
Chapter 11

Spectral Rounding

In the spectral sparsi�cation problem in Chapter 9 and Chapter 10, we are given v1, v2, . . . , vm ∈ Rn,
and the goal is to �nd a �reweighting� s1, . . . , sm with few nonzeros so that

∑m
i=1 siviv

T
i ≈

∑m
i=1 viv

T
i .

In this chapter, we consider the following spectral rounding problem where the goal is to �nd an
�integral reweighting� that approximates the input.

De�nition 11.1 (Spectral Rounding). Given v1, v2, . . . , vm ∈ Rn and scalars x1, . . . , xm ∈ R≥0,
�nd integer scalars z1, . . . , zm ∈ Z≥0 such that

m∑
i=1

xiviv
T
i ≈

m∑
i=1

ziviv
T
i .

More generally, we are also given k linear constraints in a matrix A ∈ Rk×m≥0 and are required to
�nd integer scalars z1, . . . , zm ∈ Z≥0 that also satis�es

A~x ≈ A~z.

Note that there is no requirement on the number of nonzeros in ~z as in the spectral sparsi�cation
problem, rather the requirement is on the integrality of ~z.

The motivation of this problem is from designing approximation algorithms for some discrete op-
timization problems, where we should think of ~x as an optimal fractional solution to some convex
relaxation of a combinatorial problem, and our goal is to �nd an integer solution ~z that is almost as
good as ~x. The additional linear constraints can be used to incorporate the objective value of the
solutions, and/or some other constraints such as upper and lower bound on the size of the solutions.
We will see two concrete applications in the next section.

This problem in its strongest form is as general as the Kadison-Singer problem that we will study
in the second part of the course. In this chapter, we consider a simpler setting where the two-sided
approximation requirement is replaced by a one-sided approximation requirement. The main result
that we will study is by Allen-Zhu, Li, Singh and Wang [ALSW17], who formulated the following
minimum eigenvalue problem and used it to design approximation algorithms for experimental
design problems.

Theorem 11.2 (Minimum Eigenvalue Problem [ALSW17]). Given v1, . . . , vm ∈ Rn and scalars
x1, . . . , xm ∈ R≥0 satisfying

m∑
i=1

xiviv
T
i = In and

m∑
i=1

xi = k,
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there is a polynomial time algorithm to �nd integer scalars z1, . . . , zm ∈ Z≥0 satisfying

m∑
i=1

ziviv
T
i <

(
1−

√
n− 1

k

)2

· In and
m∑
i=1

zi = k.

To see its connection to the spectral rounding problem in De�nition 11.1, �rst we apply the same
reduction as in Lemma 9.11 to reduce to the case when

∑m
i=1 xiviv

T
i = In. Then the two-sided

approximation requirement in De�nition 11.1 becomes (1 − ε)In 4
∑m

i=1 ziviv
T
i 4 (1 + ε)In for

an ε as small as possible. In Theorem 11.2, the two-sided requirement is replaced by the one-
sided requirement

∑m
i=1 ziviv

T
i < (1− ε)In. And there is one linear �cardinality/budget� constraint∑m

i=1 xi ≈
∑m

i=1 zi to satisfy, without which the problem is trivial.

The proof of Theorem 11.2 in [ALSW17] is based on the regret minimization framework developed
for spectral sparsi�cation by Allen-Zhu, Liao, and Orecchia [ALO15]. It will take quite some time to
introduce this framework properly and we will not do so, but we will brie�y describe their framework
at the end of this chapter.

Instead, we will present a new proof of Theorem 11.2, following the (informal) polynomial perspec-
tive for spectral sparsi�cation from [BSS14] that we described in the beginning of Chapter 10. I
hope this proof serves better as a bridge to connect to the second part of the course, starting next
chapter.

11.1 Applications

Before we see the proof, let's �rst see some applications of Theorem 11.2, which is useful in designing
approximation algorithms for choosing a good subset of points/vectors/edges.

Experimental Design

In experimental design problems, we are given vectors v1, . . . , vm ∈ Rn and a parameter k ≥ n, and
the goal is to choose a (multi-)subset S of k vectors so that

∑
i∈S viv

T
i optimizes some objective

function. The most popular and well-studied objective functions are:

� D-design: Maximizing
(
det
(∑

i∈S viv
T
i

)) 1
n .

