
CS 761 Randomized Algorithms Last Updated: May 21 (11am), 2018
Homework 1 Due Date: June 1 (11pm), 2018

You are allowed to discuss with others but not allowed to use any references except the course notes and
the books “Probability and Computing” and “Randomized Algorithms”. Please list your collaborators for
each question. This will not affect your marks. In any case, you must write your own solutions.

There are totally 80 marks, and the full mark is 70.

1. Minimum k-cut

(10 marks) Generalizing on the notion of a cut-set, we define a k-way cut-set in an undirected graph
as a set of edges whose removal breaks the graph into k or more connected components. Show that
the randomized contraction algorithm can be modified to find a minimum k-way cut-set in nO(k) time.

2. Online Hiring

(10 marks) You need to hire a new staff. There are n applicants for this job. Assume that you will
know how good they are (as a score) when you interview them, and the score for each applicant is
different. So there is a unique candidate with the highest score, but you don’t know that the applicant
is the best when you interview him/her until you have interviewed all the applicants. The problem is
that after you interview one applicant, you need to make an online decision to either give him/her an
offer or forever lose the chance to hire that applicant. Suppose the applicants come in a random order
(i.e. a uniformly random permutation), and you would like to come up with a strategy to hire the best
applicant.

Consider the following strategy. First, interview m applicants but reject them all. Then, after the
m-th applicant, hire the first applicant you interview who is better than all of the previous applicants
that you have interviewed.

Let E be the event that you hire the best applicant. Let Ei be the event that the i-th applicant is the
best and you hire him/her. Compute Pr(Ei) and show that

Pr(E) =
m

n

n∑
j=m+1

1

j − 1
.

For an appropriate choice of m, show that Pr(E) can get arbitrarily close to 1/e when n tends to
infinity.

3. Random Permutations

(10 marks) A permutation π : [n] → [n] can be represented as a set of cycles as follows. Let there be
one vertex for each number i for 1 ≤ i ≤ n. If the permutation maps the number i to the number π(i),
then a directed arc is drawn from vertex i to vertex π(i). This leads to a graph that is a set of disjoint
cycles. Notice that some of the cycles could be self-loops. What is the expected number of cycles in a
random permutation of n numbers?
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4. Quicksort

(10 marks) The expected runtime of the randomized quicksort algorithm is at most 2n lnn steps where
n is the number of elements to be sorted. Prove that the probability that the actual runtime is more
than say 100n lnn is at most inverse polynomial in n.

5. Chernoff Bound

(15 marks) Recall that X is a standard normal random variable if its probability density function is

f(x) = 1√
2π
e−

1
2x

2

.

(a) Compute the moment generating function MX2(t) := E[etX
2

]. You may use the fact that∫∞
−∞ f(x) = 1 without providing a proof.

(b) Use (a), or otherwise, to compute E[X4].

(c) Let X1, . . . , Xk be independent standard normal random variables, and Y = 1
k

∑k
i=1X

2
i . Derive

a Chernoff bound to prove that Pr(Y > 1 + ε) ≤ e−kε
2/8 for 0 ≤ ε ≤ 1. You may use the Taylor

expansion ln(1− x) = −
∑∞
i=1 x

i/i for −1 ≤ x ≤ 1.

6. Graph Sparsification

(10 marks) Given a complete graph G with n vertices where every edge is of the same weight, explain
that Karger’s uniform sampling algorithm will succeed with high probability in giving a (1 ± ε)-cut
approximator H of G with H having only O((n log n)/ε2) edges.

Also, provide a heuristic argument that when given the unweighted complete graph G as input, the
uniform sampling algorithm requires Ω(n log n) edges to produce any reasonable cut approximator H
of G.

7. Minimum Multicut

(15 marks) We are given a graph G = (V,E) and k pairs of source-sink vertices, si, ti ∈ V for
i = 1, . . . , k. We wish to find a subset of edges F ⊆ E that minimizes |F | such that for each i = 1, . . . , k,
there is no si-ti path in (V,E − F ).

Consider the following vector program:

minimize
∑

(i,j)∈E(1− vi · vj)
subject to vsi · vti = 0, i = 1, . . . , k,

vj · vj = 1, ∀j ∈ V,
vj ∈ Rn, ∀j ∈ V.

Consider the demand graph H = (V,E′), where E′ = {(si, ti) : i = 1, . . . , k}. Let ∆ be the maximum
degree of a vertex in the demand graph. Suppose that the optimal value of the vector programming
relaxation is ε|E|. Consider the following algorithm. We draw t = dlog2(∆/ε)e random unit vectors
r1, . . . , rt. The t random vectors define 2t different regions into which the vectors vi can fall: one region
for each distinct possibility of whether rj · vi ≥ 0 or rj · vi < 0 for all j = 1, . . . , t. Remove all edges
(i, j) from the graph such that vi and vj are in different regions. If for any si-ti pair, there still exists
an si-ti path, remove all edges incident on si. We now analyze this algorithm.

(a) Prove that the vector program is a relaxation of the minimum multicut problem.
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(b) For any (i, j) ∈ E, prove that the probability that i and j are in different regions is at most
t ·
√

1− vi · vj . You may use the fact that 1 − cos(θ) − 2θ2/π2 ≥ 0 for −π ≤ θ ≤ π without
providing a proof.

(c) Prove that for any i = 1, . . . , k, the probability that we end up removing all the edges incident on
si is at most ∆2−t.

(d) Show that the expected number of edges removed is at most O(
√
ε log(∆/ε)|E|).

For the final item, it may be useful to use Jensen’s Inequality, which states that for any convex function
f and any positive pi,

f

(∑
i pixi∑
i pi

)
≤ 1∑

i pi

∑
i

pif(xi).
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