CS 466/666 Algorithm Design and Analysis. Spring 2020 Lecture 12: Spectral graph theory
 We introduce basic spectral graph theory today.
 We will use it to analyze random walks. and also in graph partitioning and graph sparsification.

Eigenvalues and eifenvectors

Given an $n \times n$ matrix A, a nonzero vector v is an eigenvector of A if $A v=\lambda \cup$ for some scalar λ, which is called an eigenvalue associated with the eigenvector v.

The set of eigenvalues of A is given by the set of solutions to $\operatorname{det}(A-\lambda I)=0$, the characteristic polynomial.
For an λ with $\operatorname{det}(A-\lambda I)=0$, any vector $v \neq 0$ in the kernel/nullspace of $A-\lambda I$ is an associated eigenvector.

Real symmetric matrices

Our starting point of spectral graph theory is the following spectral theorem for real symmetric matrices.

Theorem. Let A be an $n \times n$ real symmetric matrix. Then there is an orthonormal basis of \mathbb{R}^{n} Consisting of eigenvectors of A, and the corresponding eigenvalues are real numbers

We will not prove this theorem: see e.f. the book "algebraic graph theory" by Godsil and Royle.
The above theorem applies to the adjacency matrices of undirected graphs, but not for directed graphs
This is the main reason that spectral graph theory is much more developed for undirected graphs.

Let $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{n}$ be the orthonormal basis of eigenvectors guaranteed by the above spectral theorem, with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Let V be the $n \times n$ matrix with the i-th column being v_{n}, i.e. $V=\left[\begin{array}{lll}1 & 1 & 1 \\ v_{2} & v_{2} & 1 \\ 1 & v_{n} & 1\end{array}\right]$.
Let D be the $n \times n$ diagonal matrix with the (i,i)-th entry being λ_{i}, i.e. $D=\left[\begin{array}{lll}\lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{n}\end{array}\right]$
Then the conditions $A v_{i}=\lambda_{i} v_{i} \forall 1 \leqslant i \leqslant n$ can be compactly written as $A V=V D$.
Since the columns in V form an orthonormal basis, we have $V^{\top} V=I$ and thus $V^{-1}=V^{\top}$.
So, we can rewrite $A V=V D$ as $A=V D V^{-1}=V D V^{\top}=\left[\begin{array}{lll}1 & & 1 \\ 1 & \ldots & L_{n} \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}\lambda_{1} & & \\ & & \\ n_{n}\end{array}\right]\left[\begin{array}{l}-v_{1} \\ -i_{n}\end{array}\right]$
This representation is very usefal in computations.

Powers of matrices

To compute A^{k}, we observe that it is just $A^{k}=\left(V D V^{\top}\right)^{k}=\left(V D V^{\top}\right)\left(V D V^{\top}\right) \ldots\left(V D V^{\top}\right)=V D^{k} V^{\top}$ as $V^{\top} V=I$.
Since D is a diagonal matrix, D^{k} is easy to compute i.e. $D=\left[\begin{array}{lll}\lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{h}\end{array}\right], D^{k}=\left[\begin{array}{lll}\lambda_{1}^{k} & & \\ & & \\ & & \\ & & \lambda_{n}^{k}\end{array}\right]$.

This is very useful, in analysing random walks, as P^{t} is the transition matrix of the random walk after
t steps where P is the transition matrix in one step
We will use the eigenvalues of the transition matrix to bound the mixing time in a couple of lectures.

