
Chapter 7

Expander Graphs

In this chapter, we �rst de�ne expander graphs and see some of their properties. Then, we study
a deterministic combinatorial construction of expander graphs, called the zig-zag products. Then,
we discuss various interesting and important applications of expander graphs. Most of the material
in this chapter is extracted from the excellent survey by Hoory, Linial, and Wigderson [HLW06].

There are several possible ways to de�ne regular expander graphs.

1. Combinatorically, expander graphs are graphs with very good �connectivity�, e.g. graphs with
good edge expansion or vertex expansion.

2. Probabilistically, expander graphs are graphs in which random walks mix rapidly.

3. Algebraically, expander graphs are graphs with a large spectral gap α1 − α2.

We have already seen in chapter 4 and chapter 6 that these de�nitions are closely related. Cheeger's
inequality in Theorem 4.3 states that a graph has a large spectral gap if and only if its edge expansion
is large. The spectral analysis in Corollary 6.17 and Problem 6.21 show that lazy random walks
mix quickly if and only if the spectral gap is large.

Note that complete graphs are the best expander graphs in each of the above de�nitions, but we are
interested in sparse expander graphs with linear number of edges, that is, d-regular expander graphs
with constant d. In constructions of expander graphs, the spectral de�nition is the most convenient,
and we will use the following stronger spectral de�ntion that also bounds the last eigenvalue.

De�nition 7.1 (Spectral Expanders). Let G be a d-regular graph and let d = α1 ≥ α2 ≥ . . . ≥
αn ≥ −d be the spectrum of its adjacency matrix. We say that G is an (n, d, ε)-graph if it has n
vertices, is d-regular, and with max{α2, |αn|} ≤ εd. The quantity α := max{α2, |αn|} is called the

spectral radius of the graph.

The smaller is the spectral radius, the stronger the graph is as a spectral expander. Probabilistically,
the spectral radius is small if and only if the non-lazy random walks mix rapidly, as shown in
Theorem 6.16. Combinatorically, |αn| is small if and only if there is no nearly bipartite component,
as shown in Theorem 5.4.
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7.1 Properties of Expander Graphs

We collect more combinatorial and probabilistic properties of a spectral expander in this section.

Expander Mixing Lemma

A well-known and useful property of expander graphs is that it behaves as a random d-regular
graph. Consider the number of edges between two subsets S, T of vertices.

De�nition 7.2 (Induced Edges). Given a graph G = (V,E) and S, T ⊆ V , de�ne E(S, T ) :=
{(u, v) | u ∈ S, v ∈ T, uv ∈ E} be the set of ordered pairs where u ∈ S and v ∈ T . Note that an edge

with u ∈ S ∩ T and v ∈ S ∩ T is counted twice, as both (u, v) and (v, u) are in E(S, T ).

In a random graph where every pair of vertices has an edge with probability d
n , we expect that

|E(S, T )| is close to d
n |S||T |. The expander mixing lemma says that in a spectral expander |E(S, T )|

is close to this expectation.

Theorem 7.3 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph with V = [n]. If

the spectral radius of G is α, then for every S ⊆ V and T ⊆ V ,∣∣∣∣∣∣E(S, T )
∣∣− d|S||T |

n

∣∣∣∣ ≤ α√|S||T |.
Proof. First, we write |E(S, T )| as an algebraic expression. Let χS and χT be the characteristic
vectors of S and T , such that χS(i) = 1 if i ∈ S and χS(i) = 0 if i /∈ S. Notice that |E(S, T )| =
χTSAχT , where A is the adjacency matrix of G.

Then, we use eigen-decompositions of χS and χT to relate |E(S, T )| to the eigenvalues of A. Let
v1, . . . , vn be an orthonormal basis of eigenvectors of A. Recall that α1 = d and v1 = 1√

n
~1. Write

χS =
∑n

i=1 aivi and χT =
∑n

i=1 bivi as linear combination of the eigenvectors. So, a1 = 〈χS , v1〉 =
|S|√
n
and b1 = 〈χT , v1〉 = |T |√

n
. Then, by orthonormality of v1, . . . , vn,

∣∣E(S, T )
∣∣ = χTSAχT =

n∑
i=1

αiaibi =
d|S||T |
n

+

n∑
i=2

αiaibi.

Therefore, by the de�nition of spectral radius and an application of the Cauchy-Schwarz inequality,∣∣∣∣∣∣E(S, T )
∣∣− d|S||T |

n

∣∣∣∣ ≤ ∣∣∣∣ n∑
i=2

αiaibi

∣∣∣∣ ≤ α n∑
i=2

|ai||bi| ≤ α‖~a‖2‖~b‖2 = α‖χS‖2‖χT ‖2 = α
√
|S||T |,

where ~a = (a1, . . . , an) and ~b = (b1, . . . , bn).

The following is a consequence of the expander mixing lemma.

Exercise 7.4 (Maximum Independent Set of Spectral Expanders). Let G = (V,E) be a d-regular
graph with V = [n] with spectral radius α. Show that the size of a maximum independent set is at

most αn
d . Conclude that an (n, d, ε)-graph has chromatic number at least 1

ε .
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Converse of Expander Mixing Lemma

Interestingly, Bilu and Linial [BL06] proved a converse of the expander mixing lemma, showing that
it comes close in characterizing the spectral radius of a graph.

Theorem 7.5 (Converse of Expander Mixing Lemma [BL06]). Let G = (V,E) be a d-regular graph
with V = [n]. Suppose that for any subsets S, T ⊆ V with S ∩ T 6= ∅, it holds that∣∣∣∣∣∣E(S, T )

∣∣− d|S||T |
n

∣∣∣∣ ≤ α√|S||T |.
Then all but the largest eigenvalue of A(G) are bounded in absolute value by O

(
α(1 + log d

α)
)
.

The proof of Theorem 7.5 is based on the following linear algebraic lemma.

