
Chapter 13

Real Stable Polynomials

To use the method of interlacing family of polynomials in Chapter 12, we need to check whether a
set of polynomials p1, . . . , pm have a common interlacing, and this is reduced to checking whether
all convex combinations q =

∑m
i=1 µipi are real-rooted polynomials by Theorem 12.8. In this

chapter, we will see some characterizations of real-rooted polynomials. The main object that we
will study is the class of real-stable polynomials, a multivariate generalization of the class of real-
rooted polynomials. We will use the techniques in the theory of real-stable polynomials to prove
that the family in Example 12.11 is an interlacing family.

13.1 Real-Rooted Polynomials

A polynomial is real-rooted if all of its roots are real numbers. One important example of real-rooted
polynomials is the characteristic polynomial of a real symmetric matrix (more generally Hermitian
matrix), as the roots are the eigenvalues of the matrix and they are real numbers by Theorem 2.5.

Besides computing all the roots of a polynomial, there is a general characterization for checking
whether a given polynomial is real-rooted.

Theorem 13.1 (Hermite-Sylvester). A polynomial p(x) =
∏n
l=1(x−λl) is a real-rooted polynomial

if and only if the n× n matrix H with Hij =
∑n

l=1 λ
i+j−2
l is a positive semide�nite matrix.

Given a polynomial in the coe�cient form p(x) =
∑n

i=0 cix
i, note that the entries of H (which

are moments of the roots) can be computed from the coe�cients e�ciently by Newton's identities,
and thus Hermite-Sylvester's theorem provides a polynomial time algorithm to check whether a
polynomial is real-rooted. We will not use this theorem to check whether a polynomial is real-
rooted, and we leave the proof as an interesting problem to solve for the reader.

Another approach to show that a polynomial p(x) is real-rooted is to start with a known real-rooted
polynomial q(x) (e.g. the characteristic polynomial of a real symmetric matrix) and show that p(x)
can be obtained from q(x) by some real-rootedness preserving operations.

Exercise 13.2 (Real-Rootedness Preserving Operations). Prove that the following operations are

real-rootedness preserving operations:

1. (Scaling:) If p(x) is real-rooted, then p(cx) is real-rooted for any c ∈ R.
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2. (Inversion:) If p(x) =
∑n

i=0 ci·xi is a degree n real-rooted polynomial, then so is the polynomial

xn · p
(
1
x

)
=
∑n

i=0 cn−i · xi.

3. (Di�erentiation:) If p(x) is a real-rooted polynomial, then so is p′(x), the derivative of p(x).

We will use this approach to prove that a polynomial is real-rooted, but in the more general multi-
variate setting which we will de�ne in the next section.

In the remainder of this section, we collect some nice properties of real-rooted polynomials. They
will not be used for the method of interlacing family of polynomials, and we refer the reader to the
course notes of Oveis Gharan [Ove20] for proofs.

Gauss-Lucas Theorem

The following theorem is a generalization of item (3) in Exercise 13.2. The proof is by considering
p′/p and writing a root of p′ but not p as a convex combination of the roots of p.

Problem 13.3 (Gauss-Lucas Theorem). If p ∈ C[x] is a non-constant polynomial with complex

coe�cients, then all roots of p′ are in the convex hull of the set of roots of p.

Ravichandran used the techniques developed for the restricted invertibility problem in Section 12.4
to prove the following quantitative generalization of the Gauss-Lucas theorem, which bounds the
area of the convex hull after many di�erentiations.

Theorem 13.4 (Quantitative Gauss-Lucas Theorem [Rav18]). Let p ∈ C[x] be a degree n polynomial

with complex coe�cients. Then, for any c ≥ 1/2,∣∣K(pdcne)∣∣ ≤ 4(c− c2)
∣∣K(p)

∣∣,
where K(p) denotes the convex hull of the roots of p and |S| denotes the area of the convex set S in

the plane.

Note that there are examples where taking the (n2 − 1)-th derivative does not decrease the area yet.