Eigen-decomposition

Since the eigenvectors form a_{n} orthonormal basis, any $x \in \mathbb{R}^{n}$ can be written uniquely as $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$.
By orthonormality. $\left\langle x, v_{i}\right\rangle=\left\langle c_{1} v_{1}+\ldots+c_{n} v_{n}, v_{i}\right\rangle=c_{1}\left\langle v_{1}, v_{i}\right\rangle+\ldots+c_{i}\left\langle v_{i}, v_{i}\right\rangle+\ldots+c_{n}\left\langle v_{n}, v_{i}\right\rangle=c_{i}$
Therefore, $x=\left\langle x, v_{1}\right\rangle v_{1}+\left\langle x, v_{2}\right\rangle v_{2}+\ldots+\left\langle x, v_{n}\right\rangle v_{n}=v_{1} v_{1}^{\top} x+v_{2} v_{2}^{\top} x+\ldots+v_{n} v_{n}^{\top} x=\left(v_{1} v_{1}^{\top}+\ldots+v_{n} v_{n}^{\top}\right) x$.
This is true for all x, and hence $v_{1} v_{1}{ }^{\top}+v_{2} v_{2}^{\top}+\ldots+v_{n} v_{n}{ }^{\top}=I$, the identity matrix.
Multiplying both sides by A. we get $A x=A\left(v_{1} v_{1}^{\top}+\ldots+v_{n} v_{n}^{\top}\right) x=\left(\lambda_{1} v_{1} v_{1}^{\top}+\lambda_{2} v_{2} v_{2}^{\top}+\ldots+\lambda_{n} v_{n} v_{n}^{\top}\right) x$
This implies that $A=\lambda_{1} V_{1} V_{1}^{\top}+\lambda_{2} v_{2} V_{2}^{\top}+\ldots+\lambda_{n} V_{n} V_{n}^{\top}$, which can also be seen directly from $A=V D V^{\top}$.
Finally. we claim that $A^{-1}=\frac{1}{\lambda_{1}} v, v_{1}^{\top}+\frac{1}{\lambda_{2}} v_{2} v_{2}^{\top}+\ldots+\frac{1}{\lambda_{n}} v_{n} v_{n}^{\top}$ if $\lambda_{i} \neq 0$ for $1 \leqslant i \leqslant n$,

$$
\text { because }\left(\lambda_{1} v_{1} v_{1}^{\top}+\ldots+\lambda_{n} v_{n} v_{n}^{\top}\right)\left(\frac{1}{\lambda_{1}} v_{1} v_{1}^{\top}+\ldots+\frac{1}{\lambda_{n}} v_{n} v_{n}^{\top}\right)=v_{1} v_{1}^{\top}+\ldots+v_{n} v_{n}^{\top}=I \text {. }
$$

Later on, we will use this idea to define the "pseudo-inverse" of A even when A is singular.

Positive semidefinite matrices

This is an important definition, an analog of a matrix being non-negative.
Fact Let A be a real symmetric matrix. The following statements are equivalent.
(1) A is positive semidefinite, i.e. all eigenvalues of A are non-negative.
(2) For any $x \in \mathbb{R}^{n}$, we have $x^{\top} A x \geq 0$, i.e. all quadratic forms are non-negative.
(3) $A=U^{\top} U$ for some matrix $U \in \mathbb{R}^{n \times n}$.
proof Recall that a real symmetric matrix A can be written as $V D U^{\top}$.
(1) \Rightarrow (3) Since all eigenvalues are non-negative, we can write $A=\left(V D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} V^{\top}\right)$ where $D^{\frac{1}{2}}$ is the
$n \times n$ diagonal matrix with $D_{i, i}=\sqrt{\lambda_{i}}$. Therefore, by letting $U=V D^{\frac{1}{2}}$, we see that A can be written as $U U^{\top}$.
(3) \Rightarrow (2) $x^{\top} A x=x^{\top} U U^{\top} x=\left\langle U^{\top} x, U^{\top} x\right\rangle=\left\|u^{\top} x\right\|_{2}^{2} \geqslant 0$ for any $x \in \mathbb{R}^{n}$.
(2) \Rightarrow (1) We prove the contrapositive, $\neg(1) \Rightarrow$ (2)

If v is an eigenvector with negative eigenvalue, then $v^{\top} A v=\lambda v^{\top} v=\lambda\|v\|_{2}^{2}<0$. \quad.