� A-design: Minimizing Tr
((∑

i∈S viv
T
i

)−1)
.

� E-design: Maximizing λmin

(∑
i∈S viv

T
i

)
.

These problems of choosing a representative subset of vectors have a wide range of applications
(see [ALSW21, LZ21]), but these are all NP-hard. To design approximation algorithms, we consider
the following natural convex programming relaxations for D/A/E-design.

max

(
det
( n∑
i=1

xi · vivTi
)) 1

n
/

min Tr
( n∑
i=1

xi · vivTi
)−1 /

max λmin

( n∑
i=1

xi · vivTi
)

s.t.
m∑
i=1

xi ≤ k.

xi ≥ 0, for 1 ≤ i ≤ n.
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After we computed an approximately optimal solution x in polynomial time, we can apply the
transformation as in Lemma 9.11 to reduce to the case where

∑m
i=1 xiviv

T
i = In. Then we can

apply Theorem 11.2 to obtain an integral solution z, and then apply the reverse transformation in
Lemma 9.11 to see that z has the following performance guarantee.

Problem 11.3 (Experimental Design). Prove that Theorem 11.2 can be used to obtain a (1 ± ε)-
approximation algorithm for D/A/E-design when k & n/ε2.

This approach is used in [ALSW21, LZ21] to provide a unifying algorithmic framework for designing
the best known approximation algorithms for a large class of experimental design problems. We
will discuss some ideas of these work in the end of this chapter.

Network Design

The general setting of network design is to �nd a minimum cost subgraph satisfying certain re-
quirements. The most well-studied problem is the survivable network design problem, where the
requirement is to have at least a speci�ed number fu,v of edge-disjoint paths between every pair of
vertices u, v. Linear programming is the default approach in designing approximation algorithms
for network design problems. It is observed in [LZ20] that spectral techniques can also be used for
survivable network design problems, as well as to incorporate additional spectral constraints. For
example, consider the following convex relaxation:

min
x

∑
e∈E

cexe∑
e∈δ(S)

xe ≥ max
u∈S,v /∈S

{
fu,v

}
∀S ⊆ V (connectivity constraints)

λ2(Lx) ≥ λ (algebraic connectivity constraint)

0 ≤ xe ≤ 1 ∀e ∈ E (capacity constraints)

where ce is the given cost of an edge e ∈ E, and Lx is the Laplacian matrix where each edge e has
weight xe. The algebraic connectivity constraint can be used to lower bound the edge expansion of
the solution.

Exercise 11.4 (Second Laplacian Eigenvalue and Edge Expansion). Let G = (V,E) be an undirected
graph. Prove that

λ2(LG) ≤ 2 min
0≤|S|≤|V |/2

|δ(S)|
|S|

.

Without the algebraic connectivity constraint, the above is a linear program and there is an elegant
iterative rounding 2-approximation algorithm by Jain to solve the problem. With the algebraic con-
nectivity constraint, the above becomes a convex program and it was not known how to handle both
connectivity constraints and the algebraic connectivity constraint simultaneously. The observation
in [LZ20] is that the one-sided spectral rounding result in Theorem 11.2 can be adapted to design
an approximation algorithm for this problem.

Exercise 11.5 (Spectral Rounding for Network Design). Let x ∈ [0, 1]m be a fractional solution
to the above convex program and Lx be its Laplacian matrix. Show that if z ∈ {0, 1}m is an
integral solution satisfying Lz < Lx, then z satis�es the connectivity constraints and the algebraic
connectivity constraint simultaneously.
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In [LZ20], Theorem 11.2 is extended to �nd z ∈ {0, 1}m satisfying Lz < Lx with∑
e∈E

ceze ≤ (1 +O(ε)) ·
∑
e∈E

cexe +O
(n · cmax

ε

)
for any 0 < ε < 1/4, where cmax := maxe∈E{ce} is the maximum cost of an edge. This spectral
rounding approach enlarges the set of constraints that one could handle in designing approximation
algorithms for network design problems. We will discuss some technical ideas in the end of this
chapter.

11.2 Barrier Method with Polynomials

The goal of this section is to present a proof of Theorem 11.2 using the polynomial perspective
from [BSS14]. First, we will rephrase the barrier functions in De�nition 10.3 in terms of polynomials.
Then, we will present the plan following the intuition in the beginning of Chapter 10. Finally, we
will proceed with the analysis and introduce some ideas about interlacing polynomials.

