
Chapter 9

Spectral Sparsi�cation

In this chapter, we introduce the spectral sparsi�cation problem formulated by Spielman and
Teng [ST11], which is a generalization of the graph sparsi�cation problem formulated by Karger [Kar99].
Then we will see a random sampling algorithm to solve the problem by Spielman and Srivas-
tava [SS11], matching the result for the graph sparsi�cation problem by Benczur and Karger [BK15].

As we will see in later chapters, the study of spectral sparsi�cation has led to major breakthroughs,
and this is a striking example of using linear algebraic techniques to solve combinatorial problems.

9.1 Graph Sparsi�cation

The graph sparsi�cation problem is to �nd a sparse graph which approximates all cut values of a
given graph.

De�nition 9.1 (Cut Approximator [Kar99]). Let G = (V,E) be an undirected graph with a weight

wG(e) on each edge e ∈ E, and H = (V, F ) be an undirected graph on the same vertex set with a

weight wH(e) on each edge e ∈ F . For 0 ≤ ε ≤ 1, we say H is a (1 ± ε)-cut approximator of G if

for all S ⊆ V ,
(1− ε) · wG

(
δG(S)

)
≤ wH

(
δH(S)

)
≤ (1 + ε) · wG

(
δG(S)

)
.

This problem was formulated by Karger [Kar99], and the goal is to �nd a sparse graph H that is a
good cut approximator of the input graph G. Note that this de�nition does not require that H is
a subgraph of G (that is, F ⊆ E), but all constructions that we will see satisfy this property which
is useful in some applications.

Uniform Sampling

A �rst example to think about is when G is a complete graph. We know from Chapter 7 that a
random sparse graph H is an expander graph, which is a good approximation to the complete graph.
So it is a natural strategy to construct a sparsi�er H by sampling a uniform random subgraph of
G. Karger considered the following simple uniform random sampling algorithm, where the idea is
that the expected weight of each edge e in H is the same as the weight of e in G.
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Algorithm 5 Uniform Sampling Algorithm for Graph Sparsi�cation

Require: An unweighted undirected graph G = (V,E).
1: Set a sampling probability p. For each e ∈ E, with probability p, add e in F with weight 1/p.
2: return H = (V, F ).

Karger proved that the uniform sampling algorithm would work to sparsify the input graph G when
the minimum cut value of G is Ω(log n).

Theorem 9.2 (Uniform Sampling for Graph Sparsi�cation [Kar99]). Let G = (V,E) be an un-

weighted undirected graph with V = [n] and minimum cut value c. Set the sampling probability

p = 9 lnn
ε2c

. Then H produced by Algorithm 5 is a (1± ε)-cut approximator of G with O(p · |E|) edges

with probability at least 1− 4
n .

The well-known Cherno� bound is used to analyze the success probability.

Theorem 9.3 (Cherno� Bound for Heterogeneous Coin Flips). Let X1, X2, . . . , Xn be independent

random variables with Xi = 1 with probability pi and Xi = 0 otherwise. Let X =
∑n

i=1Xi and

µ = E [X] =
∑n

i=1 E [Xi] =
∑n

i=1 pi be the expected value of X. Then, for any 0 < δ < 1,

Pr
(
|X − µ| ≥ δµ

)
≤ 2e

−δ2µ/3.

The proof outline of Theorem 9.2 is as follows. With the assumption that the minimum cut value
is Ω(log n), Cherno� bound can be used to show that the probability that wH(δH(S)) is not a
(1± ε)-approximation of wG(δG(S)) for a particular subset S ⊆ V is at most 1/poly(n). While this
probability is quite small, this is not nearly small enough to apply a union bound on the exponential
number of subsets directly. Karger's observation is that there are only a polynomial number of small
cuts as stated below, and so a more careful union bound based on the cut value can be used to
prove Theorem 9.2.

Proposition 9.4 (Number of Approximate Minimum Cuts). Let G = (V,E) be an unweighted

undirected graph with V = [n] and minimum cut value c. For any α ≥ 1, the number of subsets S
with |δ(S)| ≤ αc is at most nd2αe.

An interesting way to prove Proposition 9.4 is to use Karger's random contraction algorithm for
solving the minimum cut problem. See [Kar99] or L03/L04 of CS761 for proofs of Theorem 9.3 and
Proposition 9.4.

