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Chapter 1

Introduction

In an introductory algorithms course, we learned about combinatorial techniques. These
give rise to deterministic algorithms which always return optimal solutions.

Unfortunately, many combinatorial problems are NP-Complete. Even the fastest determin-
istic poly-time algorithms can be very complicated and difficult to implement.

We will focus on modern techniques in algorithm design using tools from probability theory,
linear algebra, and continuous optimization.

1.1 Topics

Randomized Algorithms probabilistic inequalities, Markov chains, and Monte Carlo meth-
ods come to mind

Linear Algebra eigenvalues and eigenvectors and how they are useful

Linear Programming & Continuous Optimization this gives rise to approximation al-
gorithms for NP-Hard problems

Each of the 3 topics can take an entire semester. We will take a broader view and ignore
some applications or go into too much detail.

1.2 Maximum-Flow Minimum-Cut

Let G = (V,E) be an unweighted, undirected graph with s, t ∈ V be given.
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Problem 1 (Minimum st-Cut)
Remove a minimum number of edges to disconnect s, t.

Problem 2 (Maximum st-Flow)
Find a maximum set of edge-disjoint st-paths.

Clearly, the maximum flow is bounded above by the minimum cut. The max-flow min-cut
theorem says they are always equal.

Through the augmenting path algorihtm, we can achieve an O(|V ||E|) time algorithm to
solve both.

With addition tools, a running time of O(min{|E|1.5, |E||V | 23}) is possible. This is a deter-
ministic algorithm and can be extended to the weighted, directed case.

1.2.1 Techniques

Graph Sparsification any graph can be approximated by a sparse graph with cut values
approximately the same

Linear Programming there is an integer programming formulation of maximum flow and
therefore a linear programming relaxation. We will see a way to ”round” fractional
optimal solutions to an integral one!

Spectral Techniques & Continuous Optimization graph sparsification and combina-
torial ideas have been combined to give a nearly linear time algorithm for ”electrical
flows”. We will see how this solver can be used to give a fast approximation of maximum
flow

1.3 Quick Basic Probability Review

Sample Space Ω set of all outcomes, each with a probability associated with it

Event E subset of outcomes, P (E) =
∑

e∈E P (e)

Axioms 1. 0 ≤ P (E) ≤ 1

2. P (Ω) = 1

3. P (
⋃

i=1Ei) =
∑

i P (Ei) for disjoint Ei

Union Bound P (
⋃

i Ei) ≤
∑

i P (Ei)
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Inclusion-Exclusion Principle

Conditional Probability P (E|F ) = P (E∩F )
P (F )

Independence P (
⋂

i Ei) =
∏

i P (Ei)

Total Probability {Ei} a partition of Ω, P (B) =
∑

i P (B ∩ Ei) =
∑

i P (B|Ei)P (Ei)

Baye’s Rule {Ei} a partition of Ω, P (Ej|B) =
P (B|Ej)P (Ej)∑
i P (B|Ei)P (Ei)

Random Variable X is a function from Ω → R such that P (X = a) =
∑

x∈Ω:X(s)=a P (s)

Independence X,Y are independent variables if and only if P (X = x ∩ Y = y) = P (X =
x)P (Y = y)

Expectation E[x] :=
∑

i iP (X = i)

Linearity of Expectation E [
∑

i Xi] =
∑

iE[Xi]

Conditional Expectation E[Y |Z = z] =
∑

y P (Y = y|Z = z) where E[Y |Z] is a random
variable of Z that takes on the value E[Y |Z = z] if Z = z

17
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Part I

Randomized Algorithms
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Chapter 2

Randomized Minimum Cut

2.1 Problem

Problem 3 (Minimum Cut)
Given an unweighted, undirected graph G = (V,E), find a minimum cardinality
subset F ⊆ E such that G− F is disconnected.

Notice that for a fixed s ∈ V , s will belong to one of the two connected components of G−F .
It suffices to compute the minimum s, t-cut for all possible t as the global minimum cut is
also a minimum st-cut.

2.2 Randomized Algorithm

Karger gave a near linear time Õ(|E|) algorithm.

The Õ notation hides some poly-log factor in the run time.

We will present a O(|V |4)-time algorithm and mention how it can be improved to Õ(|V |)2.

2.3 Pseudocode

1) While there are more than two vertices

a) pick a uniformly random edge and contract it

2) Output the remaining edges between vertices

21



Notice that each vertex in an intermediate graph induces a connected subgraph. So each
cuz in an intermediate graph is a cut in the original graph. It follows that a min-cut in the
intermediate graph is at least as large as a min-cut in the original graph.

2.4 Analysis

Theorem 2.4.1
The probability that the algorithm outputs a minimum cut is at least

2

n(n− 1)

Proof
Let F be a minimum cut and let k = |F |.

If we never contract an edge in F until termination, then the algorithm succeeds. What
is the chance that an edge in F is contracted in the i-th iteration?

The minimum-cut value in the i-th iteration is still at least k. Note this means every
vertex has degree at least k. So by the handshake lemme, the number of edges in the
i-iteration is at least

(n− i+ 1)
k

2

Since we pick a random edge to contract, the chance that we pick an edge in F is at most

k[
(n−i+1)k

2

]
So the probability that F survives is at least

n∏
i=3

(
1− 2

i

)
=

n∏
i=3

(
i− 2

i

)
=

2

n(n− 1)

2.4.1 Improving Success Probability

We can simply repeat the whole process many times. The failure probability after t repeti-
tions is at most (

1− 2

n(n− 1)

)t

22



Recall that 1− x ≤ e−x. This gives the failure probability of at most

e−
2t

n(n−1)

2.4.2 Running Time

Now, one execution can be implemented in O(n2) time. It follows that the total time
complexity is O(n4).

One observation is that the chance of choosing an edge from F is much higher near termina-
tion than at the first iteration. The Karger Stein Algorithm seeks to repeat later ierations
but NOT the early iterations. This helps achieve the Õ(n2) running time mentioned earlier.

2.5 Corollaries & Generalizations

Corollary 2.5.0.1
There are at most

(
n
2

)
minimum cuts in an undirected graph.

Proof
Each distinct minimum cut S1, . . . , Sk survives with probability 2

n(n−1)
.

The event that two different minimum cuts survive are disjoint since we cannot have two
minimum cuts surviving at once. It follows that

1 ≥ P

(
k⋃

i=1

Si survives)

)
= k · 2

n(n− 1)

This is non-trivial to prove using other arguments.

The algorithm can be extended to give a nO(k) time algorith for finding a minimum k-cut.
This is NP-Hard when k is given as an input.

After studying graph sparsifiation, we may discuss Karger’s near linear time minimum-cut
algorithm.
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Chapter 3

Tail Inequalities

Basic tail inequalities such as Markov, Chebyshev, and Chernoff are important tools in
analyzing randomized algorithms.

3.1 Concentration Inequalities

On a high level, the goal is to give upper bounds on the probability that the value of a random
variable is far from its expected value. In other words, randomized algorithms behane like
what we expect with high probability.

3.1.1 Markov’s Inequality

Theorem 3.1.1 (Markov’s Inequality)
Let X be a non-negative discrete random variable. Then

P (X ≥ a) ≤ E[X]

a

for any a > 0.
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Proof

E[X] =
∑
i

i · P (X = i)

≥
∑
i≥a

i · P (X = i)

≥
∑
i≥a

a · P (X = i)

= a · P (X ≥ a)

3.1.2 Applications

Example 3.1.2 (Quicksort)
It is know that the expected runtime for randomized quicksort is 2n lnn. Markov’s in-
equality tells that the probability that the run time exceeds

2cn lnn

is at most 1
c

for c ≥ 1.

To see this, let a = 2cn lnn.

Example 3.1.3 (Coin Flipping)
If we flip n fair coins, the expected number of heads is n

2
.

Markov’s inequality tells us that the probability that there are more than 3n
4

heads is at
most

2

3

Remark that Markov’s inequality is most useful when all we now is the expected value. For
the examples above, we can show much better bounds using Chernoff bounds as we have
much more information.

Markov’s bound can be tight. It does not hold for random variables in general. Moreover,
no direct corollary allows us to bound P (X ≤ a).
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3.2 Moments & Variance

Definition 3.2.1 (k-th Moment)
E[Xk]

Definition 3.2.2 (Variance)

Var[X] = E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X2]− E[X]2

Definition 3.2.3 (Standard Deviation)
σ[X] =

√
Var[X]

Definition 3.2.4 (Covariance)
Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

We say X,Y are positively (respectively negatively) correlated if

Cov(X,Y ) > 0, (< 0)

Proposition 3.2.1
Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X,Y )

Proposition 3.2.2
If X,Y are independent

Var[X + Y ] = Var[X] + Var[Y ]

3.2.1 Chebyshev’s Inequality

We would like to distinguish distributions that are concentrated around its expected value
and those that are not.

27



Theorem 3.2.3 (Chebyshev’s Inequality)
For any a > 0

P (|X − E[X]| ≥ a) ≤ Var[X]

a2

Proof

P (|X − E[X]| ≥ a) = P ((X − E[X])2 ≥ a2)

≤ E[(X − E[X])2]

a2
Markov’s Inequality

=
Var[X]

a2

3.2.2 Examples

Example 3.2.4 (Coin Flipping)
Let X be the number of heads in n independent fair coin flips.

By independence, Var[X] =
∑n

i=1Var[Xi] where Xi is the indicator variable for the i-th
coin flip. So

Var[Xi] =
1

2

(
1− 1

2

)2

+
1

2

(
0− 1

2

)2

=
1

4

By Chebyshev’s Inequality

P

[
X ≥ 3n

4

]
≤ P

(
|X − E[X]| ≥ n

4

)
≤ Var[X](

n
4

)2
=

4

n

Chebyshev’s Inequality is useful when the second moment is easy to compute and suffices.
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3.3 Sum of Independent Variables

The general objective is to bound

P (X > (1 + ε)E[X]) upper tail
P (X < (1− ε)E[X]) lower tail

We consider the situation when X is the sum of independent random variables, a common
situation in the analysis of randomized algorithms.

The law of large number asserts that the sum of n independent identically distributed vari-
ables is approximately nµ. To similar affect, the central limit theorem says that

X − nµ√
nσ2

→ N(0, 1)

The deviation from nµ is typically within
√
nσ, where σ denotes the standard deviation of

a random variable.

Chernoff bounds give us quantitative estimates of the probabilities that X is far from E[X]
for any sufficiently large value of n.

3.3.1 Generalizing Markov’s Inequality

For binomial variables with chance of ”success” being p, we can simply compute

P (X ≥ k) =
∑
i≥k

(
n

i

)
pi(1− p)n−i

and show that it is very small when k is large. However, this does not generalize.

Instead, we extend the approach of using Markov’s Inequality. Normally, Markov’s Inequality
is too weak, but as in the proof for Chebyshev’s inequality, we may strengthen it by taking
2k-th moment.

P (|X − E[X]| > a) = P ((X − E[X])2k > a2k) ≤ E[(X − E[X])2k]

a2k

We can consider
P (X ≥ a) = P (etX ≥ eta) ≤ E[etX ]

eta

for any t > 0.

The are at least two reasons to choose etX rather than some other increasing function.
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Moments

Define

MX(t) = E[etX ]

= E

[∑
i≥0

ti

i!
X i

]

=
∑
i≥0

ti

i!
E[X i]

If we have MX(t) and wish to compute E[X i], it suffices to compute

M
(k)
X (0)

the k-th derivative of MX(t) evaluated at t = 0.

MX(t) is the moment generating function giving us all information about moments. It gives a
strong bound when applying Markov’s inequality, as the denominator is exponentially large.

Independent Sum

If X = X1 +X2, two independent variables, then

E[etX ] = E[etX1etX2 ] = E[etX1 ]E[etX2 ]

So this function is easy to compute when X is the sum of independent random variables.

3.4 Chernoff Bounds for Bounded Variables

Roughly speaking, Chernoff Bounds are obtained through Markov’s inequality applied to
the moment generating function as explained above. It is a general method rather than a
specific inequality.

3.4.1 Heterogenous Coin Flips

Let X1, . . . , Xn be independent random variables with Xi = 1 with probability pi and Xi = 0
otherwise.
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Let X :=
∑n

i=1Xi and

µ = E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

pi

be the expected value.

We have

E[etX ] =
n∏

i=1

E[etXi ] independence

=
n∏

i=1

(
pie

t·1 + (1− pi)e
t·0)

=
n∏

i=1

(1 + pi(e
t − 1))

≤
n∏

i=1

epi(e
t−1) 1 + x ≤ ex

= e
∑n

i=1 pi(e
t−1)

= eµ(e
t−1)

We can put in some specific parameters to get useful bounds.

Theorem 3.4.1
In the heterogenous coin flipping setting

1. for δ > 0 we get

P (X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ

2. for 0 < δ < 1 we get
P (X ≥ (1 + δ)µ) < e−

δ2µ
3

3. for R ≥ 6µ we have
P (X ≥ R) ≤ 2−R

Proof (1)
From our work before

P (X ≥ (1 + δ)µ) ≤ E[etX ]

et(1+δ)µ
≤ eµ(e

t−1)

et(1+δ)µ

The last function is minimized when t = ln(1 + δ), implying P (X ≥ (1+δ)µ) ≤ eµδ

(1+δ)(1+δ)µ .
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Proof (2)
When 0 < δ < 1, it holds that eδ

(1+δ)1+δ ≤ e−
δ2

3 .

Proof (3)
Let R := (1 + δ)µ. When R ≥ 6µ, we have δ ≥ 5. Hence

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

≤
(e
6

)R
≤ 2−R

Similar bounds hold for the lower tail. A very similar proof results by setting t < 0.

Theorem 3.4.2
In the heterogenous coin flipping setting, we have for 0 < δ < 1

1. P (X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)1−δ

)µ
2. P (X ≤ (1− δ)µ) ≤ e

−µδ2

2

Corollary 3.4.2.1
In the heterogenous coin flipping setting

P (|X − µ| ≥ δµ) ≤ 2e−
µδ2

3

for 0 < δ < 1.

Corollary 3.4.2.2 (Hoeffding Extension)
The same bounds hold when Xi is a random variable taking values in [0, 1] with mean
pi.

Proof (sketch)
etX is convex, and thus always lies below the straight line joining the endpoints (0, 1), (1, et).
This line has the equation

y = αx+ β, α = et − 1, β = 1
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It follows that

E[etXi ] ≤ E[αXi + β]

= αpi + β

= 1 + pi(e
t − 1)

so the same calculations from above follow.
Remark that the same method holds for other random variables such as Poisson random
variables, Gaussian random variables, etc.

It is often easier to compute the moments by computing the moment generating functions.

Chernoff bounds also hold fo rnegatively correlated variabels since then

E[eet(X+Y )] ≤ E[etX ]E[exY ]

For example, any two edges appearing in a random spanning tree are negatively correlated.
It follows that Chernoff bounds still apply in the analysis of random spanning trees despite
the dependency between variables.

3.4.2 Examples

Example 3.4.3 (Coin Flips)
Consider n independent fair coin flips, so the expected number fof heads is µ = n

2
.

By setting δ :=
√

60
n

we get

P (number of heads - µ ≥ δµ) ≤ 2e−
µδ2

3

= 2e−
nδ2

6

= 2e−10

So with high probability, the number of heads is within O(
√
n) of the expected value.

On the other hand, we can further improve the bound from Chebychev to get

P

(
X ≥ 3n

4

)
≤ e−

(n/2)(1/2)2

3 = e−
n
24

which is exponentially smaller.
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Example 3.4.4 (Probability Amplication)
The success probability of a randomized algorithm with one-sided error can be amplified
easily. Say it is always correct when it says NO and correct with probability p when it
says YES. To decrease failure probabiklity, we just repeat the algorithm k times or until
it says NO.

The failure probability is at most (1 − p)k when it says YES k times for a NO instance.
For constant p repeating log n times decreases the failure to O

(
1
n

)
.

Suppose the randomized algorithm has two-sided errors. It has 60% chance of giving the
correct answer but it could makes for both YES or NO output. We can run the algorithm
k times and output the majority answer.

the majority answer is wrong when the randomized algorithm outputs NO for more than
k
2

times. By Chernoff’s bound, the majority answer being wrong has at most

P (number of NOs > (1 +
1

4
)E[number of NOs]) ≤ e−

µδ2

3 = e−0.4k
(1/4)2

3 = e−
k

120

By repeating O(log n) times, the failure probability is at most O
(
1
n

)
.

3.5 Applications of Tail Inequalities

3.5.1 Graph Sparsification

Consider an undirected graph G = (V,E) with weight w(e) on each edge e ∈ E. For S ⊆ V ,
let δG(S) be the set of edges with one endpoint in S and the other in V − S. Furthermore,
write

w(δG(S)) :=
∑

e∈δG(S)

w(e)

to be the total weight of edges in δG(S).

We want to find a “sparse” graph which approximates the cut structures of G well.

Definition 3.5.1 (ε-Cut Approximator)
We say H = (V, F ) is an ε-cut approximator of G = (V,E) if for all S ⊆ V

(1− ε)w(δE(S)) ≤ w(δH(S)) ≤ (1 + ε)w(δT (S))

Algorithm for Unweighted Inputs & Lower Bounded Cut Size

Let us assume the input G = (V,E) is unweighted and has minimum-cut value Ω(log|V |).
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Set a sampling probability p. Fix an edge e ∈ E(G). With probability p, put e in H with
edge weight we =

1
p
.

The idea is to choose a p-fraction of edges and make their weight 1
p
, making the expected

total weight of each cut in H the same as that in G. However, we need to ensure all cuts
in H have approximately the same weight as that in G simultaneously so it is insufficient to
simply consider expectation.

Theorem 3.5.1 (Karger)
Set

p =
15 lnn

ε2c

where c denotes the minimum cut value of G.
Then H is an ε-cut approximator of G with O(p|E(G)|) edges with probability at
least

1− 4

n

Lemma 3.5.2
The number of cuts with at most αc edges for α ≥ 1 is at most

n2α

Proof
Consider a subset S ⊆ V . Say δG(S) has k edges. Notice that k ≥ c by definition.

By the linearity of expection

E [|δH(S)|] =
∑

e∈δG(S)

E[xe] (∗)

=
∑

e∈δG(S)

(p · 1 + (1− p) · 0)

= p|δG(S)|
= pk

(∗) xe is an indicator variable denoting if e is added to H or not.

Similarly

E[w(δH(S))] =
1

p
· p|δG(S)|

= |δG(S)|
= k

35



so the expected values are as desired.

Next, consider the probability that the actual value of |δG(S)| is “far” from expectation.
Since |δH(S)| is a sum of independent indicator variables, we can apply Chernoff bound
and get

P (||δH(S)| − pk| ≥ εpk) ≤ 2e−
ε2pk
3

= 2e−
5k
c

lnn p =
15 lnn

ε2c

= 2n− 5k
c

Since k ≥ c, the chance that δH(S) violates the requirements of an ε-cut approximator is
at most

1

n5

which is pretty small.

Now apply the lemma, as a naive union bound requires summing across exponentially
many subsets of V which is undesirable.

P (some cut is violated) ≤
∑
S⊆V

P (cut S is violated) union bound

=
∑

S⊆V :2ic≤|δG(S)|≤2i+1c,i≥0

P (cut S is violated)

≤
∑

α=2i:i≥0

n4αP (cut S is violated|αc ≤ |δG(S)| ≤ 2αc) lemma

≤
∑

α=2i:i≥0

n4α · 2n− 5αc
c Chernoff bound

=
∑

α=2i:i≥0

2n−α

≤ 4

n
geometric series

It follows that with probability at least 1− 4
n
, H is an ε-cut approximator of G.

Another simple application of Chernoff bound shows that H has O(p · |E(G)|) edges with
high probability.

Although we did not explicitly use the lower bound for minimum cut, the statement is useless
for

c <= 15n lnn

as p ≥ 1 and we essentially just return the original graph without any change.
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Remark that the application of union bound and Chernoff bound is extremely powerful.

The result shows that for essentially complete graphs, there is an ε-cut approximator with

O

(
n log n

ε2

)
edges.

Appplications to Minimum Cut

We can sparsify a graph then compute the minimum st-cut. It can be shown that this is a

(1 + 3ε)− approximation

but reduces run times depending on |E| ∈ O(|V |2).

Improvement

Benzczur and Karger designed a non-uniform sampling algorithm which each edge is sampled
with probability inversely proportional to the “connectivity” of the two endpoints. Their
result shows that an ε-cut approximator with O

(
n logn

ε2

)
edges is attained for any graph.

We will skip this result and instead return on this subject with spectral sparsification.

Minimum Cuts in Linear Time (Optional)

Let c be the minimum cut value of the the input graph G = (V,E). Notice that G is then
c-edge-connected.

Theorem 3.5.3
If G is c-edge-connected, then G has at least⌊ c

2

⌋
edge-disjoint spanning trees.

Given all such spanning trees, we can find all one that crosses a minimum cut at most 2
times. This tree would be useful to compute the minimum cut S.

Sparsify the input, and compute O(log n) spanning trees. One such tree crosses a minimum
cut at most two times.
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3.5.2 Dimension Reduction (Optional)

Given n points in Euclidean space, we can always represent the vectors in n-dimensions. In
general, we cannot do better is not distoration is allowed. Allowing some distortion allows
us to significantly reduce the number of dimensions.

