
Chapter 3

Graph Spectrum

The linear algebraic approach to algorithmic graph theory is to view graphs as matrices, and use
concepts and tools in linear algebra to design and analyze algorithms for graph problems. Spectral
graph theory uses eigenvalues and eigenvectors of matrices associated with the graph to study its
combinatorial properties. In this chapter, we consider the adjacency matrix and the Laplacian
matrix of a graph, and see some basic results in spectral graph theory. A general reference for this
chapter is the upcoming book by Spielman [Spi19].

3.1 Adjacency Matrix

De�nition 3.1 (Adjacency Matrix). Given an undirected graph G = (V,E) with V (G) = [n], the
adjacency matrix A(G) is an n × n matrix with Aij = Aji = 1 if ij ∈ E(G) and Aij = Aji = 0
otherwise.

The adjacency matrix of an undirected graph is symmetric. So, by the spectral theorem for real
symmetric matrices in Theorem 2.5, the adjacency matrix has an orthonormal basis of eigenvectors
with real eigenvalues. We denote the eigenvalues of the adjacency matrix by

α1 ≥ α2 ≥ · · · ≥ αn.

It is not clear that these eigenvalues should provide any useful information about the combinatorial
properties of the graph, but they do, and surprisingly much information can be obtained from them.
Let's start with some examples and compute their spectrum.

Example 3.2 (Complete Graphs). If G is a complete graph, then A(G) = J − I where J denotes

the all-one matrix. Any vector is an eigenvector of I with eigenvalue 1. Hence the eigenvalues of

A are one less than that of J . Since J is of rank 1, there are n − 1 eigenvalues of 0. The all-one

vector is an eigenvector of J with eigenvalue n. So, n − 1 is an eigenvalue of A with multiplicity

one, and −1 is an eigenvalue of A with multiplicity n− 1. The is the example with the largest gap

between the largest eigenvalue and the second largest eigenvalue.

Example 3.3 (Complete Bipartite Graphs). Let Kp,q be the complete bipartite graph with p vertices
on one side and q vertices on the other side. Its adjacency matrix A(Kp,q) is of rank 2, so 0 is

an eigenvalue with multiplicity p + q − 2, and there are two non-zero eigenvalues α and β. By

Fact 2.32, the sum of the eigenvalues is equal to the trace of A, which is equal to zero as there
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are no self-loops, and so α = −β. To determine α, we consider the characteristic polynomial

det(xI−A) = (x−α)(x+α)xp+q−2 = xp+q−α2xp+q−2. Using the Leibniz formula for determinant

in Fact 2.23, any term that contributes to xp+q−2 must have p + q − 2 diagonal entries, and the

remaining two entries must be −Aij and −Aji for some i, j. There are totally pq such terms, one

for each edge, where the sign of the corresponding permutation is −1 as it only has one inversion

pair. So, α2 = pq, and thus |α| = √pq. To conclude, the spectrum is (
√
pq, 0, . . . , 0,−√pq), where

0 is an eigenvalue with multiplicity p+ q − 2.

Bipartiteness

It turns out that bipartite graphs can be characterized by the spectrum of their adjacency matrix.
The following lemma says that the spectrum of a bipartite graph must be symmetric around the
origin on the real line.

Lemma 3.4 (Spectrum of Bipartite Graph is Symmetric). If G is a bipartite graph and α is an

eigenvalue of A(G) with multiplicity k, then −α is an eigenvalue of A(G) with multiplicity k.

Proof. If G is a bipartite graph, then we can permute the rows and columns of G to obtain the form

A(G) =

(
0 B
BT 0

)
.

Suppose u =

(
x
y

)
is an eigenvector of A(G) with eigenvalue α. Then

(
0 B
BT 0

)(
x
y

)
= α

(
x
y

)
=⇒ BTx = αy and By = αx.

It follows that (
0 B
BT 0

)(
x
−y

)
=

(
−By
BTx

)
=

(
−αx
αy

)
= −α

(
x
−y

)
,

and thus

(
x
−y

)
is an eigenvector of A(G) with eigenvalue −α. By this construction, note that k

linearly independent eigenvectors with eigenvalue α would give k linearly independent eigenvectors
with eigenvalue −α, and so their multiplicity is the same.