Soft-Max and Soft-Min of Polynomials

Recall the φ-soft-max and φ-soft-min in De�nition 10.5 using the barrier functions in De�nition 10.3.
The strategy in the deterministic greedy Algorithm 7 in Chapter 10 is to �x φu, φl and then prove
that φu- max(At) ≤ φu- max(At−1) + δu and φl- min(At) ≥ φl- min(At−1) + δl for all t ≥ 1.

There are natural interpretations of the barrier functions from the polynomial perspective.

Remark 11.6 (Soft-Max and Soft-Min of Polynomials). Let pA(y) = det(yI −A) be the character-
istic polynomial of A. Note that

φ- max(pA) := φ- max(A) = max

{
u
∣∣∣ ΦA(u) =

p′A(u)

pA(u)
= φ

}
= λmax

(
pA −

1

φ
p′A

)
and

φ- min(pA) := φ- min(A) = min

{
l
∣∣∣ ΦA(l) = −

p′A(l)

pA(l)
= φ

}
= λmin

(
pA +

1

φ
p′A

)
.

So, using the φ-soft-min to lower bound λmin(p) can be understood as using the minimum root a
related polynomial p+ 1

φp
′ to lower bound λmin(p). Actually, slightly more can be said.

Exercise 11.7 (Soft-Min). Let A be a real symmetric matrix. Show that λmin(pA) ≥ φ- min(pA)+ 1
φ

for any φ > 0.

Proof Plan

Given v1, . . . , vm ∈ Rn and scalars x1, . . . , xm ∈ R≥0 such that
∑m

i=1 xiviv
T
i = In and

∑m
i=1 xi = k,

our goal is to �nd z1, . . . , zm ∈ Z≥0 with
∑m

i=1 zi ≤ k and λmin

(∑m
i=1 ziviv

T
i

)
as large as possible.

Initially, we start with A0 being the n× n zero matrix. In each iteration 1 ≤ t ≤ k, we would like
to �nd a vector v ∈ {v1, . . . , vm} and set At = At−1 + vvT . This will ensure that At =

∑m
i=1 ziviv

T
i

for integers z1, . . . , zm for any t ≥ 0.
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As in Section 10.1, we consider the expected characteristic polynomial when we add a random
vector with probability proportional to xi. The following lemma is by the same calculation as in
Section 10.1.

Exercise 11.8 (Expected Rank-One Update). The expected characteristic polynomial after we add
a vector vi with probability xi/k is

E
[
pA+vvT

]
:=

m∑
i=1

xi
k
· pA+vivTi = pA −

1

k
p′A.

Now, instead of considering the roots of (1− 1
k∂)kxn after k iterations as in Section 10.1, we would

like to use φ- min to show that (i) the �expected progress� after one iteration is good and (ii) there
is a vector v which achieves this expected progress. Concretely, the plan is to prove that there exists
a vector v with

φ- min(pA+vvT ) ≥ φ- min
(
Ex[pA+vvT ]

)
= φ- min

(
pA −

1

k
· p′A

)
≥ φ- min(pA) +

1

k + φ
. (11.1)

The equality is from Exercise 11.8. We will prove the last inequality in the next subsection, and
then the �rst inequality in the subsection after. Assume the two inequalities in Equation 11.1 always
hold. Then, by induction, after k iterations,

λmin(pAk
) ≥ 1

φ
+ φ- min(pAk

) ≥ 1

φ
+ φ- min(pA0) +

k

k + φ
= −n− 1

φ
+

k

k + φ
,

where the �rst inequality is from Exercise 11.7. Some calculations show that choosing

φ =
(n− 1)k√

(n− 1)k − (n− 1)
=⇒ λmin

(∑
i∈S

viv
T
i

)
≥
(

1−
√
n− 1

k

)2

.

This proves Theorem 11.2. It remains to prove the two inequalities in Equation 11.1 in the following
two subsections.

Shifting Lower Barrier

It turns out that the techniques developed for the barrier functions in Chapter 10 can be used to
bound the maximum and minimum root of a real-rooted polynomial as well. The following lemma is
from Lemma 4.3 of [MSS21], proving the last inequality in Equation 11.1. The proof is very similar
to the proofs in Lemma 10.8 and Lemma 10.10 for the lower barrier function, just rephrased in the
language of polynomials.