Theorem 3.5.4 (Johnson-Lindenstrauss Lemma)
Given any ε ∈

(
0, 1

2

)
and any set of points X = {X1, X2, . . . , Xn}. There exists a

map A : X → Rk for k = O
(
logn
ε2

)
such that

1− ε ≤
‖Axi − Axj‖22
‖xi − xj‖22

≤ 1 + ε

The Algorithm

We just project the points in a random k-dimensional subspace.

Let d be the dimension of original points. Let M be a k× d matrix, such that each entry of
M is drawn from the normal N(0, 1) distribution. Define

Ax :=
1√
k
Mx

(this is efficiently computable)

Since A is a linear transformation, the theorem can be reduced to the following.

Lemma 3.5.5
If A is constructed by the above algorithm with

k ∈ Θ

(
1

ε2
log

(
1

δ

))
then

P (1− ε ≤ ‖Ax‖22 ≤ 1 + ε) ≥ 1− δ

for any unit vector x ∈ Rd and any ε ∈
(
0, 1

2

)
.

Given this lemma, we can set δ = 1
n2 so for any pair i 6= j, the square length of xi − xj is

within 1 + ε with probability at least 1− 1
n2 . By union bound, the distances of all pairs are

maintained within 1 + ε with probability at least 1
2
.
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Proof (Sketch)
Consider e1. We want to find the length of the column Me1. Notice that this follows a
χ2
k distribution and thus has expected length of Ae1 is 1.

By setting k sufficiently harge, we can expect that the length is highly concentrated
around its expectation.

With the k ∈ O
(
logn
ε2

)
described above, our intuition of Chernoff bound says the error

probability is at most
2e−

µε2

3 ≤ 1

n2

The actual proof requires us to handle two things.

(1) we cannot assume x = e1

(2) the standard Chernoff bound does not apply since the random variables are un-
bounded.

Notice that for an arbitrary y = Mx (x is unit vector), yj =
∑d

i=1Mjixi where Mji an
N(0, 1) random variable. So yj is a sum of Gaussian variables. In fact

yj ∼ N

(
0,

d∑
i=1

x2
i

)
= N(0, 1)

So we can just use the initial argument again.

By elementary calculus, we can compute the MGF of the independent Gaussians. Using
this result, it is possible to show

P
(
‖Ax‖22 ≥ 1 + ε

)
≤ e−

kε2

8

A lower bound comes from similar work.

By setting k ∈ O
(

1
ε2
ln
(
1
δ

))
, we get

P
(
|‖Ax‖22 − 1| > ε

)
≤ δ

The result holds even when M is a random ±1 matrix. The proof is more difficult but the
algorithm is much, much easier to implement.

Applications

An immediate and important use is to approximate the nearest neighbour search.

A linar scan takes Θ(n2) time, but only O(n log n) after dimension reduction. However, this
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only works for Euclident distances only.

Another application is approximate matrix multiplication. we can dimension reduce the
rows of A and columns of B so their product can be computed in O(n2 log n) time.
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Chapter 4

Balls & Bins

Balls and bins is a basic random process underlying several common phenomenons. There
are applications to hashing.

4.1 Basic Results

We have m balls and n bins. Each ball is thrown to a uniformly random bin independently.

We would like to study what a typical endgame looks like.

4.1.1 Expected Number of Balls in a Bin

Let Bij be the indicator variable that ball j is in the bin i. Then

E[number of balls in bin i] =
∑

j = 1mE[Bij]

=
m

n

In particular, if m = n, the expected number of balls in a bin is one.
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4.1.2 Expected Number of Empty Bins

Let Yi be the indicator variable that bin i is empty. Then

E[Yi] =

(
1− 1

n

)m

≈ e−
m
n

So the expected number of empty bins is about

n · e−
m
n

When m = n, we expect about 1
e

of the bins are empty.

4.1.3 Maximum Load

What is the maximum number of balls which typically land in a bin? A simpler question is
for which m do we expected to see two balls in a bin (“collision”).

The birthday paradox is the case when n = 365. The probability that there are no collisions
in the first m balls is

m−1∏
i=1

(
1− i

n

)
≤ e−

∑m−1
i=1

i
n

= e−
m(m−1)

2n

≈ e−
m2

2n

This probability is smaller than 1
2

when

m =
√
2n ln 2

For n = 365, it says that when m ≥ 22.49, the probability that the maximum load is at least
two is at least 1

2
. This is very close to the exact answer.

to summarize, we expect to see a collision when

m = Θ(
√
n)

This observation is useful in different places.

An intuitive explanation is that there are m2 pairs of possible collisions, so we expect some
collision to occur when m2 ≈ n.

42



4.1.4 Maximum Load when m = n

The probability that a bin has at least k balls is at most(
n

k

)(
1

n

)k

by a union bound.

It is often that we have to deal with binomial coefficients. Some useful bounds are(n
k

)k
<

(
n

k

)
<

nk

k!

<
(ne
k

)k
Using this bound, the probability above is at most(ne

k

)k ( 1

n

)k

=
ek

kk

By the union bound,

P (some bin has at least k balls) ≤ n · e
k

kk

= elnn+k−k ln k

We would like to extimate the smallest k such that this probability is small enough. Re-
wording, we want the minimum k such that

k ln k > lnn

Setting k = 3 lnn
ln lnn

would do. Thus with high probability, the maximum load is at most

O

(
lnn

ln lnn

)

4.1.5 Coupon Collector

For what m do we expect to have no empty bins? Leu X be the number of balls thrown
until there are no empty bins. Let Xi be the number of balls thrown when there are exactly
i bins.

43



So

E[X] =
n∑

i=1

E[Xi]

Notice that each Xi is a geometric random variable with parameter p = i
n
. This is due to

the fact that we look for the number of “failures” until our first “success” (choose empty
bin).

The expected value of a geometric random variable with parameter p is

1

p

since

E[Xi] =
∑
i≥1

iP (Xi = i)

=
∑
i≥1

P (Xi ≥ i)

=
∑
i≥1

(1− p)i−1

=
1

1− (1− p)

=
1

p

Thus

E[X] =
n∑

i=1

E[Xi]

=
n∑

i=1

1

i/n

=
n∑

i=1

n

i

≈ n lnn

This n lnn comes up as a lower bound for different things such as cover time of random walks
in a complete graph, and the number of edges needed in graph sparsification by random
samplying type algorithms.
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4.2 Heuristic Arguments

We showed that the maximum load is

O

(
lnn

ln lnn

)
with high probability, but is it tight?

What is the probability of having an empty bin after throwing n lnn+cn balls? The problem
with analyzing balls and bins is that the random variables are not independent. This means
Chernoff bounds cannot be directly applied.

In this particular case, we observe that the events that two bins are nonempty are negatively
correlated, and thus Chernoff bounds apply.

In the following, we pretend the variables are independent and come up with heuristic
bounds. Later we mention these arguments can be made precise by Poisson Approxima-
tion.

4.2.1 Maximum Load

Let Pr be the probability that a bin has exactly r balls. Then

Pr =

(
m

r

)(
1

n

)r (
1− 1

n

)m−r

=
1

r!

m(m− 1) . . . (m− r + 1)

nr

(
1− 1

n

)m−r

Assuming m = n >> r. Then

Pr ≈
1

r!
· 1 · e−1

=
1

er!

We further assume that all bins are independent (not quite true, but not too far off). Then
the probability that no bin has exactly r balls is at most(

1− 1

er!

)n

≤ e−
n
er!

If this probability is very small, then with high probabiliy there will be some bin with at
least r balls.
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For e−
n
er! to hold, it suffices to set

− n

er!
≤ −2 lnn

⇐⇒

r! ≤ n

2e lnn
⇐⇒

ln r! ≤ lnn− ln lnn− ln(2e) (∗)

(∗) By Stirling’s approximation that

r! ≤ e
√
r
(r
e

)r
≤ r

(r
e

)r
we get

ln r! =
r∑

i=1

ln i

≈
∫ r

1

lnxdx

= x(lnx− 1)

∣∣∣∣r
1

= r ln r − r

≤ r ln r − r + ln r

Set r = lnn
ln lnn

. We get

ln r! ≤ lnn

ln lnn
(ln lnn− ln ln lnn)− lnn

ln lnn
+ (ln lnn− ln ln lnn)

. . .

≤ lnn− ln lnn− ln(2e)

which shows that (∗) holds for the choice of r.

So there does indeed exist some bin with load

Ω

(
lnn

ln lnn

)
with high probability.
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4.2.2 Coupon Collector

To estimate the probability that some bin is empty after n lnn+ cn balls, again we use

Pr =
1

r!

m(m− 1) . . . (m− r + 1)

nr

(
1− 1

n

)m−r

≈ 1

r!
·
(m
n

)r
· e−

m
n

when m,n >> r.

For m = n lnn+ cn we have p0 ≈ e−c

n
. So the probability of having some empty bin is

≈ 1−
(
1− e−c

n

)n

≈ 1− e−e−c

= 1− 1

e
1
ec

When c is a large positive constant, this is very close to 0. On the other hand when c is a
large negative constant, this is close to 1.

This is a “sharp” threshold phenomenon, for which we expect the even happens when there
are very close to n lnn balls.

4.2.3 Poisson Approximation (Optional)

Notice that the approximation for Pr earlier is actually the probability distribution of a
Poisson random variable.

Our work earlier actually assumes we are working with independent random variables. It
can be shown that these heuristic arguments actually give some sort of bound on the balls
and bins setting which differ by some constant factor.

4.3 Power of Two Choices (Optional)

Consider the variant where we choose 2 bins at random and put the ball in to the bin with
lower number of balls.

We say a ball has height i if it is the i-th ball put into some bin. Let Bi be the number of
balls with height i. Remark that

Bi+1

n
≤
(
Bi

n

)2

solving the recurrence with the deterministic base case

B4 ≤
n

4
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gives that when
i = log log n+ 3

Bi ≤ 1.

So the maximum load is O(log log n) under the power of two choices which is an exponential
improvement!

The proof is not nearly detailed enough but can be made so with Chernoff bounds and some
other steps.
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Chapter 5

Hashing

Hashing is useful in designing efficient data structures for searching but also in data streaming
algorithms and derandomization. One important concept is the notion of k-wise independent
random variables.

5.1 Hash Functions

We want O(1) time search using the RAM model. This means we can assume arbitrary
position access is O(1) and that the word size is sufficently large with word operations
taking O(1) time.

To store n members from a universe of M elements, we can easily do so with an array of size
M . However, if M >> n this would be impractical. We would like to use only an array of
size O(n) and still support searching in O(1) time.

Definition 5.1.1 (Hash Function)
Used to map the elements of the bigger universe to the locations in the smaller table.

Definition 5.1.2 (Hash Table)
A data structure consisting of a table T with n cells indexed by from 0 to n−1 storing
O(logm) bits each, and a hash function h : M → N .

It is impossible for h to be injective if we do not know the keys in advance.
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Definition 5.1.3 (Collision)
If x 6= y but h(x) = h(y).

The idea is to have a family of hash functions, so that the number of collisions is small with
high probability. If we pick a random hash function from the family, we can assume the keys
being stored at independent from the hash function we choose.

A natural setting is to simply consider the set of all functions from M → n. This would
bring us to the same balls-and-bins setting previously studied.

Suppose there are n keys. The expected number of keys in a location is 1, and the maximum
load any single location has is

Θ

(
log n

log log n

)
Using the idea of power of two choices, we can use two random functions h1, h2. When we
insert a value x, we look at the locations h1(x), h2(x) and store x in a least loaded location.
When we search, we look at the linked lists in both locations h1(x), h2(x).

Then we can reduce the maximum search time to

O(log log n)

while not increasing the average search time by more than a constant factor of 2.

5.1.1 Random Hash Functions

So far so good. However, we neglected the issue of computation time of h(x) as well as the
space requirement to store h. There is unfortunately no way to do it efficiently for truly
random functions.

Consider a random function h : M → N . Storing this table requires at least m log n bits.
Each element in the image requires log n bits to remember its location.

Ideally, if we use O(n) cells for the hash table with each cell storing logm bits, we would
like the store the hash function using O(1) cells. This means there is no overhead in storage
requirement. Thus we can use at most O(logm) bits to represent the hash function, so our
family has at most

poly(m)

functions instead of the nm functions from M → N .

Fortunately, choosing a hash function from a smaller family does not limit too much the
properties guaranteed by random hash functions. However, we need a succint representation
of a hash function to support fast query time and requires little storage space.
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5.2 k-wise Independence

For a set of n independent random variables

P

(⋂
i=1

Xi = xi

)
=

n∏
i=1

P (Xi = xi)

k-wise independence is slightly weaker.

Definition 5.2.1 (k-wise Independent)
A set of random variables X1, . . . , Xn is k-wise independent if for any subset I ⊆ [n]
with |I| ≤ k and any values of xi, i ∈ I

P

(⋂
i∈I

Xi = xi

)
=
∏
i∈I

P (Xi = xi)

Definition 5.2.2 (Pairwise Independence)
2-wise independence.

Example 5.2.1
Given random bits X1, . . . , Xb, we can generate 2b−1 pairwise independent bits. For each
∅ 6= S ⊆ [b] let

YS := ⊕i∈SXi

where ⊕ denotes addition modulo 2.

Example 5.2.2
Given two independent uniformly random variables X1, X2 over 0, . . . , p− 1, we can gen-
erate p pairwise independent random variables by setting

Yi := (X1 + iX2) mod p

for i = 0, . . . , p− 1 for some prime p.

The choice that p is prime is crucial.

5.2.1 Chebyshev’s Inequality

We cannot apploy Chernoff bounds for pairwise independent random variables.
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However, Chebyshev’s Inequality still applies since for pairwise independent variables X1, . . . , Xn

E[XiXj] = E[Xi]E[Xj]

for all i 6= j.

Thus covariance is still 0 for any Xi, Xj, i 6= j so

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]

and
P (|X − E[X]| ≥ a) ≤

∑n
i=1Var[Xi]

a2

5.3 Universal Hash Functions

Definition 5.3.1 (k-Universal)
Let U be a universe with |U | ≥ n and

V := {0, . . . , n− 1}

A family of hash functions H from U → V is said to be k-universal if, for any distinct
elements x1, . . . , xk and a hash function h chosen uniformly random from H

Ph∈H(h(x1) = h(x2) = · · · = h(xk)) ≤
1

nk−1

Definition 5.3.2 (Strongly k-Universal)
H is strongly k-universal if for any values y1, . . . , yk ∈ {0, . . . , n − 1} and a random
hash function h ∈ H

Ph∈H(h(x1) = y1, h(x2) = y2, . . . , h(xk) = yk) =
1

nk

for distinct xi ∈ U .

We can think of H as strongly k-universal if the random variables

h(0), h(1), . . . , h(|U | − 1)

are k-wise independent when h is chosen uniformly random from H.

With this connection, we will wee that the construction for generating k-wise independent
random variables can be used to construct universal hash functions. We focus on 2-universal
and strongly 2-universal hash functions.
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5.3.1 2-Universal & Strongly 2-Universal Families of Hash Func-
tions

Let us start with U = V = {0, . . . , p− 1} for some prime p. Let

ha,b(x) := (ax+ b) mod p

and
H := {ha,b : 0 ≤ a, b ≤ p− 1}

Proposition 5.3.1
H is strongly 2-universal.

Proof
We need to show

Pa,b ((ha,b(x1) = y1) ∩ (ha,b(x2) = y2)) =
1

p2

for any y1, y2, x1 6= x2.

Assume the event above happens. Then

(ax1 + b) mod p = y1, (ax2 + b) mod p = y2

Given x1, x2, y1, y2, there are two linearly independent equations with two variables and
thus a unique solution

a = (y2 − y1)(x2 − x1)
−1 mod p, b = (y1 − ax1) mod p

Thus there is only one choice of a, b out of p2 possibilities which satisfy the conditions as
desired.

Now we look to extend the construction when |U | >> |V |. Indeed, let

U := {0, 1, . . . , pk − 1}, V := {0, 1, . . . , p− 1}

for some positive integer k and some prime p.

Interpret each u ∈ U as a vector

~u = (u0, . . . , uk−1)

where 0 ≤ ui ≤ p − 1 and
∑k−1

i=0 uip
i = u. So ~u is the p-ary number where u0 is the least

significant digit and uk−1 is the most significant digit.
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For any ~a, 0 ≤ ai ≤ p− 1 and 0 ≤ b ≤ p− 1 let

h~a,b(~u) =

(
p−1∑
i=0

aiui + b

)
mod p

and
H := {h~a,b : 0 ≤ ai ≤ p− 1, 0 ≤ b ≤ p− 1}

Proposition 5.3.2
H is strongly 2-universal.

Proof
We need to show that

P (h~a,b(~u) = y, h~a,b(~w) = ξ) =
1

p2

for any y, ξ, ~u 6= ~w.

Assume ui0 6= wi0 . These conditions are equal to

ai0ui0 + b = y −

(∑
j 6=i0

ajuj

)
mod p, ai0wi0 + b = ξ −

(∑
j 6=i0

bjwj

)
mod p

which is again two systems of linearly independent equations with a single choice of (a0, b)
out of p2 possibilities.

Proposition 5.3.3
With

ha,b(x) = ((ax+ b) mod p) mod n

the family
H := {ha,b : 0 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1}

is 2-universal.

Notice that there is a prime between m, 2m for any m ∈ Z+. Thus the family above works
for arbitrary m by choosing a m ≤ p ≤ 2m.

We can also define hash functions over other fields.

5.3.2 k-Universal Families

The idea is similar. Instead of generating a random one degree polynomial, we generate a
random degree k poloynomial.
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By polynomial interpolation, there is a unique degree k polynomial (up to scalar multiplica-
tion) with

p(xi) = yi

for any distinct points x1, . . . , xk and values y1, . . . , yk.

It can be shown that with h~a : {0, . . . , p− 1}k → {0, . . . , n} given by

h~a(x) :=

(
k−1∑
i=0

akx
k

)
mod p mod n

the family
H := {h~a : 0 ≤ ai ≤ p− 1}

is a k-universal hash family.

5.3.3 Hashing with 2-Universal Functions

Let |V | = n and p a prime between |U |, 2|U |. With

ha,b(x) = ((ax+ b) mod p) mod n

the family
H := {ha,b : 0 ≤ a, b ≤ p− 1}

is 2-universal.

Moreover, we can store this function with only 2 cells! The evaluation time of ha,b is also
O(1).

However, can they provide the same guarantees as random hash functions?

Expected Search Time

Lemma 5.3.4
Assume m elements S ⊆ U are hashed into an n-bin hash table by using a randon
hash function from a 2-universal family. For an arbitrary element x, let X be the
number of elements at bin h(x).
Then

E[X] ≤

{
m
n
, x /∈ S

1 + m−1
n

, x ∈ S
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Proof
Let Xi = 1 if the i-th element in S is in the same bin as x and 0 otherwise. Since the
hash function is chosen from a 2-universal family, it follows that

P (Xi = 1) =
1

n

Therefore

E[X] =
m∑
i=1

E[Xi] =
m

n

if x /∈ S and
E[X] = E[Xj] +

∑
i 6=j

E[Xi] = 1 +
m− 1

n

if x ∈ S is the j-th element of S.

Maximum Load

Unfortunately, we cannot guarantee the maximu load is still

O

(
log n

log log n

)

let Xij = 1 if item i, j are mapped to the same bin and 0 elsewise. Then

X =
∑
i,j

Xij

is the number of collision pairs.

We have

E[X] =
∑
i,j

E[Xij]

=
∑
i,j

P (h(xi) = h(xj))

≤
∑
i,j

1

n
2-universality

=

(
m

2

)
1

n

≤ m2

2n
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By Markov’s Inequality,

P

(
X ≥ m2

n

)
≤ 1

2

or equivalently

P

(
X ≤ m2

n

)
≥ 1

2

Suppose the maximum load is Y . Then there are at least
(
Y
2

)
collision pairs.

Thus with probability at least 1
2 (

Y

2

)
≤ X ≤ m2

n

which implies

Y ≤ m

√
2

n
+ 1

When m = n, the maximum load is √
2n+ 1

with probability at least 1
2
.

We can guarantee the maximum load is

O

(
log n

log log n

)
with high probability at the cost of evaluation time

Ω

(
log n

log log

)
which is not a good tradeoff.

5.4 Perfect Hashing

Given a fixed set S, we would like to build a data structure to support only search operations
with excellent worst case guarantee.

Let m = |S|.

Definition 5.4.1 (Perfect Hash Function)
A hash function is perfect if it takes a constant number of word operations on log2m-
bit words so find an item or determine it does not exist.
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Lemma 5.4.1
If h ∈ H ia a random hash function from a 2-universal family mapping the universe
U → [0, n− 1]. then for any set S of size m when m ≤

√
n, the probability of h being

perfect for S is at least
1

2

Proof
The expected number of collision pairs is less than

m2

2n

By Markov’s inequality, this implies

P

(
X ≥ m2

n

)
≤ 1

2

When n ≥ m2, this means that it is perfect (no collision pair) with probability at least 1
2
.

To find a perfect hash function, we can generate random hash functions from H and check
if it is perfect. On average we only need to check at most 2 hash functions. However, this
scheme rquires

Ω(m2)

bins.

Two-Level Scheme

The idea is to first map the elements into a table of m bins/cells with maximum load O(
√
m).