One such example is (x+ 1)n/2(x− 1)n/2.

Generating Polynomials

Given a probability distribution µ over [n], we de�ne its generating polynomial as

pµ(x) =
n∑
i=1

µi · xi.

The following is an interesting characterization of when such a generating polynomial is real-rooted.

Proposition 13.5 (Real-Rooted Generating Polynomials). The generating polynomial pµ(x) is

real-rooted if and only if µ is the distribution of a sum of independent Bernoulli random variables.

We will study in a later chapter about probability distributions with real-stable generating polyno-
mials, and we may discuss the proof of Proposition 13.5 there.

One consequence of Proposition 13.5 is that we can use Cherno� bounds to bound the coe�cient
ai = Pr[X = i] with i far away from the mean E [X] =

∑n
i=1 i · ai. From this connection, we

expect to see a Bell curve when we plot the numbers a1, . . . , an of a real-rooted polynomial with
non-negative coe�cients. This intuition can be made precise by the notion in the next subsection.
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Log-Concavity

The following is an analog of a log-concave function for a sequence.

De�nition 13.6 (Log-Concave Sequence). A sequence a0, . . . , an of non-negative numbers is said

to be log-concave if for all 0 < i < n,

ai−1 · ai+1 ≤ a2i ⇐⇒ 1

2

(
log(ai−1) + log(ai+1)

)
≤ log(ai).

A sequence a0, . . . , an of non-negative numbers is said to be ultra log-concave if for all 0 < i < n,

ai−1(
n
i−1
) · ai+1(

n
i+1

) ≤ ( ai(
n
i

))2

We can use the operations in Exercise 13.2 to reduce a degree n real-rooted polynomial to a quadratic
real-rooted polynomial involving only ai−1, ai, ai+1, and then consider the discriminant of the re-
sulting quadratic real-rooted polynomial to prove the following result.

Problem 13.7 (Newton Inequalities). For any real-rooted polynomial p(x) =
∑n

i=0 ai · xi with
non-negative coe�cients, the sequence a0, . . . , an is ultra log-concave.

In the third part of the course, we will study log-concave polynomials and see that some sequences
from combinatorial problems are log-concave (such as the number of matchings of size i).

13.2 Real Stable Polynomials

The class of real-stable polynomials is a multivariate generalization of real-rooted polynomials.

De�nition 13.8 (H-Stable Polynomials). A multivariate polynomial p ∈ C[x1, . . . , xn] is H-stable

if p(x1, . . . , xn) 6= 0 whenever (x1, . . . , xn) ∈ Hn where H = {y ∈ C | =(y) > 0} is the upper-half of

the complex plane.

In the third part of the course, we may see some other stable polynomials where the root-free region
is di�erently speci�ed (e.g. sector-stable polynomials).

De�nition 13.9 (Real Stable Polynomials). A multivariate polynomial p is called real stable if p
is H-stable and all coe�cients of p are real numbers.

Some simple examples of real stable polynomials are p(x1, . . . , xn) = x1x2 · · ·xn and p(x1, . . . , xn) =
a1x1+ . . .+ anxn where ai > 0 for 1 ≤ i ≤ n. Some simple non-examples of real stable polynomials
are p(x1, x2) = x1 − x2 and p(x1, x2, x3, x4) = x1x2 − x3x4.
Note that it is a generalization of real-rooted univariate polynomials, using that complex roots of a
polynomial with real coe�cients come in conjugate pairs.

Exercise 13.10 (Univariate Real-Stable Polynomials). A univariate polynomial p ∈ R[x] is real

stable if and only if it is real-rooted.

Sometimes it is more convenient to check whether a multivariate polynomial is real-stable by check-
ing whether certain derived univariate polynomials are real-rooted.
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Exercise 13.11 (Univariate Restrictions). A polynomial p ∈ R[x1, . . . , xn] is real stable if and only

if for any b ∈ Rn+ and a ∈ Rn, the univariate polynomial p(a + yb) in y is not identically equal to

zero and is real-rooted.