Non-Uniform Sampling

Without the minimum cut assumption, then it is easy to see that the uniform sampling algorithm
could fail. For example, consider the dumbbell graph where there is a bridge connecting two complete
graphs.

In 1996, Benczur and Karger [BK15] designed a very clever non-uniform sampling algorithm, where
the sampling probability pe for each edge e = uv is proportional to the �connectivity� of u and
v. The idea is that edges with low connectivity are in H with higher probability pe and smaller
weight 1/pe because they are crucial and so we basically just keep them (with the right expectation),
while edges with high connectivity are in H with lower probability and larger weight to sparsify the
graph. They de�ned a notion called �strong connectivity� for the non-uniform sampling algorithm
and proved that every graph has a cut approximator with only O(n log n) edges.
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Theorem 9.5 (Benczur-Karger Cut Sparsi�cation [BK15]). For any edge-weighted undirected graph

G = (V,E) and any 0 < ε < 1, there is a reweighted subgraph H = (V, F ) on the same vertex set

with at most O(n logn
ε2

) edges such that H is a (1± ε)-cut approximator of G. Furthermore, H can

be computed in nearly linear time Õ(|E|).

The de�nition of �strong connectivity� is a bit unnatural, and Benczur and Karger conjecured that
it can be replaced by the more natural edge-connectivity between u and v. This conjecture is proved
by Fung, Hariharan, Harvey and Panigrahi in 2011 [FHHP19].

Applications of Graph Sparsi�cations

An important feature of Theorem 9.2 and Theorem 9.5 is that they provide a near-linear time
algorithm to �nd a cut sparsifer, and they become an important primitive in designing fast graph
algorithms. For example, suppose we would like to solve the minimum s-t cut problem in a graph
G. Standard algorithms have their time complexity depending on the number of edges in G, so
when G is dense with Ω(n2) edges the algorithms are quite slow. To design a fast approximation
algorithm, we can �rst use Theorem 9.5 to obtain a (1 ± ε)-cut approximator H of G with only
O(n log n/ε2) edges. Then, we just run the standard algorithms on H to �nd an optimal s-t cut in
H, and it can be shown that this is a (1 + 3ε)-approximate minimum s-t cut in G. More generally,
with these sparsi�cation algorithms, for many graph problems about cuts (e.g. graph conductance),
one could trade a small loss in the optimality of the solutions for a time complexity that is faster
by at least one order of n.

Truly remarkably, Karger [Kar00] used the uniform sampling algorithm in Theorem 9.2 to design a
near-linear time algorithm to solve the minimum cut problem optimally. It is actually crucial that
the sparsi�er is unweighted for this application, so for example the stronger Theorem 9.5 cannot
be used. It took more than 20 years for researchers to �nally �nd a deterministic near-linear time
algorithm for the minimum cut problem [KT19].

9.2 Spectral Sparsi�cation

On their way of designing a near-linear time algorithm for solving Laplacian systems of linear
equations, Spielman and Teng [ST11] de�ned the following stronger notion of spectral sparsi�cation
for Laplacian matrices.

De�nition 9.6 (Spectral Approximator). Let G = (V,E) be a weighted undirected graph and H =
(V, F ) be a weighted undirected graph on the same vertex set. For 0 ≤ ε ≤ 1, we say H is a

(1± ε)-spectral approximator of G if for all x : V → R,

(1− ε) · xTLGx ≤ xTLHx ≤ (1 + ε) · xTLGx,

where LG and LH are the weighted Laplacian matrices of G and H respectively. Equivalently, H is

a (1± ε)-spectral approximator of G if

(1− ε)LG 4 LH 4 (1 + ε)LG.

Exercise 9.7 (Spectrum of Spectral Approximator). Let G and H be weighted undirected graphs

with Laplacian spectrums λ1 ≤ λ2 ≤ . . . ≤ λn and γ1 ≤ γ2 ≤ . . . ≤ γn respectively. Prove that if H
is a (1± ε)-spectral approximator of G, then (1− ε)λi ≤ γi ≤ (1 + ε)λi for every 1 ≤ i ≤ n.
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Again, the goal is to �nd a sparse graph H that is a good spectral approximator of the input
graph G. Their original motivation is to use LH as a �preconditioner� for solving the equations
LG · z = b. Their de�nition is inspired by the result of Benczur and Karger [BK15] and is indeed a
more demanding one.