Then we build a secondary-level hash table for each bin. If a bin has k items, the second
level hash table only needs O(k2) bins. Combining these will give a perfect hash function
with only O(m) bins.

Theorem 5.4.2
The two-level approach gives a perfect hashing scheme for m items using O(m) bins.
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Proof
As shown above, the nunber of collision pairs X in the first level is at most

m2

n

with probability at least 1
2
.

Thus for m = n, the number of collision pairs is at most m with probability 1
2
.

The first level hash function can be found by trying and checking randon hash functions
from a 2-universal family. On average, we only need to check at most 2 functions to find
a first level hash function with at most m collision pairs.

Let ci be the number of items in the i-th bin. Then

number of collision paris =
m∑
i=1

(
ci
2

)
≤ m

We use a second-level hash function that gives no collisions using c2i space for each bin
with ci > 1. By the above lemma, we can find a function by trying at most 2 randon hash
functions on average. The total number of bins used is at most

m+
m∑
i=1

c2i = m+ 2
m∑
i=1

(
ci
2

)
+

m∑
i=1

ci

≤ m+ 2m+m

= 4m

The extra space used to store the hash functions is at most O(m) cells. Since there are at
most m+ 1 hash functions and each requires only O(1) cells.

The search time is
O(1)

as it is O(1) for each level.
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Chapter 6

Data Streaming

6.1 Motivation

Suppose we have a massive data set where sublinear time and space is necessary. Here
randomness is crucial as most tasks are impossible in the deterministic setting.
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6.2 Heavy Hitters

Problem 4 (Heavy Hitters)
Given a data stream

x1, . . . , xT

where each
xt = (it, ct)

it is the ID of the t-th item and ct is the weight associated with it.
Let

Q :=
T∑
t=1

ct

be the total weight.
For an ID i, let

C(i, T ) =
∑

1≤t≤T :it=i

ct

be the total weight coming from ID i.
We say ID i is a heavy hitter if

C(i, T ) ≥ q

for some threshold q.
Report all heavy hitters of this data stream.

Our goal is that ALL heavy hitters are reported. However, we allow false positives. Specifi-
cally, if

C(i, T ) ≤ q − εQ

then ID i is reported with probability at most δ.

Of course this is nontrivial only if q > εQ.

6.2.1 Hash Tables

We will use k independently chosen 2-universal hash functions

h1, h2, . . . , hk

each mapping the universe into [`].

We maintain a k × ` table of counters, each counter Ca,j adds the weight of items mapped
to the j-th entry by the a-th hash function. Initially all counters are zero.

62



The algorithm is simple. Given xt = (it, ct), increment

Ca,ha(it)

by ct.

After we read an entry, we report it if

min
j=ha(it):1≤a≤k

Ca,j ≥ q

Analysis

Clearly all heavy hitters are reported.

Suppose
C(i, T ) ≤ q − εQ

Then ID i is only reported if other IDs have contributed at least

εQ

to ALL its counters Ca,ha(i) for a ∈ [k].

Let Za denote the total contributions of other IDs to the counter Ca,ha(i). Since ha is chosen
from a 2-universal family, the probability another item is mapped to ha(i) with probability
at most

1

`

Thus
E[Za] ≤

Q

`

By Markov’s inequality

P (Za ≥ εQ) ≤ E[Za]

εQ
≤ 1

ε`

So by independence

P (min
a

Za ≥ εQ) ≤
(
1

ε`

)k

as the hash functions are chosen independently.

Observe that by choosing

` :=
e

ε
, k := ln

(
1

δ

)
this probability is at most δ.
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The total space usage is

O

(
1

ε
ln

1

δ

)
+O(k) = O

(
1

ε
ln

1

δ

)
(storing the hash functions).

The evaluation time is
O(k) = O

(
ln

1

δ

)
word operations to process a single element.

6.3 Distinct Elements

Problem 5 (Distinct Elements)
Given a stream a1, . . . , an where ai ∈ [m], output the number D of distinct elements
in the data stream.

We will see a sublinear space algorithm which returns and estimate
(1− ε)D ≤ Y ≤ (1 + ε)D

6.3.1 Strongly 2-Universal Family

We use a strongly 2-universal family to hash the input into a table of size m3. The choice of
m3 is based on our previous observation that hasing m elements into m2 locations, distinct
elements have distinct hash values with probablity at least 1

2
. With the improvement to m3,

this happens with probability at least 1− 1
2m

.

Assuming hash values are evenly distributed, our naive intuition says that the t-th smallest
hash VALUE is at

T ≈ tm3

D
which then gives an approximation of D.

The Algorithm

1) Choose a random hash function h from a strongly 2-universal family
2) For each ai, compute h(ai). Then update our heap which stores the t smallest hash

values seen so far
3) After all the data has been seen, let T be the t-th smallest hash value
4) return Y := tm3

T
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Analysis

Theorem 6.3.1
Set t ∈ O

(
1
ε

)
, we have

(1− ε)D ≤ Y ≤ (1 + ε)D

with probablity at least 2
3
.

Proof
Let us bound the probability that Y = tm3

T
> (1 + ε)D. In other words, assuming ε ≤ 1

T <
tm3

(1 + ε)D
≤

tm3
(
1− ε

2

)
D

Since T is the t-th smallest hash value, there are at least t hash values smaller than

tm3
(
1− ε

2

)
D

Let b1, b2, . . . , bD be distinct elements in the data stream. Put Xi as the indicator variable
when h(bi) is less than the value above. Then

E[X] =
D∑
i=1

E[Xi]

=
D∑
i=1

P

(
Xi ≤

tm3(1− ε
2
)

D

)

=
D∑
i=1

tm3(1− ε
2
)

Dm3

= t
(
1− ε

2

)
where X is the number of hash values smaller than our threshold.

We cannot apply Chernoff bounds since the Xi’s are not necessarily independent. How-
ever, as h is from a strongly 2-universal family, each Xi, Xj, i 6= j is pairwise independent.
Thus variance is still linear and Chebyshev’s inequality applies.
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Var[X] =
D∑
i=1

Var[Xi]

=
D∑
i=1

E[Xi](1− E[X i])

≤
D∑
i=1

E[Xi]

= t
(
1− ε

2

)
= E[X]

Thus

P (Y > (1 + ε)D) ≤ P (X > t)

= P

(
X > E[X] +

tε

2

)
≤ P

(
|X − E[X]| > tε

2

)
≤ Var[X](

tε
2

)2
≤

4t
(
1− ε

2

)
t2ε2

≤ 4

tε2

By setting t = 24
ε2

P (Y > (1 + ε)D) ≤ 1

6

The other inequality is identical. Putting everything together gives the result.

To boost the error probability, we can repeat

O

(
log

1

δ

)
many parallel copies of the algorithm and return the median.

This scheme uses a total of
O

(
1

ε2
log

1

δ
logm

)
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bits.

Now each heap update takes O
(
log 1

ε

)
operations as there are O

(
1
ε2

)
numbers. Thus each

input element takes

O

(
log

1

ε
log 1δ

)
operations.

There is an optimal algorithm using

O

(
1

ε2
+ logm

)
space and O(1) time.

6.4 Frequency Moments

Problem 6 (Frequency Moments)
Given a stream a1, . . . , an where ai ∈ [m], output

m∑
i=1

xp
i

where xi is the number of items equal to i and p is a given number.

Observe that p = 0 is the distinct elements problem and p = 1 is just the total number of
elements (trivial). What about p = 2?

6.4.1 Sketching for p = 2

The Algorithm

1. Let r1, . . . , rm be independent random signs

P (ri = 1) = P (ri = −1) =
1

2

2. Put Y :=
∑m

i=1 rixi

3. Return Y 2

First observe that we can keep a running some of Y so constant space is used.
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Analysis

First we show that the expected value is what we want.

E[Y 2] = E

( m∑
i=1

rixi

)2


=
∑
i,j

E[rirjxixj]

=
∑
i,j

xixjE[rirj]

=
m∑
i=1

x2
i

We wish to apply Chebyshev’s inequality, this will require the second moment of Y 2.

E[Y 4] = E

( m∑
i=1

rixi

)4


=
∑
i,j,k,`

xixjxkx`E[rirjrkr`]

=
m∑
i=1

x4
i +

(
4

2

)∑
i<j

x2
ix

2
j (?)

(?) Observe that

E[rirjrkr`] =

{
0, some index appear only once
1, 1 = j = k = ` or there are two pairs
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It follows that

Var[Y 2] = E[Y 4]− (E[Y 2])2

=
m∑
i=1

x4
i + 6

∑
i<j

x2
ix

2
j −

(
m∑
i=1

x2
i

)2

=
m∑
i=1

x4
i + 6

∑
i<j

x2
ix

2
j −

m∑
i=1

x4
i − 2

∑
i<j

x2
ix

2
j

= 4
∑
i<j

x2
ix

2
j

≤ 2

(
m∑
i=1

x2
i

)2

= 2
(
E[Y 2]

)2
Recall that Chebyshev’s inequality says

P (|Y 2 − E[Y 2]| ≥ c
√

Var[Y 2]) ≤ 1

c2

thus
P (|Y 2 − E[Y 2]| ≥ c

√
2E[Y 2]) ≤ 1

c2

When c =
√
2 this is at most 1

2
.

To get a tighter bound, we want a random variable Ȳ with the same expectation as Y 2 but
smaller variance. The standard trick is to take

Ȳ :=
1

k

k∑
i=1

Y 2
i

which gives
Var[Ȳ ] =

1

k
Var[Y 2] ≤ 1

k
2
(
E[Y 2]

)2
Thus

P

(
|Ȳ − E[Ȳ ]| ≥ c

√
2

k
E[Ȳ ]

)
≤ 1

c2

=⇒

P (|Ȳ − E[Ȳ ]| ≥ εE[Y 2]) ≤ 1

2

when c =
√
2, k = 2

ε2
.
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Space Requirement

We run O
(

1
ε2

)
copies, requiring the same order of numbers.

However, we need to store the random bits! One trick is that we really only need 4-wise
independence. Thus we can store O(logm) fully independent bits and produce m 4-wise
independent bits.

This adds O
(

1
ε2
logm

)
bits to our algorithm.

Remarks

This approach is called sketching.

It turns our polylogarithmic space is enough for 0 ≤ p ≤ 2. However, it requires

Θ
(
n1− 2

p polylog(m)
)

space for p > 2.
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Chapter 7

Polynomial Identity Testing

We will explore simple algebraic ideas which have surprising application in designing fast
and parallel algorithms.

7.1 String Equality

Problem 7 (String Equality)
Given two bit strings a1a2 . . . an and b1b2 . . . bn. Check whether the strings are the
same by sending as few bits as possible.

This is easy if we send n+ 1 bits. In fact, no deterministic algorithm can do better. This is
provable using information theory.

7.1.1 Randomized Algorithm

The idea is to think of the strings as polynomials.

A(x) =
n∑

i=1

aix
i

B(x) =
n∑

j=1

bjx
j

The Algorithm

1) Alice and Bob agree on a large prime p (agree on a finite field F)
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2) Alice picks some r ∈ F and send r, A(r) to Bob
3) Bob computes B(r) in F and return consistent if A(r) = B(r), inconsistent otherwise

Notice that Alice sends 2 log2 p bits and B sends 1 bit.

Analysis

First notice that there is only one-sided errors. We can only make mistakes where two strings
are different but Bob returns consistent.

This event only happens when A(x) 6≡ B(x) but

A(r) = B(r) ⇐⇒ (A−B)(r) = 0

By the Fundamental Theorem of Algebra, A−B has at most n roots. Moreoever,

P (r is a root) ≤ n

p

By setting p ≥ 1000n, then the probability of failure is at most

1

1000

by sending
O(log2 p) = O(log2 n)

bits.

Improving the Success Probability

We can repeat this k times to get a failure probability of at most(
1

1000

)k

where p ≥ 1000n by sending O(k log2 n) bits.

A better way is to simply make p ≥ nk, so the failure probability of one run is reduced to

1

nk−1

and we still only send O(log2 p) = O(log2 n) bits.
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7.2 Polynomial Identity Testing

This is one of the most fundamental problems that we do not know how to solve determin-
istically.

Problem 8 (Polynomial Identity Testing)
Given a multivariate polynomial

P (x1, x2, . . . , xn)

we want to determine if P is identically zero.

The problem is trivial if the polynomial is given explicitly. However, it becomes difficult if
the polynomial is presented in a compact way.

7.2.1 Schwartz-Zippel Lemma

Theorem 7.2.1 (Schwartx-Zippel Lemma)
Let Q(x) ∈ F[x1, . . . , xn] be of degree d.
Fix any finite set S ⊆ F, and let r1, . . . , rn be independent uniform random elements
of S.
Then

P [Q(r1, . . . , rn) = 0] ≤ d

|S|
if Q is not identically zero.

Proof
Induction on n.

Factor out one variable x1, and apply the induction hypothesis to two smaller polynomials
to get a bound.

By choosing a sufficiently large p (ie p ≥ 2d), there is a high probability that a non-zero
polynomilal is still nonzero in the finite field of characteristic p.

we can substitute random values in

ri ∈ {0, 1, . . . , p− 1}

and compute Q(r).
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If Q 6≡ 0 then Q(r) 6= 0 with probability at least

1

2

7.3 Bipartite Matching

Problem 9 (Bipartite Matching)
Given a bipartite graph G = (U ∪̇W,E), find a maximum subset of vertex-disjoint
edges.

Definition 7.3.1 (Perfect Matching)
When |U | = |W | = n, we say a matching M ⊆ E is perfect if

|M | = n

7.3.1 Algebraic Formulation

Theorem 7.3.1 (Edmonds)
Let A be an |U | × |W | matrix of variables where

Aij = xij ⇐⇒ ij ∈ E

Then G has a perfect matching if and only if detA 6≡ 0.

Proof
By definition

detA =
∑
σ∈Sn

sgn(σ)Aq,σ(1)A2,σ(2) . . . An,σ(n)

Observe that any single term in the summation is non-zero if and only if there is a
corresponding perfect matching.

So if there is no perfect matching, detA is identically zero.

Otherwise, we need to check that any non-zero monomial terms in the computation does
not get cancelled out. This is clear from the fact that we choose different variables per
edge.
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7.3.2 Randomized Algebraic Algorithm

1) Choose a sufficiently large prime p ∈ Θ(poly(n)), say p ≥ n3

2) Substitute each variable xij by a random value from {0, 1, . . . , p− 1}
3) Compute the numeric determinant using over the finite field of characteristic p

4) Return there is a perfect matching if and only if the determinant is not 0

Analysis

The determinant from bipartite matching is a multivariate polynomial with total degree
at most n. If the graph has a perfect matching, then by Edmond’s theorem the determi-
nant is not identically 0. By the Schwartz-Zippel lemma, putting random values from the
determinant results in a non-zero value with probability at least

1− n

p
≥ 1− 1

n2

when p ≥ n3.

Complexity

Each number is at most p thus can be represented using O(log n) bits when p is a polynomial
of n.

The determinant can be computed in O(n3) time with Gaussian Elimination. With fast
matrix multiplication it is possible in O(nω) = O(n2.37) time.

This gives the fastest algorithm for bipartite matching in dense graphs.

It is also possible to return the set of edges in a perfect matching at the same time but it is
far from trivial.
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7.3.3 Algebraic Formulation for General Matching

Theorem 7.3.2 (Tutte)
Let A be an n× n matrix of variables where

Aij = xij, Aji = −xij

if ij ∈ E and 0 otherwise.
Then G has a perfect matching if and only if

detA 6≡ 0

Proof
The idea is that terms of the determinant correspond to a cycle cover of G. Moreoever,
any odd cycle would be “cancelled” out and so the remaining graph consists only of even
cycles.

7.4 Parallel Algorithm for Algebraic Problems

One feature of this algebraic approach is that it leads to parallel algorithms. This is because
algebraic problems can be solved efficiently in parallel using a divide-and-conquer approach.

Many combinatorial optimization problems have an algebraic formulation.

Theorem 7.4.1
The determinant of an n× n matrix can be computed in

O(log2 n)

time using O(nω+1) processors.

7.4.1 Isolation Lemma

How can we “focus” all our processors on finding the SAME matching.
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Lemma 7.4.2 (Isolation)
Given any family of subsets on a groud set of n elements, if we assign an independent
uniform random weight from [2n] to each element, there is a unique minimum weight
subset with probability at least

1

2

Proof
Fix an element v. Let Fv be the family of sets containing v, and Fv̄ the family of sets not
containing v.

Define
αv := min

S∈Fv̄

w(S)− min
R∈Fv

w(R− v)

and observe that the quantity is independent of the weight w(v).

Case I: w(v) > αv v is NOT in any minimum weight set as the minimum weight set not
containing v already beats any set containing v.

Case II: w(v) < αv Then v is in EVERY minimum weight set as the minimum weight set
contaning v beats any which does not.

Case III: w(v) = αv Here v is ambiguous.

Observe that since αv is independent of w(v)

P (v is ambiguous) = 1

2n

since only one of 2n possible values of w(v) attain this.

But union bound,
P (some element is ambiguous) ≤ 1

2

So with probability at least 1
2
, there are no ambiguous elements and all Case I elements

must be in the minimum weight set.

7.4.2 Isolation Lemma for Matchings

Apply the isolation lemma with the ground set being the edge set and the set of perfect
matchings being the family of subsets. Then there is a unique minimum weight perfect
matching!
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Edges in Minimum Weight Perfect Matching

Suppose we know the unique minimum weight perfect matching M has weight W .

Proposition 7.4.3
e = uv ∈ M if and only if

G− u− v

has a unique minimum weight perfect matching with weight W − wuv.

Thus assuming we know how to find the weight of the minimum weight perfect matching,
we are done.

Weight of Minimum Weight Perfect Matching

We return to the Tutte matrix and encode the weight of the edge w(e) into the variable xe

xe = 2w(e)

If W is the unique minimum weight among matchings, then the determinant is in the form

detA = 2W ± 2 · 2W (L), L ∈ Z

Observe that

detA

2k
=


even, k < W

not divisible, k > W

odd, k = W

So we can just binary search all possible values of k ≤ 2n2 in parallel.

It is important that the determinant can be computed efficiently, as each number has at
most 2n-bits. This is why the isolation lemma is crucial. It shows we can isolate a minimum
weight perfect matching with relatively small weights.
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Chapter 8

Network Coding

Recall that the Schwartz-Zippel lemma says that a low degree non-zero multivariate poly-
nomial evaluated at random points have only a small chance of being zero.

8.1 Network Multicasting

Problem 10 (Network Multicasting)
Given a directed acyclic graph G = (V,E), a source s ∈ V , and a set of receiver
vertices {t1, . . . , t`} ⊆ V , send data to all receivers simultaneously while maximizing
the transmission rate.

Assume that the capacity of each arc is 1. The classical method of attack is to find the
maximum number of edge-disjoint steiner trees which span s, t1, . . . , t`. This is known to be
NP-hard.

Intuitively, it is relatively easy to send data to a single receiver, since that is equivalent to
finding the maximum st-flow for a fixed t. However, it is difficult to maximize transmission
rate among all receivers.

8.2 Network Coding

The idea is that information is different from commodity flow. We can employ encoding and
decoding to improve transmission rate.

We allow arithmetic operations over a field. Data send on an edge is an arbitrary function
of its predecessors.
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Network coding can in fact achieve the optimal rate for multicasting!

Theorem 8.2.1 (Max-Information-Flow Min-Cut Theorem)
If the source has at least k edge-disjoint paths to each receiver, the source can send
k units of data to all receivers simultaneously using network coding.

We interpret this as being able to send k units to every single receiver individually is equiv-
alent to being able to send k units to all receivers.

This is optimal, since we cannot hope to send more than k units as there is a cut of k-edges.

8.2.1 Linear Network Coding

We can actually restrict the output functions to linear functions of the input. It is important
to use different linear combinations to prevent information loss.

Decoding simplifies to solving a system of k unknowns using k equations.

8.2.2 Polynomial Time Algorithms

Deterministic Algorithm

Polynomial time algorithms are designed for finding the optimal scheme. However, schemes
are centralized and difficult to implement in practice.

Randomized Algorithm

While allowing for some mistakes, we are able to achieve a completely decentralized scheme
achieving the optimal rate.

8.2.3 Randomized Scheme

Our goal is to attain k target transmission rate, assuming there are k edge-disjoint paths
between sti for each i. But the sti, stj-paths are not necessarily disjoint between i, j!

By creating a super source node or super receiver nodes, we can assume without loss of
generality that the source has exactly k outgoing edges (none incoming) and each receiver
has exactly k incoming edges (none outgoing).
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The source wants to send k messages

x1, x2, . . . , xk

to the receivers.

The Algorithm

1) Choose a sufficiently large prime field Fp

2) The source s sends x1, x2, . . . , xk on its outgoing edges, with xi on its i-th edge
3) Follow a topological ordering of v1, . . . , vn of the DAG

a) For each vertex vi, call the incoming messages m1, . . . ,m`

b) For each outgoing edge e of vi, send a random linear combination m1, . . . ,m`

along each edge

Global & Local Coefficients

Each edge is sending a linear combination of the ORIGINAL source messages. Call the
vector representing this combination the global encoding vector.

At each node, we make the decision to take some random linear combination of the inputs.
Call the vector representing this linear combination the local encoding coefficients.

Once the local encoding coefficients are fixed, the global encoding vectors are determined.