Lemma 7.6 (Bounding Spectral Radius [BL06]). Let A be an n × n real symmetric matrix such

that the `1-norm of each row of A is at most d, and all diagonal entries of A are with absolute value

O
(
α log( dα) + 1

)
. Suppose that for any two vectors u, v ∈ {0, 1}n with supp(u) ∩ supp(v) = ∅, it

holds that |uTAv| ≤ α‖u‖2‖v‖2. Then the spectral radius of A is O
(
α log( dα) + 1

)
.

The proof of Lemma 7.6 is based on linear programming duality and is not quite intuitive. It would
be very interesting if there is a proof of Theorem 7.5 which is of a similar style of Trevisan's proof
of Cheeger's inequality in Theorem 4.3.

Vertex Expansion

Cheeger's inequality proves that a d-regular spectral expander has large edge expansion. One could
lower bound the vertex expansion of a d-regular graph through edge expansion, but with a factor d
loss. Tanner's theorem proves a much stronger lower bound than that followed from edge expansion.

De�nition 7.7 (Vertex Boundary). Let G = (V,E) be an undirected graph. For S ⊆ V , the open

vertex boundary of S is de�ned as ∂(S) := {v ∈ V −S | ∃u ∈ S with uv ∈ E}, and the closed vertex

boundary of S is de�ned as ∂[S] := S ∪ ∂(S).

De�nition 7.8 (Vertex Expansion). Let G = (V,E) be an undirected graph. The vertex expansion

of a subset S ⊆ V and of a graph are de�ned as

ψ(S) :=
|∂(S)|
|S|

and ψ(G) := min
S:|S|≤|V |/2

ψ(S).

Theorem 7.9 (Tanner's Theorem). Let G = (V,E) be a d-regular graph with V = [n]. Suppose the
spectral radius of G is at most εd for some 0 < ε < 1. Then, for any 0 < δ ≤ 1/2, for any subset

S ⊆ V with |S| = δn,

ψ(S) ≥ 1

δ(1− ε2) + ε2
− 1.

Proof. The key is to consider the quantity ‖AχS‖22, where A is the adjacency matrix and χS is the
characteristic vector of S ⊆ V . For a vertex v ∈ V , let degS(v) := |{u ∈ S | uv ∈ E}| be the
number of neighbors of v in S. On one hand,

‖AχS‖22 =
∑
v∈V

degS(v)2 =
∑
v∈∂[S]

degS(v)2 ≥
(∑

v∈∂[S] degS(v)
)2∣∣∂[S]

∣∣ =

(
d|S|

)2∣∣∂[S]
∣∣ .
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On the other hand, we write χS =
∑n

i=1 civi as a linear combination of the orthonormal eigenvectors
of A, with v1 = ~1/

√
n and c1 = 〈χS , v1〉 = |S|/

√
n. Then

‖AχS‖22 =
∥∥∥ n∑
i=1

ciαivi

∥∥∥2
2

=
n∑
i=1

c2iα
2
i ≤

d2|S|2

n
+ (εd)2

(
‖χS‖2 − c21

)
= d2|S|

(
δ + ε2(1− δ)

)
,

where the second equality is by orthonormality of v1, . . . , vn, the inequality is by the assumption
of the spectral radius and

∑n
i=1 c

2
i = ‖χS‖2, and the �nal equality is by plugging in |S| = δn.

Combining the inequalities yields the theorem.

Note that when δ � ε2, Tanner's theorem gives ψ(S) & 1/ε2, which implies that |∂(S)| is much
larger than |S| when |S| is small enough. Check that a straightforward application of Cheeger's
inequality only gives ψ(S) ≥ 1

2(1− ε) for |S| ≤ |V |/2.

Alon-Boppana Bound

How small can the spectral radius be? There are graphs, called Ramanujan graphs, with spectral
radius 2

√
d− 1. This is essentially tight, as the following theorem by Alon and Boppana showed.

Theorem 7.10 (Alon-Boppana Bound). Let G = (V,E) be a d-regular graph and α2 be the second

largest eigenvalue of its adjacency matrix. Then

α2 ≥ 2
√
d− 1− 2

√
d− 1− 1

bdiag(G)/2c
,

where diag(G) denotes the diameter of the graph G.

Note that the theorem implies that if we have an in�nite family of d-regular expander graphs each
has spectral radius at most α, then α ≥ 2

√
d− 1 as the diameter goes to in�nity as the size of the

graph grows.

There are two di�erent proofs of this result. One is by the trace method, which computes the
number of closed walks that starts and ends at some given vertex. Another is by constructing a
function with small Rayleigh quotient. These two methods can also be used to solve Problem 3.10,
which is closely related to the spectral radius of Ramanujan graphs as we will see later in the course.

We will not prove Theorem 7.10 and refer the reader to [HLW06] or Trevisan's blog posts for proofs.
We just present an easy proof that the spectral radius is at least

√
d
(
1− o(1)

)
, using a very simple

trace argument.

Claim 7.11 (Easy Lower Bound on Spectral Radius). Let G = (V,E) be a d-regular graph with

V = [n]. Then its spectral radius α is at least
√
d
√

n−d
n−1 .

Proof. Note that Tr(A2) ≥ nd, as each edge uv contributes one length-two walk from u to u and one
length-two walk from v to v. On the other hand, by Fact 2.35, Tr(A2) =

∑n
i=1 α

2
i ≤ d2 + (n− 1)α2.

Combining the two inequalities gives the claim.
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Random Walks on Expander Graphs

We know from Theorem 6.16 that random walks on a (n, d, ε)-graph converge to the uniform dis-
tribution in O(log n/(1 − ε)) steps. Interestingly, random walks on expander graphs not only give
good randomness properties for the �nal vertex in the walk, but also for the sequence of vertices
traversed in the walk. In some applications, the sequence of vertices of a walk can be used to replace
a sequence of indpendent uniform random variables.

The following result is not of the most general form, but it will be enough for the application
of probability amplication that we will see in section 7.3. See [HLW06, Vad12] for more general
statements. To get an intuition, it is instructive to compare the probability bound below with the
probability bound when each Xi is an independent uniform random sample.