Lemma 9.8 (Spectral Approximator is Cut Approximator). If H is a (1± ε)-spectral approximator

of G, then H is a (1± ε)-cut approximator of G.

Proof. Let S be a subset of vertices and χS be the characteristic vector of S. Then, by Lemma 3.17,

χTSLGχS =
∑

ij∈E(G)

w(i, j)
(
χS(i)− χS(j)

)2
= wG

(
δG(S)

)
,

and similarly χTSLHχS = wH
(
δH(S)

)
. Since H is a (1 ± ε)-spectral approximator of G, it follows

that

(1−ε)·χTSLGχS ≤ χTSLHχS ≤ (1+ε)·χTSLGχS =⇒ (1−ε)·wG
(
δG(S)

)
≤ wH

(
δH(S)

)
≤ (1+ε)·wG

(
δG(S)

)
.

As this holds for any subset S ⊆ V , H is a (1± ε)-cut approximator of G.

Since spectral sparsi�cation is a strictly stronger requirement than cut sparsi�cation, one would
expect that it is a strictly harder problem to solve. Initially, Spielman and Teng [ST11] proved that
there is always a (1± ε)-spectral sparsi�er with O(n polylog(n)/ε2) edges and gave a fast algorithm
for constructing such sparsi�ers. This is enough for their grand goal of designing a nearly-linear
time algorithm for solving Laplacian equations, which has become the engine for a new generation
of fast algorithms for graph problems.

Reduction

In 2008, Spielman and Srivastava [SS11] revisited the spectral sparsi�cation problem and proved
that there is always a (1 ± ε)-spectral approximator with O(n log n/ε2) edges, thus by Lemma 9.8
generalizing the result of Benczur and Karger in Theorem 9.5 for cut sparsi�cation. They reduced
it to the following simpler statement where the objective is to bound only the maximum eigenvalue
and the minimum eigenvalue.

Theorem 9.9 (Sparse Spectral Approximator of Identity Matrix [SS11]). For any m vectors

u1, . . . , um ∈ Rn satisfying
∑m

i=1 uiu
T
i = In, there always exist scalars s1, . . . , sm with at most

O(n logn
ε2

) nonzeros such that

(1− ε)In 4
m∑
i=1

siuiu
T
i 4 (1 + ε)In.

For the reduction, we need the concept of pseudoinverse of a matrix in De�nition 2.23.

De�nition 9.10 (Pseudoinverse of Laplacian Matrix). Let G be a connected graph. Let 0 = λ1 <
λ2 ≤ . . . ≤ λn be the eigenvalues of L(G) and u1, . . . , un be the corresponding eigenvectors. Then the

pseudoinverse of L(G) is L†G =
∑n

i=2
1
λi
uiu

T
i . And the square root of L†G is L

†/2
G =

∑n
i=2

1√
λi
uiu

T
i
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Lemma 9.11 (Reduction to Identity). Suppose for any m vectors with
∑m

i=1 viv
T
i = In there are

always scalars with at most O(n log n/ε2) nonzeros such that (1 − ε)In 4
∑m

i=1 siviv
T
i 4 (1 + ε)In.

Then for any graph G = (V,E) with n vertices and m edges, there is always a graph H with

O(n log n/ε2) edges such that H is a (1± ε)-spectral approximator of G.

Proof. We assume without loss of generality that G is a connected graph. Let LG =
∑

e∈E beb
T
e be

the Laplacian matrix of G as written in De�nition 3.15. De�ne ve = UTL
†/2
G be where L

†/2
G is from

De�nition 9.10 and U is the n× (n− 1) matrix where the i-th column is the (i+ 1)-th eigenvector
ui+1 of L(G) for 1 ≤ i ≤ n− 1. Then

∑
e∈E

vev
T
e =

∑
e∈E

UTL
†/2
G beb

T
e L
†/2
G U = UTL

†/2
G LGL

†/2
G U = UT

( n∑
i=2

uiu
T
i

)
U = In−1.

By assumption, there are scalars s1, . . . , sm with at most O(n log n/ε2) nonzeros such that

(1− ε)In−1 4
∑
e∈E

sevev
T
e 4 (1 + ε)In−1.