We will use the notation $A \S 0$ for A is a positive semidefinite matrix.
This is the basic of "semidefinite propramming", a powerful generalization of linear propramming. Unfortunately, we will not be able to see it in this course

The following fact says that the sum of eipenvalues is equal to the trace of a matrix.
Fact Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of $A \in \mathbb{R}^{n \times n}$. Then, $\sum_{i=1}^{n} \lambda_{i}=\operatorname{trace}(A)$, where trace (A) is defined as the sum of diagonal entries of A, i.e. $\operatorname{trace}(A)=\sum_{i=1}^{n} A_{i, i}$.
proof The proof is by considering the coefficients of $\operatorname{det}(\lambda I-A)$ as a polynomial in λ.
The roots of $\operatorname{det}(\lambda I-A)$ are the eigenvalues of A, and so $\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda_{-} \lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$.
Note that the coefficients of λ^{n-1} is $-\sum_{i=1}^{n} \lambda_{i}$.
On the other hand, $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{cccc}\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \\ -a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\ \vdots & & \ddots & \vdots \\ -a_{n 1} & -a_{n 2} & \cdots & \lambda-a_{n n}\end{array}\right)$.
By the Laplace expansion of the determinant, the coefficients of λ^{n-7} only appears in the term $\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right) \ldots\left(\lambda-a_{n n}\right)$, where the coefficient of λ^{n-1} in this term is $-\sum_{i=1}^{n} a_{i i}$
Therefore, $\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}=\operatorname{trace}(A)$. \square

We can use the same idea to derive other identities by writing other coefficients of det ($\lambda I-A$)
in two ways. We won't need them and so leave as an exercise.
There is a nice identity for the product of the eigenvalues and the proof is left as an exercise
Fact $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A.

Graph spectrum

Spectral graph theory relates the combinatorial properties of a graph to the eigenvalues and eigenvectors of its associated matrix (e.g. adjacency matrix, Laplacian matrix).

Let's start with some examples and compute their spectrums.

Complete graph what is the spectrum of the complete graph on n vertices?
The adjacency matrix A is $J_{n}-I_{n}$, where J_{n} is the $n \times n$ all-one matrix.
Any vector is an eigenvector of I_{n} with eigenvalue 1.
Hence, the eigenvalues of A are just the eigenvalues of J_{n} minus one.
Since J_{n} is a rank one matrix, there are $n-1$ eigenvalues of 0 , i.e. the eigenvalue 0 is of multiplicity $n-1$. The all-one vector is an eigenvector of J_{n} with eigenvalue n, so the spectrum of J_{n} is $(n, 0,0, \ldots, 0)$

So, A has one eigenvalue of $n-1$, and $n-1$ eigenvalues of -1 , so the spectrum of A is $(n-1,-1,-1, \ldots,-1)$.
This is an example with the largest eigenvalue gap between the largest eigenvalue and the second largest.

Complete bipactite graph what is the spectrum of the complete bipartite graph $K_{m, n}$?

$$
m \rho r \text { in } \sqrt{-17}
$$

Complete bipartite graph what is the spectrum of the complete bipartite graph km,n?
The adjacency matrix A of $k_{m, n}$ looks like this : $n\{\underbrace{m}_{n} \underbrace{0}_{n} 1$
This matrix is of rank 2, so there are $n+m-2$ eigenvalues of 0 , and two non-zero eigenvalues λ_{1}, λ_{2}.
As $\sum_{i=1}^{n+m} \lambda_{i}=\operatorname{trace}(A)=0$, we have $\lambda_{1}=-\lambda_{2}$. Let $\lambda_{1}=k$ and we are to determine the value of k.
Then $\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \lambda^{n+m-2}=\lambda^{n+m}-k^{2} \lambda^{n+m-2}$.
To determine k, we use the Laplace expansion of $\operatorname{det}\left(\frac{\lambda}{\lambda-1} \frac{-1}{\lambda}\right)$.
Any term that contributes to λ^{n+m-2} must have $n+m-2$ diagonal entries, and two off-diagonal entries -aij. $a_{j i}$. There are totally $m n$ such terms. each contributing -1 to the coefficient of λ^{n+m-2},
as the sign of each term is -1 .
Therefore, $-k^{2}=-m n$, and thus $k=\sqrt{m n}$.
To conclude, the spectrum of $k_{m, n}$ is $(\sqrt{m n}, 0,0, \ldots, 0,-\sqrt{m n})$

Bipartite graphs Interestingly, we can characterize bipartite graphs by the spectrums.
The following lemma shows that the spectrum of a bipartite graph is symmetric around the origin.

