
Chapter 2

Linear Algebra

2.1 Eigenvalues and Eigenvectors

De�nition 2.1 (Eigenvalues and Eigenvectors). Let A be an n× n matrix. A nonzero vector v is
called an eigenvector of A if Av = λv for some scalar λ. A scalar λ is called an eigenvalue of A if
there exists an eigenvector v with Av = λv.

The multi-set of eigenvalues of A is given by the roots of the characteristic polynomial. This
viewpoint will not be used often in the �rst part of the course, but it will be of central importance
in the second part of the course.

De�nition 2.2 (Characteristic Polynomial). Let A be an n× n matrix. The characteristic polyno-
mial of A is pA(x) := det(xI −A).

Two matrices are said to be similar if one is obtained from another by a change of basis.

De�nition 2.3 (Similar Matrices). A matrix X is similar to another matrix Y if there exists a
non-singular matrix B so that X = BY B−1.

It is well known that similar matrices have the same spectrum.

Fact 2.4 (Spectrum of Similar Matrices). If X is similar to Y , then the multi-set of eigenvalues of
X and that of Y are the same.

Proof. One way to see it is that they have the same characteristic polynomial, as

pX(x) = det(xI −X) = det(xI −BY B−1) = det(B(xI − Y )B−1) = det(xI − Y ) = pY (x),

where the second last equality is by Fact 2.27.

Real Symmetric Matrices

In this course, we mostly work with real symmetric matrices, which have all eigenvalues being real
numbers.
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Eigenvalues and Polynomials

Theorem 2.5 (Spectral Theorem). Let A ∈ Rn×n be a symmetric matrix. Then all eigenvalues of
A are real numbers. Furthermore, there is an orthonormal basis of Rn consisting of eigenvectors of
A.

See L01 of 2019 for a proof, which is based on the proof given in the book by Godsil and Royle [GR].

Remark 2.6 (Undirected and Directed Graphs). Theorem 2.5 applies to the adjacency/Laplacian
matrices of undirected graphs, but not for directed graphs. This is the main reason that spectral
graph theory is much more devleoped in undirected graphs. It has been an open direction to develop
spectral graph theory for directed graphs.

Diagonalization: Using the spectral theorem, real symmetric matrices can be written in the
following form. Let A ∈ Rn×n be a symmetric matrix. Let v1, . . . , vn ∈ Rn be an orthonormal
basis of eigenvectors guaranteed by Theorem 2.5 with corresponding eigenvalues λ1, . . . , λn. Let V
be the n × n matrix with the i-th column being vi. Let D be the n × n diagonal matrix with the
(i, i)-th entry being λi. Then the conditions Avi = λivi for 1 ≤ i ≤ n can be compactly written as
AV = V D. Since the columns in V form an orthonormal basis, it follows that V TV = I and thus
V −1 = V T . So, we can rewrite AV = V D as

A = V DV −1 = V DV T .

Power of Matrices: Let A ∈ Rn×n be a symmetric matrix. The diagonalization form A = V DV T

is very convenient in computations. To compute Ak, observe that it is simply Ak = (V DV T )k =
V DkV T where Dk is readily computed as D is a diagonal matrix.

This is very useful in analyzing random walks, as P t is the transition matrix of the random walks
after t steps where P is the transition matrix in one step. We will use the eigenvalues of the
transition matrix to bound the mixing time of random walks.

Eigen-Decomposition: If v1, . . . , vn form an orthonormal basis, then any x ∈ Rn can be written
as a linear combination c1v1 + . . .+ cnvn. By orthonormality, for any 1 ≤ i ≤ n,

〈x, vi〉 = 〈c1v1 + . . .+ cnvn, vi〉 = 〈civi, vi〉 = ci.

Therefore, for any x ∈ Rn,

x = 〈x, v1〉v1 + . . .+ 〈x, vn〉vn = v1v
T
1 x+ . . . vnv

T
nx =

(
v1v

T
1 + . . .+ vnv

T
n

)
x.

Since this is true for all x ∈ Rn, it follows that

v1v
T
1 + . . .+ vnv

T
n = In.

Now, if v1, . . . , vn are also eigenvectors of a matrix A ∈ Rn×n, then for any x ∈ Rn,

Ax = A(v1v
T
1 + . . .+ vnv

T
n )x =

(
λ1v1v

T
1 + . . .+ λnvnv

T
n

)
x.