Multiplying L
1/2
G U on the left and UTL

1/2
G on the right of the above inequalities, then L

1/2
G UUTL

1/2
G =

LG and thus

(1− ε)LG 4
∑
e∈E

sebeb
T
e 4 (1 + ε)LG.

Let H be the graph with weight se on edge e. Then LH =
∑

e∈E sebeb
T
e , and thus H is a (1 ± ε)-

spectral approximator of G with O(n log n/ε2) edges.

Random Sampling Algorithm

Isotropy Condition: We �rst get some intuition about the condition
∑m

i=1 viv
T
i = In. We have

discussed this isotropy condition before in Exercise 5.14 when we studied the higher-order Cheeger's
inequality. When m = n, then v1, . . . , vn must be an orthonormal basis. When m > n, we can think
of v1, . . . , vm as an �overcomplete� basis, as we can write any x ∈ Rn as x = Inx =

(∑m
i=1 viv

T
i

)
x =∑m

i=1〈x, vi〉vi, which has applications in communication theory. Also, as stated in Exercise 5.14, for
any unit vector y ∈ Rn, it holds that

∑m
i=1〈y, vi〉2 = 1. Informally, the vectors are �evenly spread

out� so that the projections of these vectors to any direction y are the same. Given
∑

i=1 viv
T
i = In,

we would like to �nd a small subset of vectors S ⊆ {1, . . . ,m} and some scaling factors so that∑
i∈S siviv

T
i ≈ In, and thus

∑
i∈S si〈y, vi〉2 ≈ 1. So, the subset should still be �evenly spread out�,

with the contribution in each direction about the same.

Idea: As in the cut sparsi�cation case, uniform sampling may not work. For example, if some
vector vj has ‖vj‖ = 1, then we must include vj in the solution, as otherwise that direction will
not be covered in the solution and so it won't be a spectral sparsi�er. The analogy in the cut
sparsi�cation result is that a cut edge must be included in any cut sparsi�er. So, as in the cut
sparsi�cation case, we need to do non-uniform sampling if we do random sampling.

The idea is similar and very natural. For longer vectors, we should set the sampling probability pe
to be higher because they are crucial and so we basically just keep them. For shorter vectors, we
can a�ord to set the sampling probability pe to be lower and the weight 1/pe to be larger in order
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to reduce the number of vectors. Concretely, we sample each vector vi with probability ‖vi‖22, and
if it is chosen, we set the scalar si = 1

‖vi‖22
, so that the expected contribution is

E
[
siviv

T
i

]
=

viv
T
i

‖vi‖2
· Pr[vi is chosen] =

viv
T
i

‖vi‖2
· ‖vi‖2 = viv

T
i .

Algorithm: The actual algorithm is basically the same, but we need to repeat the experiment
Θ(log n) times and take the average, so that we can prove concentration.

Algorithm 6 Random Sampling Algorithm for Spectral Sparsi�cation

Require: Vectors v1, . . . , vm ∈ Rn satisfying
∑m

i=1 viv
T
i = In.

1: Initialization: ~s← ~0 and τ = 6 lnn
ε2

.
2: for 1 ≤ i ≤ m do

3: for 1 ≤ t ≤ τ do
4: Update si ← si + 1

τpi
with probability pi = ‖vi‖22.

5: end for

6: end for

7: return
∑m

i=1 siviv
T
i .

There are two steps in the analysis. One is to show that there are O(n log n/ε2) non-zero scalars.
Another is to show that the returned solution is a (1 ± ε)-spectral approximator to the identity
matrix.

Expectation

We bound the number of non-zero scalars by computing its expected value and using Markov's
inequality. The sampling probability is used to bound the expected value.

Lemma 9.12 (Number of Nonzeros). Let ~s be the output of Algorithm 6 and S = supp(~s) be the

set of vectors with non-zero scalars. Then |S| = O(n log n/ε2) with probability at least 0.9.