Lemma If G is a bipartite graph and λ is an eigenvalue of $A(G)$ with multiplicity K, then $-\lambda$ is also an eigenvalue of $A(G)$ with multiplicity k.
Proof By permuting the rows and columns, we can write the adjacency of a bipartite graph as $A(G)=\left(\begin{array}{cc}0 & B \\ B^{\top} & 0\end{array}\right)$. Suppose $u=\binom{x}{y}$ is an eigenvector of $A(G)$ with eigenvalue λ.
This implies that $\left(\begin{array}{cc}0 & B \\ B^{\top} & 0\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}$, and hence $B y=\lambda x$ and $B^{\top} x=\lambda y$.
Consider the vector $\binom{x}{-y}$.
Note that $\left(\begin{array}{cc}0 & B \\ B^{\top} & 0\end{array}\right)\binom{x}{-y}=\binom{-B_{y}}{B^{\top} x}=\binom{-\lambda x}{\lambda y}=-\lambda\binom{x}{-y}$, and so $\binom{x}{-y}$ is an eigenvector of eigenvalue $-\lambda$.
Finally, k linearly independent eigenvectors of eigenvalue λ give k linearly independent eigenvectors of eigenvalue $-\lambda$ by the above construction, and so the multiplicity of λ and $-\lambda$ is the same.

We now prove that the converse is also true!

Lemma Let $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ be the eigenvalues of $A(G)$
If $\lambda_{i}=-\lambda_{n-i+1}$ for $1 \leq i \leq n$, then G is a bipartite graph.
Proof

$$
\text { Let } k \geqslant 1 \text { be an odd number. }
$$

Note that $\sum_{i=1}^{n} \lambda_{i}^{k}=0$, by the symmetry of the spectrum.
Note also that $\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{n}^{k}$ ace the eigenvalues of A^{k}, because if $A u=\lambda u$ then $A^{k} u=\lambda^{k} u$.
By sum of eigenvalues equal trace, we have $\operatorname{trace}\left(A^{k}\right)=\sum_{i=1}^{n} \lambda_{i}{ }^{k}=0$.
Observe that $A_{i, j}^{k}$ is equal to the number of length k walks from i to j in G (exercise by induction). If G has an odd cycle of length k, then $A_{i i}^{k}>0$ for any vertex i in the cycle, hence trace $\left(A^{k}\right)>0$. Therefore, since trace $\left(A^{k}\right)=0, G$ must have no odd cycles and thus G is bipartite. \square

To conclude, we have a spectral characterization of a bipartite graph, that G is bipartite if and only if the spectrum of its adjacency matrix is symmetric around the origin.

Laplacian matrices

Given an undirected graph G, the Laplacian matrix $L(G)$ is defined as $D(G)-A(G)$, where

$$
D(G)=\left(\begin{array}{ccc}
d_{1} & d_{2} & 0 \\
0 & \ddots & d_{n}
\end{array}\right) \text { is the diagonal degree matrix with } D(G)_{i i}=\text { degree of vertex } i \text { in } G \text {. }
$$

When G is a d-regular graph, then $D=d I$ and $L=d I-A$. Thus, any eigenvector of A with
eigenvalue λ is an eigenvector of L with eigenvalue $d-\lambda$, and vice versa.
So, in this case the spectrums of the adjacency matrix and the Laplacian matrix are basically equivalent, but when G is non-regular it may not be so easy to relate their eigenvalues.

