, Spielman, and Srivas-
tava in Theorem 10.1 looks similar to the conjecture by Weaver, which is known to be equivalent
to the Kadison-Singer problem (see [MSS15, MSS14]), whose positive resolution would have impli-
cations in several areas of mathematics.

Conjecture 15.1 (Weaver's Conjecture). There exist positive constants α and ε so that the following
holds. For every m,n ∈ N and every set of vectors v1, . . . , vm ∈ Rn such that

m∑
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and so the vectors in S1 and in S2 form spectral approximators of the identity matrix. In The-
orem 10.1 by Batson, Spielman, and Srivastava, the task was to �nd scalars s1, . . . , sm with few
nonzeros so that
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So, if all the scalars si/2 are either zero or one, then Theorem 10.1 would have given a positive
resolution to Weaver's conjecture. This is not always possible, however, since if there is a long
vector (say ‖vi‖ = 1), then setting si/2 to be zero or one would violate the minimum eigenvalue and
the maximum eigenvalue bounds. This is why there is an additional condition ‖vi‖22 ≤ α in Weaver's
conjecture, which says that long vectors are the only obstructions to �nding such a partitioning.

Graph Sparsi�cation

In terms of graph sparsi�cation, the question in Weaver's conjecture corresponds to �nding an
unweighted sparsi�er. Recall the reduction in Lemma 9.11 and the discussions in Subsection 9.2,
the length ‖vi‖22 is equal to the e�ective resistance of the i-th edge in the graph. So, Weaver's
conjecture in the graph setting states that if the maximum e�ective resistance of an edge is small
enough, then there is a partitioning of the edges into two groups so that the subgraph formed by
each group is a spectral approximator of the original graph. Some examples of graphs with small
maximum e�ective resistance are expander graphs and edge-transitive graphs (such as hypercubes
and Cayley graphs).

One could apply the matrix Cherno� bound in Theorem 9.13 to this problem, and it works for
α . 1/ log2 n with high probability, but this is not enough for Weaver's conjecture. The approach
by Batson, Spielman, and Srivastava for spectral sparsi�cation heavily depends on a careful choice
of scalars and does not seem applicable for constructing unweighted sparsi�ers. See [BST19] for a
recent paper on constructing unweighted sparsi�ers.

15.2 Probabilistic Formulation

Marcus, Spielman, and Srivastava formulated and proved a probabilistic statement that implies
Weaver's conjecture.

Theorem 15.2 (Marcus-Spielman-Srivastava [MSS15]). Let v1, . . . , vm ∈ Rn be independent ran-

dom vectors with �nite support such that

E
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[
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≤ ε for 1 ≤ i ≤ m.

Then

Pr

[
λmax

( m∑
i=1

viv
T
i

)
≤
(
1 +
√
ε
)2]

> 0.

Reduction

Weaver's conjecture is about partitioning and Theorem 15.2 is about sum of random variables, but
there is a simple reduction from the former to the latter.

For each vector ui ∈ Rn in Weaver's problem, de�ne a random vector vi ∈ R2n with two choices:

vi =
√

2

(
ui
0

)
with probability 1/2 and vi =

√
2

(
0
ui

)
with probability 1/2.
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The �rst choice corresponds to putting ui in the �rst group, and the second choice corresponds to
putting ui in the second group. Then, by the assumption that
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Similarly, by the assumption that ‖ui‖22 ≤ α,

E
[
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= 2‖ui‖22 ≤ 2α.

By Theorem 15.2, there exists a choice of v1, . . . , vm such that λmax(
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T
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√
2α)2. As

intended, we put vector ui into S1 if we select the �rst choice for vi, and put ui into S2 otherwise.
Then the conclusion from Theorem 15.2 implies that
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for 1 ≤ j ≤ 2. So, when α is small enough (say α ≤ 1
32), then

1
2(1 +

√
2α)2 < 1 and thus Weaver's

conjecture follows. We record the following corollary for future references.

