
Chapter 10

Barrier Method

In Chapter 9, we have seen that spectral sparsi�cation is a stronger notion than cut sparsi�ca-
tion, but this provides a linear algebraic formulation that connects the problem to more general
mathematical phenomenon, which leads to an elegant solution that matches the best known result
in cut sparsi�cation. In this chapter, we will see that this stronger notion even leads to a sur-
prisingly strong solution that goes beyond what was known (or perhaps thought possible) for cut
sparsi�cation. The main theorem that we will study is by Batson, Spielman and Srivastava.

Theorem 10.1 (Linear-Sized Spectral Approximator of Identity Matrix [BSS14]). For any m vec-

tors v1, . . . , vm ∈ Rn satisfying
∑m

i=1 viv
T
i = In, there always exist scalars s1, . . . , sm with at most

dn nonzeros such that

(
1− 1√

d

)2
· In 4

m∑
i=1

siviv
T
i 4

(
1 +

1√
d

)2
· In.

It follows from the reduction in Lemma 9.11 that every graph has a linear-sized spectral sparsi�er.

Theorem 10.2 (Linear-Sized Spectral Sparsi�er [BSS14]). For any edge-weighted undirected graph

G = ([n], E) and any 0 < ε ≤ 1, there is a reweighted subgraph H = ([n], F) on the same vertex set

with at most O(n/ε2) edges such that H is a (1± ε)-spectral approximator of G.

One corollary is that every graph has a (1 ± ε)-cut sparsi�er with at most O(n/ε2) edges, which
improves upon Theorem 9.5 by Benczur and Karger. It is quite remarkable that a harder problem
leads to a stronger solution in a well-studied special case. Up until now, there is no known alternative
way to obtain linear-sized cut sparsi�ers without going through the concept of spectral sparsi�cation.
It is an interesting challenge especially to those who prefer to see combinatorial algorithms to solve
combinatorial problems.

10.1 Deterministic Algorithm and Polynomial Perspective

The approach taken to prove Theorem 10.1 is di�erent from the random sampling approach used in
previous algorithms in Theorem 9.2, Theorem 9.5, and Theorem 9.9. It is a deterministic �greedy�
approach that uses a potential function to guide the algorithm to add one vector at a time.

97

Eigenvalues and Polynomials

Intuition from Characteristic Polynomials

As discussed in [BSS14], the intuition of their approach is from a polynomial perspective to the
problem. Let A ∈ Rn×n be the current partial solution, where A = 0 initially. They considered
the characteristic polynomial pA(x) = det(xI −A) =

∏n
j=1(x− λj) whose roots are the eigenvalues

of A, and studied how it changes after adding one vector. By the matrix determinant formula in
Fact 2.29,

pA+vvT (x) = det(xI −A− vvT) = det(xI −A) ·
(
1− vT (xI −A)−1v

)
= pA(x) ·

(
1−

n∑
j=1

〈v, uj〉2

x− λj

)
.

where λj are the eigenvalues of A and uj are the corresponding orthonormal eigenvectors. Suppose
we add a uniformly random vector v from v1, . . . , vm to A. Then, by the isotropy assumption,

E
[
〈v, uj〉2

]
=

1

m

m∑
i=1

〈vi, uj〉2 =
1

m
· uTj

(m∑
i=1

viv
T
i

)
uj =

‖uj‖2

m
=

1

m
.

This implies that the expected characteristic polynomial is

E
[
pA+vvT (x)

]
= pA(x)

(
1− 1

m

n∑
j=1

1

x− λj

)
= pA(x)− 1

m
∂xpA(x),

as ∂xpA(x)/pA(x) =
∑n

j=1 1/(x− λj). Since we start from A = 0, the initial polynomial is pA(x) =
xn. After t iterations, the expected characteristic polynomial becomes

pt(x) =
(

1− 1

m
∂x

)t
xn.

This generates a standard family of orthogonal polynomials, called the associated Laguerre polyno-
mials, whose roots are known. After t = dn iterations, the ratio of the largest root to the smallest
root of pdn(x) is known to be

d+ 1 + 2
√
d

d+ 1− 2
√
d
,

and this is the ratio of the maximum eigenvalue and the minimum eigenvalue in Theorem 10.1.

