
Chapter 6

Random Walks on Graphs

Given an undirected graph G = (V,E), a random walk is a simple stochastic process where it starts
from a vertex, and in each step the walk moves to a uniformly random neighbor of the current
vertex. Some of the basic mathematical questions about random walks are:

1. (Stationary Distribution:) Is there a limiting distribution of the random walks?

2. (Mixing Time:) How long does it take for the current distribution to be close to the limiting
distribution?

3. (Hitting Time:) Starting from a vertex s, how long does it take to �rst reach a vertex t?

4. (Cover Time:) How long does it take to reach every vertex in the graph at least once?

There are two main approaches to questions (1) and (2). One is probabilistic and uses the idea
of �coupling� two random processes. Another is spectral and uses the eigenvalues of the transition
matrix. We study the spectral approach in this chapter and refer the reader to [Häg02, LPW06] for
the coupling approach.

Questions (3) and (4) are best answered by viewing the graph as an electrical network. This is a
topic that we used to study but probably not in this o�ering. We refer the reader to [DS84, AF02,
LP16, Spi19] for the interesting connection between random walks and electrical networks.

6.1 Markov Chains

In this section, we consider the more general setting of a �nite Markov chain and state the funda-
mental theorem.

A �nite Markov chain is de�ned by a �nite state space and a transition matrix.

De�nition 6.1 (Transition Matrix). Let [n] be the state space. A matrix P ∈ Rn×n is a probability

transition matrix if P is non-negative and
∑

j∈[n] Pi,j = 1 for each i ∈ [n]. For 1 ≤ i, j ≤ n, the
entry Pij is the transition probability from state i to state j.

De�nition 6.2 (Markov Chain). A sequence of random variables (X0, X1, . . .) is a Markov chain

with state space [n] and transition matrix P ∈ Rn×n if for all i, j ∈ [n] and t ≥ 1,

Pr
[
Xt+1 = j | Xt = i ∩Xt−1 = it−1 ∩ . . . ∩X0 = i0

]
= Pr

[
Xt+1 = j | Xt = i

]
= P (i, j).
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The �rst equality is called the Markov property, which states that the transition probability from i to
j is the same regardless of the states X0, . . . , Xt−1 that precedes the current state Xt.

We can simply think of a Markov chain as a random walk on a weighted directed graph G = ([n], w),
where the transition probability from state i to state j is proportional to the edge weight w(i, j)
such that Pi,j = w(i, j)/

∑
j∈[n]w(i, j).

Irreducibility and Aperiodicity

The following are two properties that will imply the existence of a unique limiting distribution.

De�nition 6.3 (Irreducibility). A Markov chain de�ned by transition matrix P ∈ Rn×n is called

irreducible if for any two states i, j, there exists an integer t such that Pr[Xt = j | X0 = i] > 0.

An equivalent de�nition is that the underlying directed graph G = ([n], E) where E(G) := {ij |
Pi,j > 0} of P is strongly connected.

This property is called irreducibility, because if it is not satis�ed then the Markov chain is reducible
to a smaller one for the study of the limiting distribution, as the limiting distribution if exists will
only have support on a strongly connected component.

De�nition 6.4 (Aperiodicity). The period of a state i is de�ned as gcd
{
t | Pr[Xt = i | X0 = i] > 0

}
,

the greatest common divisor of the set of times when it is possible to return to the starting state i.
A state i is called aperiodic if its period is equal to 1. A Markov chain is called aperiodic if all states

are aperiodic; otherwise it is called periodic.

For examples, random walks on an undirected bipartite graph is periodic as every state has period
2, and random walks on a directed cycle of length k > 1 is periodic as every state has period k. In
general, there is no limiting distribution if the Markov chain is periodic.

Irreducibility and aperiodicity together imply the following property that after enough number of
steps, the probability to transit from any state to any other state is positive.

Proposition 6.5 (Reachability). For any �nite, irreducible, and aperiodic Markov chain, there

exists an integer τ <∞ such that Pr[Xt = j | X0 = i] > 0 for all i, j and all t ≥ τ .

