
Chapter 12

Method of Interlacing Polynomials

Marcus, Spielman, and Srivastava [MSS14] turned the heuristic argument from [BSS14] about ex-
pected characteristic polynomial described in Section 10.1 into a powerful probabilistic method. We
have already previewed this method in a simple form in Section 11.2 without seeing the details.
In this chapter, we will go through the relevant concepts and describe the method in its general
form. Then we will see an interesting and relatively simple application to the restricted invertibility
problem, in two di�erent ways.

12.1 New Probabilistic Method

In standard probabilistic method, we compute the expectation of a random variable E [X], and
then conclude that there is an outcome in the sample space with value at least or at most E [X].
Consider the minimum eigenvalue problem in Theorem 11.2, in which the quantity of interest is
λmin(

∑
i∈S viv

T
i ) for some multi-subset S with |S| = k. To prove that there is a multi-subset with

large minimum eigenvalue, the standard way is to compute µ := ES:|S|=k
[
λmin

(∑
i∈S viv

T
i

)]
and

then conclude that there is a mult-subset S with |S| = k and λmin(
∑

i∈S viv
T
i ) ≥ µ.

Marcus, Spielman, and Srivastava took an unusual route to solve this kind of problems. First,
instead of working with the random matrix A =

∑
i∈S viv

T
i directly, they consider the characteristic

polynomial pA(x) = det(xI −A) of the random matrix. Note that λmin(A) is simply the minimum
root of the characteristic polynomial λmin(pA). Then, quite surprisingly, instead of computing the
expected minimum eigenvalue of a random characteristic polynomial EA[λmin(pA)], they compute
the minimum eigenvalue of the expected polynomial λmin

(
EA[pA]

)
. The following is an instantiation

of their new probabilistic method for the minimum eigenvalue problem, when each vector is chosen
independently and uniformly randomly.

Proposition 12.1 (Probabilistic Method for Minimum Eigenvalue). Suppose v1, . . . , vm ∈ Rn are

vectors with
∑m

i=1 viv
T
i = In. For any k ≥ n, suppose r1, . . . , rk are independent uniformly random

vectors in {v1, . . . , vm} and let A :=
∑k

i=1 rir
T
i be a random matrix. Then, with positive probability,

λmin(pA) ≥ λmin

(
E[pA]

)
.

In general, E [λmin(pA)] 6= λmin(E [pA]), and in fact the latter term could be bigger than the former
term, and so this proposition is not trivial at all.

Characteristic polynomials have not played an important role in much of spectral graph theory. One
disadvantage for instance is that the information about the eigenvectors is lost. Very interestingly,
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the method by Marcus, Spielman, and Srivastava showed that they often satisfy a number of very
nice algebraic identities and are amenable to a set of very elegant analytic tools that do not naturally
apply to matrices.

12.2 Interlacing Polynomials

Let p1, . . . , pm be real-rooted polynomials and q =
∑m

i=1 µipi be a convex combination of p1, . . . , pm
where

∑m
i=1 µi = 1 and µi ≥ 0 for 1 ≤ i ≤ m. Under what conditions can we conclude that say

maxi λmin(pi) ≥ λmin(q)? In general, it could be far from true. For example, p1 = (x − 1)(x − 2)
and p2 = (x− 3)(x− 4) are both real-rooted, but their average 1

2(p1 + p2) is not even real-rooted.
Even if assume p1 + p2 is real-rooted, there is in general no simple relationship between the roots
of two polynomials and the roots of their average.

The main insight of Marcus, Spielman and Srivastava is that in several problems of interest, the
(characteristic) polynomials satisfy some interlacing properties that would allow us to conclude that
maxi λmin(pi) ≥ λmin(q).

De�nition 12.2 (Interlacing Polynomials). Let p be a degree n polynomial with real roots α1 ≥
. . . ≥ αn and let q be a degree n or n− 1 polynomial with real roots β1 ≥ . . . ≥ βn (ignoring βn in

the degree n− 1 case). We say that q interlaces p if their roots alternate and the largest root belongs

to p such that

α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . βn−1 ≥ αn ≥ βn.

De�nition 12.3 (Common Interlacing). A set of degree n real-rooted polynomials p1, . . . , pm is said

to have a common interlacing if there is a polynomial q that interlaces each pi for 1 ≤ i ≤ m.