This is only a heuristic argument, as there may not be any vector v with its characteristic polynomial
pA+vvT (x) equal to the expected characteristic polynomial. The proof of Theorem 10.1 in [BSS14]
is also not based on this approach, but this foreshadows the polynomial approach that we will study
in the second part of this course.

Algorithm Structure

As discussed in Chapter 9, one advantage of the algebraic formulation for spectral sparsi�cation in
Theorem 9.9 is that we �only� need to keep track of the maximum eigenvalue and the minimum
eigenvalue of the current partial solution, instead of the exponentially many cut values as was done
in the cut sparsi�cation problem. So the general idea is to maintain an upper bound of the maximum
eigenvalue and a lower bound on the minimum eigenvalue of the current partial solution, and to
control how they evolve over time. This will be done using two potential functions Φu and Φl that
we will de�ne and study in the next section.

98

Chapter 10

Assuming the existence of the two potential functions, we �rst describe the structure of the deter-
ministic �greedy� algorithm. Initially, we start from the empty solution A0 = 0, some upper bound
u0 of the maximum eigenvalue of A0, some lower bound l0 of the minimum eigenvalue, so that
the potential values Φu0(A0) ≤ φu and Φl0(A0) ≤ φl for some values φu and φl that will be �xed
throughout the algorithm. In each iteration t, we �nd a vector vi and a scalar s and add s · vivTi
to the current solution so that At+1 ← At + sviv

T
i , and shift the upper bound ut+1 ← ut + δu and

the lower bound lt+1 ← lt + δl by some �xed amount δu and δl to maintain the invariants that
Φut+1(At+1) ≤ φu and Φlt+1(At+1) ≤ φl and also ut+1 and lt+1 are upper and lower bounds of the
maximum eigenvalue and the minimum eigenvalue of At+1 respectively.

Algorithm 7 Deterministic Greedy Algorithm for Spectral Sparsi�cation

Require: Vectors v1, . . . , vm ∈ Rn satisfying
∑m

i=1 viv
T
i = In.

1: Initialization: A0 = 0 and τ = dn.
2: Choose u0, l0, φu, φl so that Φu0(A0) ≤ φu and Φl0(A0) ≤ φl.
3: Choose two parameters δu and δl and set ut = u0 + tδu and lt = l0 + tδl for any t ≥ 1.
4: for 1 ≤ t ≤ τ do
5: Find vector v ∈ {v1, . . . , vm} and scalar s and set At = At−1+s·vvT to maintain the invariants

that Φut(At) ≤ φu and Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt.
6: end for

7: return Aτ .

There are many parameters u0, l0, φu, φl, δu, δl to be chosen, and we will only do so in the end.

10.2 Potential Functions

The magical element in this algorithm is the de�nition of the potential functions, that will make
everything works beautifully. Before we state the potential functions used in [BSS14], let us discuss
some natural attempts and see what we need.

Norm of Eigenvalues

A natural �rst attempt is to simply use the maximum eigenvalue and the minimum eigenvalue as
the potential functions (i.e. Φu(At) = λmax(At) and Φl(At) = λmin(At)), and then inductively prove
that λmax(At) ≤ λmax(At−1) + δu and λmin(At) ≤ λmin(At−1) + δl. This way of measuring progress
does not work well for this problem, as the matrix At is n-dimensional, and just focusing on the
maximum direction cannot distinguish between the case where every direction is large or where one
direction is large and all other orthogonal directions are small. Ideally, we hope to say something
such as after n iterations, every direction is increased by one unit. To prove it inductively, we would
need a potential function to let us argue that the maximum direction is increased by 1/n unit per
edge on average, but the maximum eigenvalue is not such a smooth/robust quantity for this.

By the above discussion, we would like to have a more global quantity that will take into considera-
tion of all directions. One possible parameter of this kind is 1

n Tr(A), which is the average eigenvalue
of the current solution. For this, we can easily argue that the average eigenvalue increases smoothly,
but the problem is that we cannot conclude that the maximum eigenvalue is small by using that
the average eigenvalue is small.