This implies that
A = λ1v1v

T
1 + . . .+ λnvnv

T
n .

Verify that we can also write the inverse using the eigen-decomposition as

A−1 =
1

λ1
v1v

T
1 + . . .+

1

λn
vnv

T
n .

Later, this form will also be used to de�ne the �psuedo-inverse� of a matrix A when A is not of full
rank.
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Positive Semide�nite Matrices

An important class of real symmetric matrices is the class of positive semide�nite matrices. A
real symmetric matrix is called positive semide�nite if all of its eigenvalues are nonnegative. This
can be seen as a matrix analog of a non-negative number. The following are some equivalent
characterizations of a positive semide�nite matrix.

Fact 2.7 (Positive Semide�nite Matrix). Let A ∈ Rn×n be a real symmetric matrix. The following
statements are equivalent.

1. A is positive semide�nite, i.e. all eigenvalues of A are non-negative.

2. For any x ∈ Rn, it holds that xTAx ≥ 0, i.e. all quadratic forms are non-negative.

3. A = UTU for some matrix U ∈ Rn×n.

The notation A < 0 will be used to denote that A is a positive semide�nite matrix.

It is a good exercise to prove this fact; see L01 from 2019 for a proof. A matrix is called pos-
itive de�nite if all eigenvalues of A are positive. It is left as an exercise to �nd the equivalent
characterizations for positive de�nite matrices as in Fact 2.7.

Check that the set of positive semide�nite matrices forms a convex set. Optimizing a linear func-
tion over the set of positive semide�nite matrices with linear constraints is called semide�nite
programming. This is a very important class of convex optimization problems that can be solved
in polynomial time. We will see it once in this course and we will explain more when we use it.

It is also a good exercise to prove the following useful fact.

Fact 2.8. For any two positive semide�nite matrices A,B ∈ Rn×n,

〈A,B〉 :=
n∑
i=1

n∑
j=1

AijBij ≥ 0.

Optimization Formulation for Eigenvalues

The main reason why eigenvalues are useful for optimization is through the following formulation,
which is basically the quadratic form but normalized by the vector length.

De�nition 2.9 (Rayleigh Quotient). The Rayleigh quotient of a vector x ∈ Rn with respect to a
matrix A ∈ Rn×n is de�ned to be

RA(x) :=
xTAx

xTx
=

∑n
i=1

∑n
j=1Aijxixj∑n
i=1 x

2
i

.

The largest eigenvalue is the maximum value of the Rayleigh quotient.

Lemma 2.10 (Optimization Formulation for α1). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

α1 = max
x∈Rn

xTAx

xTx
.
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Proof. Let v1, v2, . . . , vm be the corresponding orthonormal basis of eigenvectors guaranteed by
Theorem 2.5. As v1, . . . , vn forms a basis of Rn, any vector x ∈ Rn can be written as a linear
combination x = c1v1 + · · ·+ cnvn. Then, the numerator can be written as

xTAx = (c1v1+· · ·+cnvn)TA(c1v1+· · ·+cnvn) = (c1v1+· · ·+cnvn)T (c1α1v1+· · ·+cnαnvn) =
n∑
i=1

c2iαi,

where the second equality is because v1, · · · , vn are eigenvectors and the last equality is because
v1, · · · , vn are orthonormal. Similarly, the denominator can be written as

xTx = (c1v1 + · · ·+ cnvn)
T (c1v1 + · · ·+ cnvn) =

n∑
i=1

c2i .

So, the Rayleigh quotient of x is

xTAx

xTx
=

∑n
i=1 c

2
iαi∑n

i=1 c
2
i

≤
α1
∑n

i=1 c
2
i∑n

i=1 c
2
i

= α1.

On the other hand, note that v1 attains the maximum, and the lemma follows.

This can be extended to characterize other eigenvalues. In particular, we will use the following
lemma for the second largest eigenvalue later.

Lemma 2.11 (Optimization Formulation for αk). Suppose A ∈ Rn×n is a real symmetric matrix
with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn and corresponding orthonormal eigenvectors v1, . . . , vn. Let
Tk be the set of vectors that are orthogonal to v1, v2, . . . , vk−1. Then

αk = max
x∈Tk

xTAx

xTx
.