Corollary 15.3 (Solution to Weaver's Conjecture). Under the same setting in Conjecture 15.1,

there exists a partition of [m] into two sets S1 and S2 such that for 1 ≤ j ≤ 2,(1
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Corollary 15.3 is quantitatively stronger than Weaver's formulation, as when α is small enough, we
can bound how far is the solution from the ideal partitioning 1

2I, which will be useful in applications.

Proof Overview

The plan of the proof is to show that there exists a choice of the random variables v1, . . . , vm such
that
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We have established in Theorem 13.28 that the set of all possible characteristic polynomials det(xIn−∑m
i=1 viv

T
i ) forms an interlacing family, and the root polynomial can be set to be Ev1,...,vm

[
det
(
xIn−∑m

i=1 viv
T
i

)]
where the expectation is taken over the independent uniform random distributions on

v1, . . . , vm. Therefore, by the new probabilistic method for interlacing family in Theorem 12.12, we
have already proved the �rst inequality, using the techniques from real stable polynomials described
in Chapter 13.

The main goal of this chapter is to prove the second inequality in Equation 15.1, given the assump-
tions that E

[
‖vi‖22

]
≤ ε for 1 ≤ i ≤ m and E

[∑m
i=1 viv

T
i

]
= In. In Chapter 14, when we construct

bipartite Ramanujan graphs, the expected characteristic polynomial turns out to be exactly the
matching polynomial and there were known results bounding the maximum root. For Weaver's
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conjecture, bounding the maximum root of the expected polynomial is a major technical challenge
(that took Marcus, Spielman, and Srivastava four years to solve).

Recall the multilinear formula in Theorem 13.20 that
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.

This formula plays an important role in the �rst step, by showing that the expected characteristic
polynomial is real-rooted to establish common interlacing for the new probabilistic method to work.
Perhaps unexpectedly, the formula also plays an important role in the second step. Their idea is
to �rst prove an upper bound of the �maximum root� of the multivariate polynomial det

(
λI +∑m

i=1 xi ·E
[
viv

T
i

] )
, and then maintain a good upper bound after each (1−∂xi) di�erential operator

is applied. To establish the upper bound, they �nally realized that the barrier method developed
for linear-sized spectral sparsi�cation in Chapter 10 can be extended to the multivariate setting in
a syntatically similar way!

15.3 Multivariate Approach

To bound the maximum root of the univariate polynomial E
[
det
(
λI −
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i

)]
, the approach

taken is to bound the �maximum root� of the multivariate polynomial
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, which will be de�ned in a moment.

First, we use the assumption and de�ne some notations to slightly simplify the statement. Using
the assumption that E
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]
= I, we rewrite the RHS of the multilinear formula as
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(15.2)
Denote the matrix E

[
viv

T
i

]
= Bi and note that Bi < 0 for 1 ≤ i ≤ m. Denote the polynomial after

applying the di�erential operator k times by

pk(x1, . . . , xm) :=
k∏
i=1

(1− ∂xi) det
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)
,

so that p0(x1, . . . , xm) = det(
∑m

i=1 xiBi) and pm(x1, . . . , xm) =
∏m
i=1(1− ∂xi) det

(∑m
i=1 xiBi

)
.

De�nition 15.4 (Above the Roots). Given a multivariate polynomial p(x1, . . . , xm), we say a point

y ∈ Rm is �above the roots� of p if p(y + t) > 0 for all t = (t1, . . . , tm) ∈ Rm≥0.

Our goal is to prove that the point (1 +
√
ε)2 · ~1 is above the roots of the multivariate polyno-

mial pm(x1, . . . , xm). Note that this implies that the maximum root of the univariate polynomial
pm(λ, . . . , λ) =
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)
|x1=...=xm=λ is at most (1 +
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multilinear formula the maximum root of the univariate polynomial Ev1,...,vm
[
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is at most (1 +
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ε)2.