Proof. The expected value is

E [|S|] =

m∑
i=1

Pr[i ∈ S] =

m∑
i=1

(
1− (1− pi)τ

)
≤

m∑
i=1

(
1− (1− τpi)

)
= τ

m∑
i=1

pi,

where τ = 6 lnn
ε2

as de�ned in Algorithm 6. Note that

m∑
i=1

pi =
m∑
i=1

‖vi‖22 =
m∑
i=1

vTi vi =

m∑
i=1

Tr(vTi vi) =
m∑
i=1

Tr(viv
T
i ) = Tr

( m∑
i=1

viv
T
i

)
= Tr(In) = n,

where we used Tr(AB) = Tr(BA) in Fact 2.34. Therefore, E [|S|] ≤ τ
∑m

i=1 pi = τn = 6n lnn/ε2,
and the result follows from Markov's inequality that Pr

[
|S| ≥ 10E [|S|]

]
≤ 1/10.
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Matrix Cherno� Bound

There is an elegant generalization of the Cherno�-Hoe�ding bound to the matrix setting. The proof
uses the Golden-Thompson inequality in Fact 2.36.

Theorem 9.13 (Matrix Cherno� Bound [Tro12]). Let X1, . . . , Xk be independent, n× n real sym-

metric matrices with 0 4 X 4 rI. Suppose µmin · In 4
∑k

i=1 E [Xi] 4 µmax · In. Then, for any

0 ≤ ε ≤ 1,

Pr

[
λmax

( k∑
i=1

Xi

)
≥ (1+ε)µmax

]
≤ ne−

ε2µmax
3r and Pr

[
λmin

( k∑
i=1

Xi

)
≤ (1−ε)µmin

]
≤ ne−

ε2µmax
2r .

Note that it is almost an exact analog of the Cherno�-Hoe�ding bound in the scalar setting, by using
the maximum eigenvalue and the minimum eigenvalue to measure the �size� of a matrix. Informally,
it says that if we consider the sum of independent random matrices, when each matrix is not too
�big/in�uential�, the sum is concentrated around the expectation in terms of the eigenvalues.

Concentration

The algorithm was designed in a way such that the proof that the solution is a (1 ± ε)-spectral
sparsi�er is a direct application of the matrix Cherno� bound. The reweighting by the sampling
probability is set to ensure that no random variable is too in�uential.

Lemma 9.14 (Success Probability of Spectral Approximation). The output of Algorithm 6 satis�es

(1− ε)In 4
∑m

i=1 siviv
T
i 4 (1 + ε)In with probability at least 1− 2

n .

Proof. The random variables are

Xi,t =

{
viv

T
i

τpi
with probability pi

0 otherwise
,

for vector i in iteration t. The output of the algorithm is Y :=
∑m

i=1

∑τ
t=1Xi,t. The expected

output is

E [Y ] =
m∑
i=1

τ∑
t=1

E [Xi,t] =
m∑
i=1

τ∑
t=1

pi ·
viv

T
i

τpi
=

m∑
i=1

τ∑
t=1

viv
T
i

τ
=

m∑
i=1

viv
T
i = In.

So, the expected output is exactly the identity matrix, with µmax = µmin = 1. To apply the matrix
Cherno� bound in Theorem 9.13, it remains to �nd a bound r so that Xi,t 4 rI. Note that

Xi,t =
viv

T
i

τpi
=

viv
T
i

τ‖vi‖2
=

1

τ

(
vi
‖vi‖

)(
vi
‖vi‖

)T
,

which is a rank-one matrix of a unit vector, and so the maximum eigenvalue is just 1/τ and thus we
can set r = 1/τ . By Theorem 9.13, as τ = 6 lnn

ε2
,

Pr[λmax(Y ) ≥ 1 + ε] ≤ ne−
ε2τ
3 = ne−2 lnn =

1

n
.

The lower tail follows similarly. So, with probability at least 1 − 2
n , we have λmax(Y ) ≤ 1 + ε and

λmin(Y ) ≥ 1− ε, and thus (1− ε)In 4 Y 4 (1 + ε)I, proving that the solution is a (1± ε)-spectral
approximator of the identity matrix.
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Combining Lemma 9.12 and Lemma 9.14 by a union bound, we know that a (1±ε)-spectral approx-
imator of the identity matrix with O(n log n/ε2) vectors exists, and indeed the random sampling
algorithm will succeed with constant probability. This proves Theorem 9.9, and the reduction in
Lemma 9.11 proves the theorem by Spielman and Srivastava that every graph has a (1± ε)-spectral
approximator with O(n log n/ε2) edges.

