
Chapter 14

Bipartite Ramanujan Graphs

We will see how Marcus, Spielman, and Srivastava [MSS15] used the method of interlacing family
of polynomials to prove the existence of bipartite Ramanujan graphs, using the 2-lift construction
proposed by Bilu and Linial [BL06].

The expected characteristic polynomials in this problem are exactly the matching polynomials of
graphs, and we will see some classical results of these polynomials.

14.1 Combinatorial Constructions of Ramanujan Graphs

Recall the de�nition of Ramanujan graphs from Chapter 7.

De�nition 14.1 (Ramanujan Graphs). Let G = ([n], E) be a d-regular graph and α1 ≥ α2 ≥ . . . ≥
αn be the eigenvalues of its adjacency matrix. We say G is a Ramanujan graph if max{α2, |αn|} ≤
2
√
d− 1.

We are interested in constructing an in�nitely family of d-regular graphs that are all Ramanujan.
This is best possible, as Alon-Boppana Theorem 7.10 proved that for any ε > 0, every large engouh
d-regular graph has max{α2, |αn|} ≥ 2

√
d− 1− ε. There is a meaning of the value 2

√
d− 1, which

is the bound on the absolute value of the eigenvalues of the in�nite d-regular tree, the best possible
d-regular expander graphs in the combinatorial sense.

There are known constructions of Ramanujan graphs of constant degree from Cayley graphs. All
known graphs are (q + 1)-regular where q is a prime power. The analyses of these constructions
use deep mathematical results and in particular some by Ramanujan (and hence the name). They
are explicit in that the neighbors of a vertex can be computed in O(log n) time. See the survey by
Hoory, Linial, and Wigderson [HLW06] for more details.

2-Lifts

It is of interest to �nd combinatorial constructions of Ramanujan graphs. Bilu-Linial [BL06] pro-
posed a method to construct Ramanujan graphs using 2-lifts.

De�nition 14.2 (2-Lift). Let G = ([n], E) be an undirected graph. A signing of the edges of G is

a function s : E(G)→ {−1,+1}. The 2-lift Ĝs = (V̂ , Ê) of G associated with a signing s is de�ned
as follows. The vertex set V̂ of Ĝs is V̂ = {1, . . . , n, 1′, . . . , n′}, where each vertex i ∈ V (G) has two
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copies i and i′ in Ĝs. For each edge ij ∈ E(G), if s(ij) = 1, then the edges ij and i′j′ are in Ê;
otherwise, if s(ij) = −1, then the edges ij′ and i′j are in Ê.

Bilu and Linial conjectured that ifG is Ramanujan, then there is a 2-lift ofG that is also Ramanujan.
Note that if G is d-regular, then any 2-lift of G is also d-regular with the number of vertices doubled.
So, if the conjecture is true, then it implies the existence of an in�nite family of d-regular Ramanujan
graphs for any degree d. Just start with the complete graph on d+1 vertices, which is Ramanujan,
and keep doing a good 2-lift to double the graph size. Bilu and Linial used probabilistic method
(Lovász local lemma) and the techniques in proving the converse of expander mixing lemma in

Theorem 7.5 to prove that there exists a 2-lift with max{α2, |αn|} .
√
d log3 d.

Spectrum of 2-Lift

There is a nice formulation to analyze the spectrum of a 2-lift of a graph.

De�nition 14.3 (Signed Matrix). Given a graph G = ([n], E) and a signing s : E(G)→ {−1,+1} of
the edges, the signed matrix As ∈ Rn×n is de�ned as follows. If ij ∈ E, then (As)ij = (As)ji = s(ij),
otherwise (As)ij = 0.

The proof of the following statement is left as a homework problem.

Problem 14.4 (Spectrum of 2-Lift). Given a graph G = ([n], E) and a signing s : E(G)→ {−1,+1}
of the edges, the spectrum of the adjacency matrix A(Ĝs) of the 2-lift Ĝs is equal to the disjoint union
of the spectrum of the adjacency matrix A(G) of G (called the old eigenvalues) and the spectrum of

the signed matrix As (called the new eigenvalues). That is, the multiplicity of an eigenvalue α of

A(Ĝs) is equal to the sum of the multiplicity of α of A(G) and the multiplicity of α of As.

