
Chapter 4

Cheeger's Inequality

Cheeger's inequality is the fundamental result in spectral graph theory, which connects a combina-
torial property of a graph and an algebraic quantity of its associated matrix. This connection is
important in the theory of expander graphs and the theory of random walks, which we will see in
later chapters. The proof is also very useful in graph partitioning which we will see soon.

Cheeger [Che70] proved this inequality in the manifold setting, and the inequality in the graph
setting was proved in several works in the 80's [AM85, Alo86, SJ89] with motivations from expander
graphs and random walks.

4.1 Graph Conductance

Recall from Proposition 3.18 that a graph G is connected if and only if λ2 > 0 where λ2 is the
second smallest eigenvalue of the normalized Laplacian matrix. Cheeger's inequality is the robust
generalization that λ2 is large if and only if the graph is well-connected.

To state this formally, we need to de�ne a measure of how well a graph is connected. There are
di�erent natural de�nitions and we state two of them here.

De�nition 4.1 (Edge Expansion). Let G = (V,E) be an undirected graph. The expansion of a

subset S ⊆ V and the expansion of the graph G are de�ned as

Φ(S) :=
|δ(S)|
|S|

and Φ(G) := min
S:|S|≤|V |/2

Φ(S),

where δ(S) denotes the set of edges with one endpoint in S and one endpoint in V − S.

De�nition 4.2 (Edge Conductance). Let G = (V,E) be an undirected graph. The conductance of

a subset S ⊆ V and the conductance of the graph G are de�ned as

φ(S) :=
|δ(S)|
vol(S)

and φ(G) := min
S:vol(S)≤|E|

φ(S),

where vol(S) :=
∑

v∈S deg(v) is called the volume of the subset S. Note that for all S ⊆ V ,
0 ≤ φ(S) ≤ 1, as it is the ratio of the number of edges cut by S to the total degree in S.

For graph partitioning, a subset S ⊆ V corresponds to the partition of the vertex set V into two
parts (S, V − S). In the above de�nitions for Φ(G) and φ(G), note that we only consider the part
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with smaller denominator. Both of these de�nitions try to identify the �bottleneck� in the graph.
When the graph G is d-regular, the two de�nitions are basically equivalent, with Φ(G) = d · φ(G).
When the graphG is non-regular, the relation between the edge conductance and the second smallest
eigenvalue is more elegant.

Theorem 4.3 (Cheeger's Inequality). Let G = (V,E) be an undirected graph and let λ2 be the

second smallest eigenvalue of its normalized Laplacian matrix L(G) in De�nition 3.20. Then

1

2
λ2 ≤ φ(G) ≤

√
2λ2.

The �rst inequality is called the easy direction, and the second inequality is called the hard direction.
We will see that the easy direction corresponds to using the second eigenvalue as a �relaxation� for
graph conductance, and the hard direction corresponds to �rounding� a fractional solution to graph
conductance to an integral solution.

We say that a graph is an expander graph if φ(G) is large (e.g. φ(G) ≥ c for a constant 0 < c < 1),
and we say that a subset S ⊆ V is a sparse cut if φ(S) is small. Both concepts are very useful.

An expander graph with linear number of edges is an e�cient object with diverse applications in
theoretical computer science and mathematics; see [HLW06] for an excellent survey. An important
implication of Cheeger's inequality is that the second eigenvalue of the normalized Laplacian matrix
can be used to certify that a graph is an expander graph, which provides an algebraic way to
construct expander graphs that turns out to be very fruitful.

Finding a sparse cut is useful in designing divide-and-conquer algorithms, with applications in image
segmentation, data clustering, community detection, VLSI design, among others. The algorithmic
implication of Cheeger's inequality is discussed in the following subsection.

Spectral Partitioning Algorithm

A popular heuristic in �nding a sparse cut in practice is the following spectral partitioning algorithm.

