
Chapter 5

Generalizations of Cheeger's Inequality

We give an overview of some recent generalizations of Cheeger's inequality using other eigenvalues.
The presentation follows the chronological order.

5.1 Bipartiteness Ratio and Maximum Cut

Recall from Proposition 3.6 that a graph G is bipartite if and if the spectrum of its adjacency matrix
is symmetric around the origin, and from Problem 3.7 that a connected graph G is bipartite if and
only if α1 = −αn where αi is the i-th largest eigenvalue of the adjacency matrix. These results
are for the spectrum of the adjacency matrix, and the following is a corresponding result for the
spectrum of the normalized Laplacian matrix.

Exercise 5.1 (Spectral Characterization of Bipartiteness). Let G = (V,E) be an undirected graph

and λn be the largest eigenvalue of its normalized Laplacian matrix L(G). Then λn = 2 if and only

if G has a bipartite component, i.e. a connected component that is a bipartite graph.

Trevisan [Tre09] proved that λn is close to 2 if and only if G is close to having a bipartite component,
in the same style as in Cheeger's inequality in Theorem 4.3. To state the result, we write the
optimization formulation for 2−λn and then motivate the corresponding de�nition of bipartiteness
ratio of a subset of vertices S.

Exercise 5.2 (Optimization Formulation for 2 − λn). Let G = (V,E) be an undirected graph and

λn be the largest eigenvalue of L(G). Then

2− λn = min
x∈Rn

∑
ij∈E

(
x(i) + x(j)

)2∑
i∈V deg(i) · x(i)2

.

Let S ⊆ V (G) be a bipartite component with partition S = (L,R) such that all the edges in S are
between L and R. Then the vector x ∈ {−1, 0, 1}n where

x(i) =


+1 if i ∈ L
−1 if i ∈ R
0 otherwise

.

is a solution to the above optimization problem with objective value 0. Using this association
between a vector x ∈ {−1, 0, 1}n and a bipartition of a subset S = (L,R), Trevisan considered the
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following de�nition of the bipartiteness ratio of S = (L,R) where each edge within L and each edge
within R contributes 2 in the numerator while an edge in δ(S) contributes 1 in the numerator.

De�nition 5.3 (Bipartiteness Ratio). Let G = (V,E) be an undirected graph with V = [n]. The

bipartiteness ratio of a vector x ∈ {−1, 0, 1}n is de�ned as

β(x) :=

∑
ij∈E

∣∣x(i) + x(j)
∣∣∑

i∈V deg(i) · |x(i)|
.

The bipartiteness ratio of a graph G is de�ned as

β(G) := min
x∈{−1,0,1}n

β(x).

Trevisan proved the following analog of Cheeger's inequality for 2− λn and β(G).

Theorem 5.4 (Cheeger's Inequality for λn [Tre09]). Let G = (V,E) be an undirected graph and λn
be the largest eigenvalue of L(G). Then

1

2
(2− λn) ≤ β(G) ≤

√
2(2− λn).

The easy direction is left as an exercise and the hard direction is left as a problem. Trevisan used
the ideas in his proof of Cheeger's inequality as shown in section 4.3 to de�ne Lt = {i | x(i) ≥

√
t}

and Rt = {i | x(i) ≤ −
√
t} and St = (Lt, Rt) for a uniformly random t to prove the hard direction.

Maximum Cut

In the maximum cut problem, we are given an undirected graph G = (V,E) and the task is to �nd
a set S ⊆ V that maximizes |δ(S)|. This is a classical NP-complete problem. It is an exercise that
there is always a subset S ⊆ V with |δ(S)| ≥ 1

2 |E|, and this gives a trivial
1
2 -approximation algorithm

for the problem. It was not known how to do better until Goemans and Williamson [GW95]
introduced semide�nite programming into approximation algorithms and used it to design a 0.878-
approximation algorithm for the maximum cut problem. Semide�nite programming was the only
approach to do better than 1

2 -approximation for the maximum cut problem until Trevisan used
Theorem 5.4 to design a spectral 0.531-approximation algorithm.