Initially, since
∑m

i=1Bi = In by assumption, it follows that p0(t, t, . . . , t) = det(tI) > 0 for any
t > 0, and so the point t · ~1 is above the roots of p0 for any t > 0. The strategy in [MSS15] is to
prove inductively that (t+ δ, . . . , t+ δ︸ ︷︷ ︸

k coordinates

, t . . . , t) is above the roots of pk for some δ for all 1 ≤ k ≤ m.
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Multivariate Barrier Functions

To execute the above inductive proof strategy, a similar approach as in Chapter 10 for spectral
sparsi�cation is used, to establish a �soft/comfortable� upper bound for the induction to go through.

Recall that in De�nition 10.3, the potential function Φu(A) = Tr(uI − A)−1 is de�ned, and the
invariant Φu(A) ≤ φ is maintained to guarantee that u is well above the roots. Also recall from
Remark 10.6 and Remark 11.6 that Φu(A) = p′A(u)/pA(u) where pA(x) = det(xI − A) is the
characteristic polynomial of A, and so the potential function has a natural interpretation in terms
of polynomials. This univariate barrier function is generalized to the multivariate setting as follows.

De�nition 15.5 (Multivariate Barrier Functions). Given a real-stable polynomial p ∈ R[x1, . . . , xm]
and a point y ∈ Rm above the roots of p, for 1 ≤ i ≤ m, the barrier function of p in direction i at y
is de�ned as

Φi
p(y) :=

∂xip(y)

p(y)
.

Equivalently, we can de�ne

Φi
p(y) =

q′y,i(yi)

qy,i(yi)
=

d∑
j=1

1

yi − λj
,

where qy,i(t) is the univariate restriction qy,i(x) = p(y1, . . . , yi−1, t, yi+1, . . . , ym) where λ1, . . . , λd
are the roots of this univariate polynomial, which is real-rooted as substituting real numbers preserve

real-stability by Proposition 13.13.

For spectral sparsi�cation, we maintain one potential function ΦA(x) to show that u ∈ R is well
above the roots by showing that ΦA(u) ≤ φ for some small φ ∈ R. For Weaver's problem, we
maintain m potential functions Φ1

p(x), . . . ,Φm
p (x) to show that y ∈ Rm is well above the roots by

showing that Φi
p(y) ≤ φ for 1 ≤ i ≤ m for some small φ ∈ R.

De�nition 15.6 (Induction Hypothesis). Let x0 = (t, . . . , t) ∈ Rm be the initial point above the

roots of p0 in Equation 15.2 for some t > 0, such that Φi
p(x0) ≤ φ for some φ ∈ R for 1 ≤ i ≤ m.

This is the base case. Let xk = (t+ δ, . . . , t+ δ, t, . . . , t) with the �rst k coordinates being t+ δ. The
induction hypothesis is to maintain that Φi

pk
(xk) ≤ φ for 1 ≤ i ≤ m, for 1 ≤ k ≤ m where pk is

de�ned in Equation 15.2. The parameters t, φ, δ will be chosen at the end.

15.4 Bounding the Maximum Root

In this section, we do the calculations to carry out the induction as described in De�nition 15.6.

Monotonicity and Convexity

The following monotonicity and convexity properties are generalizations of Exercise 10.4 in the
univariate case to the multivariate setting.

Proposition 15.7 (Monotonicity and Convexity). Suppose p ∈ R[x1, . . . , xm] is real-stable and y
is above the roots of p. Then, for all i, j ∈ [m] and δ ≥ 0, the following two properties hold.

1. Monotonicity: Φi
p(y + δ · ej) ≤ Φi

p(y) where ej is the j-th vector in the standard basis.
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2. Convexity: Φi
p(y + δ · ej)− Φi

p(y) ≤ δ · ∂xjΦi
p(y + δ · ej).

The proof of the univariate case in Exercise 10.4 is easy, but the proof of the multivariate case
in Proposition 15.7 is not. The proof in [MSS15] uses a deep result that any bivariate real-stable
polynomial p(x1, x2) can be written as ±det(x1A+x2B+C) for some A,B < 0 and some symmetric
C. Then they do some explicit computations from this representation to prove monotonicity and
convexity.