Algorithm 1 Spectral Partitioning Algorithm

Require: An undirected graph G = (V,E) with V = [n] and m = |E|.
1: Compute the second smallest eigenvalue λ2 of L(G) and a corresponding eigenvector x ∈ Rn.
2: Sort the vertices so that x1 ≥ x2 ≥ . . . ≥ xn.
3: Let Si = [i] if volG

(
[i]
)
≤ m and let Si = [n] \ [i] if volG

(
[i]
)
> m.

4: return mini:1≤i≤n−1{φ(Si)}.

The algorithm is strikingly simple, with only a few lines of code if we use some mathematical
software such as MATLAB, which is one reason why this heuristic is popular. The algorithm only
checks the linear number of solutions de�ned by the ordering in a second eigenvector, although there
are exponentially many subsets S ⊆ V .
There is a near-linear time randomized algorithm to compute an approximate eigenvector of the
second eigenvalue, using the power method and a fast Laplacian solver. So, the algorithm is also
fast theoretically, but we won't discuss the details in this chapter.

The main reason that it is popular is that it performs very well in various applications, especially
in image segmentation and clustering, and it was considered a breakthrough in image segmentation
about 20 year ago [SM00].
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The proof of Cheeger's inequality will provide a nontrivial performance guarantee of the spectral
partitioning algorithm, that it will always output a set S with conductance φ(S) ≤

√
2λ2 ≤ 2

√
φ(G).

When φ(G) is a constant, this is a constant factor approximation algorithm. When φ(G) is small,
say φ(G) ≤ 1/n, the approximation ratio could be as bad as Θ(

√
n). It has been an open problem

to explain the empirical success rigorously, and we will come back to this in the next chapter.

4.2 Easy Direction

In this section, we prove the easy direction of Cheeger's inequality. For simplicity of exposition, we
assume the graph is d-regular, so L(G) = 1

dL(G). We will outline the modi�cations needed for the
analysis of non-regular graphs in a subsection at the end of this chapter, but those are just some
additional manipulations where all the main ideas are already in the d-regular case.

First, we start with the nice optimization formulation of the second eigenvalue of the normalized
Laplacian matrix using the Rayleigh quotient in De�nition 2.9.

Lemma 4.4 (Optimization Formulation for λ2). Let G = (V,E) be an undirected d-regular graph

with V = [n] and λ2 be the second smallest eigenvalue of its normalized Laplacian matrix L(G).
Then

λ2 = min
x∈Rn:x⊥~1

RL(x) = min
x∈Rn:x⊥~1

xTLx

xTx
= min

x∈Rn:x⊥~1

xTLx

d · xTx
= min

x∈Rn:x⊥~1

∑
ij∈E

(
x(i)− x(j)

)2
d
∑

i∈V x(i)2
.

Proof. The �rst equality is by Lemma 2.11, although it was stated in the maximization form, the
same proof works for the minimization form. The last equality is by Lemma 3.17.

The observation is that the minimization problem of graph conductance can be formulated in a
similar way. The following lemma holds for non-regular graphs.

Lemma 4.5 (Optimization Formulation for Graph Conductance). Let G = (V,E) be an undirected

graph with V = [n]. Then

φ(G) = min
x∈{0,1}n

∑
ij∈E

(
x(i)− x(j)

)2∑
i∈V deg(i) · x(i)2

subject to
∑
i∈V

deg(i) · x(i)2 ≤ |E|.

Proof. Each feasible solution S ⊆ V with vol(S) ≤ |E| in the graph conductance problem cor-
responds to a feasible solution χS ∈ {0, 1}m with

∑
i∈V deg(i) · x(i)2 ≤ |E| in this formulation,

and vice versa. Note that the numerator counts the number of edges in δ(S) and the denominator
computes the volume vol(S) of S.

Note that for d-regular graphs, the constraint simpli�es to
∑

i∈V x(i)2 ≤ n/2.