Equivalently, p1, . . . , pm have a common interlacing if there are inner-disjoint intervals I1 ≥ I2 ≥
. . . ≥ In on the real line such that the k-th largest root of each pi for 1 ≤ i ≤ m is contained in Ik

An important class of interlacing polynomials are characteristic polynomials of matrices under rank-
one updates. The following is also called Cauchy's interlacing theorem, and one can prove it in a
similar way as in Cauchy's interlacing Theorem 2.13, using Courant-Fischer Theorem 2.12.

Exercise 12.4 (Cauchy's Interlacing Theorem). Let A ∈ Rn×n be a real symmetric matrix and

v ∈ Rn. Then pA interlaces pA+vvT .

Note that Exercise 12.4 implies that if A ∈ Rn×n is a symmetric matrix and v1, . . . , vm ∈ Rn, then
pA+v1vT1

, . . . , pA+vmvTm have a common interlacing.

Common Interlacing and Probabilistic Method

If p1, . . . , pm have a common interlacing, then any convex combination q of p1, . . . , pm is also real-
rooted and we can compare the roots of p1, . . . , pm with the roots of q. The proof is a simple
application of the intermediate value theorem in the interval Ij for the j-th root for each j.

Theorem 12.5 (Probabilistic Method for Common Interlacing Polynomials). Suppose p1, . . . , pm
are real-rooted polynomials of degree n with positive leading coe�cients. Let λk(pj) be the k-th largest
root of pj. If p1, . . . , pm have a common interlacing, then for any non-negative numbers µ1, . . . , µm
with

∑m
i=1 µi = 1 and for any 1 ≤ k ≤ n,

min
j
λk(pj) ≤ λk

(
Ej∼µ[pj ]

)
≤ max

j
λk(pj)
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Proof. Let q =
∑m

i=1 µipi. Let u = maxj λmax(pj) and l = minj λmax(pj). We would like to argue
that λmax(q) is contained in [l, u].

First, we argue that λmax(q) ≤ u. As p1, . . . , pm all have positive leading coe�cients, all polynomials
are positive in the range (u,∞). As q is a convex combination of p1, . . . , pm, so q is also positive in
the range (u,∞). Therefore, q cannot have a root in the range (u,∞), and thus λmax(q) ≤ u.

Next, we argue that λmax(q) ≥ l. If l = u, then pj(u) = 0 for all 1 ≤ j ≤ m, and thus q(u) = 0
and hence λmax(q) = u ≥ l. Henceforth we assume l < u. On one hand, note that q(u) > 0 as
each pj(u) ≥ 0 and there exists i with pi(u) > 0 (e.g. the one with λmax(pi) = l < u). On the
other hand, since p1, . . . , pm have a common interlacing, λ2(pj) ≤ l for each j, and since p1, . . . , pm
all have positive leading coe�cients, each polynomial pj is non-positive in the range [λ2(pj), λ1(pj)]
with λ2(pj) ≤ l and λ1(pj) ≥ l for all 1 ≤ j ≤ m. Therefore, pj(l) ≤ 0 for all 1 ≤ j ≤ m, and thus
q(l) ≤ 0. Since q(u) > 0 and q(l) ≤ 0, by the intermediate value theorem, there exists r ∈ [l, u)
such that q(r) = 0, and therefore λmax(q) ≥ l.

A similar argument works for any 1 ≤ k ≤ n and is left to the reader (see Lemma 2.11 of [MSS21]).
It may be more convenient for the argument to �rst reduce to the case when p1, . . . , pm have no
common roots.

So, if we could show that a set of polynomials have a common interlacing, then we can apply
Theorem 12.5 to show that there exists a polynomial with large/small k-th largest root by showing
that some weighted average polynomial has large/small k-th largest root.

Common Interlacing and Real-Rootedness

We are thus interested in some general techniques to prove that a set of polynomials have a common
interlacing. Note that Theorem 12.5 proves that if p1, . . . , pm are real-rooted and have a common
interlacing, then any convex combination of p1, . . . , pm is also real-rooted. It turns out that the
converse is also true. This gives us a characterization when a set of real-rooted polynomials have a
common interlacing. We use the following simple fact in the proof.

Exercise 12.6 (Common Interlacing is a Pairwise Property). A set of polynomials p1, . . . , pm have

a common interlacing if and only if each pair of polynomials pi, pj have a common interlacing for

all 1 ≤ i 6= j ≤ n.

We also use the following well-known result from elementary complex analysis without proof.

Theorem 12.7 (Continuity of Roots). The roots of a polynomial are continuous functions of its

coe�cients.