With this statement, to prove that there is a Ramanujan 2-lift of a d-regular Ramanujan graph
G = (V,E), it is equivalent to proving that there is a signing s : E(G) → {−1,+1} so that the
maximum absolute eigenvalue of the signed matrix As is at most 2

√
d− 1. Bilu and Linial made

the following stronger conjecture which does not assume that G is a Ramanujan graph.

Conjecture 14.5 (Bili-Linial [BL06]). For any d-regular graph G = (V,E), there is a signing

s : E(G)→ {−1,+1} so that all eigenvalues of As have absolute value at most 2
√
d− 1.

14.2 Bipartite Ramanujan Graphs from Interlacing Family

Marcus, Spielman, Srivastava [MSS15] proved Conjecture 14.5 for bipartite graphs.

Theorem 14.6 (Bili-Linial Conjecture for Bipartite Graphs [MSS15]). Any d-regular bipartite graph
G = (V,E) has a signing s : E(G) → {−1,+1} so that the maximum eigenvalue of As is at most

2
√
d− 1.

Note that for a bipartite graph, bounding the maximum eigenvalue is enough because the spectrum
is symmetric (see Lemma 3.4), even for the signed matrix. This is the reason that Theorem 14.6
only holds for bipartite graph, because the new probabilistic method using interlacing polynomials
can only bound the maximum eigenvalue (or one eigenvalue), but not the maximum eigenvalue and
the minimum eigenvalue at the same time.
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As the spectrum of a bipartite graph is symmetric, any d-regular bipartite graph has the maxi-
mum eigenvalue equal to d and the minimum eigenvalue equal to −d, which are called the trivial
eigenvalues. A bipartite graph is Ramanujan if all its non-trivial eigenvalues are at most 2

√
d− 1.

De�nition 14.7 (Bipartite Ramanujan Graphs). Let G = ([n], E) be a d-regular graph and α1 ≥
α2 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. We say G is a bipartite Ramanujan graph

if max{α2, |αn−1|} ≤ 2
√
d− 1.

A corollary of Theorem 14.6 and Problem 14.4 is that any bipartite Ramanujan graph G has a 2-lift
that is Ramanujan. Note that a 2-lift of a bipartite graph is bipartite. So, starting from a complete
bipartite graph with 2d vertices, which is Ramanujan (see Example 3.3), repeatedly applying a good
2-lift proves the following theorem.

Theorem 14.8 (Bipartite Ramanujan Graphs of Every Degree [MSS15]). For every d, there is an

in�nite family of d-regular bipartite Ramanujan graphs.

Probabilistic Method

Theorem 14.6 is proved by the method of interlacing family of polynomials developed in Chapter 12
and Chapter 13. Given a d-regular graph G = (V,E) with m := |E| edges, there are totally 2m

di�erent signed matrices of G and we consider the uniform distribution on these 2m signed matrices.
The plan is to prove that there exists a signing s : E(G)→ {−1,+1} such that

λmax

(
det(xI −As)

)
≤ λmax

(
Es∈{±1}m

[
det(xI −As)

])
≤ 2
√
d− 1. (14.1)

The �rst inequality is a relatively straightforward application of Theorem 13.28 and we will prove it
in this subsection. For the second inequality, it turns out that the expected characteristic polynomial
is exactly the �matching polynomial� of the graph, a well-studied object in the literature, and the
upper bound 2

√
d− 1 is already proved by Heilmann and Lieb in the 70s. We will compute the

expected polynomial in the next subsection, and then review some classical results about matching
polynomials in Section 14.3.

Theorem 14.9 (Probabilistic Method for Signed Matrices). For any d-regular graph G = (V,E),
there exists a signing s : E(G)→ {±1} such that λmax

(
det(xI − As)

)
≤ λmax

(
Es
[
det(xI − As)

])
,

where the expectation is over the uniform distribution of all the signings of the edges.