Intuition: The main di�erence between these two formulations is that the former optimizes over the
continuous domain x ∈ Rn, while the latter optimizes over the discrete domain x ∈ {0, 1}n. A good
way to think of the relation between the two optimization problems is that the former problem is a
�relaxation� of the latter problem. This is a common idea in the design of approximation algorithms.
The latter problem is an NP-hard optimization problem, because of the discrete domain. The
relaxation idea is to optimize over a larger continuous domain, so that the problem can be solved in
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polynomial time. Since we optimize over a larger domain, the objective value of the former problem
could only be smaller than that of the latter problem, and so we expect that λ2 ≤ φ(G). This is
the main intuition for the easy direction. For these two formulations, however, there are also some
di�erences between the constraints, and it only holds that λ2 ≤ 2φ(G).

Proof of the Easy Direction in the d-Regular Case. To upper bound λ2, we just need to �nd a
vector x ⊥ ~1 and compute its Rayleigh quotient RL(x). Let S ⊆ V be a subset of vertices with

|S| ≤ |V |2 . Consider the following �binary� solution x ∈ Rn with

x(i) =

{
+1/|S| if i ∈ S
−1/|V−S| if i 6∈ S

.

By construction, x ⊥ ~1, and so

λ2 ≤ RL(x) =

∑
ij∈E

(
x(i)− x(j)

)2
d
∑

i∈V x
2
i

=
|δ(S)| ·

(
1
|S| + 1

|V−S|
)2

d
(
|S| · 1

|S|2 + |V − S| · 1
|V−S|2

) =
|δ(S)| · |V |

d · |S| · |V − S|
≤ 2φ(S),

where the last inequality uses the assumption that |S| ≤ |V |2 which implies that |V |
|V−S| ≤ 2.

4.3 Hard Direction

By optimizing over a larger domain, however, the objective value of the continuous problem will
typically be smaller than that of the discrete problem.

Tight Example

Consider the cycle of 4n vertices. One can compute the second eigenvector of the cycle exactly, but
we don't do it here. Recall that λ2 = minx⊥~1 x

TLx/xTx, so to give an upper bound we just need
to demonstrate a solution with small objective value. Consider

x =
(

1, 1− 1

n
, 1− 2

n
, . . . ,

1

n
, 0,− 1

n
, . . . ,−1 +

1

n
,−1,−1 +

1

n
, . . . ,− 1

n
, 0,

1

n
, . . . , 1− 1

n

)
.

Then x ⊥ ~1, and so

λ2 ≤
∑

ij∈E
(
x(i)− x(j)

)2
2
∑

i∈V x(i)2
= Θ

(
n
(
1
n

)2
n

)
= Θ

( 1

n2

)
.

On the other hand, it is easy to verify that the conductance of the cycle of 4n vertices is Θ( 1
n). This

is an example where the hard direction φ(G) ≤
√

2λ2 is tight up to a constant factor.

Rounding

For the discrete optimization problem of graph conductance, we would like the solution to be
a binary solution as in the proof of the easy direction. But once we relax the problem to the
continuous domain (so that it becomes polynomial time solvable), the optimal solution x could be
very �fractional� or �continuous� as the above example shown. For the hard direction, the task is
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to prove that there is always a binary solution z with objective value at most the square root of
the objective value of the continuous solution x. A typical way in approximation algorithms to do
this task is to �round� the �fractional/continuous� solution x to an �integral/binary� solution z and
bound the objective value of z in terms of the objective value of x. This is what we will do.

Intuition

Think of the optimizer x to the optimization problem in Lemma 4.4 as embedding the vertices of
the graph into the real line, so that for most edges |x(i)−x(j)| is small. A natural strategy is to do a
�threshold rounding�, where we pick a threshold t and set z(i) = 0 if x(i) < t and z(i) = 1 if x(i) ≥ t.
A simple analogy is that if most rows/edges have few nonzeros, then there is a column/threshold
with few nonzeros. This intuition can be made precise if the optimization problem is of the form

min
x∈Rn

+

∑
ij∈E

∣∣x(i)− x(j)
∣∣

d
∑

i∈V x(i)
,

but the optimization problem in Lemma 4.4 is a sum of quadratic terms and this is basically where
the square root loss in the hard direction comes from.