Theorem 7.12 (Concentration Property of RandomWalks on Spectral Expanders). Let G = (V,E)
be a d-regular graph with spectral radius εd for some ε ≤ 1/10. Let B ⊆ V with |B| ≤ 1

100 |V |. Let X0

be a uniform random vertex, and X1, . . . , Xt be the vertices produced by t steps of a random walk.

Let S = {i | Xi ∈ B} be the set of times when the random walk is in B. Then

Pr

(
|S| > t

2

)
≤
(

2√
5

)t+1

.

Proof. We �rst set up the matrix formulation of the problem. Let n = |V |. The initial distribution
p0 = ~1/n of X0 is the uniform distribution. Let χB and χB be the characteristic vectors of B and B
respectively, where B = V −B. Let IB be the diagonal matrix with a 1 in the i-th diagonal entry if
i ∈ B and zero otherwise, and similarly IB. Let p be a probability vector, i.e. p is non-negative and
the sum of its entries is at most one. Then IB · p is the probability vector that is the restriction of
p on B, such that (IB · p)(i) = p(i) if i ∈ B and (IB · p)(i) = 0 if i /∈ B. Check that the probability
the random walk is in B at precisely the time steps in S is

pS := ~1T (IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0,

where Zi = B if i ∈ S and Zi = B if i /∈ S, and A is the normalized adjacency matrix which is the
probability transition matrix of the random walks. We will prove that pS ≤ (15)|S|. The theorem
will then follow by a union bound as

Pr

(
|S| > t

2

)
≤

∑
S:|S|>t/2

pS ≤
∑

S:|S|>t/2

(
1

5

)|S|
≤

∑
S:|S|>t/2

(
1

5

) t+1
2

≤ 2t+1

(
1

5

) t+1
2

=

(
2√
5

)t+1

.

To prove pS ≤ (15)|S|, we use the concept of operator norm in De�nition 2.17. Check that ‖IB‖op =

‖IB‖op = ‖A‖op = 1. We will prove that ‖IBA‖op ≤ 1
5 , and this would imply that pS ≤ (15)|S|

because

pS = ~1T (IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0

≤ ‖~1‖2 ·
∥∥(IZtA)(IZt−1A)(IZt−2A) . . . (IZ2A)(IZ1A)p0

∥∥
2

by Cauchy-Schwarz

≤ ‖~1‖2 ·
( t∏
i=1

‖IZiA‖op
)
· ‖p0‖2 by Fact 2.19

≤ ‖~1‖2 ·
(1

5

)|S|
· ‖p0‖2 as ‖IBA‖op ≤

1

5
and ‖IBA‖op ≤ 1

=
(1

5

)|S|
as ‖1‖2 =

√
n and ‖p0‖2 =

1√
n
.
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It remains to prove that ‖IBA‖op ≤ 1
5 . Let x be any nonzero vector. Write x = c1v1 + . . .+ cnvn,

where v1, . . . , vn are the orthonormal eigenvectors of A with eigenvalues α1 ≥ . . . ≥ αn. Then

‖IBAx‖22 = ‖IBA(c1v1 + . . .+ cnvn)‖22 =

∥∥∥∥IB n∑
i=1

ciαivi

∥∥∥∥2
2

≤ 2‖IBc1α1v1‖22 + 2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2
2

,

where the inequality is by ‖x + y‖22 ≤ 2‖x‖22 + 2‖y‖22. Recall that α1 = 1, v1 = ~1/
√
n and

c1 = 〈x, v1〉 = 1√
n
·
∑n

i=1 x(i). So, the �rst term on the RHS is

2
∥∥IBc1α1v1

∥∥2
2

= 2

∥∥∥∥ 1

n

( n∑
i=1

x(i)
)
IB~1

∥∥∥∥2
2

= 2|B|
(∑n

i=1 x(i)

n

)2

≤ 2|B| · ‖x‖
2
2

n
≤ 1

50
‖x‖22,

where the �rst inequality is by Cauchy-Schwarz and the second inequality is by the assumption that
|B| ≤ n

100 . The second term on the RHS is

2

∥∥∥∥IB n∑
i=2

ciαivi

∥∥∥∥2
2

≤ 2‖IB‖2op ·
∥∥∥∥ n∑
i=2

ciαivi

∥∥∥∥2
2

= 2

n∑
i=2

c2iα
2
i ≤ 2ε2

n∑
i=2

c2i ≤ 2ε2‖x‖22 ≤
1

50
‖x‖22,

where the equality is by orthnormality of v1, . . . , vn, the second inequality is by the assumption
that the spectral radius of the adjacency matrix A is at most εd and so the eigenvalues of A = A/d
satis�es max2≤i≤n{|αi|} ≤ ε, and the last inequality is by the assumption that ε ≤ 1

10 . Combining
the two terms,

‖IBAx‖22 ≤
1

25
‖x‖22 =⇒ ‖IBA‖op ≤

1

5
.

See [Gil98] for a well-known Cherno� bound for spectral expanders, and [GLSS18] for a recent
generalization to the matrix setting. See [CPT21] for an interesting recent paper showing that
many functions are fooled by expander random walks, in that they cannot distinguish independent
random samples from those obtained by expander random walks.

7.2 Constructions of Expander Graphs

It can be shown that a random d-regular graph is an expander graph with high probability using
the combinatorial de�nitions, by standard techniques using Cherno� bound and union bound. It is
a good problem to work out the details; see [HLW06, Vad12] for the precise statements and proofs.

Perhaps surprisingly, while almost every d-regular graph is an expander graph, it is very di�cult
to come up with a deterministic construction of expander graphs. One possible explanation is that
random graphs have high descriptive complexity, while in deterministic constructions the in�nite
family of expander graphs can be described in a succinct way.

There are explicit constructions of d-regular expander graphs, most of them are algebraic construc-
tions.

� A family of 8-regular graphs Gm for every integer m. The vertex set is V = Zm × Zm. The
neighbors of vertex (x, y) is (x, y±x), (x±y, y), (x, y+1±x), (x+1±y, y), where all additions
are mod m. Note that this family is very explicit, meaning that the neighbors of a vertex can
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be computed in O(logm) time, which is very useful for some applications such as probability
ampli�cation as we will see. This construction is due to Margulis whose proof did not give
any explicit bound. Gabber and Galil proved that its spectral radius is at most 5

√
2 < 8.