Using Exercise 13.11, one can draw some pictures to see that the polynomial 1 − xy is real-stable
while the polynomial 1 + xy is not real-stable.

In this course, the source of all real-stable polynomials comes from determinants.

Proposition 13.12 (Source of Real-Stable Polynomials). If A1, . . . , Am ∈ Rn×n are positive semidef-

inite matrices, then p(x0, x1, . . . , xm) := det(x0I +
∑m

i=1 xiAi) is a real stable polynomial.

Proof. The plan is to show that if =(xi) > 0 for all 0 ≤ i ≤ m, then the matrix x0I +
∑m

i=1 xiAi is
of full rank, and hence det(x0I +

∑m
i=1 xiAi) 6= 0, implying real stability.

Let v ∈ Cn, and write v = c+ ıd where c ∈ Rn is the real part and d ∈ Rn is the imaginary part of
v. Let X = x0I +

∑m
i=1 xiAi, and write X as R(X)+ ı=(X) where R(X) is the real part and =(X)

is the imaginary part of X. Note that if =(xi) > 0 for all 0 ≤ i ≤ m, then =(X) � 0, as Ai < 0 for
0 ≤ i ≤ m and I � 0.

We claim that Xv = 0 only if v = 0, and hence X is of full rank. To prove this, we show that
v∗Xv = (c − ıd)T (R(X) + ı=(X))(c + ıd) = 0 only if c = d = 0. Note that the imaginary part of
v∗Xv is

=
[
(c− ıd)T (R(X) + ı=(X))(c+ ıd)

]
= cT=(X)c+ dT=(X)d,

and this is equal to zero only if c = d = 0, because =(X) � 0 when =(xi) > 0 for 0 ≤ i ≤ m.

One could also prove Proposition 13.12 using the univariate restrictions in Exercise 13.11; see Oveis
Gharan's notes [Ove20].

Later, we will start from the multivariate real-stable polynomials from Proposition 13.12, and then
apply the real-stability preserving operations in the next section to prove that a univariate polyno-
mial is real-stable, and hence real-rooted by Exercise 13.10.

13.3 Real Stability Preserving Operations

There are several real-stability preserving operations, with some deep characterizations. We just
present the proofs of two operations that we need in this course, and state others without proofs.

The following operation will be useful in reducing the number of variables in the multivariate
polynomial.

Proposition 13.13 (Specialization). Let p(x1, . . . , xm) be a non-zero real-stable polynomial. For

any c ∈ R, p(c, x2, . . . , xm) is a real-stable polynomial.

Proof. It is clear that p(c, x2, . . . , xm) has real coe�cients as p has real coe�cients and c ∈ R. For
stability, consider the sequence of polynomials pk = p(c + ı2−k, x2, . . . , xm) for k ≥ 1. Note that
each pk is a H-stable polynomial (but may have complex coe�cients) as p is H-stable. The sequence
{pk}k≥1 is converging uniformly to the polynomial p(c, x2, . . . , xm).

Suppose, by contradiction, that p(c, x2, . . . , xm) has a root z2, . . . , zm with =(zi) > 0 for 2 ≤ i ≤ m.
By Hurwitz's Theorem 13.14, for any small enough ε > 0 and for every large enough k (depending
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on ε), the polynomial pk also has a root y2, . . . , ym with |yi − zi| < ε for 2 ≤ i ≤ m. By choosing
ε small enough, we still have =(yi) > 0 for 2 ≤ i ≤ m, but this means that pk has a root with all
imaginary parts positive, contradicting the H-stability of pk.

Hurwitz's theorem is from complex analysis. The following statement is from Wikipedia.

Theorem 13.14 (Hurwitz's Theorem). Let {fk}k≥1 be a sequence of holomorphic functions on a

connected open set G that converge uniformly on compact subsets of G to a holomorphic function

f which is not constantly zero on G. If f has a zero of order l at z0, then for every small enough

ρ > 0 and for su�ciently large k ∈ N (depending on ρ), fk has precisely l zeros in the disk de�ned

by |z − z0| < ρ including multiplicity. Furthermore, these zeroes converge to z0 as k →∞.