The next lemma shows that the converse is also true.

Lemma 3.5 (Symmetric Spectrum Implies Bipartiteness). Let G be an undirected graph and let

α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. If αi = −αn−i+1 for each 1 ≤ i ≤ n, then
G is a bipartite graph.

Proof. Let k be any positive odd number. Then
∑n

i=1 α
k
i = 0, by the symmetry of the spectrum.

Note that αk
1 ≥ αk

2 ≥ . . . ≥ αk
n are the eigenvalues of Ak, because if Av = αv then Akv = αkv. By

Fact 2.32, it follows that Tr(Ak) =
∑n

i=1 α
k
i = 0. Observe that Ak

i,j is the number of length k walks
from i to j in G, which can be proved by a simple induction. So, if G has an odd cycle of length
k, then Ak

i,i > 0 for each vertex i in the odd cycle, and this would imply that Tr(Ak) > 0 as each

diagonal entry Ak
i,i is non-negative. Therefore, since Tr(Ak) = 0, G must have no odd cycles and is

thus a bipartite graph.
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Combining Lemma 3.4 and Lemma 3.5, a graph is bipartite if and only if the spectrum of its
adjacency matrix is symmetric around the origin.

Proposition 3.6 (Spectral Characterization of Bipartite Graphs). Let G be an undirected graph

and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then G is a bipartite graph if and

only if αi = −αn−i+1 for each 1 ≤ i ≤ n.

When the graph is connected, the characterization is even simpler.

Problem 3.7 (Spectral Characterization of Connected Bipartite Graphs). Let G be a connected

undirected graph and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Prove that G is

bipartite if and only if α1 = −αn.

You may need to use the result of Perron-Frobenius in Theorem 2.16 and also the optimization
formulation of eigenvalues in De�nition 2.9 to solve this problem.

Largest Eigenvalue

We see some upper and lower bounds on the largest eigenvalue of the adjacnecy matrix in this
subsection.

Lemma 3.8 (Max Degree Upper Bound). Let G = (V,E) be an undirected graph with maximum

degree d and let α1 ≥ . . . ≥ αn be the eigenvalues of its adjacency matrix. Then α1 ≤ d.

Proof. Let v be an eigenvector with eigenvalue α1. Let j be a vertex with v(j) ≥ v(i) for all
i ∈ V (G). Then

α1 · v(j) = (Av)(j) =
∑

i:ij∈E(G)

v(i) ≤
∑

i:ij∈E(G)

v(j) = deg(j) · v(j) ≤ d · v(j),

which implies that α1 ≤ d.

Look at the proof more closely, we can characterize the connected graphs with α1 equal to the
maximum degree.

Exercise 3.9 (Tight Max Degree Upper Bound). Let G be a connected undirected graph with

maximum degree d and the largest eigenvalue α1 = d. Then G is d-regular and the eigenvalue α1 is

of multiplicity one.

The maximum degree upper bound can be far from tight. The following problem provides such an
example, whose bound is also important in the study of Ramanujan graphs in the second part of
the course.

Problem 3.10 (Largest Eigenvalue of a Tree). Prove that the maximum eigenvalue of the adjacency

matrix of a tree of maximum degree d is at most 2
√
d− 1.

On the other hand, the average degree is a lower bound on the largest eigenvalue. More generally,
the largest eigenvalue is at least the average degree of the densest induced subgraph. One corollary
of the following exercise is that the largest eigenvalue is at least the size of a maximum clique minus
one.
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Exercise 3.11 (Average Degree Lower Bound). Let G = (V,E) be an undirected graph with largest

eigenvalue α1. For a subset S ⊆ V and a vertex v ∈ S, let degS(v) :=
∣∣{u | uv ∈ E and u ∈ S}

∣∣ be
the degree of v induced in S. Then

α1 ≥ max
S:S⊆V

1

|S|
∑
v∈S

degS(v).

We remark that the largest eigenvalue of the adjacency matrix of a connected graph is always of
multiplicity one by the Perron-Frobenius Theorem 2.16, and the spectrum of the adjacency matrix
satis�es

d ≥ α1 > α2 ≥ . . . ≥ αn ≥ −d.