Decodability

For a receiver t with k incoming vectors, let mi be the i-th incoming message and let the
global encoding vector of the i-th incoming edge be

(ci1 , . . . , vik)

In vector notation
m = Cx

where x is the vector of k messages.

This has a unique solution if and only if C is invertible or detC = 0.
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Analysis

We argue that the probability of detC = 0 is small. The idea is to show that detC is a low
degree polynomial of the local encoding coefficients.

Lemma 8.2.2
For vertex vi in the topological ordering, for each outgoing edge e of vi, each entry
cj of its global encoding vector is a multivariate polynomial of the local encoding
coefficients (perhaps of edges not incident to vi) of total degree at most i− 1.

Proof
This holds for i = 1 trivially.

Let ~cj denote the incoming (input) global encoding vectors. Then fix an edge e. ce is a a
linear combination of ~cj’s with coefficients independently randomly chosen.

By induction each entry ~cj is a polynomial of degree at most i − 2. Thus the degree of
each entry in ~ce is at most i− 1.

By the lemma, each entry in a receiver matrix C is a multivariate polynomial of the local
encoding coefficients of total degree at most n. Thus the determinant is a polynomial of the
local encoding coefficients of degree at most kn.

Schwartz-Zippel says if the determinant is non-zero, then the probability that the determi-
nant is zero is at most

kn

|F|

By choosing |F | ∈ Θ(kn3), this is at most 1
n2 . By a union bound the probability that some

receiver fails is at most
1

n

It remains to prove the assumption that the polynomial is not identically zero.

Proposition 8.2.3
If there are k edge-disjoint paths to a receiver, then the receiver matrix C satisfies

detC 6≡ 0

Proof
It suffices to choose some local encoding vectors so that detC does not evaluate to zero. In
other words, find inputs such that the polynomial is non-zero, then it cannot be identically
zero.
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Simply forward the k-bits down through the k-edge disjoint paths so at the end C = Ik
which certainly has detC 6≡ 0 and we are done.

8.2.4 Efficient Encoding

In a node with in-degree and out degree d, the encoding can be accomplished in O(kd2) time
per node.

We would like to reduce the in and out degrees of intermediate nodes.

Superconcentrator

Definition 8.2.1 (Superconcentrator)
A DAG with d input nodes and d output nodes.
In addition, there are d internal nodes and each internal node has constant in-degree
and constant out-degree.
Finally, for any 1 ≤ k ≤ d, for any subset X of k input modes and any subset of Y of
k output nodes, there are k vertex disjoint paths between X,Y .

Observe that for our purposes, it is similar to a complete bipartite graph, but has only O(d)
edges overall!

This is an efficient object to reduce the in-degree of a vertex while maintaining connectivity.

We can replace vertices with in-degree d by a superconcentrator with d inputs (O(d) vertices).
This the vectors of the outgoing edges of a single vertex can be computed in O(kd) time.

This is optimal since reading the incoming edges would take Ω(kd) time.
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Chapter 9

Probabilistic Methods

Loosely speaking, probabilistic methods use techniques from probability to prove mathemat-
ical statements which otherwise has no relation to probability.

One example we have already seen is the bound on the number of minimum cuts given by
Karger’s algorithm.

9.1 First Moment Method

The general idea is to compute E[X] and argue there is an outcome with X ≥ E[X] or
X ≤ E[X]. For a non-negative random variable X, Markov’s inequality implies that

P (X ≥ 1) ≤ E[X]

Thus when X is integral and E[X] << 1, X = 0 with high probability.

9.1.1 Ramsey Graphs

Can we find a 2-edge-coloring of Kn such that there are no “large” monochromatic cliques?

Theorem 9.1.1
If (

n

k

)
2−(

k
2
)+1 < 1

then it is possible to color the edges of the complete graph on n vertices so that there
are no monochromatic cliques of size k.
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Proof
Color each edge red or blue independently with probability 1

2
. Let S ⊆ V and define XS

to be the indicator variable which is 1 if S is monochromatic. Furthermore, put X as the
random variable indicating the number of monochromatic cliques of size k.

E[XS] = P (XS = 1)

= 2 · 2−(
k
2
)

= 2−(
k
2
)+1

E[X] =
∑

S⊆V :|S|=k

E[XS]

=

(
n

k

)
2−(

n
k
)+1

< 1

Thus there must be at least one outcome where there are no monochromatic subgraphs
of size k.

This means if k > 2 log2 n, then a random coloring will work with high probability. There
is no deterministic polynomial time algorithm to construct such a coloring. Even a coloring
with size

√
n requires extremely complex tools.

Corollary 9.1.1.1
If we generate a random graph where each pair of vertices are adjacent with probability
1
2
, then with high probability, there are no cliques of size more than 2 log2 n and no

independent sets of size more than 2 log2 n.

9.1.2 Magical Graphs

Definition 9.1.1 ((n,m, d)-Magical Graph)
Bipartite G = (U,W ;E) is called an (n,m, d)-magical graph if

(i) |U | = n, |W | = m

(ii) every vertex in U has degree d

(iii) |N(S)| > |S| for every S ⊆ U such that |S| ≤ |U |
2
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Theorem 9.1.2 (Hall)
Given a bipartite graph G = (U,W ;E) and S ⊆ U , S can be perfectly matched to
W if and only if

|N(X)| ≥ |X|

for any subset X ⊆ S.

Proposition 9.1.3
A magical graph is a sparse bipartite graph G = (U,W ;E) with the property that every
subset S ⊆ U with

|S| ≤ |U |
2

has a perfect matching in to W .

Theorem 9.1.4
For every n, m ≥ 3n

4
, and d ≥ 8, there exists an (n,m, d)-magical graph.

Proof
Let G be a random graph where there are n vertices on the left and m vertices on the
right. Each left vertex is connected to d random vertices on the right independently.

For
|S| ≤ |U |

2
, |T | = |S|

Let XS,T be the indicator randon variable that all edges from S go to T .

Put
t := |T |, s := |S|

and
X :=

∑
S⊆U :|S|≤ |U|

2

∑
T⊆W :|T |=|S|

XS,T
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E[X] =
∑

S⊆U :|S|≤ |U|
2

∑
T⊆W :|T |=|S|

E[XS,T ]

=
∑

S⊆U :|S|≤ |U|
2

∑
T⊆W :|T |=|S|

(
t

m

)ds

=
∑

1≤s≤n
2

(
n

s

)(
m

t

)(
t

m

)ds

=
∑

1≤s≤n
2

(
n

s

)(
m

s

)( s

m

)ds
t = s

≤
∑

1≤s≤n
2

(
ne

s
· me

s
·
( s

m

)d)s

≤
∑

1≤s≤n
2

(
4

3
e2
( s

m

)d−2
)s

m ≥ 3n

4

≤
∑

1≤s≤n
2

(
4

3
e2
(
2

3

)d−2
)s

s ≤ n

2
,m ≥ 3n

4

≤
∑

1≤s≤n
2

(
1

2

)s

d ≥ 8

< 1

9.1.3 Superconcentrators

Recall that a superconcentrator is a directed acyclic graph with n input nodes I and n
output nodes O which satisfies the following property: For any 1 ≤ k ≤ n and any subsets
S ⊆ I, T ⊆ O with |S| = |T | = k, there are k vertex disjoint paths between S and T .

Valiant conjectured no super concentrator exists with O(n) edges.

Recursive Construction

The base case is where n = O(1). We can simply use a complete bipartite graph.

Assume a superconcentrator C exists with 3n
4

inputs and outputs. Take G1, G2 to be two(
n, 3n

4
, O(1)

)
-magical graphs. Attach G1 − C − G2 together so that there are n inputs and

n outputs from G1, G2. Moreover, add n additional edges forming a perfecting matching
between the inputs and outputs.

Now, any input and output vertices connected by a matching edge has edge disjoint paths.
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Observe that ignoring such vertices, there can be at most n
2

input and output vertices
remaining! Then we can use the magical graphs G1, G2 to get a perfect matching from the
inputs to the C and C to outputs. Then we use the fact that C was a superconcentrator
and get at most n

2
edge disjoint paths.

Analysis

Let E(n) denote the number edges in our construction of n input and output nodes.

E(n) = 2dn+ n+ E

(
3n

4

)
= E

(
3n

4

)
+O(n)

∈ O(n)

9.2 Second Moment Method

We may also wish to apply some concentration inequality to show that P (X ≥ 1) is large
(X is integral).

Lemma 9.2.1
We have

P (X = 0) ≤ Var[X]

E[X]2

which shows that P (X ≥ 1) is large.

Proof
By Chebychev’s inequality

P (X = 0) ≤ P (|X − E[X]| ≥ E[X])

≤ Var[X]

E[X]2

Corollary 9.2.1.1
If Var[X] ∈ o(E[X]2) or equivalently E[X2] = (1 + o(1))E[X]2 then

P (X > 0)

with high probability.
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9.2.1 Threshold Behavior in Random Graphs

Let Gn,p be a random graph on n vertices, where each pair of vertices are adjacent with
probability p independently.

Definition 9.2.1 (Threshold Behavior)
A property has a threshold behavior if there is a function f(n) such that

lim
n

g(n)

f(n)
= 0

implies Gn,g(n) does NOT satisfy the property with high probability. But when

lim
h(n)

g(n)
= ∞

then Gn,h(n) satisfies the property with high probability.

Definition 9.2.2 (Sharp Threshold Behavior)
A property has a threshold behavior if there is a function f(n) such that for any ε > 0

Gn,(1−ε)f(n)

does not satisfy the property with high probability. But

Gn,(1+ε)f(n)

does in fact satisfy the property with high probability.

9.2.2 Cliques of Size 4

Theorem 9.2.2
The property of having a clique of size 4 has a threshold function

f(n) = n− 2
3
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Proof
Let XS be the indicator variable which says S ⊆ V is a clique of size 4 and define

X :=
∑

S⊆V :|S|=4

XS

We have

E[X] =
∑

S⊆V :|S|=4

E[XS]

=

(
n

4

)
p6

If we choose p ∈ o(n− 2
3 ) this expectation approaches 0.

On the other hand p ∈ ω(n− 2
3 ) then E[X] → ∞. We need however to show that

E[X2] = (1 + o(1))E[X]2

This can be done by considering

E[X2] =
∑
S

∑
T

E[XSXT ]

which can be computed by considering the different sizes of S ∩ T .

9.2.3 Diameter 2

Theorem 9.2.3
The property of having diameter 2 has sharp threshold

p =

√
2 lnn

n

Proof
Call a prit of vertices i, j a bad pair if there is not edge between i, j and no other vertex
in G is adjacent to both i, j.

Observe that a graph is of diameter 2 if and only if there is no bad pair.
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Let Xi,j be the indicator variable such that vertices i, j form a bad pair. We have

E[X] =
∑
i<j

E[Xi,j]

=

(
n

2

)
(1− p)(1− p2)n−2

We can show by computation that for c > 2 and

p =

√
c lnn

n

then E[X] → 0.

On the other hand we can show E[X2] = (1 + o(1))E[X]2 when

p =

√
c lnn

n

for c < 2.

9.3 Local Lemma

9.3.1 Finding a Good Outcome

Let E1, . . . , En be a set of bad events. A typical goal with probabilistic methods is to show
that there is an outcome which is not in ANY of the bad events.

P

(
n⋂

i=1

Ec
i

)
> 0

Two situation arise where this is easy.

If the Ei’s are mututally independent, then

P (∩Ec
i ) =

∏
P (Ec

i ) > 0

Also if the sum of probability of bad events is less than 1, applies a union bound suffices.
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9.3.2 Local Union Bound

Definition 9.3.1 (Mutually Independent)
We say and event E is mututally independent of a set of events E1, . . . , Em if

P

(
E|
⋂
i∈I

Ei

)
= P (E)

So P (E) does not change conditioned on any subsets of E1, . . . , Em.

Lemma 9.3.1 (Lovász Local Lemma)
Let E1, . . . , En be a set of events and the following holds

1. P (Ei) ≤ p for 1 ≤ i ≤ n

2. Every event is mutually independent of all but at most d other events
3. 4dp ≤ 1

Then

P

(
n⋂

i=1

Ec
i

)
> 0

We sometimes refer to d as the maximum degree of the “dependency graph”.

Non-Constructive Proof

The original proof by Lovász is non-constructive. It is an inductive proof where the probabiliy
of a good event can be exponentially small.

We will instead delay to see an algorithmic proof.

9.3.3 k-SAT

Problem 11 (k-SAT)
Given a Boolean formula where each clause has exactly k literals, the goal is to find
a satisfying assignment to the variables when it exists.

The problem in general is NP-hard, but we can use the local lemma to prove that a formula
always has a satisfying assignment when it is “under constraint”.
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Theorem 9.3.2
If no variables in a k-SAT formula appears in more than

T =
2k

4k

clauses, then the formula has a satisfying assignment.

Proof
Produce a random assignment where each variable has 1

2
chance of being true of false.

Let Ei be the event that the i-th clause is violated.

First remark that
p := P (Ei) =

1

2k

as everything in the clause is not true.

Secondly, if two clauses do not share variables, then they are independent. But each
variable appears in at most T clauses, and there are at most k distinct variables per
clause

d ≤ k · T ≤ 2k−2

Finally
4pd = 4

1

2k
2k−2 = 1

thus by the local lemma there is at least one event outcome which avoids all Ei’s

This bound is essentially tight!

9.3.4 Edge-Disjoint Paths

Theorem 9.3.3
For each i, let Pi be a set of L paths connecting si and ti. Suppose each path in Pi

does NOT share edges with more than C paths in Pj for i 6= j. Moreoever, suppose
8kC
L

≤ 1, then there is Pi ∈ Pi so that

{P1, . . . , Pk}

are edge-disjoint.
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Proof
For each i, pick a random path independently from Pi with probability 1

L
. Let Eij be

the event that Pi, Pj are NOT edge-disjoint.

Clearly
p := P (Eij) ≤

C

L

Moreoever, for a fixed Eij, it is only dependent on Eia for a ∈ [k] and Ebj for b ∈ [k], so

d ≤ 2k

Finally by assumption
4pd =

8kC

L
≤ 1

so the local lemma applies and at least one outcome is desirable.

9.3.5 Algorithmic Implications for k-SAT

1) Fix an ordering C1, . . . , Cm

2) Find a random assignment of the variables
3) for 1 ≤ i ≤ m, if Ci is not satisfied, FIX(Ci)

FIX is the following subroutine

1) Substitute the variables in Ci with random variables
2) While there is a clause D that shares variables with C and D is NOT satsified, FIX(D)

Analysis

We argue that if the algorithm does not terminate fast enough, we can leverage it to compress
random bits.

Proposition 9.3.4
A random string of k bits can be compressed into k − c bits with probability at most

2−c

for any c ≥ 1.

Suppose the algorithm runs for t steps but has not terminated. We used n initial random
bits to fix a clause. Each subsequence call to FIX requires k extra random bits.
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All in all, we consumed
n+ tk

random bits up to now.

Encoding

We encode the execution tree in order to recover the random bits.

1. We use a 0-bit and log2m bits to represent going from the root to a clause
2. We use a 0-bit and log2 d bits to represent going from the current clause ot a neighbour

clause
3. We use a 1-bit to represent going up.
4. We use n bits to encode the final assignment

We only descend from the root at most m times. the edge which represents descending (and
the ascending) from (and to) the root is used at most

m(log2m+ 2)

times.

For each non-root node edge, this similarly happens

t(log2 d+ 2)

times.

Finally, we use n bits for the final assignment.

Suppose we can recover the n+tk random bits consumed during the duration of the algorithm,
then with proability at least 1− 2−c,

n(log2m+ 2) + t(log2 d+ 2) + n ≥ n+ tk − c

This can be arranged to give

t ≤ m(log2m+ c)

k − log2 d− 2
∈ O(m logm)

given that k − log2 d− 2 ≥ ε, which is equivalent to

d ≤ 2k−2−ε

This is only slightly stronger than the assumption made in the local lemma!
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Decoding

Let the random bits used in the initial algorithm be

v1, . . . , vn

Then let the injected bits be
ri1, r

i
2, . . . , r

i
k

for each 1 ≤ i ≤ t.

Start with variables vj’s representing the initial assignment.

Whenever we find a clause to fix, we learn k bits since there is only ONE assignment of those
k variables which violates that clause.

Then we replace the corresponding variables which tracks unknown bits with the values
we learned. Then we replace them with variables representing the newly consumed k bits
introduced at the step of the fix.

When we arrive at the final assignment, all the rest of the variables are recovered.
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Chapter 10

Random Walks

10.1 Random Walks

Definition 10.1.1 (Random Walk)
Given some graph G and a starting vertex s, iteratively move from the current vertex
to a uniformly random neighbour of the current vertex.
This is a simple random process.

10.1.1 Basic Questions

Definition 10.1.2 (Stationary Distribution)
Suppose as t → ∞, the probability distribution of being at a vertex converges.
The stationary distribution is this distribution.

Is there a limiting distribution? If so, what does it look like?

Definition 10.1.3 (Mixing Time)
Suppose a limiting distirbution exists.
The mixing time is the time it takes to converge.

If the mixing time is small, there are applications to random sampling.

Definition 10.1.4 (Hitting Time)
Starting from a vertex s, this is the expected nunber of steps to first reach a vertex t.
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Definition 10.1.5 (Cover Time)
The time it takes to reach every vertex of the graph at least once.

Approaches

One way of approaching the first two questions is by “coupling” probability distributions.

We will attack then through linear algebra, by looking at the eigenvalues of the transition
matrix.

10.2 Markov Chains

Let pt(i) be the probability distribution of being at a vertex i at time t. Then for all
0 ≤ k ≤ n− 1

pt+1(j) =
n−1∑
i=1

pt(i) · Pi,j

where P is the n× n transition matrix of non-negative real number whose columns sum to
1.

More succintly
pt+1 = ptP = p0P

t

where pt ∈ Rn represents the probability distribution among vertices at time t.

Definition 10.2.1 (Markov Chain)
A Markov chain is a mathematical system that experiences transitions from one state
to another according to certain probabilistic rules.
The defining characteristic of a Markov chain is that no matter how the process
arrived at its present state, the possible future states are fixed.

10.2.1 Irreducible Markov Chains

Definition 10.2.2 (Irreducible)
A Markov Chain is irreducible if the underlying directed graph is strongly connected.

If the underlying graph is not strongly connected, we can always decompose them into
strongly connected components, between which form a DAG.
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By topologically sorting the DAG, we can argue that eventually the walk converges within
one of the sink components.

Thus if there is only one such sink, we have reduced the problem to the irreducible case. On
the other hand, if there are multiple sinks, the limiting distribution depends on the starting
point since we can end up in different sinks depending on the starting point.

10.2.2 Aperiodic Markov Chains

Definition 10.2.3 (Period)
The period of state i is

period(i) := gcd{t : P t
i,i > 0}

Definition 10.2.4 (Aperiodic)
A state is aperiodic if

period(i) = 1

Definition 10.2.5 (Aperiodic Markov Chain)
A Markov chain is aperiodic if all state are aperiodic.

Definition 10.2.6 (Periodic Markov Chain)
If it is not aperiodic.

Lemma 10.2.1
For any finite, irrreducible, and aperiodic Markov chain, there is some T < ∞ such
that

(P t)ij > 0

for all i, j and t ≥ T .

10.2.3 Stationary Distribution

Definition 10.2.7 (Stationary)
A probability distribution π is stationary if

π = πP
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We need some way of defining distance and convergence

Definition 10.2.8 (Total Variation Distance)
Given p, q, the total variation distance if

d(p, q) =
1

2
‖p− q‖1 =

1

2

n∑
i=1

|pi − qi|

Definition 10.2.9 (Converge)
We say pt → q if

lim
t
d(pt, q) = 0

10.2.4 The Fundamental Theorem of Markov Chains

Definition 10.2.10 (Return Time)
The return time from i → i is

Hi := min{t ≥ 1 : Xt = i,X0 = i}

The expected return time is
hi := E[Hi]

Theorem 10.2.2 (Fundamental Theorem of Markov Chains)
For any finite, irreducible, aperiodic Markov chain, the following hold.

1. There is a stationary distribution π

2. The distribution pt converges to π as t → ∞, regardless of the distribution p0

3. There is a unique stationary distribution
4. π(i) = 1

hi

10.3 Pagerank

Given a collection of websites, creat a directed graph where p1p2 is an arc if and only if p1
has a link to p2.

We would like to know which web pages are the most relevant based on the number of
incoming links.
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10.3.1 The Algorithm

1. Initially, each page has pagerank value 1
n

2. In each step, each page divides its pagerank value uniformly to its outgoing links and
sends these equal shares to the pages that it points to

3. Each page updates its new pagerank value to be the sun of the shares it receives
4. Repeat until the pagerank values converge

10.3.2 Analysis

Proposition 10.3.1
The equilibrium pagerank values are the probabilities in the stationary distributions.

Proof
Fundamental theorem of Markov Chains.

This shows the pagerank values are a function of the graph structure, and not the initial
values.

10.3.3 In Practice

The graph may not be irreducible and eperiodic.

We can instead fix a tiny ε > 0, and only give out 1− ε of the pagerank values to neighbours.
The extra ε is spread among the value to all remaining vertices.

The idea is to go to a neighbour with probability 1−ε and with probability ε, go to a random
vertex.

This is equivalent to augmenting the graph until it is complete with very small weighted
edges. Clearly the new graph is irreducible and aperiodic, hence the pagerank values are
unique.

