
CS 466/666 Algorithm Design and Analysis Last Updated: May 15, 2020
Homework 1 Due Date: June 1 (11pm), 2020

You are allowed to discuss with others but not allowed to use any references except the course notes and
the books “Probability and Computing” and “Randomized Algorithms”. Please list your collaborators for
each question. This will not affect your marks. In any case, you must write your own solutions.

There are totally 66 marks, and the full mark is 50. The extra marks will not be carried to other parts
of the course. This homework is counted 10% of the course. Please read the course outline for the late
submission policy.

1. Minimum Cuts

(10 marks) One advantage of Karger’s random contraction algorithm for the minimum cut problem
is that it can be used to output all minimum cuts. In this question, we assume Karger’s algorithm
as a black box, which can be used to output a minimum cut with probability at least 2/n(n − 1) in
time O(n2), where n is the number of vertices in the input graph. Explain how Karger’s algorithm can
be used to output all minimum cuts and analyze its running time to output all minimum cuts with
success probability at least 0.9999.

2. Minimum k-cut

(12 marks) Generalizing on the notion of a cut-set, we define a k-way cut-set in an undirected graph
as a set of edges whose removal leaves the graph into k or more connected components. Show that the
randomized contraction algorithm can be modified to find a minimum k-way cut-set in nO(k) time.

3. Online Hiring

(10 marks) We need to hire a new staff. There are n applicants for this job. Assume that we will know
how good they are (as a score) when we interview them, and the score for each applicant is different.
So there is a unique candidate with the highest score, but we don’t know that the applicant is the best
when we interview him/her until we have interviewed all the applicants. The problem is that after we
interview one applicant, we need to make an online decision to either give him/her an offer or forever
lose the chance to hire that applicant. Suppose the applicants come in a random order (i.e. a uniformly
random permutation), and we would like to come up with a strategy to hire the best applicant.

Consider the following strategy. First, interview m applicants but reject them all. Then, after the
m-th applicant, hire the first applicant you interview who is better than all of the previous applicants
that you have interviewed.

Let E be the event that you hire the best applicant. Let Ei be the event that the i-th applicant is the
best and you hire him/her. Compute Pr(Ei) and show that

Pr(E) =
m

n

n∑
j=m+1

1

j − 1
.

Then, show that Pr(E) ≥ m
n (lnn − lnm), and that Pr(E) can be arbitrarily close to 1/e for an

appropriate choice of m when n tends to infinity.
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4. Random Permutations

(10 marks) A permutation π : [n] → [n] can be represented as a set of cycles as follows. Let there be
one vertex for each number i for 1 ≤ i ≤ n. If the permutation maps the number i to the number π(i),
then a directed arc is drawn from vertex i to vertex π(i). This leads to a graph that is a set of disjoint
directed cycles. Notice that some of the cycles could be self-loops. What is the expected number of
cycles in a random permutation of n numbers?

5. Quicksort

(12 marks) The expected runtime of the randomized quicksort algorithm is at most 2n lnn steps where
n is the number of elements to be sorted (see Section 2.5 of “Probability and Computing” for a
proof). Prove that the probability that the actual runtime is more than say 100n lnn is at most inverse
polynomial in n. (Hint: Bound the probability that the recursion depth is large.)

6. Chernoff Bound (Bonus)

(12 marks) Recall that X is a standard normal random variable if its probability density function is

f(x) = 1√
2π
e−

1
2x

2

.

(a) Compute the moment generating function MX2(t) := E[etX
2

]. You may use the fact that∫∞
−∞ f(x) = 1 without providing a proof.

(b) Use (a), or otherwise, to compute E[X4].

(c) Let X1, . . . , Xk be independent standard normal random variables, and Y = 1
k

∑k
i=1X

2
i . Derive

a Chernoff bound to prove that Pr(Y > 1 + ε) ≤ e−kε
2/8 for 0 ≤ ε ≤ 1. You may use the Taylor

expansion ln(1− x) = −
∑∞
i=1 x

i/i for −1 ≤ x ≤ 1.
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