
Chapter 1

Overview

The course has three parts. The �rst part is about eigenvalues, from classical to recent results in
spectral graph theory. The second part is about polynomials, mostly on the method of interlacing
polynomials and the theory of real-stable polynomials. The third part is about eigenvalues and
polynomials, on high-dimensional expanders and log-concave polynomials.

1.1 First Part

The classical spectral graph theory relates (i) the second eigenvalue of the adjacency/Laplacian
matrix and (ii) the graph expansion and (iii) the mixing time of random walks. We will start with
the fundamental Cheeger's inequality, and then see its applications in analyzing mixing time and in
constructing expander graphs.

Around 2010, there are a few interesting extensions/generalizations of Cheeger's inequality using
other eigenvalues of the matrix. In previous o�erings, we studied these generalizations in details. In
this o�ering, we will just have an overview of these results. Instead, we will study a new Cheeger's
inequality for vertex expansion from 2021.

Also around 2010, there are a few interesting results on a linear algebraic formulation of the graph
sparsi�cation problem. We will study a random sampling algorithm, and a deterministic algorithm
using barrier functions. Then we will also study a related concept called spectral rounding, and see
its applications in experimental design and network design.

To provide a more concrete idea, the graph sparsi�cation problem can be formulated as the following
pure linear algebraic problem. Given v1, . . . , vn ∈ Rd such that

∑n
i=1 viv

T
i = Id, �nd scalars

s1, . . . , sn with few nonzeros such that
∑n

i=1 siviv
T
i ≈ Id. The deterministic result says that it is

possible to have only O(d) non-zeros scalars to achieve a constant factor approximation, implying
that any undirected graph has a linear-sized sparsi�er. It is striking that this linear algebraic
formulation provides the best-known way to look at this combinatorial graph problem.

1.2 Second Part

The ideas and techniques developed in spectral sparsi�cation turned out to be surprisingly powerful.
It was observed that the deterministic spectral sparsi�cation result is reminiscent to a major open
problem in mathematics called the Kadison-Singer problem. This major problem is very remarkably
solved in 2013 by a novel probabilistic method and a multivariate extension of the barrier method.
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Eigenvalues and Polynomials

Interestingly, the new probabilistic method is based on viewing eigenvalues as roots of polynomials,
and exploiting interlacing properties of these roots. Besides this method of interlacing family and
the multivariate barrier method, the solution is also built on a beautiful theory for real-stable
polynomials.

In the second part of the course, we will take this polynomial perspective and study the theory of
real-stable polynomials to some extent. Then we will see how this is used in establishing interlacing
properties for the new probabilistic method. And then we will see the multivariate barrier method
and the solution to the Kadison-Singer problem.

Besides the Kadison-Singer problem, this method of interlacing family has several other interesting
applications, including the construction of Ramanujan graphs and even the traveling salesman
problem. To give one example, consider the following special case of the restricted invertibility
problem. Given v1, . . . , vn ∈ Rd such that

∑n
i=1 viv

T
i = Id and an integer k, the goal is to prove the

existence of a subset S of k vectors with large minimum non-zero eigenvalue λmin

(∑
i∈S viv

T
i

)
. It

turns out that the method of interlacing family allows us to reduce the problem to bounding the
maximum root of the polynomial ∂nxn(x− 1)n!

1.3 Third Part

In the third part, we will study an active research topic about high-dimensional expanders. This new
concept provides a local-to-global way to bound the second eigenvalue of the random walk matrix,
and it leads to an elegant solution to a long standing open problem called the matriod expansion
conjecture in 2019. Since then, lots of progress have been made in using this new approach to
analyze mixing time of random walks.

Interestingly, this approach of bounding eigenvalues for random walks is also closely related to
analytical properties of some associated polynomials. Consider the following natural algorithm for
sampling a random spanning tree of an undirected graph G = (V,E). Start with an arbitrary
spanning tree T0. In the i-th iteration, we add a random edge e to the tree and remove a random
edge f on the cycle created and set Ti := Ti−1 + e− f . And we simply repeat many iterations and
hope that the tree will look random very soon. Amazingly, the analysis of this algorithm depends
on the analytical properties of the following generating polynomials. Given an undirected graph
G = (V,E), we associate a variable xe for each edge e ∈ E, and consider the generating polynomial
of spanning trees p(x) =

∑
T∈T

∏
e∈T xe where T denotes the set of all spanning trees of G. For

spanning trees, we will see that this polynomial is completely log-concave and this implies that the
above random sampling algorithm is fast.

This polynomial approach has been extended very nicely to prove optimal bounds on mixing time
for several other problems, through the so-called log-Sobolev inequality. For these problems, a more
general property called fractionally log-concavity is used to prove strong bounds on log-Sobolev
inequality. This connection between polynomials and mixing time is very elegant.

High-dimensional expanders are also used in a recent breakthrough in constructing locally testable
codes. It is an exciting and very active research area that has shown great promise.
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