The proof uses aperiodicity and a simple number-theoretic argument to prove the statement for all
i = j, and then uses irreducibility to prove the statement for all i 6= j. See [Häg02, LPW06] for a
proof.

Stationary Distribution and Convergence

De�nition 6.6 (Stationary Distribution). For a Markov chain de�ned by transition matrix P ∈
Rn×n, a probability distribution ~π ∈ Rn is a stationary distribution if ~πP = ~π when ~π is represented

as a row vector.

Informally, a stationary distribution ~π is a steady distribution as ~πP t = ~π for any t ≥ 1, and a
limiting distribution if exists is a stationary distribution.

We measure how close are two probability distributions by the total variation distance.
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De�nition 6.7 (Total Variation Distance). Given two probability distributions ~p, ~q ∈ Rn, the total

variation distance of ~p and ~q is de�ned as

dTV(~p, ~q) :=
1

2

n∑
i=1

|p(i)− q(i)| = 1

2
‖~p− ~q‖1.

Consider the Markov chain de�ned by a transition matrix P ∈ Rn×n. Let ~p0 ∈ Rn be an initial
probability distribution on the states. Let ~pt ∈ Rn be the probability distribution ~pt := ~p0P

t after
t steps of random walks. We say that ~pt converges to a probability distribution ~q as t → ∞ if
limt→∞ dTV(~pt, ~q) = 0.

Fundamental Theorem of Markov Chains

One more de�nition before we state the fundamental theorem.

De�nition 6.8 (Hitting Time). For a Markov chain de�ned by transition matrix P ∈ Rn×n, the
hitting time from state i to state j is de�ned as

Hi,j := min{t ≥ 0 | Xt = j,X0 = i}.

The �rst return time to state i is de�ned as H+
i,i := min{t ≥ 1 | Xt = i,X0 = i}.

Given any �nite, irreducible, and aperiodic Markov chain de�ned by P , after we run it long enough,
then it is possible to reach any state from any other state by Proposition 6.5. If two Markov chains
(X1, X2, . . .) and (Y1, Y2, . . .) of P meet at the same state at some time t such that Xt = Yt, then
we cannot distinguish the probability distributions of Xτ and Yτ for τ > t anymore as the Markov
chains forget about the history. By Proposition 6.5, any two Markov chains of P will eventually
meet, and so they will converge to the same distribution as t → ∞, and thus a unique limiting
distribution exists. This is the intuition of the coupling proof of the following fundamental theorem.

Theorem 6.9 (Fundamental Theorem of Markov Chains). Consider the Markov chain de�ned by

a transition matrix P ∈ Rn×n. Let ~p0 ∈ Rn be an initial probability distribution on the states.

Let ~pt ∈ Rn be the probability distribution ~pt := ~p0P
t after t steps. If the Markov chain is �nite,

irreducible, and aperiodic, then the followings hold.

1. There exists a stationary distribution ~π.

2. The distribution ~pt converges to ~π as t→∞, no matter what is the initial distribution ~p0.

3. There is a unique stationary distribution.

4. π(i) = limt→∞(P t)i,i = (E[H+
i,i])
−1, the inverse of the expected �rst return time to i.

We will see a spectral proof of this theorem in the special case of random walks on undirected
graphs. For the general result, see [Häg02] for a probabilistic proof using coupling, [LPW06] for
a probabilistic and algebraic proof, and [HJ13] for a purely algebraic proof related to the Perron-
Frobenius Theorem 2.16.
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6.2 Random Walks on Undirected Graphs

We consider random walks on an unweighted undirected graph G = (V,E) with V = [n], where in
each step the walk moves to a uniformly random neighbor of the current vertex. The fundamental
theorem becomes simpler and easier in this special case, as there are simple characterizations of
irreducibility and aperiodicity and also the limiting distribution.

Matrix Formulation: The transition probability Pij from a vertex i to a vertex j is simply
1/deg(i), and so the transition matrix is P = D−1A where D is the diagonal degree matrix in
De�nition 3.13 and A is the adjacency matrix in De�nition 3.1. Let p0 : V → R be an initial
probability distribution, and pt be the probability distribution after t steps of random walks. By
de�nition, pt+1(i) :=

∑
j:ij∈E pt(j)/ deg(j) for all 1 ≤ i ≤ n. Note that these equations can be

written compactly as pt+1 = P T pt = (AD−1)pt, and by induction pt = (AD−1)tp0. We remark
that it is common to write a probability distribution as a row vector, but in these notes we use the
convention that pt is a column vector.