Theorem 12.8 (Common Interlacing and Real-Rootedness). If p1, . . . , pm are degree n polynomials

and all of their convex combinations
∑m

i=1 µipi are real-rooted, then p1, . . . , pm have a common

interlacing.

Proof. By Exercise 12.6, we only need to prove the lemma for two polynomials. We assume without
loss of generality that p1 and p2 have no common roots, as otherwise we can just divide both poly-
nomials by their common factors, prove that the resulting polynomials have a common interlacing,
and conclude that the original polynomials also have a common interlacing.
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Let qµ = (1− µ) · p1 + µ · p2 for µ ∈ [0, 1]. If we keep track of the roots of qµ from µ = 0 and µ = 1
as a continuous function of µ, then each root of qµ is a continuous curve on the complex plane as µ
varies from 0 to 1 by Theorem 12.7. Since each qµ is real-rooted by assumption, the curve of each
root j is an interval Jj on the real line, with one endpoint being a root of p1 and the other endpoint
being a root of p2.

We would like to argue that these intervals are pairwise inner-disjoint (i.e. they are disjoint except
possibly at the endpoints). Suppose to the contrary that this is not the case, that one endpoint of
an interval is contained in the interior of some other interval. This implies that some root r of a
polynomial, say p1, is a root of qµ for some 0 < µ < 1, but then

0 = qµ(r) = (1− µ) · p1(r) + µ · p2(r) = µ · p2(r) =⇒ p2(r) = 0,

contradicting that p1 and p2 have no common roots. Therefore, these intervals are pairwise inner-
disjoint. This implies that the intervals can be arranged so that J1 ≥ J2 ≥ . . . ≥ Jn, and thus p1
and p2 have a common interlacing.

By Theorem 12.8, to prove a set of polynomials have a common interlacing (in order to apply
the probabilistic method), it is equivalent to proving that all convex combinations of any two
polynomials are real-rooted. In the next chapter, we will study methods to prove that a polynomial
is real-rooted.

Di�erential Operators and Common Interlacing

In Section 10.1 and in Section 11.2, the expected characteristic polynomials are of the form (1−s∂)p
for some scalar s. With the results in the previous subsections, we can show that this di�erential
operator preserves real-rootedness and also common interlacing.

Problem 12.9 (Di�erential Operators and Common Interlacing). Prove that if p is real-rooted, then
(1− s∂)p is also real-rooted. Furthermore, prove that if p1, . . . , pm have positive leading coe�cients

and a common interlacing, then (1− s∂)p1, . . . , (1− s∂)pm also have a common interlacing.

With Problem 12.9, it should be straightforward to solve Problem 11.11, and thus completing the
proof of Theorem 11.2 using a simple version of the method of interlacing polynomials.

12.3 Interlacing Family

Recall that in Proposition 12.1, the goal is to prove that there is a positive probability that a random
matrix A =

∑k
i=1 rir

T
i satis�es λmin(pA) ≥ λmin

(
E[pA]

)
, where there are mk possibilities of A. To

prove this statement by directly applying the probabilistic method in Theorem 12.5, we need to
prove that these mk di�erent characteristic polynomials have a common interlacing. A moment of
thought reveals that this is clearly not true in general.

The idea of Marcus, Spielman, and Srivastava is to build a tree structure among these polynomials
and show that the children of each internal node have a common interlacing. This idea is similar
to the method of conditional expectations used in derandomization.

De�nition 12.10 (Interlacing Family). An interlacing family consists of a �nite rooted tree T and

a labeling of the nodes v ∈ T by monic real-rooted polynomials pv(x) ∈ R[x], with two properties:
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1. Every polynomial pv(x) corresponding to a non-leaf node v is a convex combination of the

polynomials corresponding to the children of v.

2. For all nodes v1, v2 ∈ T with a common parent, all convex combinations of pv1(x) and pv2(x)
are real-rooted.

We say that a set of polynomials is an interlacing family if they are the labels of the leaves of such

a tree.

Note that, by Theorem 12.8 and Exercise 12.6, the second condition implies that all the children
have a common interlacing, and it follows from Theorem 12.5 that all convex combinations of all
children are real-rooted.

The above de�nition may look a bit abstract, but in applications the root polynomial will usually
simply be the average polynomial of all the leaves, while the internal nodes will usually simply be
the average polynomial of the leaves of the corresponding subtrees. Let us see a concrete example
that is useful for the minimum eigenvalue problem in Theorem 11.2.