In general, I do not know of a nice combinatorial characterization of the largest eigenvalue of the
adjacency matrix.

Question 3.12 (Largest Eigenvalue of the Adjacency Matrix). Is there a better �combinatorial�

characterization of the largest eigenvalue of the adjacency matrix of an undirected graph?

3.2 Laplacian Matrix

The Laplacian matrix plays a more important role in spectral graph theory than the adjacency
matrix, as we will see some reasons soon.

De�nition 3.13 (Diagonal Degree Matrix). Let G = (V,E) be an undirected graph with V (G) = [n].
The diagonal degree matrix D(G) of G is the n × n diagonal matrix with Di,i = deg(i) for each

1 ≤ i ≤ n.

De�nition 3.14 (Laplacian Matrix). Let G be an undirected graph. The Laplacian matrix L(G) of
G is de�ned as L(G) := D(G)−A(G), where D(G) is the diagonal degree matrix in De�nition 3.13

and A(G) is the adjacency matrix in De�nition 3.1.

When G is a d-regular graph, the diagonal degree matrix D(G) is simply d ·In, and so the spectrums
of the adjacency matrix and the Laplacian matrix are basically the same. That is, let α1 ≥ α2 ≥
. . . ≥ αn be the eigenvalues of the adjacency matrix, and λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of
the Laplacian matrix. When G is d-regular, it holds that λi = d− αi for 1 ≤ i ≤ n, and so the i-th
largest eigenvalue of A corresponds to the i-th smallest eigenvalue of L. We will use this convention
throughout that the eigenvalues of A are denoted by αi and the eigenvalues of L are denoted by
λi, and also the eigenvalues of A are ordered in non-increasing order while the eigenvalues of L
are ordered in non-decreasing order. So, later on, when we say the k-th eigenvalue of a graph, we
either mean the k-th largest eigenvalue of the adjacency matrix or the k-th smallest eigenvalue of
the Laplacian matrix.

When the graph is not a regular graph, it may not be easy to relate the eigenvalues of the adjacency
matrix and the Laplacian matrix. On one hand, as we mentioned in the previous subsection, it is
not so easy to give a characterization of α1 when the graph is not regular. On the other hand, λ1 is
equal to zero for every graph as we will soon see. We de�ne a matrix for the proof which will also
be useful later.
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De�nition 3.15 (Edge Incidence Matrix). Let G = (V,E) be an undirected graph and with V (G) =
[n] and m = |E|. For each edge e = ij ∈ E, let be be an n-dimensional vector with the i-th position

equal to +1 and the j-th position equal to −1 and all other positions equal to 0. Let B(G) be the

n×m edge incidence matrix whose columns are {be | e ∈ E}.
For an edge e ∈ E, let Le be its Laplacian matrix with (Le)i,i = (Le)j,j = 1 and (Le)i,j = (Le)j,i =
−1. Note that the Laplacian Le of an edge e can be written as beb

T
e , and the Laplacian of the graph

G can be written as

L(G) =
∑
e∈E

Le =
∑
e∈E

beb
T
e = B(G) ·B(G)T .

With this de�nition in place, the proof that zero is the smallest eigenvalue of Laplacian matrix is
straightforward.

Lemma 3.16 (Smallest Eigenvalue of Laplacian Matrix). The Laplacian matrix L(G) of an undi-

rected graph G is positive semide�nite, and its smallest eigenvalue is zero with the all-one vector

being a corresponding eigenvector.

Proof. As L can be written as BBT as shown in De�nition 3.15, it follows that L is a positive
semide�nite matrix by Fact 2.7, and so all eigenvalues of L are non-negative. It is easy to check
that L~1 = 0, and so 0 is the smallest eigenvalue and ~1 is a corresponding eigenvector.

Having a trivial smallest eigenvalue and a simple corresponding eigenvector is one reason that
Laplacian matrix is easier to work with. Another reason is that the Laplacian matrix has a nice
quadratic form.

Lemma 3.17 (Quadratic Form for Laplacian Matrix). Let L be the Laplacian matrix of an undi-

rected graph G = (V,E) with V (G) = [n]. For any vector x ∈ Rn,

xTLx =
∑
ij∈E

(
x(i)− x(j)

)2
.