Proof. Let x ∈ Tk. Write x = c1v1+· · ·+cnvn. Recall that ci = 〈x, vi〉 from the eigen-decomposition
subsubsection. Since x ∈ Tk, it follows that c1 = c2 = · · · = ck−1 = 0. Using the same calculation
as in Lemma 2.10,

xTAx

xTx
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤
αk
∑n

i=k c
2
i∑n

i=k c
2
i

= αk.

On the other hand, vk ∈ Tk and vTk Avk/vTk vk = αk, and the lemma follows.

The above result gives a characterization of αk, but it requires the knowledge of the previous eigen-
vectors. The Courant-Fischer theorem gives a characterization without knowing the eigenvectors,
and is more useful in giving bounds on eigenvalues. In words, the Courant-Fischer theorem says that
to prove a lower bound on αk, one needs to show a k-dimensional subspace in which every vector
has large Rayleigh quotient, and the best k-dimensional subspace gives the tight lower bound. And
to prove an upper bound on αk, one needs to show a (n − k + 1)-dimensional subspace in which
every vector has small Rayleigh quotient, and the best (n− k + 1)-dimensional subspace gives the
tight upper bound.

Theorem 2.12 (Courant-Fischer Theorem). Suppose A ∈ Rn×n is a real symmetric matrix with
eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Then

αk = max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
= min

S⊆Rn:dim(S)=n−k+1
max
x∈S

xTAx

xTx
.
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Proof. We prove the max-min equality. The min-max equality is similar and is left as an exercise.

Let Sk be the k-dimensional subspace spanned by the �rst k orthonormal eigenvectors v1, . . . , vk,
i.e. Sk = {x | x = c1v1 + · · ·+ ckvk for some c1, . . . , ck ∈ R}. Then, for any x ∈ Sk,

xTAx

xTx
=

(c1v1 + · · ·+ ckvk)
TA(c1v1 + · · ·+ ckvk)

(c1v1 + · · ·+ ckvk)T (c1v1 + · · ·+ ckvk)
=

∑k
i=1 c

2
iαi∑k

i=1 c
2
i

≥
αk
∑k

i=1 c
2
i∑k

i=1 c
2
i

= αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≥ min

x∈Sk

xTAx

xTx
≥ αk.

To prove that the maximum cannot be greater than αk, observe that any k-dimensional subspace
must intersect the (n − k + 1)-dimensional subspace Tk spanned by {vk, vk+1, . . . , vn}. For any
x ∈ Tk,

xTAx

xTx
=

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤ αk.

Therefore,

max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≤ min

x∈S∩Tk

xTAx

xTx
≤ αk.

One consequence of the Courant-Fischer theorem is the eigenvalue interlacing theorem, which will
be useful in the second part of the course.

Theorem 2.13 (Cauchy's Interlacing Theorem). Let A ∈ Rn×n be a real symmetric matrix and B
be a (n− 1)× (n− 1) principle submatrix of A. Then

α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ . . . ≥ αn are the eigenvalues of A and β1 ≥ β2 ≥ . . . ≥ βn−1 are the eigenvalues
of B.

Proof. Assume without loss of generality that B is in the top left corner of A, that is, the �rst n−1
coordinates.

It should be clear that αk ≥ βk because the search space for αk is larger than than for βk. More
precisely,

αk = max
S⊆Rn:dim(S)=k

min
x∈S

xTAx

xTx
≥ max

S⊆Rn−1:dim(S)=k
min
x∈S

xTAx

xTx
= max

S⊆Rn−1:dim(S)=k
min
x∈S

xTBx

xTx
= βk.

Next, we show βk ≥ αk+1. For any S ⊆ Rn with dim(S) = k + 1, its restriction to the �rst n − 1
coordinates (i.e. S ∩ Rn−1) is of dimension at least k. So, if there is a good (k + 1)-dimensional
subspace for A, then there is a good k-dimensional subspace for B, and so βk can do as well as
αk+1. More formally, let Sk+1 be the (k+1)-dimensional subspace that attains maximum for αk+1,

αk+1 = min
x∈Sk+1

xTAx

xTx
≤ min

x∈Sk+1∩Rn−1

xTAx

xTx
≤ max

S⊆Rn−1:dim(S)=k
min
x∈S

xTAx

xTx
= max

S⊆Rn−1:dim(S)=k
min
x∈S

xTBx

xTx
= βk.
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Perron-Frobenius Theorem

The Perron-Frobenius theorem is the most important result on the eigenvalues and eigenvectors on
non-negative matrices. To state it, we need the de�nitions of an irreducible matrix and the spectral
radius of a matrix.