99

Eigenvalues and Polynomials

So, we would like to have a more global quantity that is smooth enough to measure the progress made
in each iteration, and also that the maximum eigenvalue is small when this quantity is small. Let ~λ =(
λ1(A), λ2(A), . . . , λn(A)

)
be the spectrum of the current solution. Note that λmax(A) := ‖~λ‖∞ is

the in�nity norm of the spectrum, while Tr(A) := ‖~λ‖1 is the 1-norm of the spectrum. Interpolating

between these two extremes, we may consider the quantity
(

1
n

∑n
i=1 λ

p
i

)1/p
= n−1/p · ‖λ‖p. We know

that setting p ≈ log n would approximate ‖~λ‖∞ well, but the p-norm may not be so convenient for
calculations. In convex optimization, there is a softmax function that is de�ned as log

∑n
i=1 exp(λi),

which is known to be convex and di�erentiable and approximates the maximum well. In our setting,
the softmax function can be nicely written as log Tr(eA), where eA :=

∑∞
k=0

1
k!X

k is the matrix
exponential of A. So this seems to be a good potential function to be used for spectral sparsi�cation,
and indeed this function is used in the proof of the matrix Cherno� bound. I think this function can
be used in Algorithm 7 to give a deterministic algorithm with the same guarantee as the random
sampling algorithm by Spielman and Srivastava in Theorem 9.9 (please see [dCSHS16]), but it is
not enough for linear-sized spectral sparsi�cation.

Barrier Functions

Batson, Spielman, and Srivastava mentioned in [BSS14] that the de�nition of their potential func-
tions is inspired by the calculation of the expected characteristic polynomial in Section 10.1.

De�nition 10.3 (Barrier Functions). Given u, l ∈ R and a real symmetric matrix A ∈ Rn×n with

eigenvalues λ1, . . . , λn, the upper barrier function and the lower barrier function are de�ned as

ΦA(u) := Φu(A) := Tr(uIn−A)−1 =

n∑
i=1

1

u− λi
and ΦA(l) := Φl(A) := Tr(A−lIn)−1 =

n∑
i=1

1

λi − l
.

We will use the notations Φu(A) and Φl(A) when we �x u and l and see the barrier functions as a

function of the matrix A, and we will use the notations ΦA(u) and ΦA(l) when we �x A and see the

barrier functions as a function of u or l.

When u > λmax(A) and l < λmin(A), these functions measure how far the eigenvalues of A are from
the barriers u and l, and they blow up as any eigenvalue approaches a barrier. Suppose we could
maintain the invariant that say Φut(A) ≤ 1 for all t. This will ensure that ut is a �comfortable�
upper bound of the maximum eigenvalue, as there could be at most one eigenvalue with value at
least ut − 1, at most two eigenvalues with value at least ut − 2, and so on. This is a more global
quantity that takes all the eigenvalues into consideration, and has the property that it changes
smoothly to measure the progress made in each iteration.

The following properties of the barrier functions are simple but useful. We will see a generalization
in the multivariate setting in the second part of the course.

Exercise 10.4 (Monotonicity and Convexity). Let A ∈ Rn×n be a real symmetric matrix. For any

u > λmax(A) and any δ > 0, the upper barrier function satis�es

ΦA(u) ≥ ΦA(u+ δ) and ΦA(u) + δ ·
(
ΦA(u+ δ)

)′ ≥ ΦA(u+ δ).

For any l + δ < λmin(A) and any δ > 0, the lower barrier function satis�es

ΦA(l) ≤ ΦA(l + δ) and ΦA(l) + δ ·
(
ΦA(l + δ)

)′ ≥ ΦA(l + δ).

100

Chapter 10

The strategy in Algorithm 7 is to ensure that ut is increased slowly while maintaining the invariant
that the potential value Φut(At) is small. More explicitly, we can de�ne a family of �soft� bounds
on the max/min eigenvalue, parameterized by the value of the potential functions.