10.4 Perfect Matching in Regular Bipartite Graphs

A well-known consequence of Hall’s theorem that every regular bipartite graph has a perfect
matching.

We can find a perfect matching in O(m) time. Assume that the degree is a power of 2,
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The idea is to find an Eulerian orientation and throw away half the edges to get a d
2
-regular

bipartite graph. Repeat until the graph is 1-regular, this is a perfect matching.

We will show a randomized algorithm to find a perfect matching in O(n log n) time, which
is sublinear when the graph is dense!

10.4.1 Traditional Approach

A direct algorithm is to repeatedly find an augmenting path to enlarge the current matching.

Theorem 10.4.1
A matching is maximum if and only if there is no augmenting path.

Augmenting Path Algorithm

1) Start with the empty matching
2) While there is an augmenting path, use the path to enlarge the matching (O(m) time)
3) Return the matching

The loop occurs at most n times and each iteration requires some graph exploration which
is O(m) time. Thus the overall complexity is

O(mn)

10.4.2 Random Walk

The idea is to replace BFS/DFS by a random walk.

Let A,B be a bipartition with |A| = |B|. add an unmatched A-univeral node s and an
unmatched B-universal node t.

Direct the edges from s to A and B to t. Within the original graph, direct the matching
edges towards A, and the remaining edges towards B.

Proposition 10.4.2
Let G1 be the original undirected graph and G2 be the directed graph obtained from G1

from the description above.
G1 has an augmenting path if and only if G2 has a directed path from s to t.

Now take G2 and create G3 as follows. Contract all matched edges. Moreoever, for every
unmatched vertex in A, add 0 or more edges from s until it has indegree equal to outdegree.

104



Similarly for unmatched vertices of B, add 0 or more edges to t until it has indegree equal to
outdegree. Finally, add edges from t to s until both t and s have indegree equal to outdegree.

Proposition 10.4.3
G2 has a s, t-dipath if and only if G3 has a (non-trivial) s, s-dipath.

Analysis

The expected time to find an augmenting path is equal to the expected return time hs in
G3.

Thus the expected time to find an augmenting path is equal to

1

π(s)

in G3.

Proposition 10.4.4
G3 is an Eulerian digraph.

Proof
This holds for unmatched vertices and s, t simply by construction. For every identified
node xab which contracted the edge ab ∈ E(G1), the degree of a, b was both d by regularity.
The indegree of xab is precisely then d− 1 and so is its outdegree.

Lemma 10.4.5
The stationary distribution of an Eulerian digraph is

π(i) =
outdeg(i)

m

for all i ∈ V .
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Proof
We have

(πP )j =
∑
ij∈E

π(i)Pi,j

=
∑
ij∈E

outdeg(i)

m
· 1

outdeg(i)

=
indeg(j)

m

=
outdeg(j)

m
= π(j)

Corollary 10.4.5.1
The expected time to find an augmenting path is

1

π(j)
=

m

outdeg(s)

Time Complexity

In the i-th iteration when there are only i edges in the matching,
outdeg(s) = (n− i)d

Remark that
|E(G3)| ≤ 4|E(G1)| = 4dn

so the expected time to find an augmenting path in the i-th iteration is
m

outdeg(s)
≤ 4n

n− i

It follows that the total expected runnning time is
n∑

i=1

4n

n− i
∈ O(n log n)

Implementation

We do not need to actually construct G3. With the appropriate data structures, it is still
possible to implement the algorithm in

O(n log n)
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Part II

Spectral Analysis
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Chapter 11

Spectral Graph Theory

11.1 Linear Algebra Review

Definition 11.1.1 (Eigenvector)
0 6= v ∈ V such that

Av = λv

for non-zero λ.

Definition 11.1.2 (Eigenvalue)
λ.

Notice we do not require λ 6= 0. This is because a matrix can be singular. thus it would
have eigenvalue 0. The converse also holds.

Definition 11.1.3 (Characteristic Polynomial)
Let x be a variable in F

det(A− xI)

is the characteristic polynomial.

The roots of the characteristic polynomial are the eigenvalues of A.
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Definition 11.1.4 (Algebraic Multiplicity)
The maximum k such that

(x− λ)k

is a factor the characteristic polynomial.

Definition 11.1.5 (Geometric Multiplicity)
The dimension of the eigenspace.

In general the algebraic multiplicity dominates the geometric multiplicity.

11.1.1 Real Symmetric Matrices

Theorem 11.1.1 (Spectral Theorem)
Let A ∈ Rn×n be real and symmetric.
There is an orthonormal basis of eigenvectors and all eigenvalues are real numbers.

Proof
We know A has at least one eigenvalue and thus one eigenvector by the Fundamental
Theorem of Algebra. Let v1, λ1 be the eigenvector and eigenvalue, respectively.

We claim λ1 is real. Indeed

λ1v
T
1 v̄1 = vTAT v̄1

= vTAv̄1

= vT (λv1)

= λ̄vT v̄

so λ = λ̄ implies that the imaginary component of λ is 0 and so λ ∈ R.

Extend v1 to a orthonormal basis of Rn.

v1, w2, . . . , wn

Then let W be the span of w2, . . . , wn.
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Choose w ∈ W .

〈Aw, v1〉 = 〈w,A∗v1〉
= 〈w,Av1〉
= 〈w, λv1〉
= λ̄〈w, v1〉
= 0

so W is invariant and A
∣∣
W

is a symmetric linear operator on W .

The rest follows by induction.

So we can produce an orthonormal basis of eigenvectors of A and all eigenvalues are real.

Here specifically, the algebraic multiplicity is equal to the geometric multiplicity.

Eigen-Decomposition

Let v1, . . . , vn be an orthonormal basis of eigenvectors of A and λ1, . . . , λn their corresponding
eigenvalues.

We can represent Avi = λvi with
AV = V D

where
V =

[
v1 . . . vn

]
and D is the diagonal matrix with entries λ1, . . . , λn.

So
A = V DV −1 = V DV T

since

V TV =

vT1. . .
vTn

 [v1 . . . vn
]
= I

Furthermore

A = V DV T =
n∑

i=1

λiviv
T
i

which is a sum of outer products.

Matrix Powers

Ak = (V DV T )k = V DkV T
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which is easily computed.

11.1.2 Orthonormal Basis of Eigenvectors

We can write

A−1 =
n∑

i=1

1

λi

viv
T
i

as long as λi 6= 0.

Even if A is singular, we can produce a “pseudo-inverse” with

∑
i:λi 6=0

1

λi

viv
T
i

11.1.3 Positive Semidefinite Matrices

Let A ∈ Rn×n be symmetric.

Definition 11.1.6 (Positive Semidefinite)
We say A is positive semidefinite if all eigenvalues of A are non-negative.

Remark that this makes sense since A was symmetric and thus has only real eigenvalues.

Proposition 11.1.2
The following are equivalent.

(i) A is positive semidefinite
(ii) xTAx ≥ 0 for all x ∈ Rn

(iii) A = UUT for some U ∈ Rn×m

We write A � 0 to indicate that A is PSD.

Proof
(1) =⇒ (3) We know that

A = V DV T

let D
1
2 be the matrix which is the element-wise square root of D. Then

A = (V D
1
2 )(D

1
2V T )
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(3) =⇒ (2) Apply the decomposition to see that

xTAx = xTUUTx

= 〈UTx, UTx〉

=
∥∥UTx

∥∥2
2

≥ 0

¬(2) ⇐= ¬(1) If there is some eigenvalue λ < 0 and v is the corresponding eigenvector,

0 < λ〈v, v〉2

= λvTv

= vTAv

so the quadratic form cannot be non-negative.

11.1.4 Eigenvalue Identities

Proposition 11.1.3
tr(A) =

∑n
i=1 λi where λi are the eigenvalues.

Proof
Remark that

det(xI − A) = (x− λ1) . . . (x− λn)

so looking at the coeffients of xn−1, they must be

−
n∑

i=1

λi

Looking at this in another direction with the Leibneiz formula, the coefficient of the xn

results from the permutation where n− 1 diagonal entries are chosen. But then the only
permutation to do so must choose the remaining digonal term as well (permutation among
row to column).

Thus the term which created xn−1 is

(x− a11) . . . (x− ann)

Using the same idea of inspecting coefficients∑
i

λi =
∑
i

aii
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Proposition 11.1.4
detA =

∏n
i=1 λi.

11.2 Graph Spectrum

Example 11.2.1
Let A(G) denote the adjacency matrix of G.

If G is complete
A(G) = Jn − In

where Jn is the matrix where every entry is 1.

Now J has rank 1, so its nullspace is of dimension n − 1 and 0 is an eigenvalue with
multiplicity n− 1.

Notice that Jn = 1n1
T
n . Thus

Jn1n = 1n1
T
n1n = n1n

and n is an eigenvalue of J with multiplicity one.

The spectrum of J is therefore
(n, 0, . . . , 0)

If v is in the nullspace of J
(J − I)v = −v

Also
(J − I)1n = n1n − 1n = (n− 1)1n

The spectrum of A(G) is
(n− 1,−1, . . . ,−1)

This is an example with the largest gap between the largest and second largest eigenvalue.

11.3 Bipartite Graphs

Lemma 11.3.1
If G is a bipartite graph and α is an eigenvalue of A(G) with multiplicity k, then −α
is also an eigenvalue of A(G) with multiplicity k.
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Proof
Let (X,Y ) be a bipartition of G. Then we can write

A(G) =

[
0 B
BT 0

]

Suppose that (x, y) is an eigenvector of A with eigenvalue α.

α

[
x
y

]
= A

[
x
y

]
=

[
By
BTx

]
Now consider (x,−y).

A

[
x
−y

]
=

[
−By
BTx

]
= α

[
−x
y

]
= −α

[
x
−y

]

Thus −α is an eigenvalue as well.

Now since the geometric multiplicity is the same as the algebraic multiplicity, a basis of
the eigenspace of α gives rise to a basis of the eigenspace of −α. Thus equivalence of
multiplicity holds.

The converse is also true.

Lemma 11.3.2
(Ak)ij is the number of length k walks from i to j.

Lemma 11.3.3
If α1 ≥ α2 ≥ · · · ≥ αn are the eigenvalues of A(G) with

αi = αn−i+1

for all i, then G is bipartite.
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Proof
Notice that if v is an eigenvector of A, then it is also an eigenvector Ak. So the spectrum
of Ak where k is odd is

αk
1, . . . , α

k
n

But then
tr
(
Ak
)
= 0

with each (Ak)ii ≥ 0 implying that the diagonal of Ak is 0.

So there is no length k walk from i to i for all i and odd k. Specifically, there are no odd
cycles.

This shows that G is bipartite.

11.4 Laplacian Matrix

Definition 11.4.1 (Laplacian Matrix)
Let D(G) be the diagonal entries where dii is the degree of vertex i.
The Laplacian matrix is

L(G) := D(G)− A(G)

Notice that the Laplacian matrix is also symmetric. Thus the algebraic and geometric
multiplicities coincide.

Notice when G is d-regular
L(G) = dI − A(G)

which has the same spectrum as A(G) (less a constant). In general however, the spectrums
could be hard to relate.

A useful way to think about L(G) is

L(G) =
∑
e∈E

Le

where Le is the Laplacian matrix of the graph e.

Le = eii + ejj − eij − eji

Proposition 11.4.1
The quadratic form

xTLx =
∑
ij∈E

(xi − xj)
2
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Proof

xTLx =
∑
e∈E

xTLex

=
∑
ij∈E

n∑
k=1

xkek(eii + ejj − eij − eji)
n∑

`=1

x`e`

=
∑
ij∈E

n∑
i=1

xkek(xiei + xjej − xjei − xiej)

=
∑
ij∈E

x2
i + x2

j − xjxi − xixj

=
∑
ij∈E

(xi − xj)
2

11.4.1 Spectrum

Proposition 11.4.2
1n is an eigenvector of L with eigenvalue 0.

Proof

[(D − A)1n]i = deg(i)− (A1n)i

= deg(i)−
∑

j:ij∈E

1

= deg(i)− deg(i)

= 0

Proposition 11.4.3
The smallest eigenvalue of L is 0.

Proof
We know 0 is an eigenvalue. It suffices to show that L � 0.

We know the quadratic form is non-negative. This suffices by our earlier work.
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11.4.2 Connectedness

Proposition 11.4.4
A graph is connected if and only if 0 is an eigenvalue of L(G) with multiplicity 1.

Proof
(¬ =⇒ ¬) Suppose G has two components G1, G2, with n,m vertices respectively. We
have

L(G) =

[
L(G1) 0

0 L(G2)

]
so both [

1n
0m

]
,

[
0n
1m

]
are eigenvectors as 1n, 1m are eigenvectors of L(G1), L(G2) respectively.

Moreoever, these two are linearly independent so the geometric multiplicty of 0 is at least
2. This is equivalent to saying the multiplicity is at least 2.

( =⇒ ) Suppose now that G is connected. Let x be an eigenvector of eigenvalue 0 of L(G).

Then
Lx = 0 =⇒ xTLx = 0

But the quadratic form is a sum of non-negative terms (xi − xj)
2. Thus

xi = xj

for all ij ∈ E. Using a spanning tree and the edges along this tree, we see that x = c · 1n
for some c ∈ R.

So the geometric multiplicity of 0 is 1. But then the multiplicity of of 0 is also 1.

Second Eigenvalue

Order the eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

This shows that G is connected if and only if λ2 > 0.

It turns out that G is “close” to being disconnected if and only if λ2 is small. Moreover G is
“close” to having k disconnected components if and only if λk is small.

Similarly αn ≈ −α1 if and only if G has a “close to bipartite” component.

120



11.5 Rayleigh Quotient

As a convention for the eigenvalues of A(G)

α1 ≥ α2 ≥ · · · ≥ αn

On the other hand,

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

for L(G).

Definition 11.5.1 (Rayleigh Quotient)
Let x ∈ Rn = 0 and A ∈ Rn×n The Rayleigh quotient is

RA(x) :=
xTAx

xTx

Lemma 11.5.1
Let A be symmetric, then

α1 = max
x∈Rn

RA(x)

Proof
Let v1 be an eigenvector corresponding to α1. Then

RA(v1) = α1

To see that this is an upperbound, write x ∈ Rn as

x =
n∑

i=1

civi

for the orthonormal basis of Rn ordered the same as the eigenvalues.
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Then

〈x,Ax〉 =
n∑

i=1

c2iαi

≤ α1

n∑
i=1

c2i

〈x, x〉 =
n∑

i=1

c2i

RA(x) =
〈x,Ax〉
〈x, x〉

≤ α1

In general

Lemma 11.5.2
If A is a real symmetric matrix

αk = max
x∈Tk

RA(x)

where
Tk = span{vk, . . . , vn}

Proof
For x ∈ Tk we can write

x =
n∑

i=k

ckvk

so

RA(x) =

∑n
i=k c

2
iαi∑n

i=k c
2
i

≤ αk

with equality if x = vk.

See the Courant-Fischer theorem without knowing Tk.
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11.6 Largest Eigenvalue

Lemma 11.6.1
Let α be the largest eigenvalue of A(G) and v its accompanying eigenvector. Then

α ≤ ∆(G)

Proof
Let vj be the maximum entry of v.

(αv)j = (Av)j

=
∑
i:ji∈E

vi

≤
∑
i:ji∈E

vj

≤ ∆(G)vj

We have equality if vi = vj for all ji ∈ E and deg(j) = ∆(G). Given that G is connected,
this means that G is ∆(G)-regular.

Moreover remark that we have shown that the eigenspace of α is 1. Thus the multiplicty of
α is 1 and it is the unique largest eigenvalue.

In the case that G is disconnected, this would show that G has a ∆(G)-regular component.

Proposition 11.6.2
The largest α is at least the average degree.

Theorem 11.6.3 (Perron-Frobenius)
Let A be non-negative, irreducible, and aperiodic matrix (not necessarily symmetric).

1. the largest eigenvalue α (in absolute value) has multiplicity 1
2. all entries of the eigenvector corresponding to α are non-zero and have the same

sign
3. |αi| < α for all 1 < i ≤ n

To characterize irreducible and aperiodic, draw an edge ij if [A]ij is non-empty. If that graph
is undirected, then it means G is non-bipartite. For directed graphs, it is more difficult to
characterize.
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Chapter 12

Cheeger’s Inequality

12.1 Definitions

12.1.1 Graph Conductance

Recall that G is disconnected if and only if λ2 = 0.

We seek to show that λ2 ≈ 0 if and only if G is “almost” disconnected.

Definition 12.1.1 (Volume)
For S ⊆ V

vol(S) :=
∑
v∈S

deg(v)

Definition 12.1.2 (Conductance)
For ∅ 6= S ⊆ V , its conductance is

φ(S) :=
|δ(S)|
vol(S)

Clearly

φ(S) ∈ [0, 1]

When G is d-regular

φ(S) =
|δ(S)|
d|S|
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Definition 12.1.3 (Graph Conductance)
The conductance of a graph is

φ(G) := min
S:vol(S)≤m

φ(S)

12.1.2 Expander Graphs & Sparse Cuts

Definition 12.1.4 (Expander Graph)
A graph with non-zero conductance is an expander graph.

Definition 12.1.5 (Sparse Cut)
S ⊆ V is a sparse cut if

φ(S)

is “small”

12.2 Spectral Partitioning Heuristic

1) Compute an eigenvector x ∈ Rn of the second largest eigenvalue of L , the normalized
Laplacian

2) Get a linear arrangement of vertices such that xi ≥ xi+1

3) Let Si = [i] if i ≤ n
2

and Si = [n]− [i] if i > n
2

4) Return the Si attaining mini∈[n] φ(Si)

This is extremely simple and can be implemented in near-linear time.

In practice, it work very well, for example in image segmentation.

12.3 Normalized Matrices

Definition 12.3.1 (Normalized Adjacency Matrix)
Let

A := D− 1
2AD− 1

2

where D is the diagonal degree matrix.
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Definition 12.3.2 (Normalized Laplacian Matrix)
Let

L := D− 1
2LD− 1

2

where D is the diagonal degree matrix.

Remark that

L = I − A

When the graph is d-regular

A =
1

d
A,L =

1

d
L

Proposition 12.3.1
Let

α1 ≥ · · · ≥ αn

be the eigenvalues of A and
λ1 ≤ · · · ≤ λn

be the eigenvalues of L .
Then

1 = α1 ≥ · · · ≥ αn ≥ −1

and
0 = λ1 ≤ · · · ≤ λn ≤ 2

12.4 Cheeger’s Inequality

Theorem 12.4.1 (Cheeger)
If λ2 is the second smallest eigenvalue of L

λ2

2
≤ φ(G) ≤

√
2λ2

Proof (λ2

2
≤ φ(G))

We only show the case when G is d-regular.
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Recall that 1n is always an eigenvector of L. By the Rayleigh Quotient

λ2 = min
x∈T1

xTLx

dxTx

= min
x⊥1n

∑
ij∈E(xi − xj)

2

d
∑

i∈V x2
i

For an arbitrary proper subset S ⊆ V such that vol(S) ≤ m, consider x ∈ Rn where

xi :=

{
1
|S| , i ∈ S
−1

|V−S| , i /∈ S

so that x⊥1n.

We have

λ2 ≤ RL (x)

=

∑
ij∈δ(S)

(
1
|S| +

1
|V−S|

)2
d
(
|S| 1

|S|2 + |V − S| 1
|V−S|2

) cancellation when ij /∈ δ(S)

=
|δ(S)|

(
1
|S| +

1
|V−S|

)
d

=
|δ(S)|
d|S|

· |V |
|V − S|

≤ 2φ(S) d|S| = vol(S) ≤ m =
1

2
dn

This this holds for all S over which we minimize φ(S) to get conductance, the claim holds.

We should think of λ2 as a relaxation of the graph conductance problem. Computing the
reductance of a graph is NP-hard in general. But relaxing the constraints to “fit” the
Rayleigh Quotient, we arrive at λ2 (within some constant factor)!

One immediate corollary of the easy direction of Cheeger’s inequality is a easy way to show
that a given graph is an expander graph.

The difficult direction of Cheeger’s inequality tells us how to extract a cut from the continuous
relaxation of the graph conductance problem. The intuition is that by sorting the vertices
according to their entries for a eigenvector of λ2, we get a vertex ordering where edges are
“sufficiently” close.
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Proof (φ(G) ≤
√
2λ2)

Let x be an eigenvector of λ2. Without loss of generality the number of positive entries
is at most the number of negative entries. Let y be the vector where yi = max(xi, 0).

It can be shown that R(y) ≤ R(x) where R denotes the Rayleigh Quotient of L applied
at y, x.

We claim that for any such y, there is a subset S ⊆ supp(y) such that

φ(S) ≤
√
2R(y)

Then √
2R(y) ≤

√
2R(x) =

√
2λ2

since x is an eigenvector corresponding to λ2. Here

supp(y) := {i : yi 6= 0}

Without loss of generality ‖y‖∞ = 1 by scaling. For 0 < t ≤ 1, consider the threshold set

St := {i : y2i ≥ t}

The goal is to show that there is some t where

φ(St) ≤
√

2R(y)

To do so choose t ∈ (0, 1) uniformly randomly. We claim that

E
[
|δ(St)| − d|St|

√
2R(y)

]
≤ 0

This would imply that there is t such that

|δ(St)|
d|St|

≤
√

2R(y)

To compute these values, we apply the linearity of expectation.