Lemma 11.9 (Lower Barrier Shift [MSS21]). If p is real-rooted and s, φ > 0, then p − sp′ is real
rooted and

φ- min
(
p− sp′

)
≥ φ- min(p) +

1
1
s + φ

.

Proof. It is well known and we will prove it in the next chapter that p − sp′ is real-rooted if p is.
Let l = φ- min(p) such that l is the minimum value with Φp(l) = φ. Let

δ :=
1

1
s + φ

.
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To prove the lemma, we will prove that (i) l+ δ < λmin(p− sp′) and (ii) Φp−sp′(l+ δ) ≤ φ, and this
would imply that φ- min(p− sp′) ≥ l + δ = φ- min(p) + δ.

For (i), we claim that

λmin(p− sp′) ≥ λmin(p) ≥ φ- min(p) +
1

φ
> l + δ.

The second inequality is from Exercise 11.7 and the third inequality is from the de�nition of δ.
To see the �rst inequality, note that p(y) and −s · p′(y) with s > 0 have the same sign for all
y < λmin(p), and thus any y < λmin(p) cannot be a root of p(y) − s · p′(y), which implies that
λmin(p− sp′) ≥ λmin(p).

For (ii), we write Φp−sp′ in terms of Φp = −p′/p so that

Φp−sp′ = −(p− sp′)′

p− sp′
= −((1 + sΦp)p)

′

(1 + sΦp)p
= −p

′

p
−

sΦ′p
1 + sΦp

= Φp −
Φ′p

1
s + Φp

,

whenever all the quantities are �nite, which happens everywhere except at the roots of p and p−sp′.
Since l + δ is below the roots of p and p− sp′, it follows that

Φp−sp′(l + δ) = Φp(l + δ)−
Φ′p(l + δ)

1
s + Φp(l + δ)

= Φp(l) + (Φp(l + δ)− Φp(l))︸ ︷︷ ︸
loss

−
Φ′p(l + δ)

1
s + Φp(l + δ)︸ ︷︷ ︸

gain

.

Therefore,

Φp−sp′(l + δ) ≤ Φp(l) = φ ⇐⇒ Φp(l + δ)− Φp(l) ≤
Φ′p(l + δ)

1
s + Φp(l + δ)

. (11.2)

As in Lemma 10.10, using convexity of Φp(l) will get us close but not enough; see Remark 11.10. So
we need to work a bit harder as in Lemma 10.10. Using 1

s = 1
δ − φ and rearranging, the condition

in Equation 11.2 is equivalent to(
Φp(1 + δ)− Φp(l)

)2 ≤ Φ′p(l + δ)− 1

δ

(
Φp(1 + δ)− Φp(l)

)
.

This is exactly what Claim 10.11 proved, which completes the proof of (ii) that Φp−sp′(l+δ) ≤ φ.

Remark 11.10 (Convexity Not Enough). Using convexity Φp(l + δ) − Φp(l) ≤ δ · Φ′p(l + δ) in
Exercise 10.4, the condition in Equation 11.2 holds if

δ · Φ′p(l + δ) ≤
Φ′p(l + δ)

1
s + Φp(l + δ)

⇐⇒ δ ≤ 1
1
s + Φp(l + δ)

,

but we cannot conclude that δ being 1/
(
1
s +Φp(l)

)
= 1/

(
1
s +φ

)
su�ces to maintain the nonincreasing

potential. This is the same situation as in Lemma 10.10.

Common Interlacing

Now we would like to prove the �rst inequality in Equation 11.1. In general, given real-rooted
polynomials p1, . . . , pm and a convex combination q :=

∑m
i=1 µipi of them, there may not be any
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useful relations between the roots of p1, . . . , pm and q. For example, q may not have real roots even if
p1, . . . , pm are all real-rooted, so we cannot hope to prove inequalities such as max1≤i≤m{λmin(pi)} ≥
λmin(q). We will discuss more in the next chapter.