De�nition 10.5 (φ-Soft-Max and φ-Soft-Min). Given a real symmetric matrix A ∈ Rn×n and a

parameter φ > 0, the φ-max of A and the φ-min of A are de�ned as

φ-max(A) := max{u | ΦA(u) = φ} and φ-min(A) := min{l | ΦA(l) = φ}.

They can be understood as the inverse of the upper and lower barrier functions.

The parameter φ can be thought of as a sensitivity parameter, which controls the tradeo� between
how accurate the bound is and how smoothly it varies. The strategy in Algorithm 7 is to �x an φ
and then bound φ- max(At) and prove that φ- max(At) ≤ φ- max(At−1) + δu for all t ≥ 1.

The barrier functions are similar to the log-barrier functions used in the interior point method for
convex optimization.

Remark 10.6 (Log-Barrier Functions). Let pA(x) = det(xI − A) be the characteristic polynomial

of A. Note that

Φx(A) =
∂xpA(x)

pA(x)
= ∂x log

(
pA(x)

)
and Φx(A) = −∂x log

(
pA(x)

)
.

These functions blow up when x is getting close to a root.

10.3 Changes of Potential Values

There are nice formulas to analyze the change of the barrier functions when we add a vector and
do a rank-one update.

Upper Barrier Function

For the upper barrier function Φu(A), adding a vector s ·vvT would increase the potential value, but
increasing the upper bound u would compensate for it to maintain the invariant Φu+δu(A+s·vvT) ≤
Φu(A).

Lemma 10.7 (Upper Barrier Change). Suppose u > λmax(A). For any vector v, if

1

s
≥
vT
(
(u+ δu)I −A

)−2
v

Φu(A)− Φu+δu(A)
+ vT

(
(u+ δu)I −A

)−1
v =: UA(v),

then

Φu+δu
(
A+ s · vvT

)
≤ Φu(A) and λmax

(
A+ s · vvT

)
< u+ δu.

101

Eigenvalues and Polynomials

Proof. Let u′ := u+ δu. By the Sherman-Morrison rank-one update formula in Fact 2.20,

Φu+δu(A+ s · vvT) = Tr
((
u′I −A− s · vvT

)−1)
= Tr

((
u′I −A

)−1
+
s(u′I −A)−1vvT (u′I −A)−1

1− s · vT (u′I −A)−1v

)
= Φu+δu(A) +

s · vT (u′I −A)−2v

1− s · vT (u′I −A)−1v

= Φu(A)−
(
Φu(A)− Φu+δu(A)

)︸ ︷︷ ︸
gain

+
vT (u′I −A)−2v

1/s− vT (u′I −A)−1v︸ ︷︷ ︸
loss

Rearranging shows that Φu+δu
(
A + s · vvT

)
≤ Φu(A) when 1/s ≥ UA(v). This also implies that

λmax(A + s · vvT) ≤ u + δu, as otherwise λmax(A + s′ · vvT) = u + δu for some s′ ≤ s and thus
Φu+δu

(
A+ s′ · vvT

)
=∞, but this contradicts that Φu+δu

(
A+ s′ · vvT

)
≤ Φu(A) is bounded.

Lower Barrier Function

For the lower barrier function Φl(A), adding a vector s ·vvT would decrease the potential value, but
increasing the lower bound l would increase the potential value. Note that there is an additional
condition about the barrier value to ensure that we still have a lower bound on the minimum
eigenvalue.

Lemma 10.8 (Lower Barrier Change). Suppose λmin(A) > l and Φl(A) ≤ 1/δl. For any vector v, if

0 <
1

s
≤
vT
(
A− (l + δl)I

)−2
v

Φl+δl(A)− Φl(A)
− vT

(
A− (l + δl)I

)−1
v =: LA(v),

then

Φl+δl

(
A+ s · vvT

)
≤ Φl(A) and λmin

(
A+ s · vvT

)
> l + δl.