The other operation that we need is the di�erential operator that we have seen a couple of times
already. The following proposition is for univariate polynomials.

Proposition 13.15 (Partial Di�erentiation). If p ∈ C[x] is H-stable, then p+ s · p′ is H-stable for

any s ∈ R.

Proof. Since p(x) is stable, it can be written as c
∏n
j=1(x−wj) with =(wj) ≤ 0 for 1 ≤ j ≤ n. Then

p(x) + s · p′(x) = p(x)

(
1 +

n∑
j=1

s

x− wj

)
.

For z with =(z) > 0, p(z) 6= 0 as p is H-stable. Furthermore, since =(z) > 0 and =(wj) ≤ 0 for
1 ≤ j ≤ n, it follows that =

(
1

z−wj

)
< 0 for 1 ≤ j ≤ n, and thus 1 +

∑n
j=1

s
x−wj

6= 0. This proves

that g(z) + s · g′(z) 6= 0 if =(z) > 0, establishing H-stability.

This result can be generalized to multivariate polynomials easily by univariate restriction.

Corollary 13.16 (Partial Di�erentiation). If p ∈ R[x1, . . . , xm] is real-stable, then (1 + s · ∂x1)p is

real-stable for any s ∈ R.

Proof. It is clear that (1 + s · ∂x1)p has real coe�cients if p has. For any y2, . . . , ym with =(yi) > 0
for 2 ≤ i ≤ m, the polynomial q(x1) := p(x1, y2, . . . , ym) is stable by de�nition. Proposition 13.15
proves that (1+ s · ∂x1)q(x1) is also stable. This implies that (1+ s · ∂x1)p has no roots in which all
of the variables have positive imaginary part, proving stability.

The following are some other operations that preserve real-stability, whose proofs are elementary.

Exercise 13.17 (Real-Stability Preserving Operations). Let p(x1, x2, . . . , xm) and q(x1, . . . , xm) be
real-stable polynomials. Then

1. (Product:) p · q is real stable.

2. (Symmetrization:) p(x1, x1, x3, . . . , xm) is real stable.

3. (External Field:) p(c1x1, c2x2, . . . , cmxm) is real stable for any c1, . . . , cm ≥ 0.

4. (Inversion:) p
(
− 1

x1
, x2, . . . , xm

)
· xd11 is real stable where d1 is the degree of x1 in p.

131



Eigenvalues and Polynomials

5. (Di�erentiation:) ∂x1p is real stable.

Borcea and Brändén characterized a class of di�erential operators that preserve real stability.

Theorem 13.18 (Borcea-Brändén Theorem). For vectors α, β ∈ Nm, let xα = xα(1) · · ·xα(n) and
∂β = ∂

β(1)
x1 · · · ∂

β(m)
xm and let D =

∑
α,β∈Nm cα,β · xα · ∂β be a di�erential operator with cα,β ∈ R

for all α, β ∈ Nm. Then D is a stability preserving operator (i.e. it maps any real-stable poly-

nomial to a real-stable polynomial) if and only if the polynomial
∑

α,β∈Nm cα,β · xα · (−w)β ∈
R[x1, . . . , xm, w1, . . . , wm] on 2m variables is real-stable.

For examples, 1 − ∂x1∂x2 is stability preserving because 1 − (−w1)(−w2) = 1 − w1w2 is a real
stable polynomial, and similarly 1 + x1∂x2 is stability preserving. For non-examples, 1 + ∂x1∂x2 is
not stability preserving as 1 + w1w2 is not a stable polynomial, and similarly 1 − ∂x1∂x2∂x3 is not
stability preserving.

Problem 13.19 (Real Stability Preserving Operators). Use Theorem 13.18, or otherwise (both are

possible), to prove the following results.

1. For any 1 ≤ k ≤ n, the k-th elementary symmetric polynomial
∑

S⊆([n]
k )
xS is real stable.