Their proof uses Fourier analysis; see [HLW06].

� A family of 3-regular p-vertex graph for every prime number p. The vertex set is Zp, and a
vertex is connected to x+ 1, x− 1 and its multiplicative inverse x−1 (for vertex 0 its inverse
is 0), where the additions are mod p. The proof uses some deep results in number theory.

� The main source of explicit deterministic construction is from Cayley graphs, which are graphs
de�ned by groups. Some of the stronger expanders, the Ramanujan graphs with spectral radius
2
√
d− 1, are from Cayley graphs and the proofs require sophisticated mathematical tools.

In the second part of the course, we will see a new way to show the existence of �bipartite� Ramanujan
graphs using combinatorial and probabilistic methods, through interlacing family of polynomials.

In the following, we will study a combinatorial construction of expander graphs, known as the zig-
zag product, whose proof is more elementary and intuitive, although the bound is not as sharp and
the construction is not as explicit.

Combinatorial Constructions

The general idea of the combinatorial constructions is to construct bigger expander graphs from
smaller expander graphs.

The base case could simply be a constant size complete graph. Let G be an (n, k, ε1)-graph and H
be an (k, d, ε2)-graph. A natural product of G and H is to replace each vertex v in G by a copy
of H, so that each edge incident on v is incident on a di�erent vertex of H. This is called the
replacement product of G and H.

De�nition 7.13 (Replacement Product). Let G be a k-regular graph on n vertices and H be a

d-regular graph on k vertices. The replacement product G r H is a graph where the vertex set is the

Cartesian product [n]× [k] of the vertex set of G and H, and two vertices (u, i) and (v, j) have an

edge if and only if (1) u = v and ij ∈ E(H) or (2) vu ∈ E(G) and v is the i-th neighbor of u in G
and u is the j-th neighbor of v in G.

Intuitively, G r H is a combinatorial expander if G and H are combinatorial expanders. Consider
a set S ⊆ V (G r H). If S has either large of small intersection with each �cloud� (copy of H), then
S should have large expansion because of the large expansion of G as S is basically a set of vertices
in G. If S has medium intersections with many clouds, then S should have large expansion because
of the large expansion of H as there are many crossing edges within each such cloud. However, it
is not clear how to make this intuition precise, as there seems to be no clean way to decompose
a subset's contribution into its contribution from G and its contribution from H. In a way, the
spectral proof that we are going to see soon can be thought of as a linear algebraic approach to
carry out this idea in a more general setting.

Zig-Zag Product

The actual construction by Reingold, Vadhan and Wigderson [RVW02] that we will analyze is
slightly more complicated.
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De�nition 7.14 (Zig-Zag Product). Let G be a k-regular graph on n vertices and H be a d-regular
graph on k vertices. The zig-zag product G z H is a graph with the same vertex set [n]× [k] as the
replacement product, and two vertices (u, i) and (v, j) have an edge if and only if u 6= v and there

exists a ∈ [k] such that (u, i)�(u, a), (u, a)�(v, b), and (v, b)�(v, j) are all edges in the replacement

product G r H, where (u, a)�(v, b) is the unique edge incident on (u, a) with v 6= u (i.e. the unique

edge incident on (u, a) that leaves the cloud of u in the replacement product).

In words, each edge in the zig-zag product G z H corresponds to a length three walk in the re-
placement product G r H, where the �rst step is within a cloud, the second step is the unique way
to leave a cloud, and the third step is within the other cloud.

The intuition that the zig-zag product is a spectral expander comes from random walks. Edge edge
in G z H corresponds to a random step in H, a deterministic step in G, and a random step in H.
We should think of the �rst two steps as going to random neighboring cloud, and the third step
corresponds to moving to a random neighbor within the neighboring cloud. Since both G and H are
spectral expanders and thus have the fast mixing property, after not many steps of random walks,
we won't know which cloud we are in and the location within the cloud, and so G z H also has the
fast mixing property and hence a spectral expander.

Theorem 7.15 (Zig-Zag Theorem). Let G be an (n, k, ε1)-graph and H be an (k, d, ε2)-graph. Then
G z H is an (nk, d2, ε1 + ε2 + ε22)-graph.

We will prove the theorem in the next subsection. Let us �rst see how zig-zag product can be used
to construct bigger and bigger constant degree expander graphs. The idea is to combine with the
following standard operation that decreases the spectral radius.

De�nition 7.16 (Graph Power). Let G be a graph with adjacency matrix A. The k-th power Gk

is the graph with the same vertex set as G and with (weighted) adjacency matrix Ak.

In words, the number of parallel edges between u and v in Gk is equal to the number of length k
walks between u and v in G. Note that the spectral radius of Gk has improved signi�cantly, but
the degree of Gk has also improved signi�cantly.

Exercise 7.17 (Spectral Radius of Graph Power). If G is an (n, d, ε)-graph, then Gk is an (n, dk, εk)-
graph.

The idea of the combinatorial construction is to use graph power to decrease the spectral radius,
and then use zig-zag product to decrease the degree while not increasing the spectral radius too
much.

Theorem 7.18 (Expanders from Zig-Zag Product). For large enough constant d, there is an in�nite

family of d2-regular with spectral radius at most 1
4d

2.

Proof. Let H be a (d4, d, 1/16)-graph. We can prove its existence by a probabilistic argument when d
is a large enough constant. Since d is a constant, one can �nd it by an exhaustive search in constant
time.

Using the building block H, we inductively de�ne Gi by G1 = H2 and Gi+1 = G2
i z H. We claim

that Gi is a (d4i, d2, 1/4)-graph for all i ≥ 1. The base case is clearly true by Exercise 7.17. Assume
Gi is a (d4i, d2, 1/4)-graph. Then G2

i is a (d4i, d4, 1/16)-graph by Exercise 7.17. And G2
i z H is a

(d4(i+1), d2, 1/4)-graph by Theorem 7.15.
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Proof of the Zig-Zag Theorem

Check that G z H has nk vertices and is d2-regular. We bound the spectral radius of G z H in
the rest of this subsection.