Proof. Note that λmin(A) > l and Φl(A) =
∑n

i=1 1/(λi − l) ≤ 1/δl imply that 1/(λmin − l) < 1/δl
and thus λmin > l + δl. So, λmin(A + s · vvT) ≥ λmin(A) > l + δl. Then, by a similar calculation
using the Sherman-Morrison formula as in Lemma 10.7,

Φl+δl(A+ s · vvT) = Φl(A) +
(
Φl+δl(A)− Φl(A)

)︸ ︷︷ ︸
loss

− vT (A− l′I)−2v
1/s + vT (A− l′I)−1v︸ ︷︷ ︸

gain

.

Rearranging shows that Φl+δl

(
A+ s · vvT

)
≤ Φl(A) when 1/s ≤ LA(v).

10.4 Averaging Argument

We need to prove that there exists a vector v and a scalar s such that both the assumptions in
Lemma 10.7 and Lemma 10.8 hold, so that we can conclude that the invariants Φu+δu

(
A+s ·vvT

)
≤

Φu(A) and λmax

(
A+s ·vvT

)
< u+ δu and Φl+δl

(
A+s ·vvT

)
≤ Φl(A) and λmin

(
A+s ·vvT

)
> l+ δl

in Algorithm 7 hold simultaneously.

102

Chapter 10

The idea in [BSS14] is to prove that
∑m

i=1 LA(vi) ≥
∑m

i=1 UA(vi), and so there exists a vector vi
such that LA(vi) ≥ UA(vi). Therefore, by setting s to be a scalar such that LA(vi) ≥ 1/s ≥ UA(vi),
then both the assumptions in Lemma 10.7 and Lemma 10.8 are satis�ed and thus all the invariants
hold simultaneously for A+ s · vivTi .
The calculations work out quite nicely using the isotropy condition

∑m
i=1 viv

T
i = In.

Upper Barrier Function

Lemma 10.9 (Total Upper Barrier Shift). Given v1, . . . , vm ∈ Rn such that
∑m

i=1 viv
T
i = In,

m∑
i=1

UA(vi) ≤
1

δu
+ Φu(A).

Proof. Using the isotropy assumption
∑m

i=1 viv
T
i = In, it follows that

m∑
i=1

vTi
(
(u+ δu)I −A

)−2
vi =

m∑
i=1

Tr
((

(u+ δu)I −A
)−2

viv
T
i

)
= Tr

((
(u+ δu)I −A

)−2)
,

and similarly

m∑
i=1

vTi
(
(u+ δu)I −A

)−1
vi = Tr

((
(u+ δu)I −A

)−1)
= Φu+δu(A).

By the convexity of the barrier function Φu(A) = ΦA(u) in terms of u in Exercise 10.4, the �gain� is

Φu(A)− Φu+δu(A) = ΦA(u)− ΦA(u+ δu) ≥ −δu ·
(

ΦA(u+ δu)
)′

= δu · Tr
((

(u+ δu)I −A
)−2)

.

Therefore,

m∑
i=1

UA(vi) :=

m∑
i=1

(
vTi
(
(u+ δu)I −A

)−2
vi

Φu(A)− Φu+δu(A)
+ vTi

(
(u+ δu)I −A

)−1
vi

)

=
Tr
(
(u+ δu)I −A

)−2
Φu(A)− Φu+δu(A)

+ Φu+δu(A)

≤ 1

δu
+ Φu(A).

Lower Barrier Function

The calculations for the total lower barrier shift is similar, but is a bit trickier. Note that the
following lemma also requires the assumption that Φl(A) ≤ 1/δl as in Lemma 10.8.

Lemma 10.10 (Total Lower Barrier Shift). Given v1, . . . , vm ∈ Rn such that
∑m

i=1 viv
T
i = In, if

Φl(A) ≤ 1/δl, then
m∑
i=1

LA(vi) ≥
1

δl
− Φl(A).

103

Eigenvalues and Polynomials

Proof. As in the proof of Lemma 10.9, using the isotropy assumption
∑m

i=1 viv
T
i = In,

m∑
i=1

vTi
(
A− (l + δl)I

)−2
vi = Tr

((
A− (l + δl)I

)−2)
and

m∑
i=1

vTi
(
A− (l + δl)I

)−1
vi = Φl+δl(A).