Proof. Using the decomposition of L in De�nition 3.15,

xTLx = xT
( ∑

ij∈E
Lij

)
x = xT

( ∑
ij∈E

bijb
T
ij

)
x =

∑
ij∈E

xT bijb
T
ijx =

∑
ij∈E

(
x(i)− x(j)

)2
.

We will use Lemma 3.16 and Lemma 3.17 to write a nice formulation for the second smallest
eigenvalue when we study Cheeger's inequality.

Connectedness

The second smallest eigenvalue of the Laplacian matrix can be used to determine whether the graph
is connected.

Proposition 3.18 (Spectral Characterization of Connected Graphs). Let G be an undirected graph

and let λ1 ≤ . . . ≤ λn be the eigenvalues of its Laplacian matrix L. Then G is a connected graph if

and only if λ2 > 0.
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Proof. Suppose G is disconnected. Then the vertex set can be partitioned into two sets S1 and S2
such that there are no edges between them. For a subset S ⊆ V , let χS ∈ Rn be the characteristic
vector of S. Check that both χS1 and χS2 are eigenvectors of L with eigenvalue 0. Since χS1 and
χS2 are linearly independent, it follows that 0 is an eigenvalue with multiplicity at least 2, and thus
λ2 = 0.

Suppose G is connected. Let x be an eigenvector with eigenvalue 0. Then its quadratic form
xTLx = 0, and so

∑
ij∈E(x(i)−x(j))2 = 0 by Lemma 3.17, which implies that x(i) = x(j) for every

edge ij ∈ E. Since G is connected, it follows that x = c · ~1 for some c, and thus the eigenspace
of eigenvalue 0 is of one dimension. Therefore, the eigenvalue 0 has multiplicity one and thus
λ2 > 0.

The proof of Proposition 3.18 can be extended to prove the following generalization.

Exercise 3.19 (Spectral Characterization of Number of Components). Prove that the Laplacian

matrix L(G) of an undirected graph G has 0 as its eigenvalue with multiplicity k if and only if the

graph G has k connected components.

3.3 Normalized Adjacency and Laplacian Matrix

Recall that the spectrum of the adjacency matrix satis�es

d ≥ α1 ≥ α2 ≥ . . . ≥ αn ≥ −d,

where the upper bound and the lower bound depend on the maximum degree d of the graph. So,
when we relate the eigenvalues of the adjacency matrix to some combinatorial parameters, there is
usually a dependency on the maximum degree of the graph.

To remove this dependency and state the Cheeger's inequality nicely, we will use the following
normalized version of the adjacency matrix and the Laplacian matrix.

De�nition 3.20 (Normalized Adjacency and Laplacian Matrix). Let G be an undirected graph

with no isolated vertices. The normalized adjacency matrix A(G) of G is de�ned as A(G) :=

D−
1
2AD−

1
2 , where D is the diagonal degree matrix in De�nition 3.13 and A is the adjacency matrix

in De�nition 3.1.

The normalized Laplacian matrix L(G) of G is de�ned as L(G) := D−
1
2LD−

1
2 , where L is the

Laplacian matrix in De�nition 3.14. Note that L(G) = I −A(G).

We will overload notations and still use α1 ≥ α2 ≥ . . . ≥ αn to denote the eigenvalues of A(G)
and λ1 ≤ λ2 ≤ . . . ≤ λn to denote the eigenvalues of L(G). Since L(G) = I − A(G) as stated in
De�nition 3.20, the spectrums of L(G) and A are basically equivalent such that λi = 1 − αi for
1 ≤ i ≤ n. After the normalization, the eigenvalues are bounded as follows.

Lemma 3.21 (Normalized Eigenvalues). Let G be an undirected graph with no isolated vertices.

Let α1 ≥ . . . ≥ αn be the eigenvalues of its normalized adjacency matrix and λ1 ≤ . . . ≤ λn be the

eigenvalues of its normalized Laplacian matrix. Then 1 = α1 ≥ αn ≥ −1 and 0 = λ1 ≤ λn ≤ 2.