Discussions

By considering spectral sparsi�cation, there is an elegant and arguably simpler proof of Theorem 9.5
for cut sparsi�cation by Benczur and Karger. In the cut sparsi�cation problem, it was not very clear
that what is the right sampling probability, and the conjecture that edge-connectivity can be used
for sampling was only answered much later [FHHP19]. In the more general spectral sparsi�cation
problem, however, there seems to be only one natural choice for the sampling probability and the
analysis follows directly from the matrix Cherno� bound. This is a great example that a more
general problem can be easier to solve than a special case, where in the special case there seem to
be multiple reasonable approaches while the generalization points to the right approach.

Sampling Probability: For spectral sparsi�cation of graphs, the sampling probability of an edge
e = uv is proportional to

‖ve‖22 = ‖UTL†/2G be‖22 = bTe L
†/2
G UUTL

†/2
G be = bTe L

†
Gbe = Re�G(u, v),

where Re�G(u, v) is the e�ective resistance of the two endpoints u and v in the graph G, when we
view the graph as a resistor network with each edge being a resistor of resistance one. An equivalent
characterization of e�ective resistance is

Re�G(u, v) = min
f :E→R≥0

{∑
e∈E

f(e)2
∣∣∣ f is a unit �ow from u to v

}
.

This quantity can be thought of as an interpolation between the shortest path distance and the
maximum �ow value of a graph. E�ective resistance is known to be closely related to some quantities
in random walks such as the commute time and cover time. Recently, this concept has various
applications in designing fast graph algorithms where spectral sparsi�cation is an excellent example.

Fast Algorithm: Spielman and Srivastava also gave a nearly linear time algorithm to estimate
the e�ective resistances of all edges. The main tools are a nearly linear time algorithm to solve a
Laplacian system of equations (which is a breakthrough result by Spielman and Teng), and also the
dimension reduction result by Johnson and Lindenstrauss in Theorem 8.8. As a consequence, there
is a nearly linear time randomized algorithm for constructing a spectral sparsi�er of a graph, which
is important for designing fast algorithms for other graph problems.

Tight Example: The analysis of the random sampling algorithm is tight. In a complete graph,
the e�ective resistance of every edge is the same. So, the random sampling algorithm on a complete
graph is just the uniform sampling algorithm. A �coupon collector� argument can be used to prove
that random sampling won't work to �nd a cut sparsi�er with o(n log n) edges. It is a good exercise
to work out the details.
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Randomized Linear Algebra: Random sampling and dimension reduction are very useful in
designing fast algorithms for numerical linear algebra problems. We illustrate these ideas in a basic
problem, the least square problem. In the least square problem, we are given an n×d matrix A and
b ∈ Rn, and the objective is to �nd an x ∈ Rd that minimizes ‖Ax− b‖2. We are usually interested
in the case when n� d, so the problem is over-constrained. Exact algorithms require Ω(n poly(d))
time, which is too slow when n is large.

We would like to �nd an approximation algorithm with ‖Ax′ − b‖ ≤ (1 + ε) minx‖Ax − b‖2 in
Õ(nd + poly(dε )) time, which is near linear when n � d. The idea is to use a nearly linear time

algorithm to compress the matrix A into a k × d matrix B = SA with k = poly(dε ), and then solve
the least square problem on minx‖S(Ax−b)‖2 exactly as our approximate solution. The techniques
in spectral sparsi�cation can be used for the compression.

Given A ∈ Rn×d and b ∈ Rn, we �rst reduce the problem to the case when the columns of A
are orthonormal. This is reminiscent to the reduction to the identity matrix in Lemma 9.11, so
that ATA = Id or equivalently

∑n
i=1 aia

T
i = Id where ai is the i-th row of A. Then, we construct

a matrix B by sampling and rescaling each row proportional to its squared length, so that B =∑n
i=1 siaia

T
i ≈ Id with only O(d log d/ε2) nonzero scalars. Therefore, B has O(d log d/ε2) rows,

where each row of B is
√
siai so that (1− ε)ATA 4 BTB 4 (1 + ε)ATA. This is a good �subspace

embedding� as ‖Ax‖22 ≈ ‖Bx‖22 because xTATAx ≈ xTBTBx. All the technique details are similar
to those in spectral sparsi�cation, e.g. using matrix Cherno� bound. The sampling probability is
called the leverage score of a row, a generalization of e�ective resistance.
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