Therefore,

m∑
i=1

LA(vi) :=
m∑
i=1

(
vTi
(
A− (l + δl)I

)−2
vi

Φl+δl(A)− Φl(A)
− vTi

(
A− (l + δl)I

)−1
vi

)

=
Tr
(
A− (l + δl)I

)−2
Φl+δl(A)− Φl(A)

− Φl+δl(A).

Using convexity in Exercise 10.4 as in the proof of Lemma 10.9,

Φl+δl(A)− Φl(A) = ΦA(l + δl)− ΦA(l) ≤ δl ·
(
ΦA(l + δl)

)′
= δl · Tr

(
A− (l + δl)I

)−2
.

This gives
∑m

i=1 LA(vi) ≥ 1
δl
− Φl+δl(A), which is slightly weaker than the statement and is not

enough for the invariants to hold throughout the algorithm. To prove the statement, we need to
work harder and show that

Tr
(
A− (l + δl)I

)−2
Φl+δl(A)− Φl(A)

− Φl+δl(A) ≥ 1

δl
− Φl(A),

which is equivalent to the following claim by rearranging.

Claim 10.11 (Lemma 4.3 of [MSS21]). If Φl(A) ≤ 1/δl, then(
Φl+δl(A)− Φl(A)

)2 ≤ Tr
(
A− (l + δl)I

)−2 − 1

δl

(
Φl+δl(A)− Φl(A)

)
.

Proof. By de�nition of the lower barrier function in De�nition 10.3

(
Φl+δl(A)− Φl(A)

)2
=

(n∑
i=1

1

λi − (l + δl)
− 1

λi − l

)2

=

(n∑
i=1

δl(
λi − (l + δl)

)
· (λi − l)

)2

Using Cauchy-Schwarz inequality and then the assumption δl · Φl(A) ≤ 1, the RHS is

≤
(n∑
i=1

δl
(λi − l)

)(n∑
i=1

δl(
λi − (l + δl)

)2 · (λi − l)
)
≤
(n∑
i=1

δl(
λi − (l + δl)

)2 · (λi − l)
)
.

Check that this is equal to the RHS of the statement of this claim.

The claim completes the proof of this lemma.

Both Barrier Functions

Combining Lemma 10.9 and Lemma 10.10 with the averaging argument in the beginning of this
section, we arrive at the following conditions for the invariants in Algorithm 7 to hold throughout.

104

Chapter 10

Lemma 10.12 (Invariants). Let A0 = 0. If we choose u0 > 0, l0 < 0, φu, φl, δu, δl so that

Φu0(A0) ≤ φu and Φl0(A0) ≤ φl and φl ≤
1

δl
and

1

δl
− φl ≥

1

δu
+ φu,

then Algorithm 7 can always �nd a vector v and a scalar s in each iteration t to maintain the

invariants that Φut(At) ≤ φu and Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt, where

ut = u0 + tδu and lt = l0 + tδl as de�ned in Algorithm 7.

Proof. The proof is by a simple induction. The induction hypothesis is that Φut(At) ≤ φu and
Φlt(At) ≤ φl and λmax(At) ≤ ut and λmin(At) ≥ lt. This holds at t = 0 by our assumptions. For
the induction step, by Lemma 10.9 and Lemma 10.10 and our assumption,

m∑
i=1

UAt(vi) ≤
1

δu
+ Φut(At) ≤

1

δu
+ φu ≤

1

δl
− φl ≤

1

δl
− Φlt(At) ≤

m∑
i=1

LAt(vi).

So there exists some v ∈ {v1, . . . , vm} such that UAt(v) ≤ LAt(v). Let s be a scalar such that
UAt(v) ≤ 1/s ≤ LAt(v). Then, it follows from Lemma 10.7 and Lemma 10.8 that the invariants hold
for t+ 1 with At+1 = At + s · vvT and ut+1 = ut + δu and lt+1 = lt + δl.