The power of the spectral method is that it gives a better upper bound on the optimal value than
the trivial upper bound |E|. Suppose the maximum cut (S, V −S) cuts at least 1−ε fraction of edges
Then check that β(G) ≤ ε, and thus 2 − λn ≤ 2β(G) ≤ 2ε by the easy direction of Theorem 5.4.
So, if we compute that 2− λn is large, then we know that the maximum cut only cuts at most 1

2λn
fraction of edges, and thus the trivial approximation algorithm of cutting 50% of edges would be
a 1/λn-approximation algorithm. To summarize, when λn is bounded away from 2, then there is a
better than 1/2-approximation algorithm for the maximum cut problem, using the easy direction of
Theorem 5.4.

On the other hand, when 2−λn is small, by the hard direction of Theorem 5.4, we can �nd a subset
S = (L,R) with small β(S), so that most edges with an endpoint in S are between L and R. So we
commit on putting vertices in L on one side and vertices in R on the other side. Then we solve the
maximum cut problem on V − S recursively. Suppose the returned partition is V − S = (L′, R′).
Then we return the best of (L′ ∪ L,R′ ∪R) and (L′ ∪R,R′ ∪ L) as our solution, to ensure that at
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least 50% of edges in δ(S) are cut. To summarize, when λn is close to 2, we can �nd a set S and
ensure that more than 50% of the edges with an endpoint in S will be cut in the returned solution,
using the hard direction of Theorem 5.4.

With these ideas, it should be clear that they can be combined to give a better than 1/2-approximation
algorithm for the maximum cut problem. Soto [Sot15] improved the analysis and gave a spectral
0.614-approximation algorithm for the maximum cut problem.

5.2 Small-Set Expansion

A more re�ned notion of expansion is to study the expansion of sets of di�erent size. We assume
the graph is d-regular in this section.

De�nition 5.5 (Expansion Pro�le). Let G = (V,E) be a d-regular graph. For any 0 < δ ≤ 1/2,
de�ne

φδ(G) := min
S⊆V :|S|≤δ|V |

φ(S)

to be the δ-small-set expansion of G. The curve φδ(G) for 0 < δ ≤ 1/2 is called the expansion pro�le

of the graph G.

The problem of �nding small sparse cuts is useful in applications such as community detection in
a social network. Also, this problem is of much theoretical interest because of its close connec-
tion to the unique games conjecture [RS10]. The small-set expansion conjecture by Steurer and
Raghavendra [RS10] states that for any ε > 0, there exists 0 < δ ≤ 1/2 such that it is NP-hard
to distinguish between φδ(G) ≤ ε and φδ(G) ≥ 1 − ε. This conjecture is still wide open, and if
true this would imply optimal inapproximability results for many well-known problems, including
Goemans-Williamson 0.878-approximation algorithm for the maximum cut problem!

Motivated by this connection, Arora, Barak and Steurer [ABS10] proved the following Cheeger's
inequality for small-set expansion, which roughly says that if λk is small for a large enough k, then
there is a set S with |S| ≈ |V |/k and φ(S) ≈

√
λk.

Theorem 5.6 (Cheeger's Inequality for Small-Set Expansion [ABS10]). Let G = (V,E) be a d-
regular graph and λk be the k-th smallest eigenvalue of L(G). For k ≥ n2β,

∃S ⊆ V with |S| . n1−β and φ(S) .

√
λk
β
.

They used this theorem to design a sub-exponential time algorithm for the small-set expansion
conjecture and the unique games conjecture, together with the ideas of subspace enumeration and
graph decomposition. This is an in�uential paper as it opens up the line of research about higher
eigenvalues of graphs.

Analytically Sparse Vectors from Random Walks

Using the threshold rounding in Lemma 4.8, if we could �nd a vector x with | supp(x)| ≤ δ|V | and
RL(x) . λk, then we can �nd a set S with |S| ≤ δ|V | and φ(S) .

√
λk. This is the starting point.