Tao [Tao13] gave a more elementary proof using complex analysis. We gave a proof sketch of Tao's
proof in L15 in the previous o�ering of CS 860. We won't give a proof of this proposition in this
o�ering, and refer the reader to [MSS15, Tao13]. One reason is that the arguments are di�erent
and independent from the rest of the proofs and also not self-contained, and another reason is that
I don't understand the proofs well enough to provide any further explanations.

Inductive Proof

As a warm up, we �rst see that when a point y is well above the roots, then y is still above the
roots after the operation 1− ∂xj .

Lemma 15.8 (Above the Roots after One Operation). Suppose that p ∈ R[x1, . . . , xm] is real stable
and y ∈ Rm is above the roots of p, with the additional property that Φi

p(y) < 1 for 1 ≤ i ≤ m.

Then y is still above the roots of (1− ∂xj )p for 1 ≤ j ≤ m.

Proof. Let z ∈ Rm be a point above y such that z ≥ y. We would like to prove that (1−∂xj )p(z) 6= 0
for any 1 ≤ j ≤ m, and this would imply that y is still above the roots of (1 − ∂xj )p. By the

monotonicity property in Proposition 15.7, Φj
p(z) ≤ Φj

p(y) < 1 for 1 ≤ j ≤ m. This implies that

1 > Φj
p(z) =

∂xjp(z)

p(z)
=⇒ 0 6= p(z)− ∂xjp(z) = (1− ∂xj )p(z).

The lemma shows that y is still above the roots after one di�erential operation, but we cannot
repeat this argument because the condition Φj

(1−∂xi )p
(y) may no longer hold. To maintain the

invariant, we will increase the upper bound in the corresponding coordinate to decrease the potential
value. Assuming the monotonicity and convexity properties of the multivariate barrier functions in
Proposition 15.7, the proof in the following inductive step is actually very similar to the univariate
case as presented in Lemma 11.9 (and also in Problem 11.13). Basically, we can do exact calculation
to compute the increase of the potential function after the 1−∂xi operation, and then use convexity
to bound the decrease of the potential value by shifting up the barrier to y + δ · ej .

Lemma 15.9 (Maintaining the Potential Values). Suppose that p ∈ R[x1, . . . , xm] is real stable and
y is above the roots of p. Suppose further that Φi

p(y) ≤ 1− 1
δ for 1 ≤ i ≤ m for some δ > 0. Then,

for 1 ≤ i, j ≤ m,

Φi
(1−∂xj )p

(y + δ · ej) ≤ Φi
p(y),

and y + δ · ej is still above the roots of (1− ∂xj )p.
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Proof. By De�nition 15.5,

Φi
(1−∂xj )p

=
∂xi((1− ∂xj )p)

(1− ∂xj )p
=
∂xi((1− Φj

p)p)

(1− Φj
p)p

=
(1− Φj

p)∂xip

(1− Φj
p)p

+
(∂xi(1− Φj

p))p

(1− Φj
p)p

= Φi
p −

∂xiΦ
j
p

1− Φj
p

.

Therefore,

Φi
(1−∂xj )p

(y + δej) = Φi
p(y + δej)−

∂xiΦ
j
p(y + δej)

1− Φj
p(y + δej)

.

To prove Φi
(1−∂xj )p

(y + δej) ≤ Φi
p(y), it is equivalent to proving that

Φi
p(y)− Φi

p(y + δej) ≥ −
∂xiΦ

j
p(y + δej)

1− Φj
p(y + δej)

. (15.3)

By convexity of the multivariate barrier function in Proposition 15.7, we have that

Φi
p(y)− Φi

p(y + δej) ≥ −δ · ∂xjΦi
p(y + δej).