Truncation

The proof of the hard direction has two steps. The �rst step is a preprocessing step that truncates an
optimizer x ∈ Rn to the continuous problem in Lemma 4.4 to a vector y ∈ Rn with vol(supp(y)) ≤
|E|, where supp(y) := {i | y(i) 6= 0}. This is to ensure that the solution S produced in the second
step satis�es vol(S) ≤ |E|, satisfying the constraint in the discrete problem in Lemma 4.5.

There are two ways to do this step. The �rst way requires that x is indeed an eigenvector, and the
proof is shorter and is enough for establishing Cheeger's inequality. The second way only requires
that x is perpendicular to the �rst eigenvector, which is important for algorithmic purpose, but the
proof is a bit longer. We will present the proof for the �rst way and outline the proof for the second
way in the problem subsection in the end. The following lemma is from [HLW06] and it holds for
general undirected graphs.

Lemma 4.6 (Truncating Eigenvector). Let G = (V,E) be an undirected graph and x ∈ Rn be

an eigenvector of L(G) with eigenvalue λ. Let x+ ∈ Rn be the vector with x+(i) = max{x(i), 0}
for 1 ≤ i ≤ n, and x− ∈ Rn be the vector with x−(i) = min{x(i), 0} for 1 ≤ i ≤ n. Then

RL(x+) ≤ RL(x) = λ and RL(x−) ≤ RL(x) = λ.

Proof. For each vertex i ∈ supp(x+), by the de�nition of normalized Laplacian matrix in De�ni-
tion 3.20 and the assumption that x is an eigenvector with eigenvalue λ,

(Lx+)(i) = x+(i)−
∑
j:ij∈E

x+(j)√
deg(i) deg(j)

≤ x(i)−
∑
j:ij∈E

x(j)√
deg(i) deg(j)

= (Lx)(i) = λ·x(i) = λ·x+(i).

This implies that

〈x+,Lx+〉 =
∑

i∈supp(x+)

x+(i) · (Lx+)(i) ≤
∑

i∈supp(x+)

λ · x+(i)2 = λ · ‖x+‖22.

Therefore, RL(x+) = 〈x+,Lx+〉/‖x+‖22 ≤ λ, and the proof is the same for x−.
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Let x be an eigenvector with eigenvalue λ2. Since x 6= 0 and x is perpendicular to the �rst eigenvector
which is a positive vector, both supp(x+) and supp(x−) are non-empty sets. By choosing either x+
or x− that has a smaller volume in its support and taking a proper normalization, we arrive at the
following corollary.

Corollary 4.7 (Preprocessed Vector). Let G = (V,E) be an undirected graph with V = [n] and
λ2 be the second eigenvalue of L(G). There exists a vector y ∈ Rn that satis�es (i) y ≥ 0, (ii)
RL(y) ≤ λ2, (iii) vol(supp(y)) ≤ 1

2 vol(V ) = |E|, and (iv) ‖y‖22 = 1.

For algorithmic purpose, we may not be able to compute an eigenvector exactly, but rather a vector
x that is perpendicular to the �rst eigenvector and RL(x) ≈ λ2. In the problem subsection in the
end, we describe how to truncate the vector to satisfy Corollary 4.7, which is similar but with an
additional shifting/centering step.

In the d-regular case, to summarize, the truncation step transforms a vector x with small Rayleigh
quotient that satis�es x ⊥ ~1 in the continuous problem in Lemma 4.4 into a vector y with
small Rayleigh quotient that satis�es | supp(y)| ≤ n/2 that is required in the discrete problem
in Lemma 4.5.