2. Let MAP be the operator that only retains the multia�ne monomials of a given polynomial,

e.g. MAP(1 + x+ 3x3y + 2xy) = 1 + x+ 2xy. Prove that MAP is stability preserving.

See [Wag11] for a survey on real-stable polynomials, with a proof of Theorem 13.18.

13.4 Multilinear Formula, Mixed Characteristic Polynomials, and

Interlacing Family

In this section, we use the tools from real stable polynomials to prove that a generalization of the
family in Example 12.11 is an interlacing family, which will be a key component in constructing
bipartite Ramanujan graphs and resolving the Kadison-Singer problem in the next two chapters.

Mixed Characteristic Polynomial and Multilinear Formula

We consider the setting where each Ai is a random symmetric rank-one matrix with �nite sup-
port (e.g. Ai is aa

T with probability 0.6, bbT with probability 0.3, ccT with probability 0.1), and
A =

∑m
i=1Ai is a sum of independent rank-one matrices. We are interested in proving that the set

of all possible characteristic polynomials det(xI −
∑m

i=1Ai) forms an interlacing family. The fol-
lowing identity of the expected characteristic polynomial is at the heart of the approach by Marcus,
Spielman, and Srivastava.

Theorem 13.20 (Multilinear Formula). If A1, A2, . . . , Am are independent random symmetric rank-

one matrices, then

EA1,...,Am

[
det

(
λI −

m∑
i=1

Ai

)]
=

m∏
i=1

(
1− ∂xi

)
det

(
λI +

m∑
i=1

xi · E [Ai]

)∣∣∣∣
x1=x2=···=xm=0

.
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The right hand side of the multilinear formula is called the mixed characteristic polynomial of the
expected matrices E [A1] , . . . ,E [Am], which are not of rank one in general.

De�nition 13.21 (Mixed Characteristic Polynomial). The mixed characteristic polynomial of n×n
matrices B1, . . . , Bm (not necessarily rank-one) is de�ned as

µ[B1, . . . , Bm](λ) =

m∏
i=1

(
1− ∂xi

)
det

(
λI +

m∑
i=1

xi ·Bi
)∣∣∣∣

x1=x2=···=xm=0

There are di�erent proofs of Theorem 13.20. We �rst present the proof from [MSS15a] (suggested by
James Lee), and then discuss a proof by Tao [Tao13] which shows more clearly why it is a multilinear
formula. The original proof by Marcus, Spielman, and Srivastava used the Cauchy-Binet formula
in Fact 2.30.

Inductive Proof: The base case is similar to the calculations in Section 10.1 and in Exercise 11.8,
with the only di�erence that E [Ai] is not necessarily a scaled identity matrix.

Lemma 13.22 (Expected Rank-One Update). For any square matrix M and a random vector v,

Ev
[
det(M − vvT )

]
= (1− ∂x) det

(
M + x · E

[
vvT

] )∣∣∣
x=0

.

Proof. First, we assume M is invertible. By the matrix determinantal formula in Fact 2.29,

det(M − vvT ) = det(M) ·
(
1− vTM−1v

)
= det(M)

(
1− Tr

(
M−1vvT

))
.

Taking expectation on both sides,

Ev
[
det(M − vvT )

]
= det(M)− det(M) Tr

(
M−1E

[
vvT

] )
.

On the other hand, by the Jacobi's formula in Fact 2.39,

∂x det
(
M + x · E

[
vvT

] )∣∣
x=0

= det
(
M
)
Tr
(
M−1E

[
vvT

] )
,

and so the lemma follows whenM is invertible. WhenM is not invertible, we can choose a sequence
of invertible matrices that approach M . Since the lemma holds for each matrix in the sequence and
the two sides are polynomials in the entries of the matrix, a continuity argument implies that the
lemma also holds for M as well.

Then Theorem 13.20 can be proved by applying Lemma 13.22 repeatedly.