The constraint | supp(x)| ≤ δ|V | is combinatorial and not easy to work with directly. Note that any
vector satisfying this constraint satis�es the condition ‖x‖1 ≤

√
δ|V | · ‖x‖2 by Cauchy-Schwarz, an

analytical condition more suitable for spectral analysis.

35



Eigenvalues and Polynomials

De�nition 5.7 (Combinatorial and Analytical Sparse Vectors). Let x ∈ Rn be a vector and δ ∈
[0, 1]. We say x is δ-combinatorially sparse if | supp(x)| ≤ δn, and x is δ-analytically sparse if

‖x‖1 ≤
√
δn‖x‖2.

By a truncation argument similar to that in Problem 4.13, we can reduce the problem to �nding a
δ-analytically sparse vector with small Rayleigh quotient.

Problem 5.8 (Combinatorial Sparse Vector from Analytical Sparse Vector). Let x ∈ Rn+ be a non-

negative vector that is δ-analytically sparse. Prove that there exists a non-negative vector y ∈ Rn+
that is 4δ-combinatorially sparse with RL(y) ≤ 2RL(x).

The main idea in [ABS10] is to �nd such a vector from random walks, a topic that we will study
in the next chapter. Let W = 1

2I + 1
2A = I − 1

2L be the lazy random walk matrix. Note that our

assumption λk ≤ λ translates to αk ≥ 1 − λ
2 where αk denotes the k-th largest eigenvalue of W .

The main argument using the spectrum is

n∑
i=1

‖W tχi‖22 =
n∑
i=1

χTi W
2tχi = Tr(W 2t) =

n∑
i=1

α2t
i ≥ k

(
1− λ

2

)2t
,

where the last equality is by Fact 2.35. Therefore, there exists i ∈ [n] such that

‖W tχi‖22 ≥
k

n

(
1− λ

2

)2t
,

and this gives an analytically sparse vector as ‖W tχi‖1 = 1 since it is a probability distribution.

On the other hand, by a relatively standard spectral argument using eigen-decomposition and the
power mean inequality, one can prove that the Rayleigh quotient R(W tχi) is small for every i ∈ [n].

Problem 5.9 (Rayleigh Quotient of RandomWalk Vector). Let G = (V,E) be a graph with V = [n],
L be its normalized Laplacian matrix, and W = I − 1

2L be its lazy random walk matrix. For any

i ∈ [n],

RL(W tχi) ≤ 2− 2‖W tχi‖1/t2 .

These two claims combine to give a vectorW tχi that has small Rayleigh quotient and is analytically
sparse. More precisely, by setting t = ln k

2λ and doing some calculations, one can check that there

exists i with W tχi being
1√
k
-analytically sparse and R(W tχi) ≤ 2λ lnn

ln k . Then Theorem 5.6 follows

when k ≥ n2β .

5.3 Higher-Order Cheeger Inequalities

Recall from Exercise 3.19 that λk = 0 if and only if G has at least k connected components. After
seeing Cheeger's inequality in Theorem 4.3 and its analogy for λn in Theorem 5.4, we now expect
that there is also a robust quantitative generalization of this fact.

Actually, the Cheeger inequality for small-set expansion in Theorem 5.6 can be seen as one such
generalization, because when λk = 0 there exists a component of size at most n/k, and Theorem 5.6
proves that there exists a sparse cut of size roughly n/k when k is large enough.

In the following, we see another generalization that λk is small if and only if G has at least k disjoint
subsets S1, . . . , Sk each is close to a connected component.

36



Chapter 5

De�nition 5.10 (k-Way Edge Conductance). Let G = (V,E) be a graph. The k-way edge conduc-

tance is de�ned as

φk(G) = min
S1,S2,...,Sk⊆V

max
1≤i≤k

φ(Si),

where the minimization is over pairwise disjoint subsets S1, . . . , Sk of V .

The following higher-order Cheeger inequalities were obtained independently by two research groups.