Example 12.11 (Interlacing Family of Multi-Subset of k Vectors). Let v1, . . . , vm ∈ Rn. For any

s1, . . . , sk ∈ [m], de�ne

ps1,...,sk(x) := det

(
xIn −

k∑
i=1

vsiv
T
si

)
.

The tree T is a complete m-ary tree, with depth k, and thus mk leaves. Each leaf of the tree is

labeled by a sequence s1, . . . , sk, representing a path from the root to the leaf, where si represents
the si-th child of the internal node in the (i− 1)-th level, with the root being in the 0-th level. The

polynomials in the internal nodes are de�ned inductively as

ps1,...,st(x) =
1

m

m∑
j=1

ps1,...,st,j(x) =
1

mk−t

∑
st+1,...,sk

ps1,...,sk(x)

for any t < k and the root polynomial is

p∅(x) =
1

mk

∑
s1,...,sk∈[m]k

ps1,...,sk(x).

We will prove in the next chapter that these polynomials P :=
{
ps1,...,sk(x)

}
s1,...,sk∈[m]k

form an

interlacing family.

It may not be easy to establish that a set of polynomials forms an interlacing family, and in some
applications the theory of real stable polynomials is needed to prove so, which we will study in the
next chapter.

But once we have established that a family is an interlacing family, we can then easily relate the
roots of the root-polynomial to the roots of the polynomials in the leaves. The following theorem
follows from a simple induction using Theorem 12.5.

Theorem 12.12 (Probabilistic Method for Interlacing Family). Let P be an interlacing family of

degree n polynomials with root labeled by p∅(x) and leaves by {pl(x)}l∈L where L is the set of leaves.

Then, for any 1 ≤ j ≤ n, there exist leaves a ∈ L and b ∈ L such that

λj(pa) ≤ λj(p∅) ≤ λj(pb).
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Proof. The proof is by a simple induction on the depth of the internal node. By Theorem 12.8,
the second condition in De�nition 12.10 implies that every pair of children of the root node have
a common interlacing. By Exercise 12.6, it follows that all the children of the root node have a
common interlacing. Then, Theorem 12.5 proves that there is a child a1 of the root node with
λj(pa1) ≤ λj(p∅) and there is a child b1 of the root node with λj(pb1) ≥ λj(p∅). By induction, there
is a leaf node a in the subtree of a1 with λj(pa) ≤ λj(pa1) ≤ λj(p∅), and there is a leaf node b in
the subtree of b1 with λj(pb) ≥ λj(pb1) ≥ λj(p∅).

12.4 Restricted Invertibility

In this section, we see an interesting application of the techniques developed so far to the restricted
invertibility problem. This is not the �rst application of the method of interlacing family, but it is
the simplest as it only involves univariate polynomials, and so we present it �rst to separate the
ideas of the interlacing family method from the theory of real-stable (multivariate) polynomials.

The restricted invertibility problem is a well-studied problem in functional analysis, which says
that a matrix of high stable rank has a large column submatrix with large smallest singular value.
We consider an equivalent formulation that is very close to the minimum eigenvalue problem in
Theorem 11.2.

De�nition 12.13 (Restricted Invertibility Problem). Given v1, . . . , vm ∈ Rn and an integer k < n,
�nd a subset S ⊆ [m] with |S| = k to maximize λk

(∑
i∈S viv

T
i

)
, where λk(A) denotes the k-th

largest eigenvalue of matrix A.

To illustrate the method of interlacing family, we only consider the special �isotropy� case when∑m
i=1 viv

T
i = In. We remark that, unlike the minimum eigenvalue problem, it is no longer true

that the general case can be reduced to this special case, because of k < n. Marcus, Spielman, and
Srivastava [MSS21] used the method of interlacing family to derive a sharp result in the isotropy
case.

Theorem 12.14 (Restricted Invertibility in the Isotropy Case). Suppose v1, . . . , vm ∈ Rn are vectors
with

∑m
i=1 viv

T
i = In. Then, for every integer k ≤ n, there exists a subset S ⊂ [m] with |S| = k and

λk

(∑
i∈S

viv
T
i

)
≥
(

1−
√
k

n

)2 n

m
.

Although this result is sharp for a large regime of k, we do not know whether it is tight when k ≈ n.
The following question is closely related to Question 11.15

Question 12.15 (Restricted Invertibility when k ≈ d). When m = O(n) and k = n− 1, the lower

bound in Theorem 12.14 is Ω(1/n2). Is this tight? To my knowledge, the best lower bound that we

can hope for in this regime is Ω(1/n).