An important observation of Marcus, Spielman, and Srivastava is that if p1, . . . , pm have a �common
interlacing�, then we can relate the roots of p1, . . . , pm and the roots of q and prove the inequality
max1≤i≤m{λmin(pi)} ≥ λmin(q) and more. We will introduce interlacing polynomials properly in
the next chapter. After reading the next chapter, it will be a good exercise to prove that the
polynomials

p1 := pA+v1vT1
+

1

φ
p′
A+v1vT1

, . . . , pm := pA+vmvTm +
1

φ
p′A+vmvTm

have a common interlacing, to establish the �rst inequality in Equation 11.1.

Problem 11.11 (Interlacing Property of φ-min). If p1, . . . , pm are real-rooted polynomials that have
a common interlacing, then for any expected polynomial q =

∑m
i=1 µipi with

∑m
i=1 µi = 1 and µi ≥ 0

for 1 ≤ i ≤ m, there exists i ∈ [m] with

φ- min(pi) ≥ φ- min(q).

Assuming Problem 11.11, we have completed the proof of Theorem 11.2 using polynomials.

11.3 Regret Minimization

The original proof of Theorem 11.2 is based on the regret minimization framework developed
in [ALO15]. The general idea in regret minimization is to �nd some distributions of experts that are
almost as good as the best experts. I won't be able to introduce regret minimization properly, but
let me try to give an informal high level idea of the regret minimization framework in the speci�c
setting of spectral rounding.

In the minimum eigenvalue problem in Theorem 11.2, the objective is to �nd a (multi-)subset S
with large λmin

(∑
i∈S viv

T
i

)
, or equivalently a (multi-)subset S such that xT

(∑
i∈S viv

T
i

)
x is large

for all vectors x ∈ Rn on the unit sphere. In this problem, we think of each direction x on the
unit sphere as an expert. In each iteration t, given the current solution At, the regret minimization
framework would maintain a �smart� probability distribution µt on the unit sphere, which puts
higher probability on x if xTAtx is small and a lower probability on x if xTAtx is large. In words,
the probability distribution puts more focus on the directions that the current solution At has not
covered well. The distribution is summarized succinctly by a density matrix Pt =

∫
xxTdµt. This

density matrix guides us naturally to add a vector vt that maximizes the inner product 〈vivTi , Pt〉
to At, to cover the directions that are not covered well. The analysis in the regret minimization
framework proves that if the probability distributions µt are smart, then the �regret�∑

t≥1
〈vtvTt , Pt〉 − min

x∈Rn:‖x‖=1

∑
t≥1
〈vtvTt , xxT 〉

of using Pt over time instead of focusing on the worst directions (or best experts) is small. So, if
we could always �nd a vector vt in each iteration with a large inner product with Pt, which we
can because of the isotropy condition, then we can conclude that

∑
t〈vtvTt , Pt〉 is large and hence

minx
∑

t≥1〈vtvTt , xxT 〉 = minx x
T
(∑

t≥1 vtv
T
t

)
x = λmin

(∑
t≥1 vtv

T
t

)
is also large.
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A versatile and commonly used approach to maintain the distributions is by the multiplicative
weight update method. If we use it for spectral sparsi�cation, then we can recover the O(n log n/ε2)
result by Spielman and Srivastava in Theorem 9.9.

The insight in [ALO15] is that the barrier functions used by Batson, Spielman and Srivastava in
De�nition 10.3 can be interpreted as a new way of updating the probability distributions, by setting
Pt = (φAt− ltI)−2 where At is the current solution and lt is chosen such that Pt < 0 and Tr(Pt) = 1.
This can be integrated into the regret minimization framework to give the following regret bound:

λmin

(
τ∑
t=1

vtv
T
t

)
≥ −2

√
n

φ︸ ︷︷ ︸
initial lower bound

+
τ∑
t=1

〈
vtv

T
t , Pt

〉
1 + φ

〈
vtvTt , P

1/2
t

〉︸ ︷︷ ︸
increase of φ-soft-min

(11.3)

where we should interpret φ as the same parameter in soft-min, the negative term is the initial lower
bound in the barrier method, and each term in the summation as the increase of the φ-soft-min.
Using the isotropy condition

∑m
i=1 viv

T
i = In, it is possible to show that there always exists a vector

with a large increase of φ-soft-min to prove Theorem 11.2.