De�nition 2.14 (Irreducible Matrix). A matrix A ∈ Rn×n is irreducible if its underlying directed
graph G = (V,E) is strongly connected, where the vertex set of G is V = [n] and the edge set of G
is E = {ij | Aij 6= 0}.

The spectral radius of a real symmetric matrix is simply the eigenvalue with largest absolute value.
The following is the more general de�nition for matrices with complex eigenvalues.

De�nition 2.15 (Spectral Radius). The spectral radius ρ(A) of a matrix A is the maximum of the
moduli of its eigenvalues.

The Perron-Frobenius theorem is about the largest eigenvalue and its corresponding eigenvectors,
which will be useful in the study of random walks. See chapter 8.8 in [GR] and chapter 8.4 in [HJ13]
for more details and proofs.

Theorem 2.16 (Perron-Frobenius Theorem). Let A ∈ Rn×n be a non-negative irreducible matrix.

1. The spectral radius ρ(A) is an eigenvalue of A with multiplicity one. In particular, for a real
symmetric matrix, the largest eigenvalue is of multiplicity one and its absolute value is the
largest.

2. If v is an eigenvector with eigenvalue ρ(A), then all the entries of v are nonzero and they have
the same sign.

Matrix Norms

De�nition 2.17 (Operator Norm). Let A be an m× n matrix. The operator norm ‖A‖op of A is
de�ned as

‖A‖op := sup
x∈Rn,x 6=0

‖Ax‖2
‖x‖2

.

This is also denoted by ‖A‖2 to denote that it is the ratio of the 2-norm of the vectors after and
before the linear transformation. But sometimes it is confused with the Schatten 2-norm of A which
is also denoted by ‖A‖2, so we use the notation ‖A‖op that is also a common notation.

Exercise 2.18 (Operator Norm of a Real Symmetric Matrix). Show that ‖A‖op is equal to the
largest eigenvalue of A when A is a real symmetric matrix.

The following are some simple properties that will be useful.

Fact 2.19 (Properties of Operator Norm). Let A ∈ Rm×n.

1. ‖A‖op ≥ 0 and ‖A‖op = 0 if and only if A = 0.

2. ‖cA‖op = |c|‖A‖op for every scalar c.
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3. ‖A+B‖op ≤ ‖A‖op + ‖B‖op.

4. ‖Ax‖2 ≤ ‖A‖op‖x‖2 for every x ∈ Rn.

5. ‖BA‖op ≤ ‖B‖op‖A‖op

2.2 Formulas and Inequalities

We record some useful formulas and inequalities in this section. A general reference is the book by
Horn and Johnson [HJ13].

Inverse

The following formulas are for updating the inverse of a matrix. See wiki for proofs.

Fact 2.20 (Sherman-Morrison Formula). Suppose A ∈ Rn×n is an invertible square matrix and
u, v ∈ Rn are column vectors. Then A + uvT is invertible if and only if 1 + vTA−1u 6= 0. In this
case,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Fact 2.21 (Woodbury Formula). Given a square invertible n× n matrix A, a n× k matrix U , and
a k × n matrix V , assuming (Ik + V A−1U) is invertible, then

(A+ UV )−1 = A−1 −A−1U
(
Ik + V A−1U

)−1
V A−1.

The following formula is for inverting a block matrix, and the Schur complement is a useful de�nition.

Fact 2.22 (Block Matrix Inversion). Let A and D be square matrices and

M =

(
A B
C D

)
.

If A and the Schur complement D − CA−1B are invertible, then

M−1 =

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1
−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1
)
.

When a matrix A is not invertible, we can work with the Moore-Penrose pseudoinverse of A.

De�nition 2.23 (Pseudoinverse). Let A ∈ Rn×n be a real symmetric matrix with eigen-decomposition
A =

∑n
i=1 λiviv

T
i . The pseudoinverse of A, denoted by A†, is de�ned as

A† :=
∑
i:λi 6=0

1

λi
viv

T
i .

Check the following properties of pseudoinverse.