Matrix Formulation: The �rst step is to write down the walk matrix Z of the zig-zag product
G z H. Let W (H) be the k × k walk matrix of H, which is simply 1

kA(H) where A(H) is the
adjacency matrix of H. Let W be the nk × nk matrix with n copies of WH on the diagonal, which
is the transition matrix of one step of random walk within the clouds in G z H. The steps between
clouds are deterministic: the walk moves from a vertex (u, i) to a unique vertex (v, j) with v 6= u.
The transition matrix for this deterministic step is thus a permutation matrix P with P(u,i),(v,j) = 1
for each inter-cloud edge and zero otherwise. It follows from the de�nition of the zig-zag product
that

Z = WPW.

So the random walk matrix of G z H has a very nice form, which should be the reason for the
de�nition of zig-zag product in De�nition 7.14.

The graph G z H is a regular graph, and so ~1nk is an eigenvector of Z with eigenvalue 1. To prove
the zig-zag product theorem, we will prove that for all f ⊥ ~1nk the Rayleigh quotient

RZ(f) =
|fTZf |
‖f ‖22

≤ ε1 + ε2 + ε22,

and this will imply that the spectral radius of Z is at most ε1+ε2+ε22 by the optimization formulation
of the second eigenvalue in Lemma 2.11 and an analogous formulation for the last eigenvalue.

Vector Decomposition For any f ⊥ ~1nk, we decompose f to two vectors to apply the results in
G and in H. This is where the power of linear algebra comes from, as in the larger domain Rnk
there is a natural way to decompose the vector, while in the combinatorial setting it is not clear
how to decompose a set of vertices in G z H into a set of vertices in G and a set of vertices in H
to apply the expansion properties of G and of H as we discussed before.

De�ne fG as the average of f on clouds, such that fG(u, i) = 1
k

∑k
j=1 f(u, j) for all (u, i) ∈

V (G z H), so that two vertices in the same cloud have the same value in fG. De�ne fH = f − fG.
Note that fH sums to zero in each cloud, such that

∑k
j=1 fH(u, j) = 0 for each u ∈ G. Using

triangle inequality,

|fTZf | = |fTWPWf | = |(fG+fH)TWPW (fG+fH)| ≤ |fTGWPWfG|+2|fTGWPWfH |+|fTHWPWfH |.

Since W (H) · ~1k = ~1k as H is a regular graph, it follows that WfG = fG as vertices in the same
cloud have the same value in fG. Therefore,

|fTZf | ≤ |fTGPfG|+ 2|fTGPWfH |+ |fTHWPWfH |.

We will use the spectral expansion of G to prove |fTGPfG| ≤ ε1‖fG‖22 in Claim 7.21, the spectral
expansion of H to prove |fTHWPWfH | ≤ ε22‖fH ‖22 in Claim 7.19, and a simple argument to bound
2|fTGPWfH | ≤ 2ε2‖fG‖2‖fH ‖2 in Claim 7.20. Assuming these claims, then

|fTZf | ≤ ε1‖fG‖22 + 2ε2‖fG‖2‖fH ‖2 + ε22‖fH ‖22
≤ ε1‖fG‖22 + ε2

(
‖fG‖22 + ‖fH ‖22

)
+ ε22‖fH ‖22

≤ (ε1 + ε2 + ε22)‖f ‖22,
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where the last inequality holds because fG ⊥ fH and so ‖f ‖22 = ‖fG‖22 + ‖fH ‖22 and also ‖fG‖2 ≤
‖f ‖2 and ‖fH ‖2 ≤ ‖f ‖2. This will complete the proof of Theorem 7.15 and so it remains to prove
the three claims.

Spectral Expansion The following claim uses the spectral expansion of H and that fH sums to
zero in each cloud.

Claim 7.19 (Quadratic Term of H). |fTHWPWfH | ≤ ε22‖fH ‖22

Proof. As the spectral radius of W (H) is ε2, we claim that ‖W (H) · x‖2 ≤ ε2‖x‖2 for any x ⊥ ~1k.
To see this, let x =

∑k
i=1 civi where v1, . . . , vn is an orthonormal basis of eigenvectors of W (H)

with eigenvalues α1, . . . , αk. Note that c1 = 0 as v1 = ~1/
√
k and x ⊥ ~1. Then

‖W (H) · x‖22 =

∥∥∥∥W (H) ·
( k∑
i=2

civi

)∥∥∥∥2
2

=

∥∥∥∥ k∑
i=2

ciαivi

∥∥∥∥2
2

=
k∑
i=2

c2iα
2
i ≤ ε22

k∑
i=2

c2i ≤ ε22‖x‖22,

where the �rst inequality is by the spectral radius of W (H). This implies that ‖WfH ‖2 ≤ ε2‖fH ‖
as the sum of the entries in each cloud is zero in fH as we argued earlier. Therefore,

|fTHWPWfH | ≤ ‖WfH ‖2 · ‖PWfH ‖2 = ‖WfH ‖22 ≤ ε22‖fH ‖22,

where the �rst inequality is by Cauchy-Schwarz and the equality is because P is a permutation
matrix.

The second claim is straightforward.

Claim 7.20 (Cross Term). |fTGPWfH | ≤ ε2‖fG‖2‖fH ‖2.

Proof. By Cauchy-Schwarz,

|fTGPWfH | ≤ ‖fG‖2 · ‖PWfH ‖2 = ‖fG‖2 · ‖WfH ‖2 ≤ ε2‖fG‖2‖fH ‖2,

where the last inequality was established in the proof of Claim 7.19.

The �nal claim uses the spectral expansion of G and that f ⊥ ~1nk.

Claim 7.21 (Quadratic Term of G). |fTGPfG| ≤ ε1‖fG‖22.