Exercise 13.23 (Inductive Proof of Multilinear Formula). Complete the proof of Theorem 13.20

by using Lemma 13.22 inductively and the assumption that A1, . . . , Am are independent random

variables.
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Multilinear Proof: The proof presented by Tao [Tao13] also starts from the matrix determinantal
formula, which shows that det(λI −

∑m
i=1Ai) is multilinear in terms of Ai, when each Ai is a rank

one matrix. Then we can understand that the RHS of Theorem 13.20 is just a Taylor expansion of
the LHS.

Lemma 13.24 (Taylor Expansion of Multilinear Polynomial). Let p(x1, . . . , xm) be a multilinear

polynomial in x1, . . . , xm. Then

p(x1, . . . , xm) =

m∏
i=1

(
1 + xi∂yi

)
p(y1, . . . , ym)

∣∣∣
y1=...=ym=0

.

Proof. As p is a multilinear polynomial, it can be written as p(x1, . . . , xm) =
∑

S⊆[m] cS
∏
i∈S xi,

where cS is the coe�cient of the monomial
∏
i∈S xi. Note that cS =

∏
i∈S ∂yip(y1, . . . , ym)

∣∣
y1=...=ym=0

,
as di�erentiation and substitution kill all the terms except cS . Therefore,

p(x1, . . . , xm) =
∑
S⊆[m]

(∏
i∈S

xi

)(∏
i∈S

∂yip(y1, . . . , ym)
∣∣
y=0

)
=

m∏
i=1

(
1 + xi∂yi

)
p(y1, . . . , ym)

∣∣∣
y=0

.

Putting in p(x1, . . . , xm) = det(B+x1A1+. . .+xmAm) in Lemma 13.24 gives the following corollary.

Corollary 13.25 (Determinant of Sum of Rank One Matrices). If A1, . . . , Am are symmetric rank-

one matrices, then

det(B + x1A1 + . . .+ xmAm) =
m∏
i=1

(
1 + xi∂yi

)
det(B + y1A1 + . . .+ ymAm)

∣∣∣
y1=...=ym=0

.

To prove Theorem 13.20, we set B = λI and x1 = . . . = xm = −1 in Corollary 13.25. Then, we take
the expectation on both sides using the sum of monomials form, and move the expectation inside
the summation by linearity of expectation, and then move the expectation inside the products by
independence of the random variables A1, . . . , Am to obtain the following result.

Exercise 13.26 (Expansion Proof of Multilinear Formula). Complete the proof of Theorem 13.20

by proving that

EA1,...,Am

[
det

(
λI −

m∑
i=1

Ai

)]
= µ

[
E [A1] , . . . ,E [Am]

]
(λ),

the mixed characteristic polynomial of E [A1] , . . . ,E [Am] in De�nition 13.21.

Interlacing Family of Independent Rank-One Matrices

With the multilinear formula in Theorem 13.20, we are now ready to prove that the set of all possible
characteristic polynomials {det(λI −

∑m
i=1Ai)} form an interlacing family. The following lemma

will be useful in showing that all conditional expectation polynomials are real-rooted.

Proposition 13.27 (Expected Characteristic Polynomial is Real-Rooted). The expected character-

istic polynomial EA1,...,Am

[
det
(
λI−

∑m
i=1Ai

)]
is real-rooted for any independent random symmetric

rank-one matrices A1, . . . , Am.
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Proof. We start from the RHS of the multilinear formula in Theorem 13.20. Since each Ai is
a random symmetric rank-one matrix, the expected matrix E [Ai] =

∑
j pjvjv

T
j < 0 is a positive

semide�nite matrix. So, by Proposition 13.12, the multivariate polynomial det(λI+
∑m

i=1 xi ·E [Ai])
is a real-stable polynomial. By the results in stability preserving operations in Corollary 13.16 and
Proposition 13.13, applying the di�erential operator 1− ∂xi and substituting real numbers preserve
stability. Therefore, the LHS of the multilinear formula is a real-stable univariate polynomial in λ,
and thus real-rooted by Exercise 13.10.