Stationary Distribution: Recall that a probability distribution π : V → R is a stationary
distribution of P if P Tπ = π. It is equivalent to saying that π is an eigenvector of P T with
eigenvalue 1. Given that P = D−1A for random walks on undirected graphs, it is not di�cult to
identify one such eigenvector.

Lemma 6.10 (Stationary Distribution of Undirected Graphs). Let G = (V,E) be an undirected

graph and P = D−1A be its transition matrix. The distribution π : V → R with

π(i) =
deg(i)∑
j∈V deg(j)

=
deg(i)

2|E|

for all i ∈ V is a stationary distribution of P .

Irreducibility: Is π in Lemma 6.10 the unique stationary distribution? Not necessarily. For
example, if the graph is disconnected, then the distribution after many steps depends on the ini-
tial distribution (e.g. which component does the starting vertex belongs to). This corresponds to
the irreducibility condition in the fundamental theorem. For undirected graphs, the irreducibility
condition is simply equivalent to the condition that the graph is connected.

Aperiodicity: Even if the graph is connected, a limiting distribution may not exist. For example,
in a connected bipartite graph, if the initial distribution p0 is on a single vertex, then the distribution
pt depends on the parity of t, as the support of pt oscillates between the two sides of the bipartite
graph. This corresponds to the aperiodicity condition in the fundamental theorem. For connected
undirected graphs, observe that the aperiodicity condition is equivalent to the condition that the
graph is non-bipartite.

Fundamental Theorem: Given the simple characterizations of the conditions in the fundamental
theorem, it reduces to the following statement for undirected graphs.
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Theorem 6.11 (Fundamental Theorem for Undirected Graphs). Let G be a connected, non-bipartite

undirected graph. Let P = D−1A be the transition matrix of random walks on G. The distribution

π in Lemma 6.10 is the unique stationary distribution. Furthermore, pt := (P T )tp0 converges to π
as t→∞ regardless of the initial distribution p0.

Lazy Random Walks: The non-bipartiteness condition is to ensure that the Markov chain is
aperiodic. There is a simple modi�cation of the random walks so that this assumption can be
removed, by adding self-loops in the graph.

De�nition 6.12 (Lazy Random Walks). Let G be an undirected graph. The transition matrix W
of the lazy random walks is de�ned as W = 1

2I + 1
2D
−1A. In words, the lazy random walks stay at

the current vertex with probability 1/2 and moves to a uniform random neighbor of the current vertex

with probability 1/2.

By doing the lazy random walks, we make the graph non-bipartite and obtain the following corollary
of Theorem 6.11.

Corollary 6.13 (Fundamental Theorem for Lazy Undirected Graphs). Let G be a connected undi-

rected graph. Let W = 1
2I + 1

2D
−1A be the transition matrix of lazy random walks on G. The

distribution π in Lemma 6.10 is the unique stationary distribution. Furthermore, pt := (W T )tp0
converges to π as t→∞ regardless of the initial distribution p0.

It will be clear from the spectral analysis why the constant 1/2 is used.

6.3 Spectral Analysis of Mixing Time for Undirected Graphs

In this section, we will prove the fundamental theorem for undirected graphs in Theorem 6.11 using
a spectral analysis. Besides that the spectral analysis is elegant, it has the very important feature
that it can also be used to analyze the mixing time, which is the rate of convergence to the unique
stationary distribution.

As in chapter 4 for Cheeger's inequality, we will �rst assume the given undirected graph is d-regular
and prove Theorem 6.11 and then de�ne and bound the mixing time. After that, we outline the
modi�cations needed for general undirected graphs.