So, Equation 15.3 holds if we could prove that

δ · ∂xjΦi
p(y + δej) ≤

∂xiΦ
j
p(y + δej)

1− Φj
p(y + δej)

⇐⇒ δ ≥ 1

1− Φj
p(y + δej)

, (15.4)

where the equivalence is by noting that ∂xjΦ
i
p = ∂xiΦ

j
p and so the numerators are the same,

and ∂xjΦ
i
p(y + δej) ≤ 0 as the barrier function is monotonically decreasing above the roots by

Proposition 15.7 and so the inequality is reversed when we cancel the numerators. Our assumption
implies that

δ ≥ 1

1− Φj
p(y)

≥ 1

1− Φj
p(y + δej)

as desired, where the second inequality is again by monotonicity. We conclude that Φi
(1−∂xj )p

(y+ δ ·
ej) ≤ Φi

p(y) for 1 ≤ i, j ≤ m, and y+ δ · ej is still above the roots of (1− ∂xj )p by Lemma 15.8.

We will choose φ = 1− 1
δ in the induction hypothesis in De�nition 15.6.

Choosing the Parameters

By Lemma 15.9, if we choose the initial x0 = (t, . . . , t) such that Φi
p(x0) ≤ 1 − 1

δ for 1 ≤ i ≤ m
for some δ > 0. Then, by induction, xm = (t + δ, . . . , t + δ) is above the roots of pm. This would
imply that t + δ is above the roots of the univariate polynomial E

[
det
(
λI −

∑m
i=1 viv

T
i

)]
by the

multilinear formula. It remains to optimize t and δ to prove the best upper bound.

Note that for the induction step to go through, we only used the property that the polynomial is
real stable, and the general properties of monotonicity and convexity. We have not used the speci�c
form of pk in Equation 15.2. Also, we have not used the crucial assumption that E

[
‖vi‖22

]
≤ ε.

These are (only) needed in the following computation of the initial value.

Recall that p0(x1, . . . , xm) = det(
∑m

i=1 xiBi) where Bi = E
[
viv

T
i

]
< 0. The assumptions of Theo-

rem 15.2 are that
∑m

i=1Bi =
∑m

i=1 E
[
viv

T
i

]
= In and E

[
‖vi‖22

]
= Tr(Bi) ≤ ε. The initial potential

function is

Φj
p0(x) =

∂xj det
(∑m

i=1 xiBi
)

det
(∑m

i=1 xiBi
) =

det
(∑m

i=1 xiBi
)

Tr
((∑m

i=1 xiBi
)−1

Bj
)

det
(∑m

i=1 xiBi
) = Tr

(( m∑
i=1

xiBi

)−1
Bj

)
,
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where the second equality is by the Jacobi formula in Fact 2.39. Put in x0 = (t, . . . , t), using the
assumptions that

∑m
i=1Bi = I and Tr(Bi) ≤ ε, the initial potential value is

Φj
p0(x0) = Tr

(
(tI)−1Bj

)
=

1

t
Tr(Bj) ≤

ε

t
.

If we set t so that Φj
p0(x0) ≤ ε

t ≤ 1− 1
δ , then by Lemma 15.9, we will get the �nal bound t+ δ. So,

we should set t so that ε
t = 1− 1

δ , and the �nal bound is

t+
1

1− ε
t

.

This is minimized when t =
√
ε+ ε, and the �nal bound is (1 +

√
ε)2. This completes the proof of

Theorem 15.2 using the induction hypothesis in De�nition 15.6.

15.5 Discussions

The major open problem is to design a polynomial time algorithm to �nd the solution in Theo-
rem 15.2.

It is interesting to re�ect on the journey to the solution to the Kadison-Singer problem. First, it
started from the nice formulation of the spectral sparsi�cation problem, as an intermediate step
to design a fast Laplacian solver. Then, the reduction to the isotropy case, which helps to match
the cut sparsi�cation result by Benczur and Karger. Then, the barrier method was developed,
starting with the heuristic argument from expected characteristic polynomial. Then, the interlacing
property was observed, and the heuristic argument was developed as a new probabilistic method
of interlacing family. The theory of real-stable polynomials was used to establish that the family
in Theorem 15.2 is an interlacing family, with the crucial multilinear formula. Finally, the barrier
method was understood as a way to bound roots, and it was extended to the multivariate setting
through the multilinear formula to solve the problem. It is an amazing line of work with so many
great ideas and techniques developed.
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