E[d|St|] We have

E[d|St|] = dE[|St|]

= d
∑
i∈V

P (i ∈ St)

= d
∑
i∈V

P (y2i ≥ t)

= d
∑
i∈V

y2i
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E[|δ(St)|] Observe that

E[|δ(St)|] =
∑
ij∈E

P (ij ∈ δ(St))

=
∑
ij∈E

P (y2i ≥ t > y2j ) WLOG yi ≥ yj

=
∑
ij∈E

|y2i − y2j |

=
∑
ij∈E

|yi − yj| · |yi + yj|

≤
√∑

ij∈E

(yi − yj)2
√∑

ij∈E

(yi + yj)2 Cauchy Schwartz

≤
√

R(y) · d
∑
i∈V

y2i

√∑
ij∈E

(2y2i + 2y2j )

=

√
R(y) · d

∑
i∈V

y2i

√∑
i∈V

2d · y2i

=
√

2R(y)

(
d
∑
i∈V

y2i

)

as desired.
Observe that we “randomly rounded” y into an integral solution. This will be further explored
in the last part of the course.

12.4.1 Remarks

The proof can be generalized to handle weighted, non-regular graphs.

Cheeger’s Inequality provides an

O

(
1√
φ(G)

)

approximation algorithm for φ(G). This is good if φ(G) is big but can be very bad if
φ(G) ≈ 0.

This could be as bad as a Θ(n)-approximation.

To see a tight example of the upper bound given by Cheeger’s inequality, consider the cycle
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Cn. We can compute

λ2 ≤ R(x) ∈ Θ

(
1

n2

)
but

φ(Cn) = Θ

(
1

n

)
Taking 2 copies of Cn and adding edges to give a bijection between the vertices gives a way
to “fool” the spectral partitioning algorithm.
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Chapter 13

Mixing Time

13.1 Linear Algebraic Formulation of Random Walks

Let pt ∈ Rn be the distribution at time t. For all v ∈ V

pt+1(v) =
∑

u:uv∈E

pt(u)
1

deg u

Let A be the adjacency matrix and D the diagonal degree matrix. Then

pt+1 = pTt D
−1A

and thus
pt = pT0 (D

−1A)t.

Notice here we used the fact that D is a diagonal matrix or else commutativity might not
hold.

It is easier to consider pt as a row vector thus we can take

pt+1 = (AD−1)pt

Here we used the fact that (D−1A)T = ATD−T = AD−1.

13.2 Fundamental Theorem of Markov Chains

13.2.1 Stationary Distribution

Let d ∈ Rn be the degree vector and m = |E|.
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Proposition 13.2.1
The distribution π := d

2m
is a stationary distribution of the random walk on undirected

graphs.

Proof
Observe that

(AD−1)π = A
1n
2m

=
d

2m
= π

It remains to show that it is a probability distribution.
n∑

i=1

di
2m

= 1

as desired.
Does pt → π as → ∞? This does not necessarily hold when the Markov chain is reducible
and periodic.

13.2.2 Fundamental Theorem of Markov Chains

For undirected graphs, irreducibility just means that the graph is connected. In undirected
connected graphs, aperiodic reduces to non-bipartiteness.

Theorem 13.2.2
For any finite, connected, non-bipartite graph

pt → π =
d

2m

as t → ∞ regardless of p0.

13.2.3 Spectral Analysis

Let
W := AD−1
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be the random walk matrix and
Z :=

1

2
I +

1

2
W

the lazy random walk matrix.

To compute W t, it is useful to compute the spectrum of W .

Although W is NOT necessarily symmetric, it is similar to a symmetric matrix

D− 1
2AD−1D

1
2 = D− 1

2AD− 1
2

= A

Proposition 13.2.3
W,A have the same eigenvalues.

Proof
They have the same characteristic polynomial.

Note that W does not necessarily have an orthonormal basis of eigenvectors. It does however
have a basis of eigenvectors.

d-Regular Graphs

In this special case
W =

1

d
A = I − 1

d
L

Theorem 13.2.4
For any finite, connected, non-bipartite d-regular graph

pt → π =
d

2m

as t → ∞ regardless of p0.

Proof
Let

α1 ≥ · · · ≥ αn

be the eigenvalues of W and
v1, . . . , vn

be an orthonormal basis of eigenvectors.
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Write
p0 =

∑
civi.

Then
W tp0 =

∑
ciα

t
iv1

Recall that −∆(G) ≤ αn ≤ α1 ≤ ∆(G) for the adjacency matrix. Scaling down shows
gives

−1 ≤ αn ≤ α1 ≤ 1

for A .

Moreoever we know that 1n is an eigenvector of A , thus

α1 = 1

Recall also that 0 = λ1 < λ2 if and only if G is connected for the Laplacian matrix. Since
A = 1− L,

α1 = 1 > α2

given that G is connected.

We also know that α1 = −αn if and only if the graph is bipartite. Thus

αn < −1

in our case.

This means that
W tp0 → c1v1.

Now 1n is an eigenvector of L with eigenvalue 0. Thus 1n√
n

is an eigenvector of L with
eigenvalue 1 when G is d-regular. But then it is also an eigenvalue of A with eigenvalue
1.

So v1 =
1n√
n
.

We have

c1 =

〈
p0,

1n√
n

〉
=

1√
n
〈p0, 1n〉

=
1√
n

c1v1 =
1√
n
· 1n√

n

=: π

as required.
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Suppose that
|αi| ≤ 1− ε

for 2 ≤ i ≤ n.

Then

αt
i ≤ (1− ε)t

≤ e−εt

≤ 1

np
t := p ln

(n
ε

)
so the convergence is very fast.

13.2.4 Lazy Random Walks

While finiteness and connectedness seem natural, non-bipartiteness does not.

We can remove the non-bipartiteness assumption by doing lazy random walks.

Definition 13.2.1 (Lazy Random Walk)
In each iteration, we stay at the same vertex with probability 1

2
and move to a uniform

random neighbour with probability 1
2
.

The transition matrix is modified to become

pt =

(
1

2
I +

1

2
AD−1

)t

p0.

Theorem 13.2.5
For any finite connected graph with lazy random walks,

pt → π =
d

2m

as t → ∞ regardless of p0.

Intuitively adding a self-loop with large probability makes the graph “VERY” aperiodic.

Proof
Let the spectrum of W be

1 ≥ α1 ≥ · · · ≥ αn ≥ −1.
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The spectrum of Z is just

1 =
1

2
(1 + α1) >︸︷︷︸

connectedness

· · · ≥ 1

2
(1 + αn) ≥ 0.

Notice that 1
2

is not very crucial. It is chosen for simplicity sake.

13.3 Mixing Time

We would like to understand how fast pt converges to π.

A standard measure is the scaled 1-norm

1

2
‖pt − π‖1 =

1

2

n∑
i=1

|pt(i)− π(i)|

13.3.1 Mixing Time by Spectral Gap

Definition 13.3.1 (ε-Mixing Time)
The ε-mixing time of the random walk is defined as the smallest t such that

‖pt − π‖1 ≤ ε

for all p0.

Definition 13.3.2 (Spectral Gap)
The spectral gap is

λ := min(1− α2, 1− |αn|)

Observe that

|αi| ≤ 1− λ

for 2 ≤ i ≤ n.

We will bound the mixing time using the spectral gap.
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Theorem 13.3.1
The ε-mixing time is upper bounded by

1

λ
log
(n
ε

)
where λ is the spectral gap.

Proof (d-Regular Graphs)
Write

pt = W tp0 =
n∑

i=1

ciα
t
ivi

Then since G is d-regular

‖pt − π‖22 = ‖
n∑

i=2

ciα
t
ivi‖

2

2

=

〈
n∑

i=2

ciα
t
ivi,

n∑
i=2

ciα
t
ivi

〉

=
n∑

i=2

c2iα
2t
i ‖vi‖

2
2

≤ (1− λ)2t
n∑

i=2

c2i

≤ (1− λ)2t
n∑

i=1

c2i

≤ (1− λ)2t‖p0‖22
≤ (1− λ)2t‖p0‖21
≤ (1− λ)2t.

By the Cauchy-Schwarz inequality and the fact that G is d-regular

‖pt − π‖1 ≤
√
n‖pt − π‖2

≤
√
n(1− λ)t

≤
√
ne−λt

≤ ε t ≥ 1

λ
log

(√
n

ε

)
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The statement holds in general but it is n instead of
√
n.

13.3.2 Mixing Time for Lazy Random Walks

In lazy random walks the spectral gap is simply
λ2

2

where λ2 is the second eigenvalue of L .

From Cheeger’s inequality, we know that

λ2 ≥
φ(G)2

2

Theorem 13.3.2
The ε-mixing time of lazy random walks is upper bounded by

2

φ(G)2
log
(n
ε

)
.

This implies that lazy random walks mix fast in an expander graph.

13.4 Random Sampling

13.4.1 Card Shuffling

How many times do we need to shuffle a deck of cards so that the distribution almost uniform.

Say we have a deck of 52 cards. How can be we obtain a random permutation using simple
operations?

fix some basic operations. Does applying basic operations converge the distribution of all
permutations? If so, how many steps are required to get an almost uniform distribution?

We can understand these questions about random walks on “state” graphs.

A famous result is that the 7 shiffle shuffle results in a convergent sequence.

13.4.2 Random Perfect Matching in Bipartite Graphs

Sampling over all perfect matchings.

140



This is related to the permanant of a matrix.

13.4.3 Random Spanning Tree

There may be exponentially many spanning trees. We want to sample an arbitrary one.

We can get from spanning tree to spanning tree by adding and deleting an edge. There is a
recent result which shows that we can get a uniform spanning tree in time

Õ(m)

13.4.4 Approximate Counting

There is a reduction from sampling to this application.

This is a class of problems for which we know polynomial time probabilistic algorithms but
NOT deterministic algorithms.
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Chapter 14

Electrical Networks

14.1 Electrical Flow

Definition 14.1.1 (Electrical Network)
An edge-weighted undirected graph where each edge is seen as a resistor of resistance
re.

Definition 14.1.2 (Kirchoff’s Law)
The sum of incoming currents is equal to sum of outgoing currents.

This is just the standard flow conservation law.

Definition 14.1.3 (Ohm’s Law)
There exist a voltage vector φ : V → R such that

φ(u)− φ(v) = fuvruv

for all e = uv ∈ E.

It is important to note that the voltage is an undirected quantity while the flow IS a directed
quantity. Namely

fvu = fuv.

Definition 14.1.4 (Electrical Flow)
An electrical flow is a flow which obeys Kirchoff and Ohm’s Laws.

143



We need to indicate source and sink nodes to and from which we inject and extract flow.

14.1.1 Linear Equations

Write
we :=

1

re

to be the conductance of the edge e.

Associate with each vertex v ∈ V a demand bv. This is positive if we are injecting flow and
negative if we are extracting flow.

To satisfy Ohm’s Law
fuv = wuv(φ(u)− φ(v))

for all uv ∈ E.

Definition 14.1.5 (Weighted Degree)
The weighted degree of v ∈ V is

degw(v) :=
∑

u:uv∈E

wvu.

In order to obey Kirchoff’s Law

bv =
∑

u:uv∈E

fvu

=
∑

u:uv∈E

wvu(φ(v)− φ(u))

= φ(v) degw(v)−
∑

u:uv∈E

φ(u)wvu

for all v ∈ V .

14.1.2 Matrix Formulation

Suppose that wuv = 1 for each uv ∈ E. Then the restriction becomes

~b = L~φ

where L is the Laplacian matrix of G.
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Definition 14.1.6 (Weighted Laplacian Matrix)
Define the weighted Laplacian matrix as

Luv =


−wuv, u 6= v, uv ∈ E

0, u 6= v, uv /∈ E

degw(v), u = v

.

Then we again have the equation
~b = L~φ.

14.1.3 Computing Voltages & Flows

Once the voltage is set, the flow is also uniquely determined.

Let B be the n×m matrix
B =

[
be1 , be2 , . . . , bem

]
where buv is the vector which is +1 in the u-th entry and −1 in the v-th entry.

Remark that flow can be computed by

f = BTφ.

Moreover
L =

∑
e∈E

webeb
T
e = BWBT

where W is the m×m diagonal matrix of conductance.

Thus
~b = L~φ = BWBT ~φ = BWf.

Now if W = I. Then
~b = B ~f

which is just the flow conservation constraints in matrix form.

14.1.4 Solution Space

L is not of full rank since 0 is an eigenvalue. But if G is without loss of generality connected,
the the nullspace of L is spanned by 1n.
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Proposition 14.1.1
If Lx = b, then

b⊥1− n.

Proof
Write

x =
n∑

i=1

civi

where {vi} is the basis of eigenvectors of L.

Then

Lx =
n∑

i=1

ciλivi =
n∑

i=2

ciλivi⊥1n.

This makes sense for electrical flows, since the demand should sum to 0.

Proposition 14.1.2
If b⊥1n, then there is x such that

Lx = b.

Proof
Write

b =
n∑

i=2

aivi.

Then

L

(
n∑

i=2

ai
λi

vi

)
= x.

14.1.5 Pseudo-Inverse

Definition 14.1.7 (Pseudo-Inverse)
The Pseudo-Inverse of the Laplacian is

L† :=
n∑

i=2

1

λi

viv
T
i .
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It follows that the solution set for Lx = b is

{L†b+ c1n : c ∈ R}

which is a “shift” of the solutions.

In particular, the flow ~f is unique!

Moreover, any Laplacian system can be thought of as an electrical flow problem!

14.2 Effective Resistance

Definition 14.2.1 (Effective Resistance)
Set bs = 1, bt = −1 and b is zero otherwise. Solve Lφ = b.
The effective resistance is

Reff(s, t) := φ(s)− φ(t).

Think of it as the resistance of the entire graph as a resistor.

Proposition 14.2.1
The effective resistance is

Reff(s, t) = bTstL
†bst

where
bst(s) = 1, bst(t) = −1

and zero otherwise.

14.2.1 Energy

Definition 14.2.2 (Energy)
The energy of an electrical flow is

ε(~f) :=
∑
e∈E

f 2
e re.

Proposition 14.2.2
We claim that

ε(~f) = Reff(s, t)

where f is a 1-unit electrical flow from s to t.
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Proof
We have

ε(~f) =
∑
e

f 2
e re

=
∑
uv∈E

wuv(φ(u)− φ(v))2

= φTLφ

= bTstL
†LL†bst φ = L†bst

= bTstL
†bst

=: Reff(s, t).

14.2.2 Thompson’s Principle

Theorem 14.2.3 (Thompson’s Principle)
Let ~g be a 1-unit st-flow (not necessarily electrical).
Then

Reff(s, t) ≤ ε(~g).

Thus the one unit st-electrical flow is the flow that minimizes the energy among all 1-unit
st-flows.

Proof
Recall that the minimization problem

min g(x), Ax = b

has an optimality condition which says any optimal solution x∗ has a corresponding y
such that

∇g(x∗) = ATy.

Then the problem ∑
e

f 2
e , Bf = bst

has the optimal condition that for all optimal flows f , there is some φ ∈ Rn such that

2~f = BTφ.

Thus f is defined by the voltage vector φ
2
.
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14.2.3 Rayleigh’s Monotonicity Principle

Theorem 14.2.4 (Rayleigh’s Monotonicity Principle)
If ~r′ ≥ ~r, then

Reff,~r′(s, t) ≥ Reff,~r(s, t).

Intuitively, this just says increasing the resistance of a single edge does not increase the
effective resistance of the graph as a whole.

Proof
This is a corollary of Thompson’s Principle.

Reff,r′(s, t) = εr′(f
′)

≥ εr(f
′)

∑
f 2
e re

≥ εr(f) Thompson’s Principle
= Reff,r(s, t).

14.2.4 Short Disjoint Paths

Lemma 14.2.5
If there are k vertex-disjoint st-paths, each of length at most `, then Reff(s, t) ≤ `

k
.

Proof
Let G be the original paths. Let G1 be the union of disjoint s, t-paths. Then let G2 be
the graph in which we artificially subdivide edges until each path is exactly of length `.

We can think of edge deletion as increasing the resistance to ∞. In addition, edge subdi-
vision is also increases the resistance. Thus

Reff,G(s, t) ≤ Reff,G1(s, t) ≤ Reff,G2(s, t) ≤
`

k
.

14.2.5 Effective Resistance Metric

In some ways, effective resistance may be a better metric to measure how close two nodes
are.

It is known that effective resistance satisfies the triangle inequality.
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Lemma 14.2.6
Reff(a, b) +Reff(b, c) ≥ Reff(a, c) for all a, b, c ∈ V .

14.3 Random Walks

We study some interesting quantities about random walks in undirected graphs.

Definition 14.3.1 (Hitting Time)
hu,v = E[Hu,v] where

Hu,v := min{t ≥ 0 : X1 = u,Xt = v}.

Definition 14.3.2 (Commute Time)
cu,v = hu,v + hv,u

Definition 14.3.3 (Cover Time)
coverg := maxv coverv where coverv is the expected time to visit every vertex at least
once if the random walk starts at v.

14.3.1 Commute Time

Theorem 14.3.1
For any two vertices s, t

cs,t = 2mReff(s, t)

where m = |E(G)|.

Proof
The goal is to show that the two quantities satisfy the same set of equations.

Observe that
hv,t =

1

d(v)

∑
w:vw∈E

(1 + hwt)

for any v ∈ V − t and htt = 0.
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This is equivalent to

d(v)hvt = d(v) +
∑

w:vw∈E

hwt

d(v) = d(v)hvt −
∑

w:vw∈E

hwt

=
∑

w:vw∈E

hvt − hwt

=
∑

w:vw∈E

h(v)− h(w)

for v ∈ V − t.

This is ALMOST a Laplacian system of linear equations. Indeed, consider the electrical
flow problem defined by demand bt where we inject d(v) units of current to each v ∈ V − t
and remove 2m− d(t) units of electrical flow from t.

Let φvt be the voltage at v in this electrical flow with φtt = 0. There is then a unique
solution.

We must have
φvt = hvt

and thus
L~ht = ~bt.

In similar fashion, the electrical flow problem defined by demand bs where we inject d(v)
units of current for each v ∈ V − s and remove 2m − d(s) units of electrical flow from s
corresponds to the constraints for hv,s.

So
L~hs = ~bs.

It follows that

L(~ht − ~hs) = ~bt −~bs

= 2m(χs − χt)

1

2m
(~ht − ~hs) = L†(χS − χt).

Thus
1

2m
(~ht − ~hs)

is the voltage vector when one unit of electrical flow is sent from s → t.
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Finally, we see that

Reff(s, t) = (χs − χt)
T 1

2m
(~ht − ~hs)

=
1

2m
(hts − hst)

=
cst
2m

.

Corollary 14.3.1.1
cu,v ≤ 2m for every edge uv ∈ E.

Proof
We have

Reff(s, t) ≤ 1

for all uv ∈ E as there is 1 vertex-disjoint st-path of length 1.

14.3.2 Cover Time

Theorem 14.3.2
The cover time of a connected graph is at most

2m(n− 1).

Proof
Take a spanning tree T of G. Starting at any vertex v, consider the tour C where we walk
along the outer face of the tree.

Then

coverv ≤ E[C]

=
∑
uv∈T

huv + hvu

=
∑
uv∈T

cuv

≤
∑
uv∈T

2m

= 2m(n− 1).
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Resistance Diameter

Definition 14.3.4 (Resistance Diameter)
This is the maximum effective resistance between two vertices.

R(G) := max
u,v∈V

Reff(u, v).

Theorem 14.3.3
We have

mR(G) ≤ cover(G) ≤ 2e3mR(G) lnn+ n.

Proof
Let u, v be the nodes attaining the resistance diameter R. From the previous theorem

2mR = cu,v = huv + hvu.

Without loss of generality, huv ≥ mR. It follows that

coveru ≥ huv ≥ mR.

For ANY u, v ∈ V
hu,v ≤ cuv ≤ 2mR.

Thus by Markov’s Inequality

P (v not covered in 2e3mR steps) ≤ hu,v

2e3mR
≤ 1

e3
.

But observe that hs,v ≤ 2mR so after each 2e3mR steps, we have an independent chance
to hit v within another 2e3mR steps. It follows that

P (v not covered in 2e3mR lnn steps) ≤ (e−3)lnn =
1

n3
.

Then by a union bound, the probability that no vertex is covered in 2e3mR lnn steps is
at most

1

n2
.

Applying the simpler bound from before

cover(G) ≤
(
1− 1

n2

)
2e3mR lnn+

1

n2
· n3

as desired.
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Graph Connectivity

Proposition 14.3.4
There is an O(n3) time algorithm which solves the st-connectivity problem using only
O(log n) space.

Proof
Just walk randomly for O(n3) steps starting from s.
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Chapter 15

Spectral Sparsification

15.1 Spectral Sparsification

15.1.1 Cut Sparsifiers

Definition 15.1.1 (ε-Cut Approximation)
A graph H is an ε-cut approximation of G if for all S ⊆ V

(1− ε)wδG(S) ≤ wδH(S) ≤ (1 + ε)wδG(S).

Theorem 15.1.1
Any graph G has an ε-cut approximator H with

O

(
n log n

ε2

)
edges.

A small remark that a near0linear time algorithm is one which runs in Õ(n) time and an
almost-linear time algorithm is one which runs in O(n1+O(1)) time.