Proof. To apply Theorem 13.28, we would like to write As as a sum of independent random rank
one symmetric matrices. Note that we can write As =

∑
e∈E Ae, where each Ae is a random

variable with (Ae)ij = (Ae)ji = s(ij) if e = ij and all other entries zero. The issue is that Ae is
a rank two matrix, not rank one. Instead, we consider the random variable Le = De + Ae, where
(De)ii = (De)jj = 1 if e = ij with all other entries zero. So, each Le is the signed Laplacian matrix
of an edge, which is a rank one matrix. Denote Ls =

∑
e∈E Le, which is a sum of independent

random rank one symmetric matrices. Note that Ls = dI + As as the graph is d-regular, and thus
det(xI−As) can be written as det((x+d)I−Ls). Applying Theorem 13.28 on the random variables
{Le}e∈E , there exists a signing s : E(G)→ {±1} such that

λmax

(
det(yI − Ls)

)
≤ λmax

(
Es
[
det(yI − Ls)

])
By doing a change of variable y = x+d, the same signing s satis�es the statement of the theorem.

Theorem 14.9 proves the �rst inequality in Equation 14.1.
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Expected Characteristic Polynomial

Perhaps surprisingly, the expected characteristic polynomial is already known to be equal to the
matching polynomial of a graph, a well-studied polynomial in Combinatorics.

De�nition 14.10 (Matching Polynomials). Given an undirected graph G = ([n], E), let mi be the

number of matchings in G with i edges with m0 = 1, the matching polynomial of G is de�ned as

µG(x) :=
∑
i≥0

(−1)i ·mi · xn−2i.

The following identity is by Godsil and Gutman (see [God93]).

Theorem 14.11 (Expected Characteristic Polynomial is Matching Polynomial). Given an undi-

rected graph G = ([n], E), the expected characteristic polynomial of the signed matrices is

Es∈{±1}|E|
[
det(xI −As)

]
= µG(x),

where the expectation is over the uniform distribution of all the signings of the edges.

Proof. LetMs = xI−As. We expand the determinant ofMs as sum of permutations as in Fact 2.26,
so that

Es det(xI −As) = Es
∑
σ∈Sn

sgn(σ)
n∏
i=1

(Ms)i,σ(i) =
∑
σ∈Sn

sgn(σ) · Es
[ n∏
i=1

(Ms)i,σ(i)

]
,

where sgn(σ) = (−1)inv(σ) and inv(σ) :=
∣∣{(i, j) | i < j and σ(i) > σ(j)

}∣∣ is the number of
inversion pairs of the permutation σ. Since each edge is independent and E [(Ms)i,j ] = 0 as each
edge is equally likely to be ±1, all the permutations with at least one variable with degree one
vanished. Therefore, for the permutations remained, each edge (Ms)ij appears exactly twice and

Es
[ n∏
i=1

(Ms)i,σ(i)

]
= xn−2k · (Ms)

2
il,jl

= xn−2k

for some k. So, each matching of size k will contribute sgn(σ) to the coe�cient of xn−2k. Check
that each matching of size k has the same sign, with sgn(σ) = −1 if k is odd and sgn(σ) = +1 if k
is even. We conclude that Es det(xI −As) =

∑
k≥0(−1)k ·mk · x2n−k = µG(x).

14.3 Matching Polynomials

Quite amazingly, the maximum root of the matching polynomial was studied by Heilmann and Lieb
in 1972 and their result is exactly what is needed for bipartite Ramanujan graphs.

Theorem 14.12 (Heilmann-Lieb). For any undirected graph G of maximum degree d, the matching

polynomial µG(x) is real-rooted with maximum root at most 2
√
d− 1.

So, the results by Godsil-Gutman in Theorem 14.11 and Heilmann-Lieb in Theorem 14.12 combined
to establish the second inequality in Equation 14.1, and this completes the proof of Theorem 14.6.

The original proof by Heilmann-Lieb uses recursion and induction. We present an approach by
Godsil [God93] which consists of three steps:
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1. The matching polynomial of a graph G of maximum degree d divides the matching polynomial
of an associated tree T (called the path tree) of maximum degree d.

2. The matching polynomial of a tree T is equal to the characteristic polynomial det(xI − AT )
of its adjacency matrix AT .

3. The maximum eigenvalue of the adjacency matrix AT of a tree T of maximum degree d is at
most 2

√
d− 1.