Proof. The main point is to see that the LHS is equal to a corresponding quadratic form of the walk
matrix of G. To see this, we �contract� each cloud to a single vertex. De�ne g : V (G)→ R as g(v) =√
k · fG(v, i). Note that ‖g‖22 = ‖fG‖22. Note also that fTGPfG = gTW (G)g, where W (G) is the

random walk matrix of G, as each edge (u, i)-(v, j) in G z H contributes fG(u, i)·fG(v, j) to fTGPfG
while the corresponding edge uv ∈ G contributes

(√
kfG(u, i)

)(
1
k

)(√
kfG(v, j)

)
= fG(u, i) · fG(v, j)

to gTWg. Therefore,
fTGPfG
‖fG‖22

=
gTWg

‖g‖2
.

Since f ⊥ ~1, it follows that fG ⊥ ~1 and thus g ⊥ ~1. As G is an (n, k, ε1)-graph, we conclude that

fTGPfG
‖fG‖22

=
gTWg

‖g‖2
≤ ε1.
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This concludes the proof of Theorem 7.15. The idea of decomposing a vector into di�erent compo-
nents is useful in many proofs. We will use it again when we study high dimensional expanders in
the third part of the course.

7.3 Applications of Expander Graphs

We discuss some of the many interesting applications of expander graphs in this section, with
more details on expander codes as they are the basics of the recent breakthroughs in designing
asymptotically good codes that are locally testable [DEL+21, PK21].

Probability Ampli�cation

Suppose we have a randomized algorithm with error probability 1/100 requiring n random bits. To
decrease the failure probability, a standard way is to run the randomized algorithm independently k
times, and then take the majority answer as the output. By a standard Cherno� bound argument,
this decreases the failure probability to δk for some small constant δ. The number of random bits
used is kn.

We show how to achieve exponentially small error probability while using only n+ ck bits where c
is a constant. First, we see the above analysis in a slightly di�erent perspective. Let V be the set
of all n-bit strings. The randomized algorithm has error probability at most 1/100 is equivalent in
saying that among the 2n n-bit strings, at most 2n/100 of them are �bad� strings. Denote this set of
bad strings by B ⊆ V . The standard algorithm of taking the majority answer would fail if and only
if we choose more than k/2 random strings from B, which is highly unlikely as |B| ≤ 1

100 |V |. We
can interpret the standard algorithm as doing a random walk of length k on the complete graph on
V , and use the corresponding bit strings of the vertices X1, . . . , Xk on this walk.

The idea is to replace a random walk on the complete graph on V by a random walk on a constant
degree expander graph on V . Construct a d-regular expander graph G with 2n vertices with spectral
radius εd where d is a constant and ε ≤ 1/100. This can be done, say, by taking a large enough
constant power of a Margulis expander. In the �rst step of the random walk, we use an n-bit
random string, with error probability at most 1/100. In the subsequent steps, instead of using n
random bits to �nd the next n-bit string, we just choose a random neighbor of the current string in
G and use the corresponding string in this random neighbor. Since G is a d-regular graph, we just
need to use dlog2 de random bits to choose a random neighbor in each subsequent step. Thus, the
total number of bits used is n + (k − 1) · dlog2 de. Note that it is important that the neighbors of
a Margulis expander can be computed quickly, so that we can �nd out the corresponding strings in
this random walk quickly.

What is the error probability of this expander walk algorithm? This is exactly what Theorem 7.12
is formulated for, which shows that the error probability of taking the majority answer of a random
walk of length k on a spectral expander with ε ≤ 1/100 is at most (2/

√
5)k.

This is just one example of using expander graphs in derandomization; see [HLW06, Vad12, AB06]
for many more. The expander mixing lemma in Theorem 7.3 is very useful in derandomization.

Constructing E�cient Objects

We can think of a d-regular expander graph as a very e�cient, as it only has a linear number of
edges and it achieves very high connectivity. It should not be surprising that expander graphs are
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useful in constructing e�cient networks.

One interesting example is the construction of superconcentrators, which are directed graphs with n
input nodes and n output nodes, satisfying the strong connectivity property that for any k ≤ n there
are k vertex disjoint paths between any k input nodes and any k output nodes. For instance, the
complete bipartite graph Kn,n satis�es this property, but it has Θ(n2) edges. Valiant conjectured
that there is no superconcentrator with O(n) edges, in an attempt to prove circuit lower bound.
Later, he found a recursive construction of superconcentrator with O(n) edges using expander graphs
as building blocks. See [HLW06] for details.

Superconcentrators and expander graphs can be used to design e�cient algorithms as well. One
application is in designing fast algorithms for computing matrix rank [CKL13], where an expander
graph or a superconcentrator is used to �compress� a rectangular matrix A ∈ Fm×n with n � m
into a square matrix B ∈ Fm×m in linear time such that rank(A) = rank(B) with high probability.

A famous classical example of using expander graphs is to construct optimal sorting networks [AKS83],
with O(n log n) edges and depth O(log n).

Undirected Connectivity in Log-Space

A striking application of the zig-zag product in De�nition 7.14 is to solve the s-t connectivity
problem in an undirected graph in logarithmic space. If we are allow to use randomized algorithms,
then there is a very simple algorithm to solve the s-t connectivity problem in log-space, simply
running a random walk for O(n3) steps would do, as it is well-known that the expected cover time
for any undirected graph is at most O(n3). There is a deterministic algorithm by Savitch that solves
the more general problem of s-t connectivity in directed graphs in O(log2 n) space, by recursively
guessing the midpoint of a directed s-t path. It has been a long standing and important open
problem whether directed s-t connectivity can be solved in log-space. If such an algorithm exists,
then this would imply that NL = L, the complexity classes of non-deterministic log-space problems
and deterministic log-space problems are the same.