15.1.2 Spectral Sparsifiers

Recall that A � B means that
A−B � 0
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is a positive semi-definite matrix.

Definition 15.1.2 (ε-Spectral Approximator)
A graph H is an ε-spectral approximator of G if

(1− ε)LG � LH � (1 + ε)LG.

Here LG can be the Laplacian matrix of G or the weighted Laplacian matrix if G has
weighted edges.

An equivalent definition of A � B is if

xTAx ≤ xTBx

for all x ∈ Rn×n.

Proposition 15.1.2
An ε-spectral approximator is an ε-cut approximator.

Proof
Let χS ∈ Rn be the characteristic vector of some S ⊆ V .

(1− ε)wδG(S) = (1− ε)
∑
uv∈E

(χS(u)− χS(v))
2

= (1− ε)χT
SLGχS

≤ χT
SLHχS

≤ (1 + ε)χT
SLGχS

= (1 + ε)wδG(S)

as desired.

Theorem 15.1.3
Any graph G has an ε-spectral approximator H with

O

(
n log n

ε2

)
edges.
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Linear Algebraic Reduction

There is a reduction from the spectral sparsification problem to a purely linear algebraic
problem.

Theorem 15.1.4
Suppose v1, . . . , vm ∈ Rn are given such that

m∑
i=1

viv
T
i = In.

There are scalars s1, . . . , sm with at most

O

(
n log n

ε2

)
non-zero entries in total such that

(1− ε) · In �
m∑
i=1

siviv
T
i � (1 + ε) · In.

Isotropy Condition

Definition 15.1.3 (Isotropy Condition)
The condition

m∑
i=1

viv
T
i = In

is called the isotropy condition.

We can think of this as an overcomplete basis.

For all unit vectors y.

m∑
i=1

〈y, vi〉〈vi, y〉 = yT
m∑
i=1

viv
T
i y

= yT Iy

= 1
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Sampling Algorithm

1) Initially set F := ∅, ~s := 0m, C := 6 logn
ε2

2) For 1 ≤ t ≤ C, for each 1 ≤ i ≤ m with probability pi = ‖vi‖22, add F = F ∪ {i} and
si = si +

1
Cpi

3) Return
∑

i∈F siviv
T
i

Number of Vectors

Lemma 15.1.5
With probability at least 0.9

|F | = O

(
n log n

ε2

)
.

Proof
By the linearity of the trace

m∑
i=1

‖vi‖22 =
m∑
i=1

tr
(
viv

T
i

)
=

m∑
i=1

tr
(
viv

T
i

)
= tr In

= n

We have

E[|F |] =
m∑
i=1

P (vi is chosen)

≤
m∑
i=1

Cpi

= C
m∑
i=1

‖vi‖22

=
6 log n

ε2

m∑
i=1

‖vi‖22

=
6n log n

ε2
.
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Applying Markov’s inequality concludes the proof.

Matrix Chernoff Bound

Theorem 15.1.6
Let X1, . . . , Xm be independent n× n real symmetric matrices such that

0 � Xi � R · I

for some r ∈ R.
Let

µminI �
m∑
i=1

E[Xi] � µmaxI.

For any 0 < ε ≤ 1

P

(
λmax

(
m∑
i=1

Xi

)
≥ (1 + ε)µmax

)
≤ ne−

ε2µmax
3R

P

(
λmin

(
m∑
i=1

Xi

)
≤ (1− ε)µmin

)
≤ ne−

ε2µmin
2R .

Concentration

The random variables are
Xi,t =

viv
T
i

Cpi

with probability pi and 0 otherwise.

Now

E[Output] =
C∑
t=1

m∑
i=1

E[Xi,t]

=
C∑
t=1

m∑
i=1

viv
T
i

C

=
m∑
i=1

viv
T
i

= I

hence µmax = µmin = 1.
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Observe that

Xi,t =
viv

t
i

Cpi

=
1

C

(
vi

‖vi‖

)(
vi

‖vi‖

)T

.

So Xi,t is a rank 1 matrix whose only eigenvector is vi
‖vi‖ with eigenvalue 1

C
.

We can thus take
R =

1

C
.

An application of the matrix Chernoff bound gives

P

(
λmax

(
m∑
i=1

siviv
T
i

)
≥ 1 + ε

)
≤ ne−

ε2C
3

= ne−2 lnn

=
1

n
.

15.1.3 Linear-Sized Spectral Sparsifiers

Theorem 15.1.7
Any graph G has an ε-spectral approximator H with

O
( n
ε2

)
edges.

The proof is purely linear algebraic and gives a deterministic algorithm to construct a spar-
sifier.

There are near-linear time algorithms to find a linear-sized spectral sparsifier now.

15.2 Effective Resistance

Recall that the Laplacian is LG =
∑

e beb
T
e .

The reduction from spectral sparsification to linear algebra is

ve = L
†
2
Gbe.
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Thus the sampling probability is

pe = ‖ve‖22

= ‖L
†
2
G‖

2

2

= bTe L
†
Gbe

= Reff(e)

It is possible to compute good approximations of the sampling probabilities in near-linear
time. The idea is to do dimension reduction.
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Part III

Linear Programming
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Chapter 16

Linear Programming

16.1 Review

16.1.1 Linear Program

Any linear program can be expressed in inequality form

max〈c, x〉
Ax ≤ b.

We generally expect m ≥ n in this case.

An equivalent equality form is

max〈c, x〉
Ax = b

x ≥ 0.

We generally expect n ≤ m in this case.

16.1.2 Integer Program

Many combinatorial optimization problems can be formulated as an integer linear program.
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Maximum weight bipartite matching can be written as

max
∑
e∈E

cexe∑
e∈δ(v)

xe ≤ 1 v ∈ V

xe ∈ {0, 1} e ∈ E.

Maximum independent set can be expressed as

max
∑
v∈V

cvxv

xu + xv ≤ 1 uv ∈ E

xv ∈ {0, 1}. v ∈ V

16.1.3 LP Relaxation

The idea is to relax the constraints x ∈ {0, 1}n to linear constraints 0 ≤ x ≤ 1.

However, the result can be very bad.

For some problems, such as the formulation for bipartite matching, can be solved EXACTLY
with LPs!

This is because all extreme points of the feasible region are integral and we can find basic
solutions corresponding to these points.

16.1.4 Corner Points

Equality Form

There are 3 equivalent characterizations of “corner points” for LPs in equality form.

Let P := {Ax = b, x ≥ 0}.

Vertex Solution x ∈ P is a vertex solution if no y 6= 0 is such that x+ y, x− y ∈ P

Extreme Point Solution x ∈ P is an extreme point solution if there is some c such that
x is the UNIQUE optimal solution of max〈c, x〉 for x ∈ P

Basic Solution let supp(x) := {i : xi 6= 0} x ∈ P is a basic solution if the columns
corresponding to supp(x) are linearly independent.

166



Inequality Form

Let P := {Ax ≤ b}.

We say the i-th constraint is tight is

〈Ai, x〉 = bi

where Ai is the i-th row.

Given x ∈ P , let A= be the submatrix of A formed by tight constraints.

Vertex Solution x ∈ P is a vertex solution if no y 6= 0 is such that x+ y, x− y ∈ P

Extreme Point Solution x ∈ P is an extreme point solution if there is some c such that
x is the UNIQUE optimal solution of max〈c, x〉 for x ∈ P

Basic Solution x ∈ P is a basic solution if A= is of full rank (rankA= = n).

Optimal Corner Point

Proposition 16.1.1
For bounded P and c ∈ Rn there is a basic feasible solution such that

〈c, x〉 ≥ 〈c, y〉

for all y ∈ P .

Proof
Let x ∈ P be an optimal solution satisfying the the maximal number of constraints.
Suppose that

rankA= < n.

There is some 0 6= y ∈ Rn such that

A=y = 0.

There is some ε > 0 such that

A(x+ εy), A(x− εy) ≤ b

We must have both
〈c, x〉 ≥ 〈x+ εy〉, 〈x− εy〉

by optimality. In particular cTy = 0.

167



But then
{x+ λy : λ ∈ R} ∩ P

is a set of optimal solutions. Since P is bounded, there is a maximal/minimal λ such that
x+ λy ∈ P .

In other words, x + λy is optimal while satisfying at least one more constraints than x.
This is the desired contradiction.

16.2 Perfect Bipartite Matching

Theorem 16.2.1
The following LP is integral for perfect matching in a bipartite graph

max
∑
e∈E

cexe

Mx = 1 v ∈ V

x ≥ 0

x ≤ 1

where M is the unsigned incidence matrix of G.

Proof
M is totally unimodular.

16.3 Solving Linear Programs

16.3.1 Simplex Method

Start from an arbitrary basic solution and move from vertex to vertex until we attain opti-
mality.

16.3.2 Ellipsoid Method

The idea is to reduce optimization to a decision problem, ie checking if P is empty.

Begin with a sufficiently large ellipsoid E0 containing P .

Given Ei, check if the center of Ei resides in P . If so, we are done. If not, require a separating
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hyperplane H as certificate.

Find an ellipsoid Ei+1 containing Ei ∩H. In particular, P ⊆ Ei+1.

The key point is to show that
volEi+1

volEi

≤ e−
1

2(n+1)

so after O(n) steps, the volume has decreased by a constant fraction.

this belongs to the class of algorithms called cutting plane methods.

Optimization via Separation

An important feature of the ellipsoid method is that it only requires a “separation” oracle
for it to work.

In particular, we do not need to write down the LP explicitly.

This means we can solve exponentially sized LPs (with respect to the input size) in polyno-
mial time with the ellipsoid method!

16.3.3 Interior Point Method

First use “barrier functions” to ensure that an optimal solution stays in the polytope. This
reduces to an unconstrained optimization problem.

Initially, we start from the “center” of the polytope. In each step, we decrease the “force”
of the barrier and update the current point using Newton’s method.
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Chapter 17

Matching Polytopes

17.1 Bipartite Matching

Consider the weighted bipartite matching formulation

max〈c, x〉
x(δ(v)) ≤ 1 v ∈ V

x ≥ 0 e ∈ E

17.1.1 Optimal Integral Solution

Reduction

Let x be an optimal basic solution.

Suppose there is an edge e such that xe = 0. Delete it and the result follows by induction.

Suppose now there is an edge uv with xuv = 1. Recurse on G − {u, v} to get an integral
solution corresponding to a matching M ′ which attains OPT−cuv. Add e to M ′ and the
result follows.

Rank Argument

Lemma 17.1.1
There exists an edge e with xe ∈ {0, 1} in ANY basic solution.
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Proof
Suppose for a contradiction that 0 < x < 1.

Recall that there are |E| linear independent tight constraints since x is basic. Let W be
the set of eight degree constraints.

Clearly the non-negativity constraints are NOT tight. Every v ∈ W has degree two or
else the edge variables incident to v do not add to 1.

We have

|W | ≥ |E|

=
1

2

(∑
v∈W

deg v +
∑
v/∈W

deg v

)

≥ 1

2
2|W |

= |W |

In particular, we have equality throughout.

This means that |W | = |E| and deg(v) = 2 for all v ∈ W . Moreover, deg(v) = 0 for
v /∈ W .

We claim that there at most |W | − 1 = |E| − 1 tight degree constraints which are also
linearly independent. This would contradict the fact that x is a basic solution.

Notice the degree constraint for v ∈ V is just

〈χδ(v), x〉 ≤ 1.

Let V = (A,B) be a bipartition of G.∑
v∈W∩A

χδ(v) −
∑

v∈W∩B

χδ(v) = 0

since we are essentially just counting each edge twice. Note we used the fact that deg(v) =
0 for all v /∈ W .
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17.2 3-Dimensional Matching

Problem 12 (3-Dimensional Matching)
Given a tripartite hypergraph

G = (X,Y, Z)

find a maximum (weight/cardinality) matching.

The LP relaxation is still

max〈1m, x〉
x(δ(v)) ≤ 1 v ∈ V

xe ≥ 0 e ∈ E

17.2.1 Basic Solution

Lemma 17.2.1
For any basic solution x > 0, there is a hyperedge e with xe ≥ 1

2
.

Proof
Let W be the set of tight degree constraints.

Since xe <
1
2
, each vertex v ∈ W has degree at least 3 (or else x(δ(v)) < 1).

We have

|W | ≥ |E|

=
1

3

(∑
v∈W

3 +
∑
v/∈W

0

)
= |W |.

Thus |W | = |E|, deg(v) = 3 for all v ∈ W , and deg(w) = 0 for all v /∈ W .

In particular, each hyperedge intersects

W ∩X,W ∩ Y,W ∩ Z

exactly once. Thus the constraints in W are linearly dependent.

This contradicts the assumption that x is a basic solution.
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17.2.2 Iterative Rounding Algorithm

White E 6= ∅,

1) compute an optimal basic solution x

2) if there is a hyperedge e with xe = 0, delete e

3) otherwise there is an edge e = uvw with xe ≥ 1
2
, add e to the solution an recurse on

G− {u, v, w}

Return the solution.

17.2.3 Approximation Guarantee

If we remove a hyperedge e with xe = 0, then by induction the smaller hypergraph as an
integral solution at least 1

2
of the optimal LP solution.

Focus on the case when we add the hyperedge e with xe ≥ 1
2
. Then

OPT(G− {u, v, w}) = OPT(G)− xe − 3(1− xe) deleted u, v, w

= OPT(G)− 3 + 2xe

≥ OPT (G)− 2.

By induction there is an integral solution attaining at least

OPT(G)− 2

2
=

OPT(G)

2
− 1.

Adding ce = 1 yields that 1
2
-approximation.

17.3 General Assignment Question

Problem 13 (General Assignment Problem)
There are m machines M1, . . . ,Mm and n jobs J1, . . . , Jn.
There is a total available time Ti on each machine Mi.
If we assign job j to machine i, the cost is cij and the processing time is pij.
Assign each job to a machine and minimize the total cost while satisfying the time
constraints.
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17.3.1 LP Relaxation

Let xij be a variable indicating that job j is assigned to machine i. Let E be the set of all
possible pairs i, j. Initially, every pair is possible, but we will delete pairs.

min
∑

i∈M,j∈J

cijxij∑
i∈M,ij∈E

xij = 1 j ∈ J∑
j∈J :ij∈E

pijxij ≤ Ti i ∈ M

xij ≥ 0 ij ∈ E

Remove all pairs i, j with pij > Ti. These are never in the optimal solution.

17.3.2 Iterative Relaxation Algorithm

While J 6= ∅

1) Compute an optimal basic solution x. If infeasible, return “impossible”
2) Delete all pairs i, j with xij = 0 from E

3) If xij = 1, assign job j to machine i. Update Ti := Ti − pij and J := J − j

4) If there is a machine i with degree 1, remove the time constraint from machine i

5) If there is a machine i with degree 2 and fractional degree at least 1, remove the time
constraint from machine i

The new idea is to remove constraints.

17.3.3 Performance Guarantee

First we assume the algorithm always terminates and prove the approximation guarantee.

Since we only assign a job j to a machine if xij = 1, the cost is no more than the optimal
cost (relaxing constraints only decreases optimal cost).

It remains to consider the time violation.

The case when there is a machine i with degree 1 clearly violates the time constraint by at
most Ti.
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Focus on the case for the machine i with degree 2 (say jobs j, k) and fractional at least 1.
In the worst case, both jobs are assigned to machine i. Then the time violation is at most

(1− xij)pij + (1− xik)pik ≤ (2− xij − xik)Ti

≤ Ti

Theorem 17.3.1
Suppose there is an assignment with total cost C satisfying all time constraints.
There is a polynomial time algorithm to find an assignment with total cost C. More-
over, the i-th time constraint is violated by at most Ti.

It is NP-hard just to find an assignment satisfying all time constraints.

17.3.4 Basic Solution

It remains to show that one of the 4 cases MUST apply to a basic solution x.o

Suppose 0 < x < 1. Let J∗ be the tight job constraints and W ∗ be the tight machine
constraints.

Due to x < 1, deg(j) ≥ 2 for each j ∈ J∗. If there is no machine with deg(i) = 1, then
deg(i) ≥ 2 for all machines i ∈ M∗.

Then

|J∗|+ |M∗| ≥ |E|

≥ 1

2

(∑
e∈M∗

2 +
∑
j∈J∗

2

)
≥ |J∗|+ |M∗|

The equalities imply deg(i) = 2 for all i ∈ M∗, j ∈ J∗ and deg(i) = 0 for all i /∈ M∗.

Moreover, deg(j) = 2 for all j ∈ J∗ and deg(j) = 0 for all j /∈ J∗.

Now, the sum of fractional degrees for each tight job is at least 1, since each job must be
assigned (albeit fractionally) to one machine. Thus there MUST be a machine with fractional
degree at least 1. This shows that the last case of the algorithm occurs.
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17.4 General Matchings

17.4.1 Edmonds’ LP

Edmonds gave an exponential-sized LP and proved its integrality.

max〈c, x〉
x(δ(v)) ≤ 1 v ∈ V

x(E(S)) ≤ |S| − 1

2
S ⊆ V, |S| is odd

xe ≥ 0 e ∈ E

There is a polynomial time separation oracle for this LP, but it is quite nontrivial. Specifi-
cally, general matchings can be solved in polynomial time with the ellipsoid method.
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Chapter 18

Spanning Tree Polytopes

18.1 Spanning Trees

Consider the following LP for the minimum spanning tree problem

max〈c, x〉
x(E(S)) ≤ |S| − 1 ∀S ⊂ V

x(E(V )) = |V | − 1

xe ≥ 0

There is a polynomial time separation oracle using maximum-flow minimum-cut techniques.
Thus the ellipsoid method solves this (exponential sized) LP in polynomial time.

18.1.1 Rank Argument

We want to show this LP is integral. There are many constraints, but surprisingly few
linearly independent ones.

Basic Tight Constraints

Definition 18.1.1 (Tight Set)
S is a tight set if

x(E(S)) = |S| − 1.

For F ⊆ E, let χF be the characteristic vector. Remark that χE(S) is the row vector in the
CONSTRAINT matrix for the tight set S.
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Laminar Family

To show that a rank is small, we show there is a basis with special structure.

We say S, T are intersecting if
S − T, T − S, S ∩ T

are all non-empty.

Definition 18.1.2 (Laminar)
A family L of sets is a laminar family if there are no pairwise intersecting sets.

Proposition 18.1.1
Let L be a laminar family on a ground set of n elements. Then

|L| ≤ 2n− 1.

Furthermore, if L has no singleton sets, then

|L| ≤ n− 1.

Proof
By induction.

Lemma 18.1.2
For S, T ⊆ V

χE(S) + χE(T ) ≤ χE(S∩T ) + χE(S∪T ).

Furthermore, equality holds if and only if

E(S − T, T − S) = ∅

where E(X,Y ) denotes the set of edges with one endpoint in X and the other in Y .

Proof
By cases.

Uncrossing Technique

We argue that tight sets are closed under union and intersections. Furthermore, they are
linearly independent. We can thus replace them by their union and intersection.
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Lemma 18.1.3
If S, T ∈ F and S ∩ T 6= ∅ then both S ∩ T, S ∪ T are in F .
Furthermore

χE(S) + χE(T ) = χE(S∩T ) + χE(S∪T ).

Proof
By tightness

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S ∩ T )) + x(E(S ∪ T )) (∗)
≤ |S ∩ T | − 1 + |S ∪ T | − 1 not necessarily tight constraints (?)
= |S| − 1 + |T | − 1.

(∗) Since we removed all variables xe = 0, the previous lemma implies that

χE(S) + χE(T ) = χE(S∩T ) + χE(S∪T ).

(?) Equality here implies
S ∪ T, S ∩ T ∈ F

Laminar Basis

Theorem 18.1.4
Let

F := {S : x(E(S)) = |S| − 1}

be the set of all tight sets.
There exists a laminar family L ⊆ F such that

spanL = spanF .

We say S intersects R if R− S, S −R 6= ∅.

Proof
We argue that if L is a maximal laminar sub-family of F with respect to inclusion, then

spanL = spanF .

Suppose towards a contradiction this is false. Let R ⊆ F be the set beyond spanL.

Observe that no set F ∈ F is such that L∪{F} is a laminar family by maximality. Then,
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let R ∈ R be such that it intersects the minimal number of sets in L. Say S ∩R 6= ∅ for
some S ∈ L. We claim that S ∩R,S ∪R both intersect fewer sets of L than R.

Assuming this claim, we know by the previous lemma that S ∩R,S ∪R both reside in F .
But they cannot be in R by the minimality of R. Thus they both reside in spanL and
we can express

χE(R) = χE(S∩R) + χ(S∪R) − χE(S) ∈ spanL.

This is the desired contradiction.

It remains to show the claim.

It is clear the intersecting number of S ∩R is at most the intersecting number of R. But
S ∩R ⊆ S so while R intersects S, S ∩R does not. Thus the inequality is strict.

Similarly, as L is a laminar family, the intersecting number of S ∪R is at most that of R.
But S ∪R again does not intersect S. Thus this inequality is also strict.

Rank Argument

Theorem 18.1.5
The number of linearly independent subtour elimination constraints is at most |V |−1.

Proof
There exists a laminar basis. This has size at most n− 1.

Integrality

Let x be a basic solution and remove edge e where xe = 0. Notice the subtour elimination
constraints implies x ≤ 1.