Spectrum for Regular Graphs

For d-regular graphs, the transition matrix P for random walks is simply P = D−1A = 1
dA = A, the

normalized adjacency matrix. And the transition matrixW for lazy random walks isW = 1
2I+ 1

2A.
This is the main simpli�cation from the d-regular assumption, as the matrices P and W are still
real symmetric. Another simpli�cation is that for d-regular graphs the stationary distribution π in
Lemma 6.10 is simply the uniform distribution ~1/n.

Our goal is to prove that limt→∞ P
tp0 = ~1/n regardless of the initial distribution p0, as long as the

graph is connected and non-bipartite. And, similarly, limt→∞W
tp0 = ~1/n, as long as the graph is

connected.

To compute P tp0 and W
tp0, a repeated application of the same operator, it is very helpful to know

the spectrum of the matrices P and W as discussed in chapter 2. Let α1 ≥ α2 ≥ . . . ≥ αn be the
eigenvalues of A and v1, . . . , vn be the corresponding orthonormal eigenvectors. Recall that
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� α1 = 1 and v1 = ~1/
√
n from Lemma 3.21,

� α2 < 1 if and only if G is connected from Proposition 3.18,

� and when G is connected, αn > −1 if and only if G is non-bipartite from Problem 3.7.

For the lazy random walk matrix W , the spectrum is 1
2(1 + α1) ≥ 1

2(1 + α2) ≥ . . . ≥ 1
2(1 + αn),

which implies that the smallest eigenvalue is at least 0 > −1. This is why the non-bipartitness
assumption can be removed when we consider lazy random walks.

Limiting Distribution

We translated the combinatorial conditions in the fundamental theorem into spectral conditions,
and the fundamental Theorem 6.11 for d-regular undirected graphs can be restated as follows and
the proof is relatively straightforward.

Proposition 6.14 (Limiting Distribution for Regular Graphs). Let G = (V,E) be a d-regular
undirected graph with V = [n]. Let P = A be the transition matrix of random walks on G and

1 = α1 ≥ α2 ≥ . . . ≥ αn be its eigenvalues. If α2 < 1 and αn > −1, then limt→∞ P
tp0 = ~1/n.

Proof. Let v1, v2, . . . , vn be the corresponding orthonormal eigenvectors. For any initial distribution
p0, as v1, . . . , vn forms an orthonormal basis, we can write p0 = c1v1 + . . . + cnvn as a linear
combination of v1, . . . , vn, where ci = 〈p0, vi〉 for 1 ≤ i ≤ n. Then,

P tp0 = At
( n∑
i=1

civi

)
=

n∑
i=1

ciA
tvi =

n∑
i=1

ciα
t
ivi.

The assumptions α2 < 1 and αn > −1 imply that |αi| < 1 for 2 ≤ i ≤ n. Hence,

lim
t→∞

P tp0 = lim
t→∞

n∑
i=1

ciα
t
ivi = c1v1,

as all but the �rst term go to zero as t→∞. Recall that in the d-regular case, v1 = ~1/
√
n and thus

c1 = 〈p0,~1/√n〉 = 1/
√
n as p0 is a probability distribution. Therefore, we conclude that

lim
t→∞

P tp0 = c1v1 =
1√
n
·
~1√
n

=
~1

n
.

Basically, the proof says that under the assumption |αi| < 1 for 2 ≤ i ≤ n, P tp0 converges to the
�rst eigenvector which is proportional to the all-one vector.

Check that the fundamental theorem for lazy random walks in Corollary 6.13 hold for d-regular
graphs as well.
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Mixing Time

The mixing time is to quantify how fast pt converges to the limiting distribution. The following
de�nition is for general Markov chains.

De�nition 6.15 (Mixing Time). Consider the Markov chain de�ned by a transition matrix P ∈
Rn×n. Let p0 ∈ Rn be an initial probability distribution on the states. Let pt ∈ Rn be the probability

distribution pt := (P T )tp0 after t steps. Suppose that the limiting distribution π = limt→∞ pt exists.
For any 0 < ε ≤ 1, the ε-mixing time τε(P ) of P is de�ned as the smallest t such that dTV(pt, π) ≤ ε
for any initial distribution p0, where dTV is the total variation distance in De�nition 6.7.