Reingold [Rei08] discovered a determinstic O(log n) space algorithm for s-t connectivity in undi-
rected graphs using zig-zag products. Suppose the input graph G is a d-regular expander graph for
a constant d. Then it can be shown that G has diameter O(log n). Then one can enumerate all
paths of length O(log n) in O(log n) space, since each neighbor can be described in dlog2 de space
as we have seen in the probability ampli�cation application above. Reingold's idea is to transform
any graph G into a d-regular expander graph H such that s, t are connected in G if and only if s, t
are connected in H. First, one can reduce G into a d-regular graph with constant d by replacing
each vertex of high degree by a constant degree expander graph (and adding self-loops to each low
degree vertex), similar to what was done in the replacement product in De�nition 7.13. To improve
the expansion, one can construct the graph (G z C)8, where C is a (d, d1/16, 1/2)-graph. Using a
variant of the zig-zag theorem in Theorem 7.15, it is possible to prove that the spectral gap doubles
in the resulting graph. Then, one just needs to repeat this construction O(log n) times to get a
graph H with constant spectral gap, as the initial spectral gap is at least Ω(1/n2) for any connected
undirected graph. Note that the size of H is at most a polynomial factor larger than the size of G,
and s, t are connected in G if and only if s, t are connected in H.

A technical di�culty in carrying out this approach is to compute a neighbor of a vertex in H in
log-space. The hope is that there are only O(log n) recursion levels for the zig-zag construction, and
in each level we only need constant space, as there are only three steps and the degree is constant.
Reingold proved that this can indeed be done; see [Rei08, Vad12] for details.
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Hardness Ampli�cation

Random walks on expander graphs can also be used for hardness ampli�cations, to take instances
that are hard to approximate and construct instances that are even harder to approximate. See
for example Chapter 22 of [AB06] for a simple application of expander random walks in proving
hardness of approximating maximum independent sets.

Dinur [Din07] found an amazing proof of the very important PCP theorem using expander random
walks. Her proof was inspired by Reingold's result, which involves many iterations of �powering� and
�degree reduction�, that makes the underlying constraint satisfaction problem harder and harder to
approximate. See [AB06] for a good exposition of the PCP theorem. This is a great project topic
especially for those who are interested in complexity theory.

Expander Codes

A main motivation for early developments in expander graphs is from coding theory.

A code C ⊆ {0, 1}n of length n is a subset of n-bit strings, where each string in C is called a
codeword. To design a good error correcting code, we would like to choose codewords that are
far from each other so as to correct more errors, but at the same time choose as many codewords
as possible so as to maximize the information rate. This can be thought of as a sphere packing
problem, where the objective is to �t in as many disjoint spheres of a certain radius as possible in
Fn2 .

De�nition 7.22 (Distance of Code). Given C ⊆ {0, 1}n, the distance of C is de�ned as dist(C) :=
minx 6=y∈C dH(x, y), where dH(x, y) is the Hamming distance between two codewords x and y. The

relative distance of C is de�ned as dist(C)/n.

De�nition 7.23 (Rate of Code). Given C ⊆ {0, 1}n, the rate of C is de�ned as log |C|/n, where
log |C| can be thought of as the number of bits of information sent.

De�nition 7.24 (Asymptotically Good Code). A family Cn ∈ {0, 1}n of codes is asymptotically

good if there are constants r > 0 and δ > 0 such that for all n both the relative distance of Cn is at

least δ and the rate of Cn is at least r.

The existence of an asymptotically good code can be proved a standard probabilistic method. For
the codes to be useful in practice, we would also like that encoding and decoding can be done
in polynomial time in n (and ideally linear time in n), but this makes the problem much more
challenging.

A common class of codes is the class of linear codes, where C is a linear subspace of Fn2 . Linear
codes have the advantage that they can be described by a basis and so encoding can be done in
O(n2) time. Also, a simple but useful property of linear codes is that the minimum distance of the
code is equal to the minimum `1-norm of a non-zero codeword, because dH(x, y) = ‖x − y‖1 and
x − y is a codeword. The natural decoding strategy is to �nd the nearest codeword of a received
word, but this is an NP-complete problem even for linear codes.

Low Density Parity Check Codes The idea of constructing codes from graphs was �rst sug-
gested by Gallager, who uses sparse bipartite graphs to design low-density parity check codes (LDPC
codes).
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Let A be a parity check matrix for code C, such that C = {x | Ax = 0} where A ∈ {0, 1}m×n
with m < n. Each row i of A is a parity-check constraint, requiring

∑n
j=1Aij · x(j) = 0 where the

addition is mod 2. Note that the rate of this code is 1− m/n, so we want m/n to be bounded away
from 1.

The matrix A can be viewed as a bipartite graph G = (L,R;E) with L = [n] and R = [m] between
the variables and the constraints, where there is a vertex in L for each variable and a vertex in R
for each constraint, and variable i and constraint j has an edge if and only if Aij = 1. We will see
that good expansion of G yields good LDPC codes.

De�nition 7.25 (Left Small-Set Vertex Expansion). Let G = (L,R;E) be a bipartite graph with

|L| = n and |R| = m and m < n. For any 0 < δ < 1, de�ne the left δ-small-set vertex expansion of

G as

ψLδ (G) := min
S⊆L:|S|≤δn

|∂(S)|
|S|

,

where ∂(S) is the vertex boundary in De�nition 7.7.

Note that ψLδ (G) ≤ k for any k-left-regular bipartite graph G and any δ. Kahale proved that a
Ramanujan graph satis�es ψLδ (G) ≈ 1

2k for some constant δ > 0 and this bound cannot be improved.
In the following, we will need a stronger requirement that ψLδ (G) ≥ 3

4k, which is satis�ed in a random
k-left-regular bipartite graph with high probability. Capalbo, Reingold, Vadhan, Wigderson gave
deterministic constructions of these �lossless expanders� satisfying ψLδ (G) ≥ 0.99k for some δ > 0
and m/n < 0.99 using some variant of the zig-zag product.

First we see that the relative distance of a lossless expander code is a constant. The proof uses the
unique neighbor property of a lossless expander.

Theorem 7.26 (Distance of Expander Code [SS96]). Let G = (L,R;E) be a left k-regular bipartite
graph with ψLδ (G) > 1

2k. Then the parity check code C(G) de�ned by G has relative distance greater

than δ.

Proof. Let S ⊆ L be a subset of left vertices with |S| ≤ δn. Then |∂(S)| > k
2 |S| by the left small-set

vertex expansion assumption of G. A simple counting argument shows that that there exists a
vertex v ∈ ∂(S) ⊆ R with only one neighbor in S. Let us call such a vertex a unique neighbor of S.