Local Search

In applications of spectral rounding or the minimum eigenvalue problem, often we are given x ∈
[0, 1]m and we would like to �nd z ∈ {0, 1}m instead of just z ∈ Zm. This is called the �without
repetition� setting, where each vector can be chosen at most once, which is a more general setting
than the �with repetition� setting, where each vector can be chosen more than once. In [ALSW17],
it was shown that the same greedy algorithm can only achieve a constant factor approximation
algorithm, not the (1± ε)-approximation algorithm in Problem 11.3 when k ≥ n/ε2.
An interesting new idea in [ALSW21] is to analyze a local search algorithm, where we start from
an arbitrary subset S0 with k vectors, and in each iteration t ≥ 1 we �nd a pair it−1 ∈ St−1 and
jt−1 /∈ St−1 and set St := St−1 − it−1 + jt−1. This guarantees that each vector is chosen at most
once. They developed the following rank-two update formula for regret minimization:

λmin

(∑
l∈St

vlv
T
l

)
≥ −2

√
n

φ
+

τ∑
t=1

( 〈
vjtv

T
jt
, Pt
〉

1 + 2φ
〈
vjtv

T
jt
, P

1/2
t

〉 − 〈
vitv

T
it
, Pt
〉

1− 2φ
〈
vitv

T
it
, P

1/2
t

〉), (11.4)

and used it to get the same result as in Theorem 11.2 in the more challenging without repetition
setting. It would be interesting to recover this result using the polynomial approach in Section 11.2.
See Problem 11.14 for a possible starting point.

Randomized Local Search

The local search approach in [ALSW21] is extended in [LZ20] to handle linear constraints as de-
scribed in De�nition 11.1. The idea is to randomly choose a vector vit to remove from St−1 with

probability proportional to (1 − xi) ·
(
1 + 2α

〈
vjtv

T
jt
, P

1/2
t

〉)
, where xi is the fractional value of the

i-th vector and the other term is in the denominator in Equation 11.4, and similarly choose a vector

vjt to add to St−1 with probability proportional xj ·
(
1 − 2φ

〈
vitv

T
it
, P

1/2
t

〉)
. Informally, the terms

(1−xi) and xj are to ensure that the linear constraints are approximately preserved, and the terms
from the denominators in Equation 11.4 are to ensure that the minimum eigenvalue is improving.
The proof is by showing that these sums are concentrated around their expected values.
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In [LZ21], it was shown that this randomized local search approach gives the best known algorithms
for experimental design problems, where for D/A-design the randomized local search algorithm
achieves a (1± ε)-approximation when k & n/ε, better than the requirement k & n/ε2 for E-design.

Again, it would be interesting to recover these results using the polynomial approach in Section 11.2.

Two-Sided Spectral Rounding

We will study the two-sided spectral rounding problem in De�nition 11.1 in the second part of the
course.

11.4 Problems

Problem 11.12 (Total E�ective Resistance). Let LG be the Laplcian matrix of a graph G = (V,E).

Recall that Re�G(u, v) = (χu−χv)TL†G(χu−χv) is the e�ective resistance between vertices u, v ∈ V .
Show that |V | · Tr(L†G) = 1

2

∑
u,v∈V Re�G(u, v). Use this fact with Theorem 11.2 to obtain an

approximation algorithm for minimizing the total e�ective resistance subject to the constraint that
the (multi-)subgraph has at most k edges.

Problem 11.13 (Upper Barrier Shift). Prove the following analog of Lemma 11.9 for the upper
barrier function. If p has real roots and s, φ > 0, then p− sp′ is real-rooted and

φ- max
(
p− sp′

)
≤ φ- max(p) +

1
1
s − φ

.

Problem 11.14 (Expected Polynomial After Removal). This problem might be helpful in obtaining
the bound in Theorem 11.2 in the more challenging without repetition setting using the polynomial
approach. Suppose the current solution A has k vectors say v1, . . . , vk ∈ Rn. Show that the expected
characteristic polynomial after removing a uniformly random vector is

E
[
pA−vvT (y)

]
:=

1

k

k∑
i=1

pA−vivTi
(y) =

(
1− n

k

)
· pA(y) +

y

k
· p′A(y).

Question 11.15 (Improved Approximation Ratio when k = n). Is it possible to improve the
Θ(1/n2) minimum eigenvalue bound in Theorem 11.2 when k = n?
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