To bound the mixing time, we use the same approach and assume that α2 and |αn| are bounded
away from one for αti to converge to zero quickly for 2 ≤ i ≤ n.

Theorem 6.16 (Bounding Mixing Time by Spectral Gap). Let G = (V,E) be a d-regular undirected
graph with V = [n]. Let P = A be the transition matrix of random walks on G and 1 = α1 ≥ α2 ≥
. . . ≥ αn be its eigenvalues. Let g := min{1 − α2, 1 − |αn|} be the spectral gap. Then the ε-mixing

time of P is

τε(P ) .
1

g
ln
(n
ε

)
.

Proof. Recall from Proposition 6.14 that P tp0 =
~1
n +

∑n
i=2 ciα

t
ivi where v1, . . . , vn are the orthonor-

mal eigenvectors, and the limiting distribution is π = ~1/n. So,

dTV(pt, π) = dTV(P tp0, π) =
1

2

∥∥∥∥P tp0 − ~1

n

∥∥∥∥
1

=
1

2

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
1

.
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

.

Since v1, . . . , vn are orthonormal, it follows that from the spectral gap assumption that∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥2
2

=
n∑
i=2

c2iα
2t
i ≤ (1− g)2t

n∑
i=2

c2i .

Note that
∑n

i=2 c
2
i ≤

∑n
i=1 c

2
i = ‖p0‖22 ≤ ‖p0‖21 = 1, and thus

dTV(pt, π) .
√
n

∥∥∥∥ n∑
i=2

ciα
t
ivi

∥∥∥∥
2

≤

√√√√n(1− g)2t
n∑
i=2

c2i ≤
√
n(1− g)t ≤

√
ne−gt.

Therefore, by setting t & 1
g ln(nε ), we have dTV(pt, π) ≤ ε for any initial distribution p0.

For the lazy random walk matrix W , recall that the smallest eigenvalue is at least 0, and so the
spectral gap for W is simply g = 1

2(1−α2). The following is an important corollary from Cheeger's
inequality in Theorem 4.3 that 1− α2 & φ(G)2

Corollary 6.17 (Bounding Mixing Time by Conductance). Let G = (V,E) be a d-regular undirected
graph with V = [n]. Let W = 1

2I + 1
2A be the transition matrix of lazy random walks on G. Then

the ε-mixing time of W is

τε(W ) .
1

φ(G)2
ln
(n
ε

)
.
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This provides a combinatorial condition that guarantees fast mixing. In particular, for expander
graph where φ(G) = Ω(1), the mixing time of lazy random walks is O(lnn), such that the random
walk reaches an almost uniformly random vertex after O(lnn) steps. For many applications, it
is important that the mixing time is polylogarithmic in the graph size, as we will discuss some
examples soon.

Corollary 6.17 is very useful in designing random sampling algorithms. For the purpose of uniform
random sampling, the analysis for regular graphs is usually enough, as we can design the Markov
chain (possibly by adding self-loops) so that the underlying graph is regular.

Spectrum for General Graphs

The random walk matrix for general graphs is P = D−1A and the lazy random walk matrix is
W = 1

2I + 1
2P . The main di�erence is that these matrices are not necessarily symmetric, and so

we cannot directy apply the spectral theorem in Theorem 2.5 to reason about their eigenvalues and
eigenvectors. A simple but important observation is that P and W are similar to a real symmetric
matrix (see De�nition 2.3 for the de�nition of similar matrices), and so the eignevalues of P and W
are still all real numbers.

Lemma 6.18 (Spectrum of Random Walk Matrices). Let G = (V,E) be a connected undirected

graph with V = [n] and A be its normalized adjacency matrix. Let the eigenvalues of A be α1 >
α2 ≥ . . . ≥ αn and v1, v2, . . . , vn be the corresponding orthonormal basis of eigenvectors. Then the

eigenvalues of the random walk matrix P = D−1A are α1 > α2 ≥ . . . ≥ αn, and the corresponding

eigenvectors of P T = AD−1 are D
1
2 v1, D

1
2 v2, . . . , D

1
2 vn. Also, the eigenvalues of the lazy random

walk matrix W = 1
2I + 1

2P are 1
2(1 + α1) >

1
2(1 + α2) ≥ . . . ≥ 1

2(1 + αn), and the corresponding

eigenvectors of W T are D
1
2 v1, D

1
2 v2, . . . , D

1
2 vn.