Theorem 5.11 (Higher-Order Cheeger Inequalities [LOT14, LRTV12]). Let G = (V,E) be a graph

and λk be the k-th smallest eigenvalue of its normalized Laplacian matrix. Then

1

2
λk ≤ φk(G) . k2 ·

√
λk.

Moreover,

φk(G) .
√

log k · λ2k.

Note that Theorem 5.11 guarantees that there are disjoint sparse cuts and hence also a sparse cut of
size at most n/k, but Theorem 5.6 gives a stronger quantitative bound with no dependency on k which
is crucial for the small-set expansion and the unique games conjectures. In short, Theorem 5.11 and
Theorem 5.6 are incomparable, and it would be very interesting to obtain a common generalization
of these two results. The following is another open question.

Question 5.12. Is it true that φk(G) . polylog(k) ·
√
λk?

Spectral Embedding

The high level plan is to �nd k disjoint supported vectors x1, . . . , xk such that each has small
Rayleigh quotient RL(xi). Then we can apply the threshold rounding in Lemma 4.8 on each xi to
�nd Si ⊆ supp(xi) with small conductance φ(Si) .

√
RL(xi).

An interesting new idea in [LOT14, LRTV12] is to use the spectral embedding de�ned by the �rst
k eigenvectors to �nd the k disjoint sparse cuts.

De�nition 5.13 (Spectral Embedding). Let G = (V,E) be a graph with V = [n], λ1 ≤ . . . ≤ λk be

the k smallest eigenvalues of L(G), and v1, . . . , vk ∈ Rn be corresponding orthonormal eigenvectors.

Let U ∈ Rn×k be the n× k matrix where the j-th column is vj. The spectral embedding ui ∈ Rk of

a vertex i is de�ned as the i-th row of U .

The spectral embedding is used in practice to �nd disjoint sparse cuts. A popular heuristic is to
apply some well-known geometric clustering algorithms, in particular the k-means algorithm, to
partition the point set in the spectral embedding into k groups/clusters, and use this partitioning
to cut the graph into k sets. It is still an open problem to analyze this heuristic rigorously.

The proof in [LOT14] analyzed a slightly di�erent algorithm that clusters the points based on
directions. As v1, . . . , vk are orthonormal vectors, the matrix U in De�nition 5.13 satis�es UTU = Ik,
and this implies that the spectral embedding satis�es the following isotropy condition.

Exercise 5.14 (Isotropy Condition). Let u1, . . . , un ∈ Rk be the spectral embedding of the vertices

in De�nition 5.13. For any x ∈ Rk with ‖x‖2 = 1, prove that

n∑
i=1

〈x, ui〉2 = 1.
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Note that
∑n

i=1‖ui‖2 = k as UTU = Ik. The isotropy condition implies that the points u1, . . . , un ∈
Rk must be �well spread out� in di�erent directions.

De�nition 5.15 (Radial Projection Distance). Let u1, . . . , un ∈ Rk be the spectral embedding of the

vertices in De�nition 5.13. The radial projection distance between two vertices i and j is de�ned as

d(i, j) =

∥∥∥∥ ui
‖ui‖2

− uj
‖uj‖2

∥∥∥∥
if ‖ui‖ > 0 and ‖uj‖ > 0. Otherwise, if ui = uj = 0 then d(i, j) := 0, else d(i, j) :=∞.

Problem 5.16 (Spreading Property). Let G = (V,E) be a graph with V = [n]. Let u1, . . . , un ∈ Rk
be the spectral embedding of the vertices in De�nition 5.13. Let S ⊆ V be such that d(i, j) ≤ ∆ for

all i, j ∈ S. Then ∑
i∈S
‖ui‖2 ≤

1

1−∆2
.

Informally, the spreading property implies that the points cannot be concentrated in less than k
directions, as otherwise the spectral embedding cannot identify k clusters.

Suppose there are k clusters S1, . . . , Sk such that
∑

i∈Sj
‖ui‖2 ≈ 1 for 1 ≤ i ≤ k and the pair-

wise distance d(Si, Sj) := mina∈Si,b∈Sj
d(a, b) is large. Then [LOT14] uses an idea called smooth

localization to �nd k disjoint supported vectors x1, . . . , xk ∈ Rn each with small Rayleigh quotient.