Let's try to understand more about the spectrum of the Laplacian matrices.
Let $\overrightarrow{1}$ be the all-one vector. Then it is easy to check that $L \vec{i}=0$
So. $L(G)$ has O as an eigenvalue for any graph G.

Can $L(G)$ have a smaller eigenvalue (i.e. a negative eigenvalue)?
Let $e=i j$ be an edge in G. Let the Laplacian of edge be $L_{e}=\left[\begin{array}{cc}i & j \\ +1 & -1 \\ -1 & +1\end{array}\right]$ (with only 4 nonjero entries). Then, it can be checked that $L(G)=L(G-e)+L_{e}$, and it follows by induction that $L(G)=\sum_{e \in E} L_{e}$.

For $e=i j$, let be $\in \mathbb{R}^{n}$ be the column vector with the i-th entry equal +1 and the j-th entry equal -1 and zerb o.w. Then, it is easy to see that $L_{e}=\left[\begin{array}{ll}+1 & -1 \\ -1 & +1\end{array}\right]=\left[\begin{array}{c}+1 \\ -1\end{array}\right]\left[\begin{array}{ll}+1 & -1\end{array}\right]=b_{e} b_{e}^{\top}$, and thus L_{e} is a positive semidefinite matrix. This implies that L is also a positive semidefinite matrix, as a sum of PSD matrices is also a PSD matrix Therefore, O is the smallest eigenvalue of $L(G)$ for any G.

One advantage of the Laplacian matrix is that we know its smallest eigenvalue and its corresponding eijenvector \vec{I}.

Connectedness

It turns out that the smallest eigenvalue of $L(G)$ gives a spectral characterization of whether G is connected Proposition A graph G is connected if and only if O is an eipenvalue of $L(G)$ with multiplicity one. Proof If G is disconnected, then the vertex set can be partitioned into two sets S_{1} and S_{2} such that there are no edges between them. Then, $L(G)=\left(\begin{array}{cc}L\left(G_{1}\right) & 0 \\ 0 & L\left(G_{2}\right)\end{array}\right)$, and so $\left(\begin{array}{c}1 \\ \vdots \\ 0 \\ \vdots\end{array}\right)$ and $\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)$ are both eigenvectors of $L(G)$ with eigenvalue 0 . hence of multiplicity $\geqslant 2$. If G is connected, consider $x^{\top} L x=x^{\top}\left(\sum_{e \in E} L_{e}\right) x=\sum_{e \in E} x^{\top} L_{e} x=\sum_{e \in E} x^{\top} b_{e} b_{e}^{\top} x=\sum_{e \in E}\left(x_{i}-x_{j}\right)^{2} \geqslant 0$ If x is an eigenvector of eigenvalue 0 , then $X^{\top} L X=0$.

For $x^{\top} L_{x}=\sum_{e=i j \in E}\left(x_{i}-x_{j}\right)^{2}=0$, it must hold that $x_{i}=x_{j}$ for all $i j \in E$. Since G is connected, it follows that $x_{i}=x_{j}$ for all $i, j \in V$, and thus $x=c \overrightarrow{1}$ for some value $c \in \mathbb{R}$. Therefore, all eigenvectors of eigenvalue 0 live in a one-dimensional subspace (spanned by the vector $\overrightarrow{1}$). and thus 0 is an eigenvalue of multiplicity 1 .

We usually order the eigenvalues of a Laplacian matrix as $0=\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$.
Then the above result says that G is connected if and only if $\lambda_{2}>0$ (or G disconnected iff $\lambda_{2}=0$).
The statement can be generalized as follows. The proof is left as an exercise.
Proposition A graph G has k connected components if and only if the k-th smallest eigenvalue of its Laplacian matrix is equal to zero.