Ravichandran [Rav18] presented a di�erent way to use the interlacing family method to derive the
results in [MSS21], with an additional application of proving a quantitative Gauss-Lucas theorem
which we may mention later. We will present both approaches, as this will allow us to see two
di�erent interlacing families for the problem.
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Interlacing Family of Multi-Subset of Vectors

The proof in [MSS21] uses the interlacing family that we described in Example 12.11. We have not
proved that it is indeed an interlacing family yet, but we assume it is in this subsection. Then,
to apply the probabilistic method in Theorem 12.12, we just need to compute the polynomial in
the root of the tree and bound its k-th eigenvalue. The calculations for the expected characteristic
polynomial in Section 10.1 and in Exercise 11.8 can be used to compute the root polynomial from
the leaves up.

Exercise 12.16 (Root Polynomial in Example 12.11). When
∑m

i=1 viv
T
i = In, the root polynomial

p∅ in Example 12.11 is

p∅(x) =

(
1− 1

m
∂x

)k
xn

Note that the k-th largest root of p∅(x) is simply the smallest root of the polynomial x−(n−k)p∅(x) =

x−(n−k)
(
1− 1

m∂x
)k
xn. Marcus, Spielman, and Srivastava observed that it is a slight transformation

of an associated Laguerre polynomial and a known result by Krasikov implies that

λk(p∅) ≥
(

1−
√
k

n

)2 n

m
.

Therefore, we can conclude from Theorem 12.12 that there is a leaf with the k-th largest eigenvalue
at least λk(p∅), proving Theorem 12.14.

It is quite amazing that the method of interlacing family reduces the restricted invertibility problem
to a pure mathematical problem of bounding the smallest root of a well-known polynomial. So,
the heuristic argument in Section 10.1 can indeed be made precise, using the method of interlacing
family, at least for the restricted invertibility problem.

Question 12.17 (Polynomial Proof for Spectral Sparsi�cation). Can you prove the spectral spar-

si�cation result in Theorem 10.1 by turning the heuristic argument in Section 10.1 into a precise

proof (possibly using the method of interlacing family of polynomials)?

Interlacing Family of Principle Submatrices

Ravichandran's approach is based on the family of characteristic polynomials of principal submatri-
ces of a matrix. Let A ∈ Rn×n be a real symmetric matrix. For 1 ≤ i ≤ n, let A{i} ∈ R(n−1)×(n−1)

be the principal submatrix of A obtained by deleting the i-th row and i-th column of A. Note
that the characteristic polynomials pA{1} , . . . , pA{n} of A{1}, . . . , A{n} have a common interlacing by
Cauchy's interlacing Theorem 2.13. So, by Theorem 12.5,

max
i

{
λmax

(
A{i}

)}
≥ λmax

( m∑
i=1

pA{i}

)
≥ min

i

{
λmax

(
A{i}

)}
.

Ravichandran noted that there is a very nice formula for
∑m

i=1 pA{i} and observed that it can be
used to de�ne an interlacing family of the characteristic polynomials of principal submatrices.

Theorem 12.18 (Thompson's Theorem [Tho66]). Let A ∈ Rn×n be a real symmetric matrix, and

let A{1}, . . . , A{n} be the (n− 1)× (n− 1) principal submatrices of A. Then

m∑
i=1

pA{i} = p′A.
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Theorem 12.19 (Interlacing Family of Principal Submatrices [Rav18]). Let A ∈ Rn×n be a real

symmetric matrix. For S ⊆ [n], let AS be the principal submatrix of A obtained by deleting the rows

and columns of S. For any 0 ≤ k ≤ n, the set of characteristic polynomials {pAS
}|S|=k forms an

interlacing family, with the root polynomial being p
(k)
A (x) which is the k-th derivative of pA(x).

Proof. There are
(
n
k

)
polynomials in this family. We organize them as the leaves of a tree T of depth

k, where each node in T at depth i corresponds to a subset S ⊆ [n] of size i and a principle matrix
AS of size (n − i) × (n − i). The root is at depth 0, and it corresponds to the empty set and the
original matrix A∅ = A. The i-th node at depth 1 corresponds to the singleton subset {i} and the
principal submatrix A{i}. Inductively, given a node of T at depth i which corresponds to a subset
X ⊆ [n] of size i, it has n− i children which correspond to the subsets X ∪{j} for each j ∈ [n] \X.
The tree then has n × (n − 1) × . . . × (n − k + 1) = k! ·

(
n
k

)
leaves, where each subset of size k is

associated with k! leaves of T (one for each permutation).