Threshold Rounding

The main step in the hard direction is the threshold rounding step hinted earlier, which takes
a vector y in Corollary 4.7 and outputs a set S ⊆ supp(y) with small conductance φ(S). As
described in the spectral partitioning algorithm, we will only consider those threshold/level sets
S′t := {i ∈ V | y(i) ≥ t} for t > 0, as in every proof of Cheeger's inequality. Our proof will
follow that of Trevisan [Tre16], whose idea is to choose a random t and considers the level set
St := {i ∈ V | y(i)2 ≥ t}, and to bound the conductance of St by computing the expectation of
the numerator and the expectation of the denominator separately. The idea of choosing a random
t is similar to the idea of randomized rounding in approximation algorithms, and his analysis of
computing the expectations separately simpli�es the proof.

Lemma 4.8 (Threshold Rounding). Let G = (V,E) be an undirected d-regular graph with V = [n].
Let y ∈ Rn+ be a vector with non-negative entries. There exists t > 0 such that the threshold set

St := {i ∈ [n] | y(i)2 ≥ t} is nonempty and satis�es φ(St) ≤
√

2RL(y).

Proof. For convenience, we scale y so that maxi y(i) = 1. Let t ∈ (0, 1] be chosen uniformly at
random. Note that the set St is nonempty by construction. In the following, we compute the
expected value of the numerator and of the denominator in Lemma 4.5 separately.

For an edge ij ∈ E, note that the probability that ij ∈ δ(St) is |y(i)2 − y(j)2|, when the random
threshold t falls between y(i)2 and y(j)2. By linearity of expectation,

Et
[
|δ(St)|

]
=
∑
ij∈E

Pr(ij ∈ δ(St)) =
∑
ij∈E

∣∣y(i)2 − y(j)2
∣∣ =

∑
ij∈E

∣∣y(i)− y(j)
∣∣ · ∣∣y(i) + y(j)

∣∣.
To relate this expected value to the numerator of the Rayleigh quotient in Lemma 4.4, the Cauchy-
Schwarz inequality is used as in every proof of Cheeger's inequality so that

Et
[
|δ(St)|

]
≤
√∑
ij∈E

∣∣y(i)− y(j)
∣∣2√∑

ij∈E

∣∣y(i) + y(j)
∣∣2 ≤√∑

ij∈E

∣∣y(i)− y(j)
∣∣2√2d ·

∑
i∈V

y(i)2,
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where the second inequality holds because
∑

ij∈E
∣∣y(i)+y(j)

∣∣2 ≤∑ij∈E 2
(
y(i)2+y(j)2

)
= 2d

∑
i∈V y(i)2

where the assumption that G is d-regular is used.

For a vertex i ∈ V , note that the probability that i ∈ St is y(i)2, when the random threshold t is
smaller than y(i)2. By linearity of expectation,

Et
[
d|St|

]
= d ·

∑
i∈V

Pr(i ∈ St) = d ·
∑
i∈V

y(i)2.

Therefore,

Et
[
|δ(St)|

]
Et
[
d|St|

] ≤
√√√√2

∑
ij∈E

∣∣y(i)− y(j)
∣∣2

d ·
∑

i∈V y(i)2
=
√

2RL(y).

Note that we cannot conclude from this that Et[φ(St)] = Et
[
|δ(St)|/d|St|

]
≤
√

2RL(y), but we can
conclude from this that

Et
[
|δ(St)| − d|St|

√
2RL(y)

]
≤ 0 =⇒ ∃t > 0 with φ(St) =

|δ(St)|
d|St|

≤
√

2RL(y).

Analysis of the Spectral Partitioning Algorithm

We summarize the proof of the hard direction, which also provides an analysis of the spectral
partitioning algorithm.