Generalizations

So far we have seen some spectral characterizations of combinatorial properties of a graph, such as bipartiteness and connectedness, but these are simple properties that are easy to deduce by other methods. The key feature of these spectral characterizations is that they can be generalized nontrivially and quantitatively:

- λ_{2} is "small" iff the graph is "close" to be disconnected (i.e. the existence of a "sparse" cut)
- λ_{k} is "small" iff the graph is "close" to having k components (i.e. k disjoint "sparse" cuts).
- α_{n} is "close" to - α_{1} (adjacency matrix) iff the graph has a "close-to-bipartite-component".

We will prove the first item and mention the next two items in the next lecture.

Rayleigh Quotient

The main concept in relating eigenvalues and eigenvectors to optimization problems is the Rayleigh quotient, Which is defined as $\frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{i, j} a_{i j} x_{i} x_{j}}{\sum_{i} x_{i}^{2}}$, i.e. the quadratic form normalized by the squared length.

Let A be a real symmetric matrix with eigenvalues $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{n}$, and orthonormal eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$.

Lemma $\quad \alpha_{1}=\max _{x} \frac{x^{\top} A x}{x^{\top} x}$
proof Let $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$, as v_{1}, \ldots, v_{n} form a basis. Then $x^{\top} A x=\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)^{\top} A\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)$

$$
\begin{aligned}
& =\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)^{\top}\left(c_{1} \alpha_{1} v_{1}+c_{2} \alpha_{2} v_{2}+\ldots+c_{n} \alpha_{n} v_{n}\right) \\
& =\sum_{i=1}^{n} c_{i}^{2} \alpha_{i} \quad \text { (as } v_{1}, \ldots, v_{n} \text { are orthonormal) }
\end{aligned}
$$

Similarly, $x^{\top} x=\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)^{\top}\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=\sum_{i=1}^{n} c_{i}^{2}$.
So, $\frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{i=1}^{n} c_{i}^{2} \alpha_{i}}{\sum_{i=1}^{n} c_{i}^{2}} \leqslant \frac{\alpha_{1} \sum_{i=1}^{n} c_{i}^{2}}{\sum_{i=1}^{n} c_{i}^{2}}=\alpha_{1}$.
Since v, attains the maximum, the lemma follows. \square

This can be used to characterize other eigenvalues
Let T_{k} be the set of vectors that are orthogonal to v_{1}, \ldots, v_{k-1}.

Lemma $\quad \lambda_{k}=\max _{x \in T_{k}} \frac{x^{\top} A x}{x^{\top} x}$
proof Let $x \in T_{k}$. Write $x=c_{1} v_{1}+\ldots+c_{n} v_{n}$.
Recall that $c_{i}=\left\langle x, v_{i}\right\rangle$. Since $x \in T_{k}$, it follows that $c_{1}=c_{2}=\ldots=c_{k-1}=0$.
Then, $\frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{i=k}^{n} c_{i}^{2} \alpha_{i}}{\sum_{i=k}^{n} c_{i}^{2}} \leq \frac{\alpha_{k} \sum_{i=k}^{n} c_{i}^{2}}{\sum_{i=k}^{n} c_{i}^{2}}=\alpha_{k}$.
Since $v_{k} \in T_{k}$ and $\frac{v_{k}^{\top} A v_{k}}{v_{k}^{\top} v_{k}}=\alpha_{k}$, the lemma follows

The above result gives a characterization of α_{k}, but it requires the knowledge of the previous eigenvectors.
The following result gives a characterization without using T_{k}, and this is useful in providing bounds on eigenvalues.