Fact 2.24 (Properties). Let A be a real symmetric matrix and A† be its pseudoinverse. Then

AA†A = A and A†AA† = A† and
(
A†
)†

= A.
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Determinant

These formulas about determinants will be used in the second part of the course.

Fact 2.25 (Laplace Co-Factor Expansion). Let A be a n× n matrix. For every 1 ≤ i ≤ n,

det(A) =

n∑
j=1

(−1)i+jAi,j det
(
A[n]\i,[n]\j

)
,

where AS,T is the submatrix with rows in S ⊆ [n] and columns in T ⊆ [n].

Applying Laplace expansion recursively gives the Leibniz formula.

Fact 2.26 (Leibniz Formula). Let A be a n× n matrix. Then

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aσ(i),i,

where Sn is the set of permutations of the set [n] = {1, . . . , n} and sgn(σ) is the sign function of
permutation σ which returns +1 and −1 for even and odd permutations.

The following is a simple fact.

Fact 2.27 (Product).

det(AB) = det(A) det(B).

The following result, sometimes known as Sylvester's determinant identity, can be used to deduce
that the nonzero eigenvalues of AB and BA are the same (with multiplicity).

Fact 2.28 (Weinstein-Aronszajn Identity).

det(I +AB) = det(I +BA).

The matrix determinant formula keeps track of how the determinant changes after a rank-one
update.

Fact 2.29 (Matrix Determinant Formula).

det
(
M − uvT

)
= det(M)

(
1− vTM−1u

)
.

The Cauchy-Binet formula will be very useful. One application is to compute the number of spanning
trees of a graph.

Fact 2.30 (Cauchy-Binet Formula). Let A be an m× n matrix and B be an n×m matrix. Then

det(AB) =
∑

S∈([n]
m)

det
(
A[m],S

)
det
(
BS,[m]

)

The following formula gives the coe�cients of the characteristic polynomials.
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Fact 2.31 (Characteristic Polynomial). Let A be an n× n matrix.

det(λIn −A) =
n∑
k=0

λn−k(−1)k
∑

S∈([n]
k )

det(AS,S).

Using Fact 2.31 and Cauchy-Binet formula in Fact 2.30, we have the following identity for the
characteristic polynomial of a sum of outer products.

Fact 2.32 (Characteristic Polynomial of Sum of Outer Products). Let u1, . . . , um ∈ Rn.

det
(
xI −

m∑
i=1

uiu
T
i

)
=

n∑
k=0

λn−k(−1)k
∑

S∈([m]
k )

det
k

(∑
i∈S

uiu
T
i

)
,

where detk(A) =
∑

S∈([n]
k )

det(AS,S).

Trace

De�nition 2.33 (Trace). The trace of a matrix A ∈ Rn×n, denoted by Tr(A), is de�ned as the sum
of the diagonal entries of A.

Fact 2.34 (Cyclic Property of Trace). For two matrices A ∈ Rm×n and B ∈ Rn×m,

Tr(AB) = Tr(BA).

By looking at the coe�cient of xn−1 of the characteristic polynomial det(xI − A) of A ∈ Rn×n in
two ways, one can obtain the following useful fact (see L01 from 2019 for a proof).

Fact 2.35 (Trace is Sum of Eigenvalues). Let λ1, . . . , λn be the eigenvalues of A ∈ Rn×n. Then

Tr(A) =

n∑
i=1

λi.

The following are two advanced results about traces; see [Bha97]. We may not need them explicitly
in this course.

Fact 2.36 (Golden-Thompson Inequality).

Tr(eA+B) ≤ Tr(eA) · Tr(eB)

Fact 2.37 (Lieb-Thirring Inequality). Let A and B be positive de�nite matrices and q ≥ 1. Then

Tr
(
(BAB)q

)
≤ Tr(BqAqBq).

Matrix Calculus

The formula for di�erenting the inverse is obtained by di�erentiating the identity AA−1 = I.

Fact 2.38 (Inverse).
d(A−1) = −A−1(dA)A−1.

Jacobi's formula is obtained by di�erentiating the cofactor expansion in Fact 2.25.

Fact 2.39 (Jacobi's Formula).

d

dt
detA(t) = Tr

(
adj(A(t)) · dA(t)

dt

)
=
(
detA(t)

)
· Tr

(
A(t)−1 · dA(t)

dt

)
.
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