Proof. Note that P = D−1A = D−
1
2 (D−

1
2AD−

1
2 )D

1
2 = D−

1
2AD

1
2 , and so P is similar to A, as

D is non-singular when the graph is connected. By the same argument, W is similar to 1
2I + 1

2A.
So, by Fact 2.4, P and A have the same spectrum, and W and 1

2I + 1
2A have the same spectrum.

Note that D
1
2 vi is an eigenvector of P T with eigenvalue αi, as P

T
(
D

1
2 vi
)

=
(
D

1
2AD−

1
2

)(
D

1
2 vi
)

=

D
1
2Avi = αi

(
D

1
2 vi
)
, and similarly D

1
2 vi is an eigenvector of WT with eigenvalue 1

2(1 + αi).

Note that D
1
2 v1, . . . , D

1
2 vn are linearly independent as D is non-singular for a connected graph.

Therefore, any initial distribution p0 can be written as
∑n

i=1 ciD
1
2 vi, a linear combination of the

eigenvectors of P T and W T . With this setup, we can adapt the proof in Proposition 6.14 to prove
the following equivalent form of the fundamental theorem for undirected graphs in Theorem 6.11.

Problem 6.19 (Limiting Distribution for Undirected Graphs). Let G = (V,E) be an undirected

graph with V = [n]. Let P = D−1A be the transition matrix of random walks on G and 1 = α1 ≥
α2 ≥ . . . ≥ αn be its eigenvalues. If α2 < 1 and αn > −1, then limt→∞(P T )tp0 =

~d
2|E| where

~d is

the degree vector with ~d(i) = deg(i) for 1 ≤ i ≤ n.

Then the same approach as in Theorem 6.16 works to bound the mixing time for general undirected
graphs. To bound ‖(P T )tp0 − π‖2, it will be more convenient to bound ‖D−

1
2

(
(P T )tp0 − π

)
‖22, so

as to take advantage of the orthonormality of v1, . . . , vn. Then, one can bound ‖(P T )tp0 − π‖2 ≤√
n
√

dmax
dmin

(1− g)t where g is the spectral gap, and extend the results for d-regular graphs to general

undirected graphs.
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Problem 6.20 (Bounding Mixing Time). Prove Theorem 6.16 and Corollary 6.17 for general undi-

rected graphs.

The same arguments work for weighted undirected graphs basically without modi�cations, by gen-
eralizing the de�nitions as in section 4.4.

We remark that this spectral approach can be extended to prove the fundamental theorem for
directed graphs as well, but it is more involved and requires the Perron-Frobenius theorem and the
Jordan normal form (see [HJ13] for proofs).

6.4 Random Sampling

An important application of random walks is in random sampling. Consider the following algorithm
for generating a random spanning tree of an undirected graph.

Algorithm 3 Random Exchange Algorithm for Sampling Random Spanning Trees

Require: An undirected graph G = (V,E).
1: Compute an arbitrary spanning tree T0 of the graph.
2: for 1 ≤ t ≤ τ do
3: Choose a uniform random edge e ∈ E − Tt−1 to Tt−1.
4: Choose a uniform random edge f in the unique cycle in Tt−1 + e.
5: Set Tt := Tt−1 + e− f .
6: end for

7: return Tτ .

To analyze this algorithm, it is equivalent to analyzing the random walks on a huge �spanning tree
exchange graph� H, in which there is a vertex in H for each spanning tree of the graph, and two
vertices in H have an edge if the corresponding spanning trees T and T ′ can be obtained from one
step of the algorithm (i.e. T ′ = T + e− f for some edges e, f in the input graph).

Note that if the original graph G has n vertices, then this exchange graph H could have as many as
Ω(nn−2) vertices. So, to prove that τ . poly(n) would work to return an almost uniform random
spanning tree, we must prove that the random walks in the exchange graph mix in polylogarithmic
time in the size of H. In other words, we need to prove that the spanning tree exchange graph H
is an expander graph.