Courant-Fischer Theorem $\quad \alpha_{k}=\max _{\substack{S \subseteq R^{n} \\ \operatorname{dim}(S)=k}} \min _{x \in S} \frac{x^{\top} A x}{x^{\top} x}=\min _{\substack{S \subseteq R^{n} \\ \operatorname{dim}(S)=n-k+1}} \max _{x \in S} \frac{x^{\top} A x}{x^{\top} x}$
Proof (optional) We first consider the max-min term.
Let S_{k} be the k-dimensional subspace spanned by $v_{1} \ldots, v_{k}$, ie. $\left\{x \mid x=c_{1} v_{1}+\ldots+c_{k} v_{k}\right.$ for some $\left.c_{1}, \ldots, c_{k}\right\}$.
For any $x \in S_{k}, \frac{x^{\top} A x}{x^{\top} x}=\frac{\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)^{\top} A\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)}{\left(c_{i} v_{1}+\ldots+c_{k} v_{k}\right)^{\top}\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)}=\frac{\sum_{i=1}^{k} c_{i}^{2} \alpha_{i}}{\sum_{i=1}^{k} c_{i}^{2}} \geqslant \frac{\alpha_{k} \sum_{i=1}^{k} c_{i}^{2}}{\sum_{i=1}^{k} c_{i}^{2}}=\alpha_{k}$
So, $\max _{S \leq R} \min _{x \rightarrow S} \frac{x^{\top} A x}{\operatorname{dim}^{\top}(S)=k} \geqslant \min _{x \in S_{k}} \frac{x^{\top} A x}{x^{\top} x} \geqslant \alpha_{k}$.

To prove that the maximum cannot be greater than α_{k}, observe that any k-dimensional subspace must intersect the $n-k+1$ dimensional subspace T_{k} spanned by $\left\{v_{k}, v_{k+1}, \ldots, v_{n}\right\}$.
For any $x \in T_{k}, \quad \frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{i=k}^{n} c_{i}^{2} \alpha_{i}}{\sum_{i=k} c_{i}^{2}} \leq \alpha_{i}$.

So, $\max _{\substack{S \subseteq R \\ \operatorname{dim}(S)=k}} \min _{x \in S} \frac{x^{\top} A x}{x^{\top} x} \leq \max _{S \subseteq R}^{\operatorname{dim}(s)=k} \min _{x \in S \cap T_{k}} \frac{x^{\top} A x}{x^{\top} x} \leq \alpha_{k}$.

Largest eigenvalue of adjacency matrix

Let A be the adjacency matrix of an undirected graph. Let α, be its largest eigenvalue.
Claim $\alpha_{1} \leq d_{\max }$ where $d_{\max }$ denotes the maximum degree in G.

Proof Let v_{1} be an eigenvector with eigenvalue $\alpha_{\text {, }}$.
Let j be the vertex with $V_{1}(j) \geqslant v_{1}(i)$ for all i.
Then, $\quad \alpha_{1} v_{1}(j)=\left(A v_{1}\right)(j)=\sum_{i: i j \in E(G)} V_{1}(i) \leq \sum_{i: i j \in E(G)} V_{1}(j)=\operatorname{deg}(j) \cdot v_{1}(j) \leq d_{m a x} \cdot v_{1}(j)$.
Therefore, $\alpha_{1} \leq d_{\text {max }}$. \square

When $\lambda_{1}=d_{\text {max }}$, then the above inequalities must hold as equalities, i.e. $v_{1}(i)=v_{1}(j)$ for every neighbor

$$
\begin{aligned}
& \text { i of } j \text { and also } \operatorname{deg}(j)=d_{\max } \text { So, when } G \text { is connected and } \lambda_{1}=d_{\max } \text {, then } G \text { must be } \\
& d_{\max } \text {-regular and the eigenvalue } \lambda_{1} \text { is of multiplicity one. }
\end{aligned}
$$

The Perron-Frobenius theorem for non-negative matrices tell us more about the first eigenvalue and eijenvector. Theorem Let G be a connected undirected graph. Then,
(1) the first eigenvalue is of multiplicity one.
(2) $\left|\alpha_{i}\right| \leqslant \alpha_{1}$ for all i.
(3) all entries of the first eigenvector are nonzero and have the same sign.

We will not prove it. See chapter 8 of "Algebraic graph theory" by Godsil and Royle for proofs.

References

- Lecture notes of "spectral graph theory" by Dan Spielman (and an upcoming book).
- "Algebraic graph theory" by Godsil and Royle.