To achieve this condition, [LOT14] also uses a random partitioning idea to partition Rk and removes
all points close to boundaries so that the distances between di�erent parts are lower bounded. For
more details, see L04 in 2019 or the notes by Trevisan [Tre16] or the journal paper [LOT14].

Randomized Rounding Algorithm

The algorithm in [LRTV12] is elegant and simple to describe.

Algorithm 2 Randomized Rounding on Spectral Embedding [LRTV12]

Require: An undirected graph G = (V,E) with V = [n] and m = |E|, and a parameter k.
1: Compute the spectral embedding u1, . . . , un ∈ Rk in De�nition 5.13.
2: Pick k independent Gaussian vectors g1, . . . , gk ∈ N(0, 1)n. Construct disjointly supported

vectors h1, . . . , hk ∈ Rn as follows:

hi(j) =

{
〈uj , gi〉 if i = argmaxi∈[k]{〈uj , gi〉}
0 otherwise

.

3: Apply the threshold rounding in Lemma 4.8 on each hi to obtain a set Si ⊆ supp(hi) and
φ(Si) ≤

√
2RL(hi).

4: return all Si with φ(Si) .
√

log k · λk.

It is proved in [LRTV12] that this algorithm will return Ω(k) subsets with constant probability.
The proof is by computing the expectation and the variance of the numerator and the denominator,
using some properties of Gaussian random variables.
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5.4 Improved Cheeger Inequalities

Recall that it is an open question to explain the empirical performance of the spectral partitioning
algorithm. In practical instances for image segmentation and data clustering, it is reasonable to
expect that there are only a few outstanding objects/clusters in the input image/dataset. One way
to formalize this is to assume that the k-way conductance φk(G) of the input graph is large for a small
constant k. By the higher-order Cheeger inequality in Theorem 5.11, this is qualitatively equivalent
to λk is large for a small constant k, which is typically satis�ed in practical instances of image
segmentation. The following improved Cheeger's inequality shows that the spectral partitioning
algorithm performs better in these inputs.

Theorem 5.17 (Improved Cheeger's Inequality [KLL+13]). Let G = (V,E) be a graph and λk be

the k-th smallest eigenvalue of its normalized Laplacian matrix. For any k ≥ 2,

λ2
2
≤ φ(G) .

kλ2√
λk
.

The proof of Theorem 5.17 shows that the spectral partitioning algorithm achieves this guarantee.
Note that when λk = Ω(1) for a small constant k, Theorem 5.17 implies that the spectral partitioning
algorithm is a constant factor approximation algorithm for graph conductance. This provides some
rigorous justi�cation of the empirical success of the spectral partitioning algorithm.

Exercise 5.18 (Tight Example for Theorem 5.17). Check that the improved Cheeger's inequality is

tight up to a constant factor for the cycle examples.

There are also related improved Cheeger's inequalities which work with φk(G) directly and with the
robust vertex expansion of the graph [KLL17].

k-Step Functions

To see the main intuition in [KLL+13], consider the simpler scenario when λ2 is small but λ3 is big.
Since λ2 is small, the graph has a sparse cut (S, V −S) by Cheeger's inequality in Theorem 4.3. As
λ3 is big, φ3(G) is also big by the higher-order Cheeger's inequality in Theorem 5.11. This implies
that the induced graph in each S and V − S should be an expander graph, as otherwise there is
a good way to cut them into smaller pieces which would contradict that φ3(G) is big. Since the
induced graphs in S and V − S are expander graphs and (S, V − S) is a sparse cut, we expect that
the minimizer for the Rayleigh quotient in Lemma 4.4 should look like a binary solution and thus
λ2 ≈ φ(G).

The proof of Theorem 5.17 has two main steps. The �rst step is to show that if λk is large for a
small constant k, then any eigenvector of the second eigenvalue should look like a k-step function.