Wrapping Up

With Lemma 10.12, it remains to choose u0, l0, φu, φl, δu, δl to prove Theorem 10.1. Batson, Spielman
and Srivastava set

l0 := −
√
dn, u0 :=

(d+
√
d√

d− 1

)
n, φl := Φl0(A0) = −n

l0
=

1√
d
, φu := Φu0(A0) =

n

u0
=

√
d− 1

d+
√
d
,

so that the �rst three conditions in Lemma 10.12 are satis�ed. Then, they set

δl := 1 and δu :=

√
d+ 1√
d− 1

=⇒ 1

δl
− φl =

1

δu
+ φu,

and so the last condition in Lemma 10.12 is also satis�ed. Therefore, after dn iterations of Algo-
rithm 7,

λmax(Adn)

λmin(Adn)
≤ udn
ldn

=
u0 + dn · δu
l0 + dn · δl

=

d+
√
d√

d−1 + d ·
√
d+1√
d−1

−
√
d+ d

=

(√
d+ 1√
d− 1

)2

,

completing the proof of Theorem 10.1.

10.5 Discussions

There are many subsequent work on spectral sparsi�cation and we discuss some of them here.

� Allen-Zhu, Liao, and Orecchia [ALO15] constructed linear-sized spectral sparsi�er using the
regret minimization framework in convex optimization. This provides a more systematic way
to derive the result and a di�erent interpretation of Batson, Spielman, Srivastava's result as
using a di�erent regularizer in the regret minimization framework. Their tools developed are
also more convenient in some applications as we will discuss more in the next chapter.

105

Eigenvalues and Polynomials

� Lee and Sun gave an almost linear time algorithm [LS18] and then a nearly linear time
algorithm [LS17] to construct linear-sized spectral sparsi�ers. Their �rst algorithm in [LS18]
is an adaptive sampling algorithm that is interesting and easy to describe. In the �rst iteration,
the algorithm samples say n0.99 vectors using e�ective resistance as in Theorem 9.9. Then, it
will update the sampling probability using barrier functions, and repeat this process for n0.01

iterations. Their intuition is from balls-and-bins that the maximum load is only a constant
after throwing n0.99 balls to n bins.

� One may wonder whether there are other sampling algorithms for constructing spectral spar-
si�ers. An interesting result by Kyng and Song [KS18] is that the union of log n/ε2 random
spanning trees is an (1± ε)-spectral approximator, and this is tight.

� de Carli Silva, Harvey and Sato [dCSHS16] generalized the result in Theorem 10.1 to spar-
sifying sums of positive semide�nite matrices that have arbitrary rank, with applications in
hypergraph sparsi�cation.

A main open question is if every vector is of the same length (or more generally when every vector
is short), then is there an e�cient algorithm to construct an unweighted sparsi�er? This is closely
related to the Kadison-Singer problem that we will study in the second part of the course.

10.6 References

[ALO15] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsi�cation and
regret minimization beyond matrix multiplicative updates. In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,

OR, USA, June 14-17, 2015, pages 237�245. ACM, 2015. 105, 108, 113, 114

[BSS14] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
si�ers. SIAM Rev., 56(2):315�334, 2014. 97, 98, 99, 100, 103, 108, 110

[dCSHS16] Marcel Kenji de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums
of positive semide�nite matrices. ACM Trans. Algorithms, 12(1):9:1�9:17, 2016. 100,
106

[KS18] Rasmus Kyng and Zhao Song. A matrix cherno� bound for strongly rayleigh distribu-
tions and spectral sparsi�ers from a few random spanning trees. In 59th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October

7-9, 2018, pages 373�384. IEEE Computer Society, 2018. 106

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsi�cation.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 678�687. ACM, 2017. 106

[LS18] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsi�cation in almost-
linear time. SIAM J. Comput., 47(6):2315�2336, 2018. 106

[MSS21] Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families iii:
Sharper restricted invertibility estimates. Israel Journal of Mathematics, pages 1�28,
2021. 104, 111

106

	Barrier Method
	Deterministic Algorithm and Polynomial Perspective
	Potential Functions
	Changes of Potential Values
	Averaging Argument
	Discussions
	References