Proof. First we prove that λ1 = 0. Note that 0 is an eigenvalue of L, as

L
(
D

1
2~1
)

=
(
D−

1
2LD−

1
2
)(
D

1
2~1
)

=
(
D−

1
2L~1

)
= 0.
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Note also that

L = D−
1
2LD−

1
2 = D−

1
2BBTD−

1
2 =

(
D−

1
2B
)(
D−

1
2B
)T

where B is the edge incidence matrix in De�nition 3.15. It follows that L = I − A is a positive
semide�nite matrix by Fact 2.7, and thus 0 is the smallest eigenvalue of L and hence λ1 = 0. This
implies that α1 = 1 as λ1 = 1− α1.

Next we prove that αn ≥ −1. We will show that D+A is also a positive semide�nite matrix. Then
the same argument as in the above paragraph can be used to show that I + A = D−

1
2 (D+A)D−

1
2

is also a positive semide�nite matrix, and this would imply that 1 + αn ≥ 0 and thus αn ≥ −1.
There are at least two ways to see that D+A is positive semide�nite. One way is to de�ne B̄ to be
the �unsigned� matrix of B where B̄ij = |Bij | for all i, j ∈ V , and go through the same argument
in De�nition 3.15 and check that D+A = B̄B̄T . Another way is to use a similar decomposition as
in De�nition 3.15 and see that the quadratic form of D +A can be written as

xT (D +A)x =
∑
ij∈E

(
xi + xj

)2
,

which is a sum of squares and thus non-negative. This implies that λn ≤ 2 as λn = 1− αn.

3.4 Robust Generalizations

So far we have used the graph spectrum to deduce some simple combinatorial properties of the graph,
such as bipartiteness and connectedness, which are easy to deduce directly by simple combinatorial
methods such as breadth �rst search and depth �rst search. So one may wonder why these spectral
characterizations are useful. The key feature of the spectral characterizations is that they can be
generalized quantitatively to prove the following robust generalizations of the basic results:

� λ2 is close to zero if and only if the graph is close to being disconnected. This is the content
of Cheeger's inequality.

� λn is close to 2 if and only if the graph has a structure close to a bipartite component. This
is an analog of Cheeger's inequality for λn.

� λk is close to zero if and only if the graph is close to having k connected components. This is
a generalization called the higher-order Cheeger's inequality.

We will make these statements precise in the next two chapters.

3.5 Problems

The following are some additional problems that are relevant and interesting.

Problem 3.22 (Cycles). Compute the Laplacian spectrum of Cn, the cycle with n vertices.

Problem 3.23 (Hypercubes). A hypercube of n-dimension is an undirected graph with 2n ver-

tices. Each vertex corresponds to a string of n bits. Two vertices have an edge if and only if their

corresponding strings di�er by exactly one bit.
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1. Given two undirected graphs G = (V,E) and H = (U,F ), we de�ne G×H as the undirected

graph with vertex set V × U and two vertices (v1, u1), (v2, u2) have an edge if and only if

either (1) v1 = v2 and u1u2 ∈ F or (2) u1 = u2 and v1v2 ∈ E. Let x be an eigenvector of

the Laplacian of G with eigenvalue α, and let y be an eigenvector of the Laplacian of H with

eigenvalue β. Show that we can use x and y to construct an eigenvector of the Laplacian of

G×H with eigenvalue α+ β.

2. Use (1), or otherwise, to compute the Laplacian spectrum of the hypercube of n dimension.

Problem 3.24 (Number of Spanning Trees). Let G = (V,E) be an undirected graph with V = [n].

1. Let B be the edge incidence matrix of G in De�nition 3.15. Prove that the determinant of

any (n− 1)× (n− 1) submatrix of B is ±1 if and only if the n− 1 edges corresponding to the

columns form a spanning tree of G.

2. Let L be the Laplacian matrix of G and let L′ be the matrix obtained from L by deleting the

last row and last column. Use (1), or otherwise, to prove that det(L′) is equal to the number of

spanning trees in G. You can use the Cauchy-Binet formula in Fact 2.27 to solve this problem.

Problem 3.25 (Wilf's Theorem). Let G be an undirected graph and α1 be the largest eigenvalue of

its adjacency matrix. Prove that χ(G) ≤ bα1c+ 1, where χ(G) is the chromatic number of G. You
may �nd the Cauchy interlacing Theorem 2.13 useful.

3.6 References
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