Proof of the Hard Direction in the d-Regular Case. Let x ∈ Rn be an eigenvector of L(G) with
eigenvalue λ2. First we apply the truncation step in Lemma 4.6 and Corollary 4.7 to obtain a vector
y ∈ Rn with RL(y) ≤ RL(x) = λ2 and | supp(y)| ≤ n/2. Then we apply the threshold rounding
step in Lemma 4.8 on y to obtain a nonempty set St = {i ∈ [n] | y(i)2 ≥ t} with t > 0 and
φ(St) ≤

√
2RL(y) ≤

√
2λ2. Since St ⊆ supp(y), it follows that 0 < |St| ≤ | supp(y)| ≤ n/2 and

thus φ(G) ≤ φ(St) ≤
√

2λ2. Finally, note that St is a threshold set of y, which is also a threshold
set of x by the construction in Lemma 4.6, as y is either x+ or x−. This implies that the spectral
partitioning algorithm has considered this set, and thus it will output a set S with φ(S) ≤

√
2λ2.

4.4 Discussions

We discuss more about the performance of the spectral partitioning algorithm and also outline the
modi�cations needed for general weighted graphs.

More Examples

Both sides of Cheeger's inequality are tight, even the constants are tight. For the easy direction,
one can check that it is tight for the hypercubes; see Problem 3.23. For the hard direction, we
have already seen that it is tight up to a constant factor for the cycles. It is possible to assign edge
weights to the cycle so that even the constant

√
2 is tight, and we leave it as a challenging example

to work out.
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These are the standard examples to show that both sides of Cheeger's inequality are tight, but they
do not yet provide much insights about how the spectral partitioning algorithm only outputs a set
S with φ(S) ≈

√
φ(G). For the cycle examples where the φ(G) ≈

√
λ2, the spectral partitioning

actually works perfectly to output a set S with φ(S) ≈ φ(G), because it outputs a set S with
φ(S) ≈

√
λ2 ≈ φ(G). Indeed, it is a general phenomenon that rounding algorithms work perfectly

for the worst integrality gap examples.

So, to �nd an example where the spectral partitioning algorithm performs poorly, we need to
look at the examples where the easy direction is tight but the algorithm outputs a set S with
φ(S) ≈

√
λ2 ≈

√
φ(G). Actually, for the hypercube examples where the easy direction is tight, there

are vectors in the second eigenspace where the spectral partitioning algorithm performs perfectly
and performs poorly.

Problem 4.9 (Spectral Partitioning for Hypercubes). Let G be the hypercube of dimension d with

2d vertices and L(G) be its normalized Laplacian matrix.

1. Show that there is an eigenvector vector x ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on x outputs a set S with φ(S) = RL(x) = 1

2λ2.

2. Show that there is an eigenvector vector y ∈ R2d of L(G) with eigenvalue λ2 so that the spectral
partitioning algorithm applied on y outputs a set S with φ(S) ≈

√
RL(y) =

√
λ2.

Since we do not have control over which eigenvector in the second eigenspace is returned, this
provides an example where the spectral partitioning algorithm could perform poorly. But perhaps
this example is not so satisfying as we do not see clearly how the spectral partitioning algorithm is
fooled.

We construct such an example in the following by tweaking the cycle example. Let G be the weighted
graph with vertices {v1, . . . , vn, vn+1, . . . , v2n}, and two cycles (v1, v2, . . . , vn) and (vn+1, vn+2, . . . , v2n)
where every edge in these cycles is of weight one, and a �hidden� matching {v1vn+1, v2vn+2, . . . , vnv2n}
where every edge in the matching is of weight say 100/n2. Then it is easy to see that the set of small-
est conductance is the set S := {v1, . . . , vn} with φ(S) = O(1/n2). However, the edges in the hidden
matching are so light that the spectral partitioning algorithm did not �feel� them, and still thinks
that the embedding of the cycle is the best embedding of the vertices onto the real line. Indeed,
one can verify that the second eigenvector x in this example is still the same as that in the cycle of
n vertices, with x(vi) = x(vn+i) for 1 ≤ i ≤ n. Therefore, λ2 is still O(1/n2) which is close to φ(G),
but the cut of smallest conductance is completely lost in x and every threshold set has conductance
Ω(1/n). This is a more insightful example to see how the spectral partitioning algorithm is fooled.
This example is a weighted graph, but one can also modify this example slightly to keep the same
structure while making the graph unweighted.