Next we de�ne the polynomials in the nodes of T . For a leaf node, let S be the corresponding subset
of size k, the polynomial is simply pAS

which is the characteristic polynomial of AS . Inductively,
from the leaves to the root, the polynomial of an internal node of T is de�ned as the sum of the
polynomials of its children.

Now we compute the polynomials in the nodes of T . The leaves at depth k are the base cases. For
a node at depth k − 1, it corresponds to a subset X ⊆ [n] of size k − 1, with the polynomials in its
children being pAX∪{j} for j ∈ [n] \X. By Thompson's Theorem 12.18,∑

j∈[n]\X

pAX∪{j} = p′AX
.

For a node at depth l which corresponds to a subset Y ⊆ [n] of size l, the induction hypothesis is

that the polynomials at its children are p
(k−l−1)
AY ∪{j}

for j ∈ [n] \Y . Then, by Thompson's theorem, the

polynomial at this node is

∑
j∈[n]\Y

p
(k−l−1)
AY ∪{j}

=

( ∑
j∈[n]\Y

pAY ∪{j}

)(k−l−1)
=
(
p′AY

)(k−l−1)
= p

(k−l)
AY

,

proving the induction step. Therefore, for the root node, the polynomial is p
(k)
A as stated.

Finally, we check that these polynomials satisfy the conditions in De�nition 12.10. Property (1) is
satis�ed as the polynomial at a non-leaf node is the sum of the polynomials of its children, which
is the same as the average polynomial up to a scalar which does not change the locations of the
roots. For property (2), �rst we consider the case that the non-leaf node is at depth k− 1, then the
polynomials at its children have a common interlacing by Cauchy's interlacing Theorem 2.13, and
thus the second property is satis�ed by Theorem 12.8. Note that common interlacing is preserved
by the di�erential operator ∂x, using the same proof as in Problem 12.9. Therefore, for a node at

depth l which corresponds to a subset Y ⊆ [n] of size l, the polynomials p
(k−l−1)
AY ∪{j}

for j ∈ [n]−Y at its

children have a common interlacing, because pAY ∪{j} for j ∈ [n]− Y have a common interlacing by
Cauchy's interlacing theorem and applying the di�erential operator ∂x at each of these polynomials
(multiple times) preserves the common interlacing property. We conclude that the polynomials at
the leaves form an interlacing family, with the root polynomial being p(k)(A).

As a consequence, the method of interlacing family in Theorem 12.12 implies the following bound.
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Theorem 12.20 (Ravichandran's Theorem [Rav18]). Let A ∈ Rn×n be a real symmetric matrix.

There exists a subset S ⊂ [n] with |S| = k and

λmax(AS) ≤ λmax

(
p
(k)
A

)
.

Ravichandran applies Theorem 12.20 to the restricted invertibility problem in the following way.
Given v1, . . . , vm ∈ Rn with

∑m
i=1 viv

T
i = In, let V ∈ Rn×m be the matrix with the i-th column be

vi. Consider the m×m matrix B = Im − V TV . For a subset S ⊆ [m] with |S| = k, check that

λk

(∑
i∈S

viv
T
i

)
= 1− λmax

(
B[m]\S

)
.

So the restricted invertibility problem is reduced to �nding a subset X of size m − k with small
maximum eigenvalue λmax(BX). Using Theorem 12.20,

max
S:|S|=k

λk

(∑
i∈S

viv
T
i

)
= 1− min

X:|X|=m−k
λmax

(
BX
)
≥ 1−λmax

(
p
(m−k)
B

)
= 1−λmax

(
∂m−kx (x−1)m−nxn

)
,

as the matrix B has eigenvalue 1 with multiplicity m − n and eigenvalue 0 with multiplicity n,
because V TV has the same spectrum as V V T = In by Fact 2.28. Therefore, once again, we have
reduced the bound in the restricted invertibility problem to a pure mathematical problem about
the maximum root of a well-studied polynomial.

Discussions

We end with two concluding remarks. One is that instead of looking up the known results for
the roots of the speci�c polynomial in Exercise 12.16 and ∂m−kx (x − 1)m−nxn in Ravichandran's
approach, we can use the results in Lemma 11.9 and Problem 11.13 from the barrier method to
bound the roots of these polynomials. So, combining the method of interlacing family with the
barrier method would give self-contained proofs of Theorem 12.14.

Another is that the proofs are constructive in that they give polynomial time algorithms to �nd
such a subset. We leave this to the reader to check.
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