The following interlacing family plays a major role in the sequence of papers by Marcus, Spielman
and Srivastava [MSS15b, MSS15a, MSS21].

Theorem 13.28 (Interlacing Family of Independent Rank-One Matrices). Let A1, A2, . . . , Am be

random symmetric rank-one matrices, where each Ai has li possibilities vi,1v
T
i,1, . . . , vi,liv

T
i,li
. The

set of all
∏m
i=1 li polynomials in {det(λI −

∑m
i=1 vi,jiv

T
i,ji

)} form an interlacing family, where each

ji ∈ {1, . . . , li} for 1 ≤ i ≤ m. Furthermore, the root polynomial of the interlacing family can be

EA1,...,Am

[
det
(
λI −

∑m
i=1Ai

)]
for any independent distributions on A1, . . . , Am.

Proof. The tree has depth m, with the root at depth 0. At depth 0 ≤ i ≤ m− 1, each node has li+1

children. Each leaf of the tree is labeled by a sequence (j1, j2, . . . , jm), representing a path from
the root to the tree, where ji ∈ [li] represents the ji-th child of an internal node in the (i − 1)-th
level. The polynomial in the leaf node corresponding to (j1, j2, . . . , jm) is det(λI −

∑m
i=1 vi,jiv

T
i,ji

),

a choice vjiv
T
ji
for each Ai for 1 ≤ i ≤ m.

Given the independent distributions onA1, . . . , Am, the polynomial in an internal node (j1, j2, . . . , jk)
at depth k is de�ned as EAk+1,...,Am

[
det
(
λI −

∑k
i=1 vi,jiv

T
i,ji
−
∑m

i=k+1Ai
)]
, the conditional ex-

pectation polynomial where Ai = vjiv
T
ji

is �xed for 1 ≤ i ≤ k. The root polynomial is then

EA1,...,Am

[
det
(
λI −

∑m
i=1Ai

)]
.

We need to check that the two conditions of an interlacing family in De�nition 12.10 are satis�ed.
The �rst condition is satis�ed by construction, that the polynomial in each non-leaf node at depth
k is a convex combination of the polynomials in its children, where the convex combination is based
on the given probability distribution of Ak, which is independent of other random variables.

For the second condition, we need to prove that the polynomials in the children of a non-leaf node
have a common interlacing. By Theorem 12.8, it su�ces to prove that all convex combinations
of the polynomials in the children of a non-leaf node are real-rooted. Consider an internal node
(j1, . . . , jk) at depth k, with lk children (j1, . . . , jk, 1), . . . , (j1, . . . , jk, lk). Given any convex combi-
nation µ1, . . . , µlk with µa ≥ 0 for 1 ≤ a ≤ lk and

∑lk
a=1 µa = 1, we need to prove that

lk∑
a=1

µa · EAk+2,...,Am

[
det

(
λI −

k∑
i=1

vi,jiv
T
i,ji − vk+1,av

T
k+1,a −

m∑
i=k+2

Ai

)]

is real-rooted. Observe that this is just the expected characteristic polynomial EB1,...,Bm det(λI −∑m
i=1Bi) for a related set of independent random symmetric rank-one matrices, where B1, . . . , Bk

are just the (deterministic) random variables with Bi = vi,jiv
T
i,ji

with probability one, Bk+1 is the

random variable with Bk+1 = vk+1,av
T
k+1,a with probability µa for 1 ≤ a ≤ lk+1, and Bk+2, . . . , Bm

are just the same as the random variables Ak+2, . . . , Am. By Proposition 13.27, any such convex
combination is real-rooted, and hence the children have a common interlacing by Theorem 12.8. We
conclude that the polynomials in the leaves form an interlacing family.

135



Eigenvalues and Polynomials

Note that this generalizes the family in Example 12.11, and thus completes the proof for the re-
stricted invertibility result in Theorem 12.14.

We will use this interlacing family for constructing bipartite Ramanujan graphs and resolving the
Kadison-Singer problem in the next two chapters.
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