Cheeger's Inequality for General Weighted Graphs

Once we understand the proof for the d-regular case, it is not di�cult to extend it to general
weighted graphs.

Let G = (V,E) be an edge weighted graph with a non-negative weight w(e) ≥ 0 on each edge e ∈ E.
The weighted degree of a vertex i is de�ned as degw(i) =

∑
j:ij∈E w(ij), and the diagonal degree

matrix is denoted by Dw. The weighted adjacency matrix Aw is de�ned so that (Aw)i,j = w(ij)
for all i, j ∈ V . The weighted Laplacian matrix Lw is de�ned as Dw − Aw, and the weighted
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normalized Laplacian matrix Lw is de�ned asD
− 1

2
w LwD

− 1
2

w . Check that the quadratic form xTLwx =∑
ij∈E w(ij)

(
x(i)− x(j)

)2
. The following is a generalization of Lemma 4.4 for λ2 of Lw(G), which

can be obtained by a change of variable.

Exercise 4.10 (General Optimization Formulation for λ2). Let G = (V,E) be a weighted graph

with V = [n] and λ2 be the second smallest eigenvalue of Lw(G). Show that

λ2 = min
y∈Rn:

∑
i∈V degw(i)y(i)=0

yTLwy

yTDwy
= min

y∈Rn:
∑

i∈V degw(i)y(i)=0

∑
ij∈E w(ij)

(
y(i)− y(j)

)2∑
i∈V degw(i) · y(i)2

.

The weighted conductance of a subset is de�ned naturally as φw(S) := w(δ(S))/ volw(S) where
w(δ(S)) :=

∑
e∈δ(S)w(e) and volw(S) :=

∑
i∈S degw(i), and the weighted conductance of a graph is

de�ned as φw(G) := minS:volw(S)≤ 1
2
volw(V ) φ(S). Choosing an appropriate binary solution involving

volw(S), the easy direction can be shown similarly as in the d-regular case.

Exercise 4.11 (Easy Direction for General Weighted Graphs). Let G = (V,E,w) be an edge

weighted graph and λ2 be the second smallest eigenvalue of Lw(G). Show that 1
2λ2 ≤ φw(G).

The main changes are actually in the easy direction. For the hard direction, the proofs are basically
the same. The arguments in Lemma 4.6 and Corollary 4.7 work the same way. The analysis of the
threshold rounding is very similar to that in Lemma 4.8, but on the formulation in Exercise 4.10.

Exercise 4.12 (Hard Direction for General Weighted Graphs). Let G = (V,E,w) be an edge

weighted graph and λ2 be the second smallest eigenvalue of Lw(G). Prove that φw(G) ≤
√

2λ2.

4.5 Problems

Problem 4.13 (Truncation). We outline the truncation step which does not require that the vector

is an eigenvector. The following statements are for general weighted graphs. You may specialize the

problem to the d-regular case.

Let G = (V,E) be a weighted undirected graph with V = [n] and y ∈ Rn be a vector with∑
i∈V degw(i)y(i) = 0. Let Rw(y) := yTLwy/y

TDwy be the weighted Rayleigh quotient.

1. Let c be a value such that volw({i | y(i) < c}) ≤ 1
2 volw(V ) and volw({i | y(i) > c}) ≤

1
2 volw(V ). Let z := y − c~1. Prove that Rw(z) ≤ Rw(y). You may need to use the assumption

that
∑

i∈v degw(i)y(i) = 0.

2. Let z ∈ Rn be the vector obtained in the previous step. Let z+ ∈ Rn be the vector with

z+(i) := max{z(i), 0} for 1 ≤ i ≤ n, and z− ∈ Rn be the vector with z−(i) := min{z(i), 0} for
1 ≤ i ≤ n. Prove that min{Rw(z+), Rw(z−)} ≤ Rw(z).

3. Conclude with the suitable generalization of Corollary 4.7 that allows one to continue to prove

the hard direction for general weighted graphs.
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