Since the characteristic polynomial of the adjacency matrix of a tree (and more generally a graph)
is real-rooted, (1) and (2) imply that the matching polynomial of a graph is real-rooted. Therefore,
the maximum root of the matching polynomial of G is

λmax

(
µG(x)

)
≤ λmax

(
µT (x)

)
= λmax

(
det(xI −AT )

)
≤ 2
√
d− 1,

where the �rst inequality is by (1), the equality is by (2), and the last inequality is by (3). Therefore,
proving the three steps would complete the proof of Heilmann and Lieb's result in Theorem 14.12.

The third step is already done in Problem 3.10. The second step is left as an exercise, as its proof
is similar to that in Theorem 14.11, showing that only permutations corresponding to matchings
contribute to the characteristic polynomial.

First Step

The proof of (1) in [God93] is not long but involves algebraic manipulations. Here we try to give a
proof by pictures. Given a graph G, we start from an arbitrary vertex v. Let the degree of v be d,
and the neighbors of v be u1, . . . , ud. We add d−1 copies of G−v to the graph and call the resulting
graph H. Check that the matching polynomial of the disjoint union is equal to the product of the
matching polynomials, i.e. µG1∪G2(x) = µG1(x) · µG2(x) where G1 ∪G2 is the disjoint union of two

graphs G1 and G2. Therefore, µH(x) = µG(x) ·
(
µG−v(x)

)d−1
, and so the matching polynomial of

G divides the matching polynomial of H.

Consider the following graph H ′, where the edge vui in G is replaced by vui in the i-th copy of
G− v for 2 ≤ i ≤ d (see the picture below). The claim is that the matching polynomials of H and
H ′ are the same. The reason is that there is a one-to-one correspondence between matchings in H
and matchings in H ′, as v can only be matched to one vertex. See the pictures, where the red edges
are the edges in a matching. Now, in H ′, there are no cycles involving v.
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Applying the same operations (duplicate and branch, and remove isolated vertices) on u1 in the
�rst copy of G− v, on u2 in the second copy of G− v, and so on, the resulting (big) graph will have
no cycles and is a tree. The resulting tree is called the path tree of G, as there is a path in T for
each path in G. See the following picture from [God93] for a complete example.

All these operations preserve the property that the matching polynomial of the old graph divides
the matching polynomial of the new graph, and so by induction the matching polynomial of the
original graph G divides the matching polynomial of the path tree, which has maximum degree at
most d. This �proves� the �rst step. See Chapter 6 of [God93] for the formal proof.

14.4 Discussions and Problems

One obvious open question is whether this approach can be extended to construct a true Ramanujan
graph (that satis�es |αn| ≤ 2

√
d− 1). There is a trick to get something close.

Problem 14.13 (Twice Ramanujan Graphs). Show that the current approach can be used to con-

struct a d-regular graph with max{α2, |αn|} ≤ 4
√
d− 1.

Another obvious open question is whether this approach can be made e�cient algorithmically.
Note that the natural attempt would not work, as it is NP-hard to compute the coe�cients of
matching polynomials. Marcus, Spielman, Srivastava [MSS18] gave another construction of bipartite
Ramanujan graphs using interlacing families for permutations, and Cohen [Coh16] showed that their
construction can be implemented in polynomial time.

The following is an exercise that completes the second step of Godsil's proof.
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Exercise 14.14 (Matching Polynomial of a Tree). Prove that the matching polynomial of a tree T
is equal to the characteristic polynomial det(xI −AT ) of its adjacency matrix AT .

The following are some identities for matching polynomials, which can be used to give a formal
proof that the matching polynomial of a graph G divides the matching polynomial of its path tree.
They can be proved by some simple relations between the number of matchings in a graph and its
subgraphs.

Problem 14.15 (Identities for Matching Polynomials [God93]).

1. µG∪H(x) = µG(x) · µH(x) for disjoint G and H.

2. µG(x) = µG\e(x)− µG\uv(x) if e = uv is an edge of G.

3. µG(x) = x · µG\u(x)−
∑

i∼u µG\ui(x) if u ∈ V (G).
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