By the theorem, a basic solution has at most n− 1 tight constraints and therefore at most
n− 1 non-zero edge variables. By the second constraint, the sum of edge variables is n− 1,
thus there is exactly n− 1 integral edge variables.
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18.1.2 Submodular Functions

Definition 18.1.3 (Submodular Function)
A function f : 2V → R is submodular if it satisfies

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

for all S, T ⊆ V .

One important example is the cut function. The function we considered before was actually
supermodular (the inequality is reversed). However, we need only negate a supermodular
function to achieve a submodular function.

Submodular functions are central toward many polynomial time solvable combinatorial op-
timization problems. This uncrossing technique is used frequently to deal with submodular
functions.

18.2 Minimum Bounded Degree Spanning Tree

Problem 14 (Minimum Bounded Degree Spanning Tree)
Given an undirected graph G = (V,E), a cost ce on each e ∈ E, and a degree upper
bound Bv on each v ∈ V , find a minimum cost spanning tree satisfying all the degree
upper bounds.

This problem is clearly NP-hard, since B = 2 is the Hamiltonian path problem.

Theorem 18.2.1
If there is a spanning tree with cost C satisfying all the degree constraints, there
is a polynomial time algorithm to find a spanning tree T with cost at most C and
degT (v) ≤ Bv + 1 for all v ∈ V .

Corollary 18.2.1.1
There is a polynomial time algorithm to find a minimum spanning tree with maximum
degree at most

OPT+1.

18.2.1 LP Relaxation

We add an additional constraint to the spanning tree LP.
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max〈c, x〉
x(E(S)) ≤ |S| − 1 ∀S ⊂ V

x(E(V )) = |V | − 1

x(δ(v)) ≤ Bv v ∈ W

xe ≥ 0

where W is the set of vertices with degree constraints.

18.2.2 Iterative Relaxation

We show an algorithm which violates the degree bound by at most 2.

Initialize F = ∅. It is the partial solution we have seen so far.

While |V | ≥ 2

1) Compute an optimal basic solution x. If it is infeasible, return “impossible”
2) Remove all edges with xe = 0 from E

3) If there is a vertex v with only one edge uv incident to it, then set F := F ∪ {uv},
V := V − v, and Bu := Bu − 1

4) If there is a vertex v with deg(v) ≤ 3, remove the degree constraint on v (ie W := W−v)

Return F .

In essence, we iteratively identifies a leaf of the spanning tree and remove it from the graph.

18.2.3 Approximation Guarantee

First, let us assume the algorithm terminates correctly and prove its correctness.

Consider the case where there is a degree 1 vertex incident to e ∈ E. We claim xe = 1.
Indeed, by the subtour elimination constraints

x(E(V − v)) ≤ |V | − 2

while
x(E(V )) = |V | − 1

thus the sum of edge variables in the cut δ(v) is 1. But there is only one edge, so xe = 1.

Note here that the cost of consuming this edge has been taken into account when computing
the optimal basic solution. Therefore, we never output a tree with more than optimal weight.
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Then consider the case when there are no leaf vertices but there is a vertex v of degree at
most 3. In the worst case, all edge incident to v will be chosen. Observe that the degree
constraint is at least 1, or else no spanning tree exists for any non-trivial graphs. But then
we only violate the degree constraint by at most 2.

18.2.4 Analysis of Basic Solution

We now prove termination. The hard work has already been done.

We want to show that at every iteration, the current graph falls into one of our 3 cases.
Indeed, suppose that we have removed all edges e where xe = 0. Moreover, suppose the
minimum degree is at least 2.

We should be in the final case. Suppose towards a contradiction that there are no vertices
with degree constraints that have degree at most 3.

Let W be the set of vertices with degree constraints.

|E| = 1

2

(∑
v∈W

deg(v) +
∑
v/∈W

deg(v)

)

≥ 1

2

(∑
v∈W

4 +
∑
v/∈W

2

)
= |V |+ |W |.

On the other hand, having removed the zero edge variables, the number of edges |E| are at
most the number of linearly independent constraints. In particular

|E| ≤ |V | − 1 + |W |.

Here we used our result from the previous section about linearly independent subtour con-
straints.

We have the desired contradiction.

Further Optimizations

A careful analysis which takes into account laminarity reveals that the degree violation can
be decreased to at most 1.

While W 6= ∅

1) Compute an optimal basic solution x. Remove all edge with xe = 0
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2) Remove the degree constraint on a vertex v with degG(v) ≤ Bv + 1.

Return a minimum spanning tree.
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Chapter 19

Linear Programming Duality

19.1 Linear Programming Duality

19.1.1 Motivation

Consider the maximization problem
max〈c, x〉

subject to
〈ai, x〉 ≤ bi

where ai is the i-th row of the constraint matrix.

By taking non-negative linear combinations of the constraints, we can obtain an upper bound
on the objective value. Suppose

m∑
i=1

aiyi ≥ c

then
m∑
i=1

yibi ≥
m∑
i=1

yi〈ai, x〉 ≥ 〈c, x〉.

If we wish to find the best coefficients, this is a linear program!

19.1.2 Weak Duality

The dual LP is defined as
max〈b, y〉, yTA ≥ c, y ≥ 0.
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Theorem 19.1.1 (Weak Duality)
For any feasible x and feasible y in the primal/dual programs

〈c, x〉 ≤ 〈b, y〉.

19.1.3 Complementary Slackness Conditions

We derive necessary and sufficient conditions to achieve primal dual equality.

Theorem 19.1.2 (Complementary Slackness)
If x, y are optimal in the primal/dual if and only if

xj > 0 =⇒ 〈aj, y〉 = cj

yi > 0 =⇒ 〈ai, x〉 = bi

Here superscripts denote columns and subscripts denote rows.

Proof
Use the inequalities

yT b ≥ yTAx ≥ cTx.

19.1.4 Primal-Dual Algorithms

The idea is to directly find feasible solutions satisfying the complementary slackness condi-
tions. One example is the Hungarian matching algorithm.

19.1.5 Strong Duality

Separation Theorem

Theorem 19.1.3 (Separation)
Let S ⊆ Rn be a closed convex set and v /∈ S.
There exists w ∈ Rn such that

〈w, v〉 > 〈w, x〉

for all x ∈ S.
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Proof
First show there is a closest point using compactness and continuity. Then observe that
the averge of two closest points is strictly better thus the closest point is unique.

Say v∗ ∈ S is the closest point, take

w := v − v∗.

Farkas’ Lemma

Lemma 19.1.4 (Farkas)
The system Ax = b for x ≥ 0 has no solutions if and only if there is y such that

yTA ≥ 0

and
yT b < 0.

Proof
By contradiction and the separation theorem.

Strong Duality

Theorem 19.1.5
If the primal and dual programs are feasible, they have the same objective value.

Proof
Show using Farkas’ lemma that if there is µ which is strictly greater than the optimal
objective value of the primal, then µ is strictly greater than the optimal objective value
of the dual.

The idea is to reduce the optimization problem to a decision problem concerning feasibility.

19.2 Min-Max Theorems

Here are some powerful results in combinatorial optimization.

All results use total unimodularity of the constraint matrices and strong duality.
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19.2.1 Bipartite Matching & Vertex Cover

The maximum bipartite matching is the same size as the minimum vertex cover.

19.2.2 Maximum-Flow Minimum-Cut

The maximum st-flow is equivalent to the minimum st-cut.

19.3 Game Theory

A two-player zero-sum game can be described by a matrix, where each row corresponds to
a strategy and the column corresponds to a strategy of the column player. The row player
choses strategy i and the column player chooses strategy j and then the payoff is the i, j-th
row of the matrix.

The row player wishes to maximize payoff, while the column player wishes to minimize the
payoff. A Nash equilibrium is a pair of strategies such that even is a player knows the
strategy of the other player, they cannot gain by changing their strategy.

19.3.1 Minimax Theorem

Let A ∈ Rm×n payoff matrix and x ∈ ∆m, y ∈ ∆n be probability distributions.

The expected payoff of these strategies is

xTAy.

Theorem 19.3.1 (Von-Neumann Minimax)
We have

max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy.

Proof
Strong duality.

19.3.2 Yao’s Minimax Principle

We can consider a randomized algorithm as a distribution of deterministic algorithms. Think
of it as a two-player zero-sum game where the algorithm plays the best distribution of
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deterministic algorithms to minimize running time while the adversary chooses the best
distrubution of inputs to maximize the running time.

Using Von-Neumann’s theorem, it suffices to find an input such that ANY deterministic
algorith takes a long time to solve it.
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Chapter 20

Multiplicative Weight Update Method

20.1 Online Expert Model

20.1.1 Online Decisions

Suppose each day we decide if we want to buy or sell stocks based on if the stock market
falls or gains. The correct prediction gives us a gain of $1 and a false prediction costs $1.
There are n experts in the newspapers who make daily predictions. Given the track records
of the experts, can we do as well as the best expert?

Problem 15 (Online Expert)
There is a set of n decisions for each of T rounds. After each round t ∈ [T ], we learn
the outcome as a cost vector mt ∈ Rn.
We assume that

−1n ≤ mt ≤ 1n.

In each round, we make a decision by specifying a probability distribution pt over the
n experts.
We wish to minimize the total cost comparing to the best expert. Here the total cost
of expert i is

T∑
t=1

mt(i).

The total cost of our decision is
T∑
t=1

〈mt, pt〉.
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20.1.2 Multiplicative Weight Update Method

We maintain a weight wt(i) on each expert representing our “trust” of that expert at time
t. Initially set

w1 := 1n.

Fix a parameter η ≤ 1
2
.

For each 1 ≤ t ≤ T

1) Let Φt :=
∑n

i=1 wt(i)

2) Set pt(i) :=
wt(i)
Φt

3) Observe mt

4) Update wt+1(i) := (1− ηmt(i)) · wt(i)

Analysis

Theorem 20.1.1 (Regret Minimization)
Assume mt(i) ∈ [−1, 1] and η ≤ 1

2
. After T rounds

T∑
t=1

〈mt, pt〉 ≤
T∑
t=1

mt(i) + η

T∑
t=1

|mt(i)|+
lnn

η

for each 1 ≤ i ≤ n.

Lemma 20.1.2
The inequality

1− ηx ≥

{
(1− η)x, x ∈ [0, 1]

(1 + η)−x, x ∈ [−1, 0]

holds.
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Proof
Upper Bound on Φt By computation

Φt+1 :=
n∑

i=1

wt+1(i)

=
n∑

i=1

(1− ηmt(i))wt(i)

=
n∑

i=1

wt(i)− η
n∑

i=1

mt(i))wt(i)

=
n∑

i=1

wt(i)− ηΦt

n∑
i=1

mt(i))pt(i) pt(i) :=
wt(i)

Φt

= Φt(1− η〈mt, pt〉)
≤ Φte

−η〈mt,pt〉 1− x ≤ e−x

≤ . . .

≤ Φ1e
−η

∑t
i=j〈mj ,pj〉

= ne−η
∑t

i=j〈mj ,pj〉.

Lower Bound on Φt Again by computation

Φt+1 :=
n∑

i=1

wt+1(i)

≥ wt+1(i)

= 1 ·
t∏

j=1

(1− ηmj(i))

≥ (1− η)
∑

≥0 mt(i)(1 + η)−
∑

<0 mt(i).

Remark now by the choice of η that

ln(1− η) ≥ −η − η2

ln(1 + η) ≥ η − η2

2
≥ η − η2.

This can be see from the Taylor Expansion of ln(1 + x).
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Taking logs from both sides of the bounds, we see that

lnn− η
T∑
t=1

〈mt, pt〉 ≥
∑
≥0

mt(i) ln(1− η)−
∑
<0

mt(i) ln(1 + η)

≥
∑
≥0

mt(i)(−η − η2)−
∑
<0

mt(η − η2)

= −η
n∑

i=1

mt(i)− η2
n∑

i=1

|mt(i)|.

Rearranging the inequality yields the result.

Notice that the assumption that mt(i) ∈ [−1, 1] was important. This bounds the mistake we
make in each round. We can rescale mt(i) ∈ [−w,w] to the case we proved but the additive
error is then

w lnn

η
.

The parameter w is called the width, and is crucial in the analysis of multiplicative update
methods.

20.2 Solving Linear Programs

Suppose we have an LP of the form

min〈c, x〉, Ax ≥ b, x ≥ 0.

To solve this, let us reduce this to a feasibility problem

Ax ≥ b, x ≥ 0.

Instead of finding a solution which satisfies m constraints simultaneously, it would be easier
to satisfy a convex of the constraints

ptAx ≥ ptb, x ≥ 0.

If this problem is infeasible, then the original LP is infeasible. If it is feasible, then as least
one constraint is satisfied.

We use the MWU method to put more weight on constraints that are violated to obtain pt+1

and repeat the procedure. After T iterations for a given T , we return the average solution

x̄ :=
1

T

n∑
t=1

xt

as our approximation solution.
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20.2.1 Feasibility

How do we find a solution satisfying

ptAx ≥ ptb

such that x ≥ 0?

If ptA has a positive entry, we can use that entry in x to obtains ptb. Otherwise we would
have

ptA ≤ 0, ptb > 0

and pt is a certificate of infeasibility.

20.2.2 Oracle & Width

Given a constraint ptAx ≥ ptb, we assume that there is an oracle which returns a solution x
satisfying

ptAx ≥ ptb, xt ≥ 0.

We say an oracle is of width w if the returned solution xt always satisfies∣∣A(i)Txt − bi
∣∣ ≤ w

for 1 ≤ i ≤ m. The runtime of the method is heavily dependent on the width, as it is the
loss bound for

mt(i) ∈ [−w,w]

within the online expert problem.

We will now proceed assuming there is an oracle of width w to solve ptAx ≥ ptb subject to
xt ≥ 0.

20.2.3 The Algorithm

Initially
p1(i) =

1

m

for each 1 ≤ i ≤ m.

For 1 ≤ t ≤ T

1) Apply the oracle to find a solution xt satisfying ptAxt ≥ ptb and xt ≥ 0 with
∣∣aTi xt − bi

∣∣ ≤
w for each 1 ≤ i ≤ m
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2) Set the outcome mt(i) :=
aTi xt−bi

w
for 1 ≤ i ≤ m

3) Use mt(i) to apply the multiplicative weight update method to compute pt+1

Return x̄ :=
∑T

t=1
xt

T
.

As a reminder, the multiplicative weights update method sets

wt+1(i) := (1− ηmt(i))wt(i)

pt+1(i) :=
wt+1(i)

Φt+1

where Φt+1 =
∑

wt(i) and w1 := 1m initially.

20.2.4 Performance Guarantee

Theorem 20.2.1
Given ε > 0 and an oracle of width w, there is an algorithm which either finds a
solution x̄ such that

aTi x̄ ≥ bi − ε

for 1 ≤ i ≤ m or concludes that the LP is infeasible.
The algorithm calls the oracle at most

O

(
w2 logm

ε2

)
times, with an additional O(m+n) time per call. With each call, there is an additional
O(m+ n) time bookkeeping involved.

Proof
Suppose the algorithm does not find a certificate of infeasibility. The regret minimization
theorem says

T∑
t=1

(
aTi xt − bi

w

)
+ ηT +

lnm

η
≥ 0

T∑
t=1

(
aTi xt − bi

T

)
≥ −ηw − w lnm

ηT
.
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An appropriate choice of η, T yields the bound. Specifically,

η ∈ O
( ε

2w

)
T ∈ O

(
w2 lnm

ε2

)
.

20.2.5 Remarks

An oracle of small width is crucial for the time complexity of the method. For combinatorial
problems, we usually have a straightforward bound that w ∈ O(n).

Notice that the ellipsoid and interior point method has time complexity dependent on log ε−1

while the MWU method has dependency ε−1. This means it is less competitive.

199



200



Chapter 21

Laplacian Solvers

21.1 Maximum Flow

21.1.1 Undirected Graphs

Problem 16 (Maximum Flow)
Given an undirected graph G = (V,E) where each edge e has capacity ce and two
vertices s, t, find a maximum st-flow subject to capacity and flow conservation con-
straints.

The LP relaxation is

maxf(δ(s))− f(δ(s̄))

f(δ(v)) = f(δ(s̄)) v ∈ V − s− t

fe ≤ ce e ∈ E

fe ≥ 0 e ∈ E

Through binary search, we can reduce this to a feasibility problem.
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21.1.2 Multiplicative Weight Update Method

Consider the following feasibility version of maximum flow.

f(δ(s)) = k + f(δ(s̄))

f(δ(v)) = f(δ(s̄)) v ∈ V − s− t

fe ≤ ce e ∈ E

fe ≥ 0 e ∈ E

Let us group the first 3 sets of constraints as “easy” constraints and put the capacity con-
straints as “hard” constraints. We use the MWU method to combine the hard constraints
into one.

The idea is to design an oracle to return a solution f satisfying the average constraint, as
well as the easy constraints simultaneously. We would like the oracle to be small. Namely
f ≤ p for a small p.

21.1.3 Electric Flow Oracle

We want an oracle satisfying the following properties. Given the weights we and ε > 0,
return f ∈ Rm where

(i) f satisfies flow conservation, non-negative constraints, and objective value constraint
(ii) If the problem is feasible, f satsifies

∑
wefe ≤ (1 + ε)

∑
we

(iii) When the problem is feasible, f satisfies fe ∈ O
(√

m
ε

)
(iv) The runtime of the oracle is Õ(m)

Given we and ε > 0, put W :=
∑

we. Set the resistance of each e ∈ E to be

re := we +
εW

m
.

Return the electrical flow f sending k units of flow s → t.

Analysis

Property (i) follows directly from the definition of electric flow. On the other hand, property
(iv) is a breakthrough result we will see soon.
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Proof (Property (ii))
Recall that the energy of flow f is ∑

f 2
e re

and the electrical flow minimizes the energy among all possible flows.

Let f ∗ be a k-unit st-flow such that
f ∗ ≤ 1.

Thus

ε(f) ≤ ε(f ∗)

=
∑

(f ∗
e )

2re

≤
∑

re

=
∑

we +
εW

m
= (1 + ε)W.

By the Cauchy-Schwartz inequality(∑
wefe

)2
≤
(∑

wef
2
e

)(∑
we

)
≤
(∑

ref
2
e

)
·W

≤ (1 + ε)W 2

Taking square roots yields the desired inequality.

Proof (Property (iii))
By computation

f 2
e

(
εW

m

)
≤ f 2

e re

≤ ε(f)

≤ (1 + ε)W

fe ≤
√

(1 + ε)m

ε

∈ O

(√
m

ε

)
.
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21.1.4 Performance Guarantee

Given such an oracle exists, the MWU method implies the calling the oracle

O

(√
m log n

ε2.5

)
times, the average solution satisfies all the constraints

fe ≤ 1 +O(ε).

Initially, every edge has the same resistance and we send a k-unit electrical flow s → t. Some
capacity constraints may be violated. In each iteration, update the weight

wt+1(e) := wt(e) ·
(
1 +

ε

p
ft(e)

)
.

Intuitively, if the flow on an edge exceeds capacity, increase the resistance on that edge.

By scaling
fe 7→

fe
1 +O(ε)

,

this flow will satisfy all constraints and has objective value

k

1 +O(ε)
.

To conclude, we have a

Õ

(
m

3
2

ε2.5

)
time algorithm to return a (1−O(ε))-approximate solution.

21.1.5 Remarks

The performance guarantee from MWU has a factor of w2. If we have the non-negative
guarantee, then this improves to w. We used this in our work.

We only required that our oracle approximately satisfies the convex combination of con-
straints. Since the MWU only finds an approximately feasible solution anyways, this is not
an issue.

We can “round” the fractional solution to an integral solution in near-linear time. Thus if
we have a fractional solution, this implies an integral one.
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It is possible to obtain a

Õ

(
m

4
3

ε3

)
time algorithm to return a (1 − O(ε))-approximate solution by removing high congestion
edges.

This has been improved to a run time of

Õ
(m
ε3

)
.

Recently, a
Õ(m

4
3 )

time exact algorithm has been found for directed unweighted graphs, involving interior point
methods. An important subroutine of this method is the near linear time Laplacian solver.

21.2 Laplacian Solvers

The original paper has run time
O(m logc n)

where c was pretty big. This has been improved to

Õ(m
√

log n)

where we hide some log log n terms.

We briefly mention some simpler, more elegant algorithms.

21.2.1 Electrical Flow Perspective

We start with an arbitrary flow satisfying the demands, and slowly change it to the electrical
flow.

This involves “fixing” “bad” cycles repeatedly. An efficient implementation fixes only “fun-
damental cycles” with respect to a tree T . The fastest version requires “low stretch spanning
trees” and random sampling non-tree-edges to “fix” the containing cycle.

A further improvement involes data structures. The energy of the flow is the potential
function. The analysis uses some primal-dual analysis.

Overall, this gives a

O

(
m log3 n log

1

ε

)
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time algorithm to obtain a (1 + ε)-approximate solution.

21.2.2 Gaussian Elimination

We use Gaussian elimination to solve Laplacian equations. When we eliminate a vertex v,
this corresponds to creating a complete graph on N(v).

This makes the graph denser and denser. The work around is to sparsify the complete graph.

The analysis is nontrivial and requires a careful application of the martingale concentration
inequalities.

Overall, this gives a

O

(
m log3 n log

1

ε

)
time algorithm to obtain a (1 + ε)-approximate solution.
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