De�nition 5.19 (k-Step Function). Let G = (V,E) be a graph with V = [n]. Given y ∈ Rn and

1 ≤ k ≤ n, we say y is a k-step function if the number of distinct values in {y(i)}i∈V is at most k.

Lemma 5.20 (Constructing k-Step Approximation). Let G = (V,E) be a d-regular graph with

V = [n]. For any x ∈ Rn, there is a (2k + 1)-step function y such that

‖x− y‖22 ≤
4RL(x)

d · λk
.
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The second step is to show that if the second eigenvector is close to a k-step function, then the
spectral partitioning algorithm performs better.

Lemma 5.21 (Rounding k-Step Approximation). Let G = (V,E) be a d-regular graph with V = [n].
Let x ∈ Rn and let y ∈ Rn be a (2k + 1)-step function. The spectral partitioning algorithm applied

on x outputs a set S with |S| ≤ n/2 and

φ(S) ≤ 4kRL(x) + 4
√

2k ·
√
d · ‖x− y‖2 ·

√
RL(x).

Note that Theorem 5.17 follows immediately from Lemma 5.20 and Lemma 5.21.

To prove Lemma 5.20, the idea is that if x is far from being a k-step function, then x must be
�smooth/continuous�, and it is possible to decompose x into k disjoint supported vectors x1, . . . , xk ∈
Rn such that each has small Rayleigh quotient as shown in the following �gure.
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Figure 5.1: The �gure on the left is the function x. We cut x into three disjointly supported vectors
x1, x2, x3 by setting t0 = 0, t1 ≈ 0.07, t2 ≈ 0.175, and t3 = maxx(i). For each 1 ≤ i ≤ 3, we de�ne
xi(j) = min{|x(j)− ti−1|, |x(j)− ti|}, if ti−1 ≤ x(j) ≤ ti, and zero otherwise.

For Lemma 5.21, it is instructive to work out the special case when x is exactly a k-step function.

Problem 5.22 (Rounding k-Step Function). Prove Lemma 5.21 when x is a (2k+1)-step function.

The general idea is to choose a random threshold t with probability proportional to the distance to
the nearest step in y. See L05 in 2019 or [KLL+13] for details.

40



Chapter 5

5.5 References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In 51th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 563�
572. IEEE Computer Society, 2010. 35, 36

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satis�ability problems using semide�nite programming. J. ACM,
42(6):1115�1145, 1995. 34

[KLL+13] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan. Im-
proved cheeger's inequality: analysis of spectral partitioning algorithms through higher
order spectral gap. In Symposium on Theory of Computing Conference, STOC'13, Palo

Alto, CA, USA, June 1-4, 2013, pages 11�20. ACM, 2013. 39, 40

[KLL17] Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. Improved cheeger's inequality and
analysis of local graph partitioning using vertex expansion and expansion pro�le. SIAM
J. Comput., 46(3):890�910, 2017. 39

[LOT14] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning
and higher-order cheeger inequalities. J. ACM, 61(6):37:1�37:30, 2014. 37, 38, 71, 72, 73

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh S. Vempala. Many
sparse cuts via higher eigenvalues. In Proceedings of the 44th Symposium on Theory

of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
1131�1140. ACM, 2012. 37, 38

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games con-
jecture. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC

2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 755�764. ACM, 2010. 35

[Sot15] José A. Soto. Improved analysis of a max-cut algorithm based on spectral partitioning.
SIAM J. Discret. Math., 29(1):259�268, 2015. 35

[Tre09] Luca Trevisan. Max cut and the smallest eigenvalue. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,

Bethesda, MD, USA, May 31 - June 2, 2009, pages 263�272. ACM, 2009. 33, 34

[Tre16] Luca Trevisan. Lecture notes on graph partitioning, expanders and spectral methods.
2016. 28, 38

41




	Generalizations of Cheeger's Inequality
	Bipartiteness Ratio and Maximum Cut
	Small-Set Expansion
	Higher-Order Cheeger Inequalities
	Improved Cheeger Inequalities
	References