This is usually a di�cult task. There are di�erent approaches to prove fast mixing of Markov
chains. One is called the coupling method, which is the most common and versatile probabilistic
technique in bounding mixing time (see [LPW06]). Another is called the canonical path method,
which is based on using multicommodity �ow to lower bound the graph conductance so as to use
Corollary 6.17 to upper bound the mixing time. A very important application of the canonical path
method is to approximate the permanent of a non-negative matrix [JSV04], which is equivalent to
counting the number of perfect matchings in a bipartite graph.

We won't discuss these methods in this course, but we will see how to analyze the random exchange
algorithm for sampling random spanning trees using the new techniques from high dimensional
expanders in the third part of the course.
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6.5 Local Graph Partitioning

Another useful application of random walks is in graph partitioning. As we have seen in the small-
set expansion problem in section 5.2, the random walk distribution W tχi for some starting vertex i
can be used to �nd a small sparse cut of the graph. This idea was originally proposed by Spielman
and Teng [ST13]. They proved that the performance of the random walk algorithm for graph
partitioning is similar to that of the spectral partitioning algorithm in chapter 4. Furthermore,
the random walk algorithm has the important advantage that it can be implemented locally, such
that the running time depends only on output size but not on the original graph size, and this
provides a sublinear time algorithm for graph partitioning for some instances. This idea can also be
used to design approximation algorithms for the small-set expansion problem [KL12]. Local graph
partitioning is an active research topic on its own, and there are several other algorithms such as
using PageRank vector [ACL06] and evolving sets [AOPT16]. We won't discuss these results further
in this course. This is a good project topic for those who are interested in these algorithms.

6.6 Problems

Problem 6.21 (Lower Bounding Mixing Time). Let G = (V,E) be an undirected graph with V =
[n]. Let W = 1

2I + 1
2D
−1A be the transition matrix of lazy random walks on G. Prove that the

ε-mixing time of W is

τε(W ) &
1

1− α2
ln
(1

ε

)
,

where α2 is the second largest eigenvalue of the normalized adjacency matrix A(G). A simpler

problem is to prove that

τε(W ) &
1

φ(G)
ln
(1

ε

)
,

where φ(G) is the edge conductance of G. You may also consider the special case when G is d-regular.

Problem 6.22 (Page Ranking). Suppose someone searches a keyword (e.g. �car�) and we would

like to identify the webpages that are the most relevant for this keyword and the webpages that are the

most reliable sources for this keyword (a page is a reliable source if it points to many most relevant

pages). First we identify the pages with this keyword and ignore all other pages. Then we run the

following ranking algorithm on the remaining pages. Each vertex corresponds to a remaining page,

and there is a directed edge from page i to page j if there is a link from page i to page j. Call this

directed graph G = (V,E). For each vertex i, we have two values s(i) and r(i), where intentionally

r(i) represents how relevant is this page and s(i) represents how reliable it is as a source (the larger

the values the better). We start from some arbitrary initial values, say s(i) = 1/|V | for all i, as we
have no ideas at the beginning. At each step, we update s and r (where s and r are vectors of s(i)
and r(i) values) as follows: First we update r(i) =

∑
j:ji∈E s(j) for all i, as a page is more relevant

if it is linked by many reliable sources. Then we update s(i) =
∑

j:ij∈E r(j) for all i (using the just

updated values r(j)), as a page is a more reliable source if it points to many relevant pages. To keep

the values small, we let R =
∑|V |

i=1 r(i) and S =
∑|V |

i=1 s(i), and divide each s(i) by S and divide

each r(i) by R. We repeat this step for many times to re�ne the values.

Let s, r ∈ R|V | be the vectors of the s and r values. Give a matrix formulation for computing s
and r. Suppose G is weakly connected (when we ignore the direction of the edges the underlying

undirected graph is connected) and there is a self-loop at each vertex. Prove that there is a unique
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limiting s and a unique limiting r for any initial s as long as s ≥ 0 and s 6= 0. You may use the

Perror-Frobenius Theorem 2.16 to solve this problem.
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