To lower bound the minimum distance, recall that it is equivalent to lower bounding the `1-
norm/support-size of a codeword x ∈ {0, 1}n. Let S be the support of x. If |S| ≤ δn, by the
previous paragraph, there exists a unique neighbor v ∈ R of S. This implies that the parity con-
straint on v is not satis�ed by x, and thus x is not a codeword of the parity check code de�ned by
G. Therefore, any codeword of this parity check code must have support size greater than δn, and
thus the minimum distance of this code is greater than δn.

The key feature of the LPDC codes de�ned by expander graphs is that there is a surprisingly simple
and e�cient decoding algorithm.
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Algorithm 4 Flip Algorithm for Expander Code

Require: A parity check matrix A ∈ {0, 1}m×n and a bit string x ∈ {0, 1}n.
1: Let x(0) := x and t = 0.
2: while there is an unsatis�ed parity check constraint do
3: Find a bit i such that �ipping it decreases the number of unsatis�ed parity constraints. That

is, an i ∈ [n] such that
∥∥A(x(t) + χi

)∥∥
1
<
∥∥Ax(t)∥∥

1
, where χi is the characteristic vector of i

and the addition is under arithmetic mod 2. Set x(t+1) := x(t) + χi and t← t+ 1.
4: end while

5: return x(t).

The analysis of the �ip algorithm uses a stronger assumption about the left small-set vertex expan-
sion than than in Theorem 7.26.

Theorem 7.27 (E�cient Decoding of Expander Code [SS96]). Let G = (L,R;E) be a left k-regular
bipartite graph with L = [n] and R = [m] and ψLδ (G) > 3

4k. Let x be an n-bit string whose distance

from a codeword y is at most 1
2δn. Then Algorithm 4 will return y in at most m iterations.

Proof. Let ∆(t) := {i ∈ [n] | x(t)(i) 6= y(i)} be the set of errors at the t-th iteration. The plan
is to argue that as long as distH

(
x(t), y

)
=
∣∣∆(t)

∣∣ ≤ δn, there exists a bit i such that �ipping

it decreases the number of unsatis�ed constraints, and also argue that distH
(
x(t), y

)
≤ δn for all

t if distH
(
x(0), y

)
≤ 1

2δn. These would imply that after at most τ ≤ m iterations, there will

be no unsatis�ed constraints and so x(τ) is a codeword, and thus x(τ) must be equal to y as
distH(x(τ), y) ≤ δn while the distance between y and other codewords is strictly bigger than δn.

For ease of notation, let ∆ := ∆(t) be the set of error at some iteration t. Assume that 0 < |∆| ≤ δn,
we would like to argue that there is a bit i that �ipping it decreases the number of unsatis�ed
constraints. Partition ∂(∆) into the set of satis�ed neighbors ∂+(∆) of ∆ and the set of unsatis�ed
neighbors ∂−(∆) of ∆. On one hand, since |∆| ≤ δn, by the left small-set vertex expansion of ∆,

|∂+(∆)|+ |∂−(∆)| = |∂(∆)| > 3

4
k|∆|.

On the other hand, when we consider the k|∆| number of edges between ∆ and ∂(∆), observe that
each vertex in ∂+(∆) has at least two such edges while each vertex in ∂−(∆) has at least one such
edge, and so

2|∂+(∆)|+ |∂−(∆)| ≤ k|∆|.
Combining these two inequalities gives that |∂−(∆)| > 1

2k|∆|. This implies that there must exist
a vertex i ∈ ∆ with strictly more unsatis�ed neighbors than satis�ed neighbors. Therefore, as
long as |∆| ≤ δn, there must exist a bit i such that �ipping it decreases the number of unsatis�ed
constraints.

To complete the proof, we argue that |∆| ≤ δn in any iteration. Suppose this is not true, then
since |∆| changes by one in each iteration, there is an (earliest) iteration such that |∆| = δn. Then,
by the argument in the previous paragraph, there are strictly more than 1

2k|∆| =
1
2kδn unsatis�ed

constraints in that iteration. However, since |∆(0)| ≤ 1
2δn, the number of unsatis�ed constraints in

the beginning is at most 1
2kδn. This contradicts with the previous paragraph that the number of

unsatis�ed constraints is decreasing when |∆| ≤ δn.

Spielman showed that it is possible to use expander codes to obtain asymptotically good codes that
are linear time encodable and decodable!
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Tanner Codes Tanner code is a generalization of LDPC code in which the �base code� can be
more general than just checking parity. Let C0 ⊆ {0, 1}k be the base code. Let G = (V,E) be a
k-regular graph with V = [n] and E = [m]. The Tanner code is de�ned as C(G) := {y ∈ {0, 1}m |
y|δ(i) ∈ C0 ∀i ∈ [n]}, where y|δ(i) is the vector y restricted on the k edges in δ(i) for a vertex i ∈ V .
That is, each bit y(j) of a codeword is on an edge j ∈ E of G, and a binary string y is a codeword
if y|δ(i) is a codeword of the base code C0 for every vertex i ∈ V of G.

The advantage of using Tanner code is that we could use a stronger base code with larger minimum
distance, rather than just the parity check code with minimum distance only two. With a base
code C0 of minimum distance d0, the requirement on the vertex expansion of G can be relaxed
to k/d0 to achieve the same distance as that of the corresponding LDPC code. In particular,
because of Tanner's theorem in Theorem 7.9, one can simply use a spectral expander as G to design
asymptotically good codes that are linear time encodable and decodable, without using lossless
expanders. The decoding algorithm is still an iterative ��xing� algorithm where we replace an
invalid codeword on a vertex by its nearest codeword. The analysis has a similar �avor that if
the decoding algorithm fails, then one argues that there must be a �denser� subgraph than what is
allowed by the expander mixing lemma.

The recent breakthroughs [DEL+21, PK21] in designing asymptotically good codes that are also
locally testable is a generalization of Tanner codes on 2-dimensional expanders (where graphs are
1-dimensional expanders). Hope we will have some time to discuss it in the third part of the course
when we study high-dimensional expanders.
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